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Abstract

Computational systems biology is concerned with the development of detailed mechanis-
tic models of biological processes. In this project we consider a stochastic kinetic model
of a process of interest, defined as a Markov jump process. The problem of performing
Bayesian inference for the model parameters will be considered and a sequential Monte
Carlo (SMC) scheme developed, that allows our beliefs to be updated as each observation
becomes available. For a certain choice of prior distribution and, under the assumption
of mass action kinetics, the parameter posterior at each time point can be summarised in
terms of a number of (low dimensional) statistics. We aim to exploit these inside the SMC
scheme to improve efficiency.
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Chapter 1

Introduction

The standard approach for modelling biochemical networks is to derive ordinary differential
equations (ODEs) using the law of mass action and the concentrations of each species.
Such an approach, however, assumes that the time-evolution of a system is continuous
and deterministic. In reality chemical reactions occur as discrete events as a result of
molecular collisions, which are impossible to predict with certainty [1]. Thus for the random
processes that underlie systems biology, it is not always possible to satisfactorily implement
a deterministic approach.

In order to understand such systems, a stochastic approach is adopted. The result-
ing stochastic kinetic models are most naturally represented by Markov jump processes
(MJPs). These are continuous-time, discrete-valued Markov processes. Given a set of ini-
tial conditions and rate constants governing each reaction, exact realisations of the MJP
can be achieved through a discrete event simulation technique, known in this context as
Gillespie’s direct method [1]. Generating forward simulations from the model is therefore
straightforward, and can give insight into the behaviour of a system of interest. However,
plausible parameter (rate constant) values must be determined from experimental data
that may be incomplete and subject to error.

The aim of this project is to perform Bayesian inference for the rate constants of a
given reaction network using discrete-time noisy measurements of the system components
(species). This problem is challenging since transition probabilities governing the MJP
are rarely available in closed form. We will therefore adopt a simulation based Monte
Carlo approach to generate samples from a target posterior density. In particular, we will
focus on a sequential approach, by updating our beliefs about the rate constants as each
observation becomes available. Thus, a sequential Monte Carlo (SMC) scheme will be
constructed. Such schemes are typically termed particle filters, as they aim to propagate a
weighted swarm of parameter samples or particles, according to the information contained
in each new observation. Essentially, a weighted resampling scheme is applied iteratively,
giving an algorithm known as the bootstrap particle filter [2].

Unfortunately, SMC schemes for static parameter problems can be afflicted by particle
degeneracy, which can occur when very few particles have resonable weight, resulting in
parameter posteriors collapsing to a point mass (eventually). We therefore aim to mitigate
this problem by implementing a filter due to Storvik [3], [4]. Under the assumption of mass
action kinetics, the parameter posterior at each time point can be summarised in terms
of a number of (low dimensional) statistics. These statistics can be propagated inside an
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SMC scheme to give a mechanism for rejuvenating the particle set at each time point. We
apply these methods to infer the rate constants governing an immigration-death process
and a simple model of predator-prey interaction proposed by Lotka and Volterra [5], [6].

The remainder of this report is organised as follows. In Chapter 2 we give an introduc-
tion to stochastic kinetic models. Chapter 3 describes a Bayesian approach to inference,
before a sequential implementation is given in Chapter 4. We apply the methodology to
two examples in Chapter 5 before drawing conclusions and considering future directions in
Chapter 6.
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Chapter 2

Stochastic Kinetic Models

Given a system of chemical reactions, their rate constants and associated rate laws, a
stochastic kinetic model describes the probabilistic behaviour of each species through time.
A Markov jump process (MJP), that is, a continuous time, discrete valued Markov process,
provides a natural representation of the biochemical network.

In this chapter, we provide a review of reaction networks and their MJP representation.
For further details we refer the reader to [7].

2.1 Reaction networks

Suppose k species X1,X2, . . . ,Xk are involved in a set of r reactions R1,R2, . . . ,Rr, where
the rate constant of the ith reaction is denoted by θi. Then the reaction network represen-
tation of those reactions is

R1 : p11X1 + p12X2 + . . .+ p1kXk
θ1−−→ q11X1 + q12X2 + . . .+ q1kXk

R2 : p21X1 + p22X2 + . . .+ p2kXk
θ2−−→ q21X1 + q22X2 + . . .+ q2kXk

...
...

...
...

Rr : pr1X1 + pr2X2 + . . .+ prkXk
θr−−→ qr1X1 + qr2X2 + . . .+ qrkXk

where pij, qij ∈ N are non-negative integers. The species on the left are the reactants and
the species on the right are the products. The pij and qij are known as the stoichiometric
coefficients where

• pij is the coefficient of reactant j in reaction i, and

• qij is the coefficient of product j in reaction i.

When a reaction occurs, the number of each reactant reduces by the value of its stoichiom-
etry, whilst the number of each product increases by the value of its stoichiometry. If the
reactants destroy each other or are removed from the system, the empty set is used on the
right hand side of the reaction. Similarly, the empty set is used on the left hand side of the
reaction if the products are intoduced to the system from outside.

A matrix representation can be useful to see how the state of the system is updated as
reactions occur. The matrix S, with (i, j)th element equal to qij − pij, gives the effect of
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reaction j on species i. This matrix is known as the stoichiometry matrix and clearly has
dimensions k × r.

