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Abstract

We begin by discussing finite reflection groups. In particular, we see that all finite reflec-
tion groups can be realised as Coxeter Groups. Then we move on to the general theory
of Coxeter groups, including the construction of a faithful geometric representation, the
Exchange Condition, and parabolic subgroups. Next we consider the automorphisms of
Coxeter groups. As an example we determine all automorphisms of Coxeter groups of
type An and then all involutive automorphisms. Let (W,S) be a Coxeter system and Γ
the group of graph automorphisms. We give a detailed combinatorial proof that the set
of Γ fixed points of a certain subgroup W ≤ W form a Coxeter group with canonically
defined generators. Further, we construct an involutive automorphism for which the
group of fixed points can be expressed as a semidirect product of Coxeter groups.



Introduction

Coxeter groups are abstract groups generated by involutions. They form a large class
of groups and with the finite reflection groups amongst them. In fact, the finite Coxeter
groups are precisely the finite reflection groups in Euclidean space. Coxeter groups were
first classified in 1935 by their namesake, H. S. M Coxeter, in [1].

In the first chapter we discuss finite reflection groups and their associated root systems
in some detail. Allowing us to see concrete motivational examples from one of the most
important types of Coxeter groups. Finite reflection groups give a great deal of insight
and are key to understanding other Coxeter groups.

In the second chapter we formally introduce Coxeter systems and some important
properties that they possess. An emphasis is put on their geometric representation in
order to highlight the parallels between finite Coxeter groups and finite reflection groups.
As such, wel establish a standard geometric representation in detail. Further, using this
representation we show that there exists a property, the Exchange Condition, which
fully characterises a Coxeter System. We also state the classification of finite irreducible
Coxeter groups.

The third chapter will focus on automorphisms of Coxeter groups. We begin by con-
sidering an example, determining all automorphisms and all involutive automorphisms
of a certain type, An, of Coxeter group as classified in Chapter 2. Now let (W,S) be a
Coxeter system and Γ the group of automorphisms such that γ(S) = S for all γ ∈ Γ.
We will follow Remark 8 of [2] to give a combinatorial proof of a known theorem, that
WΓ = {w ∈ W | γ(w) = w for all γ ∈ Γ} forms a Coxeter group with canonically defined
generators. Here W ≤ W subject to certain conditions that will be fully specified in
Section 3.4. This theorem is proved using geometric arguments in [3]. Then we will
construct an involutive automorphism as the product of an inner automorphism and a
graph automorphism such that the group of Θ fixed points in W can be expressed as
the semidirect product of the Coxeter group WΓ and some parabolic subgroup, that is
by definition also a Coxeter group.
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Chapter 1

Finite Reflection Groups

We will begin by discussing finite reflection groups. Doing so will make the original
motivation for defining Coxeter groups clear.

1.1 Preliminary Definitions

Before we begin the main content of this chapter we will introduce some necessary
definitions as in [4].

Definition 1.1.1 (Bilinear form). Let L be a space and (·, ·) be a function that takes
two vectors λ, µ ∈ L to a scalar value. This function is called a bilinear form of L if it is
linear in each of its arguments. That is, when λ (respectively µ) is fixed (·, ·) is a linear
function of µ (respectively λ) on L.

Further, if (λ, µ) = (µ, λ) for all λ, µ ∈ L then we say that (·, ·) is symmetric.

Definition 1.1.2 (Orthogonal Transformation). Let T : V → V be a linear trans-
formation. If T preserves a symmetric bilinear form then we say it is an orthogonal
transformation.

1.2 Reflection Groups

The remainder of this chapter primarily follows [5].

Definition 1.2.1 (Reflection). Let V be a real Euclidean space and s : V → V be a
linear transformation. We say s is a reflection if there exists some non zero vector α
such that s(α) = −α and s fixes pointwise the hyperplane Hα orthogonal to α.
We write s = sα.

There is a formula for reflections.

sαλ = λ− 2
(λ, α)

(α, α)
α,
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where (µ, λ) is a positive definite symmetric bilinear form. We can check that this
formula is correct. Suppose λ = α, substituting into the formula yields sα(λ) = −α
as required. Further if we instead take λ ∈ Hα then (λ, α) = 0 and so sαλ = λ. As
V = Rα⊕Hα it follows that the formula holds for all λ ∈ V . Now it is clear that s2

α = 1
and so all reflections sα have order 2. In addition the calculation,

(sαλ, sαµ) =

(
λ− 2

(λ, α)

(α, α)
α, µ− 2

(µ, α)

(α, α)
α

)
=

(
λ, µ− 2

(µ, α)

(α, α)
α

)
− 2

(λ, α)

(α, α)

(
α, µ− 2

(µ, α)

(α, α)

)
= (λ, µ)− 2

(µ, α)

(α, α)
(λ, α)− 2

(λ, α)

(α, α)
(α, µ) + 4

(λ, α)(µ, α)

(α, α)2
(α, α)

= (λ, µ)

shows that sα is an orthogonal transformation. We will denote the group of orthogonal
transformations of V as O(V ). Given a finite set of reflections we can define a subgroup
of O(V ).