Consider a reaction
R : X1 + X2

θ
−−→ X3.

This will occur when a molecule of X1 collides with a molecule of X2. Assuming a well
stirred container in thermal equilibrium gives a constant collision rate/hazard. Therefore

Pr(2 molecules collide in a time interval of length dt) = θdt

Supposing there are currently x1 lots of X1 and x2 lots of X2, then

Pr(Reaction in time interval of length dt) = θx1x2dt

This probability only depends on the current system state, giving the Markov property,
where the future is only dependent on the past through the present. Also, when a reaction
occurs, it’s effect is to change the relevant states by an integer amount, meaning this
is a discrete valued process. This leads us to model the system dynamics (time course
behaviour) with a Markov jump process (MJP), considered in the next section.

2.2 Markov jump process representation

In order to fully specify the Markov process it is also necessary to specify a rate law for
each reaction. In the above reaction, θx1x2 is called the instantaneous rate/hazard. For a
general reaction network, we denote the hazard of reaction Ri by

hi(Xt, θi) = θig(Xt),

where Xt = (X1,t, X2,t, . . . , Xk,t)
T denotes the state of the system at time t. If the form

of each rate is known, then we have a complete specification of a Markov process, and
sufficient information to simulate from the process. Under the assumptions of mass action
kinetics the hazard is specified by

g(Xt) =
k∏

j=1

(
Xj,t

pi,j

)
= product of binomial coefficients.

For examples of hazard forms under various reaction types, see table 2.1.
Given a set of reactions and their associated rates, we can write down the chemical master
equation for the corresponding Markov process and simulate realisations from the process
using the Gillespie algorithm (also known as Gillespie’s direct method). With the state of
the system denoted by x = (x1, x2, . . . , xk)

T and the reactions R1, R2, . . . , Rr occuring with
rates h1(x, θ1), h2(x, θ2), . . . , hr(x, θr), then the total rate is

h0(x, θ) =
r∑

i=1

hi(x, θi).

When a reaction occurs, the probability that it is of type Ri is hi(x, θi)/h0(x, θ). Moreover,
the time between reaction events can be shown to follow an exponential distribution. Thus
the algorithm has the following form:
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Reaction Hazard

R1 : ∅
θ1−−→ X1 h1(Xt, θ1) = θ1

R2 : X1
θ2−−→ ∅ h2(Xt, θ2) = θ2X1,t

R3 : X1 + X2
θ3−−→ X3 h3(Xt, θ3) = θ3X1,tX2,t

R4 : 2X1
θ4−−→ X3 h4(Xt, θ4) = θ4X1,t(X1,t − 1)/2!

Table 2.1: Example reactions and their hazards under mass action kinetics.

1. Set t = 0. Initialise θ1, θ2, . . . , θr and x = (x1, x2, . . . , xr)
T .

2. Calculate hi(x, θi), i = 1, 2, . . . , r and the combined hazard h0(x, θ) =
∑r

i=1 hi(x, θi).

3. Simulate the time to the next reaction τ ∼ Exp(h0) and set t := t+ τ .

4. Simulate a reaction index j as a discrete random quantity with probability
hj(x, θi)/h0(x, θ).

5. Update x accordig to reaction Rj. That is, set x to x+ sj where sj is the j
th column

of the stoichiometry matrix.

6. Output (or store) the current state and time, x and t.

7. If t ≤ T , some max time, go to step 2. Otherwise, stop.

2.3 Examples

In this section we consider two toy reaction networks that will be used to illustrate the
inference schemes described in Chapters 3 and 4.

2.3.1 Immigration-Death

In the immigration-death model, there are 2 reactions (immigration and death) for a single
species. The immigrations come from an external source, thus the model has the form:

R1 : ∅
θ1−−→ X i.e. (x) 7→ (x+ 1)

R2 : X
θ2−−→ ∅ i.e. (x) 7→ (x− 1)

where x represents the population level for the species. Reaction 1 (R1) is immigration, a
zeroth-order reaction. Reaction 2 (R2) is death, a first order reaction. Thus the reaction
hazards are

h1(Xt, θ1) = θ1
h2(Xt, θ2) = θ2x

with stoichiometry matrix
S =

(
1 −1

)
.

The above description gives sufficient information for the system to be simulated, upon
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specifying an initial condition and values of the rate constants. Below is a typical realisation
for (θ1, θ2) = (0.8, 0.1)T :
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Figure 2.1: A realisation of population size for the immigration-death model using Gille-
spie’s direct method with θ = (0.8, 0.1)T , initial population size of 30 and max time of
30.