Definition 1.2.2 (Finite Reflection Group). Let S be a finite set of across hyperplanes
that pass through the origin. The group W = 〈S〉 is called a finite reflection group.

Example 1.2.3 (The Dihedral Group). Choose two straight lines Hα and Hβ passing
through the origin of Euclidean plane R2 with an angle of θ := π/m between them. Let
sα denote reflection across Hα and define sβ similarly.

Hα

Hβ

β

α

θ = π/m

Rotation through 2π/m can be achieved as a product of sα and sβ when α and β are
chosen to have the obtuse angle π − θ between them. It follows that the dihedral group
of order 2m is generated by the two orthogonal reflections sα and sβ. That is, D2m is a
finite reflection group.

1.3 Root Systems

For the remainder of this chapter take to be W be a finite reflection group acting on
V . We continue to follow [5]. By definition each reflection sα ∈ W fixes a hyperplane
Hα. Let Lα = R denote the line orthogonal to Hα. Now we will consider how each
reflection acts on V .
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Proposition 1.3.1. Let t ∈ O(V ) and α be some non zero vector in V , then tsαt
−1 = stα.

Proof. Clearly tsαt
−1 sends tα to its negative. Now we need to show that tsαt

−1 fixes
Htα pointwise. Note that λ lies in Hα if and only if tλ lies in Htα, since (λ, α) = (tλ, tα).
Further, (tsαt

−1)(tλ) = tsαλ = tλ whenever λ lies in Hα.

Corollary 1.3.2. Let w ∈ W and sα ∈ W , then swα ∈ W .

Proof. This follows immediately from the Proposition 1.3.1.

We see that for each w ∈ W we have w(Lα) = Lwα and so W permutes the lines Lα.
These lines are completely determined by W however the vectors α are not. However if
we consider the set of all unit vectors lying on the lines Lα we see that it is stabilised.
Such a choice gives a root system. We will now formally define root systems and see
that every finite reflection group has an associated root system.

Definition 1.3.3 (Root System). A root system Φ is a finite set of nonzero vectors in
V such that:

• Φ ∩ Rα = α,−α for all α ∈ Φ;

• sαΦ = Φ for all α ∈ Φ.

Each vector α ∈ Φ is called a root.

We will refer to the two requirements of Definition 1.3.3. as the axioms of a root
system. Often a third axiom, that Φ spans V is included but we will not require this
here. Note that there is no requirement for the length of the roots α ∈ Φ. We may
choose Φ to consist of unit vectors and it will often be convenient to do so but this is
not a requirement. Similarly, all roots α ∈ Φ may or may be of equal length.

The group W generated by all the reflections sα, for all α ∈ Φ is the finite reflection
group associated with Φ. Thus W is completely determined by Φ and so it is possible
to classify reflection groups by their root systems. This is not always as useful as it may
first appear as |Φ| is often much larger than dimV . As such we now wish to establish
some minimal subset of Φ such that W can still be determined. We do this using simple
roots however. Before we can define such roots we must introduce the notion of positive
and negative roots.

Definition 1.3.4 (Total Ordering). Let λ, µ, ν ∈ V and x ∈ R. A total ordering < on
V is a transitive relation such that

(i) Precisely one of λ < µ, λ = µ or λ > µ holds.

(ii) If µ < ν then µ+ λ < ν + λ.

(iii) If µ < λ then xµ < xλ when x > 0 and xµ > xλ when x < 0.
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Now we will impose a total ordering on V . To do so we must choose an arbitrary
ordered basis λ1 . . . λn of V . We take the corresponding lexicographical order, where∑
aiλi <

∑
biλi if ak < bk when k is the smallest index such that ai 6= bi.Given this

ordering we say that λ ∈ V is positive when 0 < λ.

Definition 1.3.5 (Positive System). Let Π be a subset of some root system Φ. If Π
consists of all the positive roots, corresponding to some total ordering of V , then Π is a
positive system.

It is clear that positive systems exist. Further as roots occur in pairs {α,−α} we can
similarly define a negative system, denoted −Π, consisting only of the negative roots in
Φ.

Definition 1.3.6 (Simple System). Let ∆ be a subset of some root system Φ. We say
∆ is a simple system if:

• ∆ is a vector space basis for the R-span of Φ in V ;

• each α ∈ Φ is a linear combination of ∆ with coefficients all of the same sign.

It can be shown that every ∆ ∈ Φ is contained in a unique positive system Π and
that every positive system Π ∈ Φ contains a unique simple system ∆.

Example 1.3.7. We saw in Example 1.2.3. that all dihedral groups are finite reflection
groups. Consider the dihedral group D8. It’s associated root system Φ is shown below.

(1, 0)

(1, 1)(0, 1)(−1, 1)

(0,−1) (1,−1)(−1,−1)

(−1, 0)

We can choose Π = {(1, 0), (1, 1), (0, 1), (−1, 1)} and ∆ = {(1, 0), (−1, 1)}.

Definition 1.3.8 (Height). We can write any root β ∈ Φ uniquely as β =
∑

α∈∆ cαα.
The value

∑
cα is called the height of β. We denote this as ht(β).

From the definition it is clear that the height of a root α ∈ Φ depends directly on
the choice of simple system ∆.

Fix a simple system ∆. It is clear from the definition that w∆ is also a simple system
for any w ∈ W and that it lies in the positive system wΠ. Let α ∈ ∆, then we say sα is
a simple reflection. We will now see how the simple reflections act on Π.
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Proposition 1.3.9. Let α ∈ ∆ be a fixed simple system contained in the positive system
Π. Then sα permutes the roots in Π \ {α}.

Proof. Let β ∈ Π \ {α}. Then, as β cannot be a multiple of α we may write

β =
∑
γ∈∆

cγγ,

where all cγ ≥ 0 and at least one cγ 6= cα > 0 as the only multiple of α ∈ Π is α¬β.
When we apply sα to β we obtain sαβ = β − cα. This is a linear combination of ∆
involving γ with the same coefficient cγ. As all coefficients in such an expression must
have the same sign we see that sαβ must be positive. That is sαβ ∈ Π. Now, suppose
sαβ = α. Then β = sαsαβ = −α /∈ Π which is a contradiction. So sα is an injective
map from Π \ {α} to itself and so must also be surjective.

Theorem 1.3.10. Let Φ be a root system then any two positive systems Π and Π′ in Φ
are conjugate under W .

Proof. First note |Π| = |Π′| = |Φ|/2. We will now proceed by induction on r = |Π∩−Π′|.
Suppose r = 0, then Π = −Π′ and so we are done. Suppose r > 0 it follows that the
simple system ∆ ∈ Π contains some root α ∈ −Π′. By Proposition 1.3.9. |sαΠ∩−Π′| =
r − 1. Then, as sαΠ is a positive system, by induction there exists some w ∈ W such
that w(sαΠ) = Π′.

We conclude this section by showing that for any fixed simple system ∆ the corre-
sponding set of simple reflections generate W .

Theorem 1.3.11. Let W be a finite reflection group and Φ its associated roots system.
Fix some simple system ∆ ⊆ Φ. Then W = 〈sα | α ∈ ∆〉.

Proof. Let W ′ be the group generated by the sα.
Suppose β ∈ Π and consider W ′β ∩ Π. As 1 ∈ W ′ and so β ∈ W ′β we see that

W ′β ∩ Π is a nonempty set of positive roots. Now choose some γ ∈ W ′β ∩ Π such that
ht(γ) ≤ ht(γ′) for all other γ′ ∈ W ′β ∩Π. Now write γ =

∑
α∈∆ cαα, then (γ, α) > 0 for

some α ∈ ∆ as 0 < (γ, γ) =
∑
cα(γ, α). Clearly this holds when γ = α. Now suppose

γ 6= α. Then sαγ is a positive root by Proposition 1.3.8. This root is obtained from γ
by subtracting some positive multiple of α and so ht(sαγ) < ht(γ). But sα ∈ W ′ implies
sαγ ∈ W ′β and so we have a contradiction. Thus γ = α ∈ ∆.

We have just shown that the W ′-orbit of any β ∈ Π intersects ∆ and so it follows that
Π ⊂ W ′∆. Now suppose β is negative. There exists some w ∈ W ′ such that wβw−1 = α
for some α ∈ ∆. The if we take −β = wα it follows that β = (wsα)α and wsα ∈ W ′.
Then −Π ⊂ W ′∆ and we conclude Φ = W ′∆.

Now let sβ be some generator of W . Following the arguments of the previous para-
graph we may write β = wα for some w ∈ W ′ and α ∈ ∆. Then by Proposition 1.3.1.
we have sβ = wsαw

−1. Thus we have shown W = W ′.
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1.4 Deletion Condition

In order to prove our final result in this section we need to introduce an important
property of finite reflection groups, the Deletion Condition. We will see in Section 2.6.
that this condition can be used to characterise Coxeter groups. Before we do this we
will define the length function.

Definition 1.4.1 (Length). Let W be a finite reflection group. We define the length of
an element w ∈ W to be the minimal r such that w = s1 . . . sr where si = sαi

for some
αi ∈ ∆ . That is, the length of w is the minimal number of simple reflections needed to
write w in it’s reduced form.

We write `(w) = r.

Proposition 1.4.2. Let w ∈ W , then det(w) = (−1)r.