2.3.2 Lotka-Volterra

Suppose X(t) = (X1(t), X2(t))
T represents the numbers of individuals in two species in a

predator-prey network with prey X1 and predators X2 (e.g. foxes and rabbits). Increases
in prey population translates to an abundance in food for predators, so the predator pop-
ulation will tend to increase. Over-predation can then occur which causes a drop in prey
numbers. The interaction between predators and prey, together with how the two popula-
tions breed to produce offspring, is clearly a random process with population levels varying
over continuous time. The Lotka-Volterra predator-prey model has the form:

R1 : X1
θ1−−→ 2X1 i.e. (x1, x2) 7→ (x1 + 1, x2)

R2 : X1 + X2
θ2−−→ 2X2 i.e. (x1, x2) 7→ (x1 − 1, x2 + 1)

R3 : X2
θ3−−→ ∅ i.e. (x1, x2) 7→ (x1, x2 − 1)

where x1, x2 represent population levels for prey and predators (rabbits and foxes). Reac-
tion 1 (R1) is prey reproduction, reaction 2 (R2) is prey death and predator reproduction,
and reaction 3 (R3) is predator death. Therefore, the reaction hazards are

h1(Xt, θ1) = θ1x1

h2(Xt, θ2) = θ2x1 × x2

h3(Xt, θ3) = θ3x2
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with stoichiometry matrix

S =

(
1 −1 0
0 1 −1

)
.

As for the Immigration-Death model, the above description gives sufficient information for
the system to be simulated. Below is a typical realisation for (θ1, θ2, θ3)

T = (0.5, 0.0025, 0.3)T :
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Figure 2.2: A realisation of population sizes for the Lotka-Volterra model using Gillespie’s
direct method with θ = (0.5, 0.0025, 0.3)T , initial population sizes of 100 and max time of
50. The red line represents the prey population, and the blue line represents the predator
population.
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Chapter 3

Bayesian Inference

When working within the Bayesian paradigm, we typically consider a parameter vector
θ = (θ1, θ2, . . . , θp)

T and data x = (x1, x2, . . . , xn)
T . Given these data, we can then make

inferences about the parameter values in a chosen model. A key ingredient of the Bayesian
approach is the specification of a prior distribution for θ. Associated with this distribution
is the prior density π(θ). We formulate a model that defines the distribution of X given
the parameters, i.e. we specify a density fX|Θ(x|θ). This can then be regarded as a function
of θ when we have got some fixed observed data x, called the likelihood.

The prior and likelihood determine the full joint density over data and parameters:

fΘ,X(θ, x) = π(θ)fX|Θ(x|θ).

Given the joint density, we are then able to compute its marginal and conditional distribu-
tions:

fX(x) =

∫

Θ

π(θ)fΘ,X(θ, x) dθ =

∫

Θ

π(θ)fX|Θ(x|θ) dθ

and

fΘ|X(θ|x) =
fΘ,X(θ, x)

fX(x)
=

π(θ)fX|Θ(x|θ)∫
Θ
π(θ)fX|Θ(x|θ) dθ

.

The term fΘ|X(θ|x) is known as the posterior density, and is usually denoted π(θ|x), leading
to the continuous version of Bayes theorem:

π(θ|x) =
π(θ)fX|Θ(x|θ)∫

Θ
π(θ)fX|Θ(x|θ) dθ

Now, the denominator is not a function of θ, so we can in fact write this as

π(θ|x) ∝ π(θ)fX|Θ(x|θ)

where the constant of proportionality is chosen to ensure that the density integrates to one.
Hence, the posterior is proportional to the prior times the likelihood.

In what follows, we consider the task of formulating the posterior density for the rate
constants governing a stochastic kinetic model.
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3.1 Using complete data

We consider first a special case where all times and types of reaction are observed. Consider
an interval [0, T ] and let rj denote the number of reaction events of type Rj, j = 1, 2, . . . , r,
and define n =

∑r

j=1 rj as the total number of reaction events over the interval. Reaction
times (assumed to be in increasing order) and types are denoted by (ti, νi), i = 1, 2, . . . , n,
νi ∈ {1, 2, . . . , r} and we take t0 = 0 and tn+1 = T . Let x be all reaction times and types
in the interval. The complete data likelihood π(x|θ) is given in [7] as

π(x|θ) =

{
n∏

i=1

hνi

(
xti−1

, θνi
)
}
exp

{
−

n∑

i=1

h0 (xti , θ) [ti+1 − ti]

}

=

{
n∏

i=1

hνi

(
xti−1

, θνi
)
}
exp

{
−

∫ T

0

h0 (xt, θ) dt

}
.

For mass action kinetics, hj(xt, θj) = θjgj(xt) and therefore

π(x|θ) =
r∏

j=1

θ
rj
j exp

{
−

n∑

i=0

θjgj(xti) [ti+1 − ti]

}

=
r∏

j=1

πj(x|θj).

A conjugate analysis is now possible by taking independent Gamma priors for each rate
constant. That is, θj ∼ Gamma(aj, bj), j = 1, 2, . . . , r. We obtain the posterior as

θj|x ∼ Gamma

(
aj + rj , bj +

n∑

i=0

gj(xti) [ti+1 − ti]

)
.

3.1.1 Example: Immigration-Death

Figure 3.1 shows a sample path for an immigration-death process with θ = (0.5, 0.1)T ,
initial population size of 30, and max time of 30. The marginal posteriors for each pa-
rameter, assuming observations on all reaction times and types, are also given. The prior
distributions used for the parameters are

θj ∼ Gamma(0.2, 0.2), for both j = 1, 2.

The posteriors are highly peaked about the true parameter values (0.5 and 0.1), showing
that using complete data allowed accurate inference about the rate constants to be made.