Proof. First recall that any reflection has det= −1. It immediately follows that any
w ∈ W that can be written as the product or r reflections has det(w) = (−1)r. Hence r
has the same parity as `(w).

When ∆ and Π are fixed we define n(w) to be the number of positive roots sent to
negative roots by w. That is, n(w) := |Π ∩ w−1(−Π)|.

Lemma 1.4.3. Let α ∈ ∆ and w ∈ W . If wα > 0 then n(wsα) = n(w) + 1 and if
wα < 0 then n(wsα) = n(w)− 1.

Proof. Set Π(w) := Π ∩ w−1(−Π), then n(w) = |Π(w)| . Suppose wα > 0 then by
Proposition 1.3.9. Π(wsα) is the disjoint union of sαΠ(w) and {α}. Now suppose wα < 0.
Proposition 1.3.9. implies that sαΠ(wsα) = Π(w) \ α, whereas α lies in Π(w).

Now we are able to prove an important result.

Theorem 1.4.4 (Deletion Condition). Given w = s1 . . . sr, where si ∈ S, that is not
reduced, there exist indices 1 ≤ i < j ≤ r such that w = s1...ŝi...ŝj...sr. Here ŝ denotes
the omission of s.

Proof. As n(w) < r repeatedly applying Lemma 1.4.3. shows that we have (s1 . . . sj−1αj <
0 for some j ≤ r. As αj > 0 there must exist some index i < j such that si(si+1 . . . sj−1)αj <
0 and (si+1 . . . sj−1)αj > 0. Now apply Proposition 1.3.9. to the simple reflection si.
This implies that (si+1 . . . sj−1)αj = αi.

Now set α = αj and w′ = si+1 . . . sj−1, then by the above w′α = αi. Further
Proposition 1.3.1. w′sαw

′−1 = sw′α = si, meaning

(si+1 . . . sj−1)sj(sj−1 . . . si+1) = si.

Now we multiply on the left by s1 . . . si and on the right by si+1 . . . ŝj . . . sr to obtain

w = s1 . . . ŝi . . . ŝj . . . sr

as required.

7



1.5 Every Finite Reflection Group is a Coxeter Group

Continuing to follow [5], we are now able to prove the main result of this chapter,
that every finite reflection group is a Coxeter group.

Theorem 1.5.1. Let Φ be a root system and W the associated finite reflection group.
Fix a simple system ∆ ∈ Φ then W is generated by the set S := {sα | α∈∆} subject only
to relations of the form

(sαsβ)m(α,β) = 1,

where α, β ∈ ∆.

Proof. We have already seen in Theorem 1.3.9. that W is generated by the set S =
{sα | α∈∆}. Hence we now now only need to show that each relation

s1...sr = 1 (1)

is a consequence of the given relations. First we note that the number of simple reflections
in (1) must be even as by Proposition 1.4.2. textdet(s1 . . . sr) = 1 and det(si) for all
reflections. If r = 2 then (1) is s1s2 = 1 which implies s2 = s−1

1 = s1. Hence (1) can
be written as s2

1 = 1, a given relation. Now we may proceed using induction on r = 2p,
where p > 1. Note that we will henceforth use the relation s2

i = 1 freely to rewrite
expressions. For example, we may rewrite (1) as

si+1 . . . srs1 . . . si = 1. (2)

Now consider the element,

s1 . . . sp+1 = sr . . . sp+2.

Clearly `(sr . . . sp+2) ≤ p − 1 and so the LHS cannot be reduced. Hence we can apply
the Deletion Condition to find indices 1 ≤ i < j ≤ p+ 1 such that

s1 . . . sp+1 = s1 . . . ŝi . . . ŝj . . . sp+1. (3)

Rearranging (3) we obtain,
si+1 . . . sj = si . . . sj−1 (4)

and
si . . . sj . . . si+1 = 1. (5)

If (5) is a product of less than r simple reflections then by induction we conclude that
it is a result of the given relations. Given this we may substitute (4) into (1) to obtain,

s1 . . . si(si . . . sj−1)sj+1 . . . sr = s1 . . . ŝi . . . ŝj . . . sr = 1.

Then, once again by induction, we see that this equation and so (1) is a result of the
given equations.
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Now suppose (5) is the product of r simple reflections. This is only possible if i = 1
and j = p+ 1, that is when (4) reads

s2 . . . sp+1 = s1 . . . sp. (6)

In order to avoid this outcome we may choose to rewrite (1) as some alternate version
of (3), for example

s2 . . . srs1.

In this case we repeat the same steps as above, yielding a relation that is a consequence
of relations of the given form unless

s3 . . . sp+2 = s2 . . . sp+1. (7)

Now we can multiply (7) on the right by s3s2 and on the left by sp+1 . . . s4 to obtain

s3(s2s3 . . . sp+1)sp+2sp+1 . . . s4 = 1.

The LHS is a product of r simple reflections so we may apply of original line of argument
once again. Upon doing so we are successful in all cases but

s2 . . . sp+1 = s3s2s3 . . . sp. (8)

But then (6) and (8) must be equal forcing s1 = s3. Then by cyclically permuting factors
we reach a successful conclusion unless s2 = s4. Continuing in the same way we see that
the only case in which we don’t reach a successful conclusion is when

s1 = s3 = ... = sr−1 and s2 = s4 = · · · = sr.

However in this case (1) can be rewritten as

sαsβ . . . sαsβ = (sαsβ)m = 1.

Clearly this is a relation of the desired form.

By proving this theorem we have shown that all finite reflection groups are Coxeter
groups. Notice we only used the deletion condition in order to do this. This is due to
the fact that a group satisfying the deletion condition is equivalent to it being a Coxeter
group.

9



Chapter 2

Coxeter Groups

In the previous chapter we saw many specific examples of Coxeter groups in the form
of finite reflection groups. Now we will formally introduce Coxeter groups and some of
their most important properties.

2.1 Coxeter Systems

This section is primarily based upon [5] and [6]. We begin by defining a Coxeter
system. A Coxeter Group is an abstract group generated by a set of involutions subject
to a given presentation.

Definition 2.1.1 (Coxeter System). Let W be the group generated by the set S subject
to relations of the form

(ss′)m(s,s′) = 1,

for all s, s′ ∈ S, where m(s, s) = 1 and m(s, s′) = m(s′, s) ≥ 2 when s 6= s′. If (ss′)m 6= 1
for all m ∈ Z then we say m(s, s′) =∞.

• We say W is a Coxeter group and S a set of Coxeter generators.

• The pair (W,S) is called a Coxeter system.

In particular we notice that m(s, s′) = 2 only when s and s′ commute. We say that
the Coxeter group (W,S) has rank |S|.

Examples 2.1.2. (i) Consider Sn+1, the symmetric group of order n+ 1. This is the
group of permutations of a set containing n + 1 elements. Let S be the set of
n transpositions S = {(1, 2), (2, 3), . . . , (n − 1, n)}. Then (Sn+1, S) is a Coxeter
system. Further Sn+1 has rank n.

(ii) Now consider D2m, the dihedral group of order m. This is the group of symmetries
of a regular m-gon. D2m is a Coxeter group with a set of 2 Coxeter generators
S = {s1, s2}, where s1 and s2 are suitably chosen reflections. Further D2m has
rank 2.
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Although often, when the set of Coxeter generators is understood, we will refer only
to a Coxeter group it is important to always have the Coxeter system in mind. This is
due to the fact that two different sets of Coxeter generators can generate Coxeter groups
that are isomorphic as groups.

There are two further ways in which we can uniquely specify a Coxeter system. These
are via a Coxeter matrix or a Coxeter graph, we will now define and give simple examples
of each method.

Definition 2.1.3 (Coxeter Matrix). The Coxeter system (W,S) specifies a Coxeter
matrix m : S × S → {1, 2, . . . ,∞} such that m(s, s′) = m(s′, s) and m(s, s′) ≥ 2
whenever s 6= s′. In addition m(s, s) = 1 for all s ∈ S.

Examples 2.1.4. (i) The symmetric group S4 has Coxeter matrix:

m =

1 3 2
3 1 2
2 3 1


(ii) D2m has Coxeter matrix:

m =

(
1 m
m 1

)
Definition 2.1.5 (Coxeter Graph). A Coxeter system can be completely specified by
it’s Coxeter graph, Γ:

• Take the set S to be the vertices of the graph.

• Two vertices s, s′ are connected by edge if m(s, s′) ≥ 3.

• Any edge of Γ connecting s and s′ is labeled by m(s, s′) if m(s, s′) ≥ 4.

Note that two vertices s, s′ ∈ S are not joined by an edge only when m(s, s′) = 2.
That is, when they commute.

Examples 2.1.6. (i) The symmetric group, Sn+1 on n generators has Coxeter graph
Γ:

s1 s2 sn−1 sn

. . . . . .

(ii) The Coxeter system (D2m, S) has Coxeter graph Γ:

s1 s2

m

11



Now, in order to demonstrate our earlier claim that specifying a Coxeter group with-
out a set of Coxeter generators is not sufficient to uniquely define a Coxeter system, we
will consider an example.