3.2 Using data at discrete times

Consider a time interval [0, T ] over which a Markov jump process X = {Xt | 0 ≤ t ≤ T}
is not observed directly, but observations (on a regular grid) y = {yt | t = 0, 1, . . . , T} are
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Figure 3.1: Marginal parameter posteriors assuming observations on all reaction times and
types. The left hand plot shows the data used to construct the posteriors.

available and assumed conditionally independent (given X) with conditional probability
distribution obtained via the observation equation,

Yt = Xt + εt, εt ∼ N (0,Σ) , t = 0, 1, . . . , T.

Bayesian inference may then proceed through the joint posterior density

π(θ, x|y) ∝ π(θ) π(x|θ) f(y|x, θ)

∝ π(θ) π(x0) π(x|x0, θ)
T∏

t=0

f(yt|xt, θ) (3.1)

∝ prior× likelihood

where π(x|x0, θ) is the probability associated with the MJP (conditional on x0) and can be
sampled from by executing Gillespie’s direct method. Since the posterior in (3.1) will be
intractable in practice, samples are usually generated from (3.1) via a Monte Carlo scheme.
We now review such a scheme.

3.2.1 Weighted resampling

There are a number of tools available for generating draws from distributions whose den-
sities are only known up to proportionality e.g. Markov chain Monte Carlo (MCMC),
rejection sampling and weighted resampling. We focus on weighted resampling, also known
as importance resampling, as it can be used iteratively to give a simple sequential Monte
Carlo scheme. We provide the algorithm here before considering a simple example.
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Consider some target density f(θ). At the first step of the algorithm, N points or particles
{θ(1), θ(2),
. . . , θ(N)} are sampled from some proposal density g(·). For each θ(i), a (normalised) weight
w(i) is constructed as

w(i) =
f(θ(i))/g(θ(i))

N∑

j=1

f(θ(j))/g(θ(j))

, i = 1, 2, . . . , N .

Finally, a second sample of size M is drawn from the discrete distribution on {θ(1), θ(2), . . . ,
θ(N)} with probabilities w(1), w(2), . . . , w(N). The resulting sample {θ(1), θ(2), . . . , θ(M)} has
approximate distribution f(·). Note that f(·) need only be known up to a normalising
constant. For example, if only f ∗(θ) = kf(θ) is available without knowledge of the constant
k, each w(i) remains unchanged. The complete weighted resampling algorithm can therefore
be written as follows.

1. Initialise: generate a sample of size N , {θ(1), θ(2), . . . , θ(N)}, from the prior π(·).

2. Construct the normalised weights

w(i) =
f(θ(i))/g(θ(i))

N∑

j=1

f(θ(j))/g(θ(j))

, i = 1, 2, . . . , N .

3. ResampleM times amongst the {θ(1), θ(2), . . . , θ(N)} using the weights as probabilities.
Denote the resulting sample by {θ(1), θ(2), . . . , θ(M)}.

4. Take {θ(1), θ(2), . . . , θ(M)} as an approximate sample from f(·).

To justify the method we refer the reader to [8]. Note the the CDF under the approximation
tends to the target CDF as N → ∞. For a posterior density π(θ|x), provided that the prior
π(θ) is straightforward to sample from, and the likelihood fX|Θ(x|θ) is straightforward to
evaluate, a weighted resampling scheme can be implemented by using the prior as a proposal
density. Naturally, if the prior is relatively uninformative and the likelihood is particularly
peaked, this scheme will be very inefficient.

Example: Binomial model

In this example, n data points, x, are obtained from independent binomial distributions
i.e. Xi ∼ Bin(k, θ), i = 1, 2, . . . , n, with k known and θ unknown. Combined with a Beta
distribution for θ a priori, it is possible to obtain a tractable posterior distribution for θ,
as shown below.

f(x|θ) = L(θ|x) ∝ θnx̄(1− θ)n(k−x̄)

π(θ) ∝ θa−1(1− θ)b−1, 0 < θ < 1

⇒ π(θ|x) ∝ θa+nx̄−1(1− θ)b+n(k−x̄)−1
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⇒ θ|x ∼ Beta (a+ nx̄, b+ n(k − x̄))

θ|x ∼ Beta (An, Bn)

Now, after observing a new data point xn+1

π(θ|x, xn+1) ∝ π(θ)f(x, xn+1|θ)
∝ π(θ)f(x|θ)f(xn+1|θ)
∝ π(θ|x)f(xn+1|θ).

So
π(θ|x, xn+1) ∝ θa+nx̄−1(1− θ)b+n(k−x̄)−1 × θxn+1(1− θ)k−xn+1

∝ θa+nx̄+xn+1−1(1− θ)b+n(k−x̄)+k−xn+1−1

∝ θa+
∑n+1

i=1
xi−1(1− θ)b+(n+1)k−

∑n+1

i=1
xi−1

⇒ θ|x, xn+1 ∼ Beta

(
a+

n+1∑

i=1

xi, b+ (n+ 1)k −
n+1∑

i=1

xi

)

θ|x ∼ Beta (An+1, Bn+1) .

Therefore
An+1 = An + xn+1, Bn+1 = Bn + k − xn+1.

Upon receipt of a new observation, a batch analysis would compute An+1 and Bn+1 from
scratch, requiring the entire dataset to be stored. A sequential analysis would compute
An+1 and Bn+1 using An and Bn, only storing the ‘current’ An and Bn. This illustrates the
advantages of a sequential approach to inference, namely, a reduction in storage cost and
a reduction in computational cost.

In the plots shown in Figure 3.2, we ‘pretend’ that π(θ|x) is intractable and implement
a weighted resampling scheme (that uses the prior as a proposal density) to generate a
sample of θ values approximately distributed according to π(θ|x). A dataset of length
n = 10 is generated with θ = 0.25 and k = 20. The prior parameters are set to a = 1
and b = 4. Note that the histograms are very close to the theoretical densities for large
numbers of particles, which is to be expected given that the weighted resampling scheme
is exact as N → ∞.
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Figure 3.2: Comparison of sample posteriors with theoretical densities for different numbers
of particles.

14



Chapter 4

Sequential Monte Carlo Schemes

Often, observations arrive sequentially in time and one is interested in performing inference
on-line. From a Bayesian perspective, it is therefore necessary to update the posterior dis-
tribution as data become available. Since the posterior distribution is typically intractable,
Monte Carlo schemes are required for generating posterior samples. Sequential Monte Carlo
schemes aim to approximate the posterior through a sequence of weighting steps. In this
chapter we will consider two such schemes.

4.1 Bootstrap particle filter

Recall that the posterior in (3.1) is only available up to proportionality, and we wish to
generate samples using a suitable Monte Carlo method. Suppose that we use weighted
resampling and consider the following strategy.

• Observe y0. Run a weighted resampling scheme targeting π(θ, x0|y0).

• Observe y1. Discard all previous samples from π(θ, x0|y0). Run a weighted resampling
scheme targeting π(θ, x0, x1|y0, y1).

• Observe y2 ... etc.

This is a batch analysis applied sequentially, not a truly sequential analysis! This requires
us to store all observations up to and including the current time point t. Moreover, since
the computational cost of sampling the posterior is likely to increase as t increases, the
computational cost of each step in the above algorithm will also increase with t. However,
if we appropriately reweight each sample rather than discard it, we can obatin a more
efficient algorithm, the bootstrap particle filter.

Let x0:j = {Xt | 0 < t ≤ j} and y0:j = {yt | t = 0, 1, . . . , j}. Suppose that an equally
weighted sample of size N is available from π(θ, x0:j|y0:j) and denote this sample by

{(θ(i), x
(i)
0:j), i = 1, 2, . . . , N}. The next observation yj+1 becomes available and we wish

to sample the posterior

π(θ, x0:j+1|y0:j+1) ∝ π(θ) π(x0) π(x0:j+1|x0, θ)

j+1∏

t=0

f(yt|xt, θ)

∝ π(θ, x0:j|y0:j)π(xj:j+1|xj, θ)f(yj+1|xj+1, θ).

15



Using the sample from π(θ, x0:j|y0:j) as a proposal mechanism, together with the ability
to sample from π(xj:j+1|xj, θ) via Gillespie’s direct method gives the following strategy for
generating a sample of size N approximately distributed according to π(θ, x0:j+1|y0:j+1):

1. For i = 1, 2, . . . , N draw x
(i)
j:j+1 ∼ π(xj:j+1|x

(i)
j , θ(i)) using Gillespie’s direct method.

2. For i = 1, 2, . . . , N evaluate the weights

w(i) ∝ f(yj+1|x
(i)
j+1, θ

(i)).

3. Resample N times amongst the set {(θ(i), x
(i)
0:j+1), i = 1, 2, . . . , N} using the weights

as probabilities.

Hence, after initialising with a sample from the prior, the above steps are executed for each
observation y0, y1, . . . , yT .

4.1.1 Particle degeneracy

Often, only a small fraction of sampled θ values will have significant weight. Consequently,
after resampling, the set of sampled values {θ(1), θ(2), . . . , θ(N)} may only contain a few
distinct values. For datasets consisting of many observations, we might then expect the
SMC posteriors to collapse to a point mass. This is known as sample impoverishment or
particle degeneracy.

A number of ad hoc approaches have been proposed to overcome degeneracy. Prior
boosting (suggested by [10]) is where the prior sample used is larger than the posterior
sample size. Another simple method is to jitter each particle before calculating the weights
(see for examples [2], [9]). If a particular value is replicated in the sample a number of
times, it will be replaced by distinct (but similar) values. Hence, prior to calculating the
weights, a step is included in the bootstrap particle filter algorithm which sets

θ(i) := θ(i) + ǫ(i), ǫ(i) ∼ N
(
0, h2V̂ ar(θ|y1:j)

)

for i = 1, 2, . . . , N .
Note that h is an arbitrarily chosen smoothing parameter, and that the variance of the

resulting sample is (1 + h2)V ar(θ|y1:j). Therefore, large values of h can lead to posterior
samples that are overdispersed. Standard rules of thumb can be used to choose h. For
example, for a univariate θ with a Gaussian target, the optimal choice Silverman’s rule of
thumb, which, for our problem is

h = 1.06N− 1

5

√
V̂ ar(θ|y1:j).