Example 2.1.7. Let W = D12, the dihedral group of order 12. Recall this is the
group of symmetries of a regular hexagon. As such W has two Coxeter generators
S = {s1, s2} where s1 and s2 are suitably chosen reflections. Equivalently we can write
W = 〈x, y | x6 = 1, y2 = 1, (xy)2 = 1〉 where x is rotation through π/3 and y reflection
through some fixed line. Construct H = {1, x3} ≤ W and K = {1, y, x2, x4, yx2, yx4} ≤
W . Now observe that HK = W and H ∩K = {1}. Further hk = kh for all h ∈ H and
k ∈ K. It follows that W = H ×K. Now we observe that H ∼= Z2 and K ∼= S3. Thus
W ∼= Z2 × S3. Consider the respective Coxeter graphs of W and Z2 × S3 below.

s1 s2

6

s′1 s′2 s′3

Clearly these graphs are not isomorphic and so we conclude that two Coxeter groups
being equivalent up to isomorphism does not imply that their corresponding Coxeter
generators are.

2.2 The Length Function

We now follow [5]. We begin by recall the definition of the length function in the
context of Coxeter groups,

Definition 2.2.1. Define the length of w ∈ W to be the minimal r such that w = s1 . . . sr
where si ∈ S. We write `(w) = r. When w is written as a product of `(w) factors si ∈ S
we say w is reduced.

The following proposition gives some elementary properties of the length function.

Proposition 2.2.2. Let w,w′ ∈ W then

(i) `(w) = `(w−1),

(ii) `(w) = 0 if and only if w = 1,

(iii) `(w)− `(w′) ≤ `(ww′) ≤ `(w) + `(w′).

Proof. We will prove (i) first. Suppose `(w) = r, then we may write w = s1 . . . sr where
si ∈ S. Then w−1 = sr . . . s1 and so `(w−1) ≤ r = `(w). Similarly we can obtain
`(w) ≤ `(w−1) and conclude `(w) = `(w−1. We will now prove (iii). Let w,w′ ∈ W
such that `(w) = r and `(w′) = s. It is clear that `(ww′) ≤ r + s = `(w) + `(w′). Now
consider `(ww′w′−1) = `(w) ≤ `(ww′) + `(w′) and so `(w)− `(w′) ≤ `(ww′). Finally the
proof of (ii) is trivial.
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Proposition 2.2.3. There exists a unique homomorphism ε : W → {1,−1} such that
the image of each generator s ∈ S is -1. This homomorphism is surjective.

Proof. Define a homomorphism ϕ from the free group F onto the multiplicative group
{1,−1} sending all s ∈ S to -1. Clearly (ss′)m(s,s′) ∈ ker(ϕ) for all s, s′ ∈ S. Hence there
is an homomorphism ε : W → {1,−1} sending all s ∈ S to -1 and this homomorphism
is surjective.

Using this homomorphism we can observe two additional properties of the length
function.

Proposition 2.2.4. The homomorphism ε : W → {1,−1} is given by ε(w) = (−1)`(w).
From this we conclude that `(ws) = `(w)± 1 for all s ∈ S and similarly for `(sw).

Proof. Let w = s1 . . . sr be a reduced expression for w. Then we see

ε(w) = ε(s1) . . . ε(sr) = (−1)r = (−1)`(w).

Now ε(ws) = −ε(w), so `(ws) 6= `(w) and so as `(s) = 1 we must have `(ws) = `(w)±1.
We can similarly show `(sw) = `(w)± 1.

All the properties of the length function given in this section will henceforth be used
without further explanation.

2.3 The Standard Geometric Representation

We now establish a concrete geometric representation of a given Coxeter group (W,S)
following [5]. It is not always possible to find a faithful representation of W as a group
generated by orthogonal reflections in Euclidean space. However upon redefining a re-
flection to be a linear transformation that fixes pointwise some hyperplane and sends
some non zero vector to its negative we can construct a satisfactory replacement.

Let (W,S) be some Coxeter group of rank n and V the n dimensional R-vector space
with fixed basis {αs | s ∈ S}. We define a symmetric bilinear form B on V as follows,

B(αs, αs′) =

− cos
π

m(s, s′)
if m(s, s′) <∞,

−1 if m(s, s′) =∞.

We can see that B(αs, αs) = 1 and B(αs, αs′) ≤ 0 if s 6= s′. Let Hs := {v ∈
V | B(v, αs) = 0}, that is Hs is the subspace orthogonal to αs with respect to B.
Note that as B(αs, αs) 6= 0 for all s ∈ S we have Rαs /∈ Hs.

For each s ∈ S we define a reflection σs : V → V as follows,

σsλ = λ− 2B(αs, λ)αs.

We see that σsαs = −αs and σs fixes Hs pointwise. Recalling that GL(V ) is the group of
all bijective linear transformations from V to V , it is clear that σs has order 2 in GL(V ).
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Now, let λ, µ ∈ V . We show that σs preserves the form B

B(σsλ, σsµ) = B(λ− 2B(αs, λ)αs, µ− 2B(αs, µ)αs)

= B(λ, µ)− 4B(αs, λ)B(αs, µ) + 4B(αs, λ)B(αs, µ)B(αs, αs)

= B(λ, µ).

It follows that all γ ∈ 〈σs | s ∈ S〉 ⊆ GL(V ) preserve the form of B.