In practice, choosing a slightly larger value of h may be of benefit. Jittering is the approach
we will adopt in Chapter 5 to overcome this problem of particle degeneracy.
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4.2 Storvik filter

The Storvik filter [3] uses a small number of sufficient statistics to rejuvenate the particle
set by using a conjugate gamma prior. Suppose we have observed as far as time j, then
we have the set of observations y0:j = {yt : t = 0, 1, . . . , j} of the latent stochastic process
x0:j = {xt : t ∈ (0, j]}. Suppose that we observe yj+1 and wish to assimilate the information
contained in this observation. Note that associated with the new observation yj+1 is the
latent path xj:j+1. The posterior using all observations (including yj+1) is

π(θ, x0:j+1|y0:j+1) ∝ π(θ, x0:j|y0:j)π(xj:j+1|xj, θ)f(yj+1|xj+1)

Now, π(θ, x0:j|y0:j) factorises as

π(θ|x0:j, y0:j)π(x0:j|y0:j) = π(θ|x0:j)π(x0:j|y0:j).

For mass action kinetics, and (independent) gamma priors for each θi, π(θ|x0:j) is tractable.
π(x0:j|y0:j) however is intractable, so a particle approximation is used. Assuming an equally

weighted sample {x
(i)
0:j , i = 1, 2, . . . , N} from π(x0:j|y0:j), the Storvik filter targets the mix-

ture

π̂(θ, x0:j+1|y0:j+1) ∝
N∑

i=1

1

N
π(θ|x

(i)
0:j)π(xj:j+1|x

(i)
j , θ)f(yj+1|xj+1).

Note that not all particle paths need to be stored. In fact the density π(θ|x0:j) can be
constructed using a low dimensional set of sufficient statistics. That is π(θ|x0:j) = π(θ|zj),
where zj = z(z0, x0:j) is a vector of sufficient statistics (e.g. number of reactions of each
type up to time j). Also note that z0 contains the prior hyper parameters. As seen in
the conjugate analysis discussed in § 3.1, the sufficient statistics take the form rk, denoting
the number of reaction events of typeRk, and

∑n

i=0 gk(xti) [ti+1 − ti], the integrated hazard.

This setup allows us to construct the following algorithm for a Storvik filter. Suppose
at time j, we have a sample {(z

(i)
j , x

(i)
j ), i = 1, 2, . . . , N}, then, applying weighted resam-

pling:

1. Draw θ(i) ∼ π(·|z
(i)
j ) for i = 1, 2, . . . , N .

2. Draw x
(i)
j:j+1 ∼ π(·|x

(i)
j ) for i = 1, 2, . . . , N (using Gillespie’s direct method).

3. Generate and normalise weights w
(i)
j+1 ∝ f(yj+1|x

(i)
j+1) for i = 1, 2, . . . , N .

4. Set z
(i)
j+1 = z(z

(i)
j , x

(i)
j:j+1) i.e. update sufficient statistics.

5. Resample amongst the (z
(i)
j+1, x

(i)
j+1) using weights as probabilities.

Note that Step 1 of the scheme automatically rejuvenates the parameter set. No jittering
is required. In the next chapter we will apply both the bootstrap and Storvik filters to the
immigration-death model of § 2.3.1.
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Chapter 5

Simulation Studies

5.1 Bootstrap filter

We will consider the immigration-death model of § 2.3.1. Data were simulated from the
model with θ = (0.5, 0.1)T , by running Gillespie’s direct method over [0, 50]. For simplicity,
we assume that x0 is a fixed and known quantity, in this case setting x0 = 30. We then
took the data at discrete times {0, 1, . . . , 50} and corrupted each value via the observation
model

Yt|Xt ∼

{
Poisson(Xt), Xt > 0,

Bern(0.25), Xt = 0.

We assumed a priori that each θi ∼ Gamma(ai, bi) with a1 = 0.5, b1 = 1, a2 = 0.1, b2 =
1; i = 1, 2. We then applied the bootstrap filter of § 4.1. To find the ‘best’ choice for the
smoothing parameter h, the posterior distributions, for both parameters, after running the
bootstrap filter with N = 5000 particles for different values of h were examined. Plots of
these distributions are given in Figures 5.1 and 5.2. Clearly, when the smoothing parameter
is too small, the effect of jittering can not overcome the effect of particle degeneracy.
Choosing a large value of h over-smooths the resulting posteriors. These plots suggest that
an h value of about 0.04 yields the best results, thus that is the value we use in the rest of
the study. Note that the posteriors reported in Figures 5.1 and 5.2 show sampled parameter
values that are consistent with the true values that produced the data. Using the jittering
approach is undesirable, however, h = 0 would require many thousands of particles at great
computational cost. We therefore focus on a more efficient scheme in the next section.

5.2 Storvik filter

Using the same data and priors as § 5.1, we applied the Storvik filter with N = 5000
particles. The output is summarised in Figure 5.3. These posterior distributions are similar
to those shown in § 5.2, consistent with the true values that produced the data. In the
next section we shall compare the results from both particle filters, for different numbers
of particles.
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Figure 5.1: Posterior distributions of θ1|x from a bootstrap filter with N = 5000 particles
for different values of h. Prior distribution shown in red.
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Figure 5.2: Posterior distributions of θ2|x from a bootstrap filter with N = 5000 particles
for different values of h. Prior distribution shown in red.
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Figure 5.3: Posterior distributions of θ|x from a Storvik filter with N = 5000 particles.
Prior distribution shown in red.
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5.3 Comparison

The same data is used when applying both the bootstrap and Storvik filter - the data from
§ 5.1. The output is summarised in Figures 5.4 and 5.5, and in Table 5.1. The plots show
that the output is fairly similar, other than perhaps smoother posterior distributions from
the Storvik filter. Most of the values shown in Table 5.1 are fairly similar also, however, in
most cases the Storvik filter has a smaller standard deviation and a smaller 95% credible
interval.

N Parameter (True Value) Filter Post. mean Post. s.d. 95% cred. int.
5000 θ1 (0.5) Bootstrap 0.388 0.252 (0.041, 1.007)

Storvik 0.339 0.146 (0.095, 0.661)
θ2 (0.1) Bootstrap 0.101 0.028 (0.058, 0.168)

Storvik 0.102 0.021 (0.065, 0.149)
10000 θ1 (0.5) Bootstrap 0.274 0.160 (0.057, 0.695)

Storvik 0.334 0.173 (0.069, 0.720)
θ2 (0.1) Bootstrap 0.096 0.024 (0.066, 0.155)

Storvik 0.102 0.024 (0.061, 0.154)
20000 θ1 (0.5) Bootstrap 0.366 0.219 (0.064, 0.896)

Storvik 0.321 0.173 (0.065, 0.728)
θ2 (0.1) Bootstrap 0.107 0.030 (0.058, 0.183)

Storvik 0.101 0.025 (0.061, 0.157)
50000 θ1 (0.5) Bootstrap 0.339 0.215 (0.057, 0.876)

Storvik 0.302 0.168 (0.060, 0.706)
θ2 (0.1) Bootstrap 0.101 0.027 (0.059, 0.168)

Storvik 0.098 0.024 (0.060, 0.154)

Table 5.1: Posteriors means, standard deviations, and 95% credible intervals for the sam-
pled parameter values.
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Figure 5.4: Posterior distributions of θ1|x for varying N . Posteriors from Storvik filter in
black. Posteriors from bootstrap filter in green. Prior distribution shown in red.
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Figure 5.5: Posterior distributions of θ2|x for varying N . Posteriors from Storvik filter in
black. Posteriors from bootstrap filter in green. Prior distribution shown in red.
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Chapter 6

Discussion and Further Work

This report has considered the task of performing fully Bayesian inference for the rate
constants governing reaction networks. Species dynamics were modelled using a Markov
jump process and Bayesian inference was performed based on observations at discrete times,
assumed to be subject to measurement error. A sequential approach was adopted whereby
we updated our beliefs about each parameter as each observation became available. The
intractability of the parameter posterior necessitated the use of Monte Carlo methods. A
weighted resampling scheme was therefore applied iteratively, giving the so called bootstrap
particle filter. Unfortunately, sequential Monte Carlo schemes for static parameter problems
are known to suffer from sample impoverishment. To alleviate this problem we considered
a particle filter proposed by Storvik [3]. The assumption of mass action kinetics leads to a
tractable parameter posterior (for a particular choice of prior) when complete information
on all reaction times and types is available. Consequently, by updating and storing this
information (contained in a set of low dimensional statistics) when running an SMC scheme,
the parameter particle set can be rejuvenated by sampling from the tractable parameter
posterior conditional on a particular statistic. The methods were used to infer the rate
constants governing an immigration-death process.

There are a number of ways in which this work could be extended. The methodology
could be applied to other more complicated systems e.g. a Lotka-Volterra system. An
auxiliary particle filter can be implemented which, rather than extending the latent path
blindly (myopic of the observation), has a proposal mechanism that pushes the path towards
the observation (see [11], [12]). Incomplete data scenarios could also be examined where
observations are only on one species or a subset of species components.
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Appendix A

R code

This function returns the final population size of a simulation of an immigration death
model after an amount of time, maxtime. cvec is a vector containing the rate constants
for the reactions. x is the initial population size.

id = function(maxtime = 10, cvec = c(0.5, 0.1), x = 20){

r = length(cvec) #no. reactions

h = rep(0, r) #vector of hazards

t = 0

while(t < maxtime){

h[1] = cvec[1]

h[2] = cvec[2] * x #defines hazards

h0 = sum(h)

tau = rexp(1, h0)

t = t + tau #simulates time to reaction

#Don’t go by maxtime

if(t >= maxtime){

break

}

u = runif(1, 0, 1)

if (u < h[1] / h0){

x = x + 1 #immigration

}

else{

x = x - 1 #death

}

}

return(x) #return final population size

}

The function lv lists a matrix that contains the population sizes of both populations of a
Lotka-Volterra predator-prey model at all time points examined, using similar arguments
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to the id function above. It also lists a vector containing the times of the changes in
population sizes.

lv = function(maxtime = 50, cvec = c(0.5, 0.0025, 0.3), x = c(100, 100))

{

r = length(cvec) #no. reactions

k = length(x) #no. species

h = rep(0, r) #vector of hazards

t = 0

xmat = x #initialise

tvec = t

while(t < maxtime)

{

h[1] = cvec[1] * x[1]

h[2] = cvec[2] * x[1] * x[2]

h[3] = cvec[3] * x[2]

h0 = sum(h)

if(h0 == 0)