Proposition 2.3.1. There exists a unique homomorphism σ : W → GL(V ) that sends s
to σs. The group σ(W ) preserves the form B on V and for each pair s, s′ ∈ S the order
of ss′ in W is m(s, s′). We will refer to this homomorphism as the standard geometric
representation of W .

Proof. That σ is unique follows immediately from σ(s) = σs. To show that such a
homomorphism exists it suffices to check that

(σsσs′)
m(s,s′) = 1 for all s 6= s′.

Let m := m(s, s′) and Vs,s′ be the two dimensional subspace of V generated by αs and
αs′ . Take any λ = aαs + bαs′ , where a, b ∈ R. Then

B(λ, λ) = a2 − 2ab cos
( π
m

)
+ b2 =

(
a− b cos

( π
m

))2

+ b2 sin2
( π
m

)
≥ 0.

Hence the form B is positive semidefinite when restricted to Vs,s′ . Further the form is
non degenerate precisely when sin(π/m) 6= 0. This is the case only when m <∞.

Now we note that both σs and σs′ leave Vs,s′ stable. Thus we can calculate the order
of σsσs′ restricted to Vs,s′ .

Suppose m <∞. Then the restriction of B to Vs,s′ is positive definite and so gives Vs,s′
a structure corresponding to the Euclidean plane. Thus both σs and σs′ act as orthogonal
reflections. Observe that B(αs, αs′) = − cos(π/m) = cos(π − (π/m)). It follows that
the angle between R+αs and R+αs′ is π − (π/m) and so the angle between the two
orthogonal reflecting lines must be π/m. We saw in Example 1.2.3 that this implies
σsσs′ is a rotation through 2π/m. We conclude that σsσs′ has order m. Additionally, as
B is non degenerate, we see that V is the orthogonal direct sum of Vs,s′ and its orthogonal
complement , V ⊥s,s′ := {x ∈ V | B(x, y) = 0 for all y ∈ Vs,s′}. Now we see that both σs
and σs′ must fix the complement pointwise and so it follows that σsσs′ also has order m
on V .

Now suppose we have m = ∞. Then B(αs, αs′) = −1. Consider λ = αs + αs′ ,
it is clear that B(λ, αs) = 0 = B(λ, αs′) and so σs(λ) = σs′(λ) = λ. Further we
have σsσs′αs = σs(αs + 2αs′) = 3αs + 2αs′ = 2λ + αs. Then an induction shows
(σsσs′)

kαs = 2kλ+ αs, for all k ∈ Z. It follows that σsσs′ has infinite order on Vs,s′ and
so must also have infinite order on V .

Now it remains to show that this geometric representation is faithful. To do this we
first specify an associated root system of the standard geometric representation of W .
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Definition 2.3.2. The root system associated with the standard geometric representa-
tion of W is Φ = {w(αs) | w ∈ W and s ∈ S}.

Note that in this definition we have used w(αs) to denote σ(w)(αs), we will continue
to do so from here on. We see that any α ∈ Φ is a unit vector as W preserves the form
of B on V . Further we have Φ = −Φ as s(αs) = −αs. Any root α ∈ Φ can be written
uniquely as

α =
∑
s∈S

csαs,

where cs ∈ R. We say α is positive, that is α > 0 if all cs ≥ 0. We can similarly define
the case where α is negative. We denote the sets of positive and negative roots as Φ+

and Φ− respectively.
To prove our next theorem we need to introduce parabolic subgroups.

Definition 2.3.3 (Parabolic Subgroup). The subgroup WI generated by I ⊆ S, is called
a parabolic subgroup when (W,S) is a Coxeter Group.

In addition, let `I be the length function relative to the generating set I. Then it
follows from I ⊆ S that `(w) ≤ `I(w). This will be sufficient for our current needs
however we will further discuss the properties of parbolic subgroups in Section 2.7.

Theorem 2.3.4. Let w ∈ W and s ∈ S. Then `(ws) > `(w) implies w(αs) > 0.
Similarly `(ws) < `(w) implies w(αs) < 0.

Proof. Let `(ws) > `(w). We will now use induction on `(w). When `(w) = 0 there is
nothing to prove. If `(w) > 0 then it follows that there exists some s′ ∈ S such that
`(ws′) < `(w). Clearly s 6= s′. Thus if we set I := {s, s′} it follows that WI is a dihedral
group.

Now consider the set

A := {v ∈ W | v−1w ∈ WI and `(v) + `I(v
−1w) = `(w)}.

Clearly w ∈ A so A is nonempty. Fix v ∈ A such that v has minimal length and set
vI := v−1w ∈ WI . Hence w = vvI and `(w) = `(v) + `I(vI).