{

#All dead

t = maxtime

}

else

{

tau = rexp(1, h0)

t = t + tau

}

#Don’t go by maxtime

if(t >= maxtime)

break

u = runif(1, 0, 1)

if (u < h[1] / h0)

{

x[1] = x[1] + 1 #prey reproduction

}else if (u < (h[1] + h[2]) / h0)

{

x[1] = x[1] - 1 #prey death

x[2] = x[2] + 1 #predator reproduction

} else {

x[2] = x[2] - 1 #predator death

}

xmat = rbind(xmat, x)

tvec = c(tvec, t)

}

#Append final state and time

tvec = c(tvec, maxtime)
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xmat = rbind(xmat, x)

list(tvec, xmat) #return these as a list

}

smcid runs a bootstrap particle filter of an immigration death process, for N particles, x0
initial population size, smoothing parameter h, with time length dt between observations
and other arguments for the prior parameters. It returns a matrix for each parameter where
the ith column of that matrix is the set of particles at time point i.

smcid = function(N,data,x0 = 30,h = 0.1,dt = 0.5,a1 = 1,b1 = 1,a2 = 1,b2 = 1){

n = length(data) #no. of data points

#sample prior, assumed priors

c1 = rgamma(N, a1, b1); c2 = rgamma(N, a1, b1)

c1mat = matrix(0, ncol = (n - 1), nrow = N)

c2mat = matrix(0, ncol = (n - 1), nrow = N)

#c1mat is a matrix where the ith column is the set of particles at time point i

#similarly for c2mat

xvec = rep(x0, N) #store current latent population

xvecprop = rep(0, N) #vector for storing proposals

wts = rep(0, N) #empty vector for weights

#assimilate info in each observation

for(i in 1:(n - 1)){ #loop over time points

print(i)

#sample latent path up to next time for each theta value

sdc1 = sd(log(c1))

sdc2 = sd(log(c2))

for(j in 1:N){ #loop over number of particles

#jitter

c1[j] = exp(log(c1[j]) + rnorm(1, 0, h * sdc1))

c2[j] = exp(log(c2[j]) + rnorm(1, 0, h * sdc2))

#go forward

x = id(dt, c(c1[j], c2[j]), xvec[j])

xvecprop[j] = x

#calculate weights

if(x > 0){

wts[j] = exp(dpois(data[i + 1], x, log = T))

}

else{

wts[j] = exp(dbinom(data[i + 1], 1, 0.25, log = T))

}

}

#resample

index = sample(seq(1:N), N, TRUE, wts)

c1 = c1[index]; c2 = c2[index]

c1mat[ , i] = c1; c2mat[ , i] = c2

xvec = xvecprop[index]

}
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list(c1mat, c2mat)

}

The function sfid is similar to smcid but runs a Storvik filter instead of a bootstrap filter.
It does however use a modified version of the id function, idmod, so that the parameter
posteriors can be summarised in terms of the low dimensional statistics the Storvik filter
uses.

sfid = function(N, data, x0 = 30, dt = 0.5, a = c(0.5, 0.1), b = c(1, 1)){

n = length(data) #no. of data points

c1 = rep(0,N); c2 = rep(0,N)

c1mat = matrix(0, ncol = (n - 1), nrow = N)

c2mat = matrix(0, ncol = (n - 1), nrow = N)

#c1mat is a matrix where the ith column is the set of particles at time point i

#similarly for c2mat

xvec = rep(x0, N) #store current latent population

xvecprop = rep(0, N) #vector for storing proposals

wts = rep(0, N) #empty vector for weights

suffmat = matrix(rep(c(a[1],a[2],b[1],b[2]),N),ncol = 4,nrow = N,byrow = T)

#ordered as r[1], r[2], g[1], g[2]

suffmatprop = matrix(0, ncol = 4, nrow = N)

#assimilate info in each observation

for(i in 1:(n - 1)){ #loop over time points

#extend latent path up to next time for each theta value

print(i)

for(j in 1:N){ #loop over number of particles

#draw parameter value using sufficient statistics

c1[j] = rgamma(1, suffmat[j, 1], suffmat[j, 3])

c2[j] = rgamma(1, suffmat[j, 2], suffmat[j, 4])

#go forward

x = idmod(dt, c(c1[j], c2[j]), xvec[j])

xvecprop[j] = x[[1]] #update path

suffmatprop[j, 1:2] = suffmat[j, 1:2] + x[[2]]

suffmatprop[j, 3:4] = suffmat[j, 3:4] + x[[3]]

#adds sufficient statistics

#calculate weights

if(x[[1]] > 0){

wts[j] = exp(dpois(data[i + 1], x[[1]], log = T))

}

else{

wts[j] = exp(dbinom(data[i + 1], 1, 0.25, log = T))

}

}

#resample

index = sample(seq(1:N), N, TRUE, wts)
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c1 = c1[index]; c2 = c2[index]

c1mat[ , i] = c1; c2mat[ , i] = c2

xvec = xvecprop[index]

#resample amongst suff. statistics -- pick out appropriate rows of suffmatprop, store

suffmat = suffmatprop[index, ]

}

list(c1mat, c2mat)

}
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