Observe (s′w−1)w = s′ and `(ws′) + `I(s
′) = (`(w) − 1) + 1 = `(w), so ws′ ∈ A. It

follows that `(v) ≤ (`(ws′) = `(w)− 1.
Now we will compare the lengths of v and vs. Suppose `(vs) < `(v). Then

`(w) ≤ `(vs) + `((sv−1)w) ≤ `(vs) + `I(sv
−1w) = `(v)− 1 + `I(sv

−1w)

≤ `(v) + `I(v
−1w) = `(w).

Forcing `(w) = `(vs) + `((sv−1)w) and thus vs ∈ A. This contradicts `(vs) < `(v) and
so we conclude that `(v) > `(vs). Thus by induction v(αs) > 0. We can similarly show
v(αs′) > 0.
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Now, as w = vvI , if we show that vI(αs) = aαs + bαs′ where a, b ≥ 0 we will be done.
Suppose we have `I(vIs) < `(vI). Then

`(ws) = `(vv−1ws) ≤ (v) + `(v−1ws) = `(v) + `(vIs)

≤ `(v) + `I(vIs) < `(v) + `I(vI) = `(w),

contradicting `(ws) > `(w). Thus `I(vIs) ≥ `I(vI). Then, as WI is dihedral, any reduced
expression for vI ∈ WI must end in s′. That is, either vI = (ss′)k or vI = s′(ss′)l where
k ≤ m/2 and l < m/2.

Suppose m(s, s′) =∞. In the proof of Proposition 2.3.1. we calculated (ss′)k(αs) =
2kλ+ αs, where λ = αs + αs′ so when vI = (ss′)k we have vI(αs) = 2kαs′ + (2k + 1)αs′ .
Now suppose we have vI = s′(ss′)l = s′(2lλ+αs) = αs+(2l+1)λ = (2l+1)αs′+2(l+1)αs.
In both cases vI(αs) has been written as a non negative linear combination of αs and αs′
so we are done.

Now suppose m := m(s, s′) < ∞. Then the element wI ∈ WI such that `I(wI) = m
has a reduced expression ending with s and so `I(vI) < m. It follows that either vI =
(ss′)k or vI = s′(ss′)l where k, l < m/2. Recall from the proof of Proposition 2.3.1. that
we are in the Euclidean plane and αs and αs′ are unit vectors with an angle of π− π/m
between them. Define the positive cone C := {aαs + bαs′ | a, b ∈ Z+}. We have seen
that ss′ rotates αs through an angle of 2π/m towards αs′ .

It follows that if vI begins with s it moves αs through an angle of at most π− 2π/m
towards αs′ and so vI(αs) ∈ C. If vI begins with an s′ then vI(αs) ∈ C as the angle
between αs and the reflecting line Ls′ is π/2− π/m.

Ls′

αs′

αs

π − 2π/m

It is clear from the diagram that vI(αs) ∈ C for all possible vI , that is vI(αs) = aαs+bαs′
where a, b ≥ 0 completing the proof of the first statement in the theorem.

In order to prove the second statement of the theorem we simply observe that it is
the result of applying the first statement to ws instead of w.

by the above theorem we see that Φ = Φ+ ∪ Φ−. Hence we have in effect specified
the set of simple roots to be ∆ = {αs | s ∈ S}.

Corollary 2.3.5. The standard geometric representation σ : W → GL(V ) is faithful.

Proof. Suppose there exists w 6= 1 ∈ W such that w ∈ ker(σ), that is w(αs) = αs.
As w 6= 1 we can find some s ∈ S for which `(ws) < `(w). Then by Theorem 2.4.3.
w(αs) < 0 contradicting w(αs) = αs > 0.

As a result of this corollary we see that we can identify W with 〈σs | s ∈ S〉 ≤ GL(V ).
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2.4 The Geometric Interpretation of the Length Func-

tion

Continuing to follow [5], we can now describe a geometric interpretation of the length
function and consequently obtain a description of how W permutes Φ. First recall the
definition of n(w) := |Π ∩ w−1(−Π)|.

Proposition 2.4.1. (i) Let s ∈ S. Then s permutes the roots in Π \ {αs} and sends
αs to its negative.

(ii) Let w ∈ W . Then `(w) = n(w).

Proof. We begin by proving (i). By definition s sends αs to its negative.
Now let α ∈ Π \ {αs}. Then, as α cannot be a multiple of αs we may write

α =
∑
t∈S\s

ctαt,

where all ct ≥ 0 and at least one ct 6= 0. When we apply s to α it affects the sum
only by adding some non-negative multiple of αs. This can only result in a non-negative
sum of positive roots so gives some α′ ∈ Π that is not equal to αs. Hence we have
s(Π \ {αs}) ⊆ Π \ {αs}. By applying s to both sides of the inclusion we see that the
reverse holds and so s(Π \ {αs}) = Π \ {αs}.

Now we will prove (ii). Let w ∈ W . We proceed by induction on `(w). The case
where `(w) = 0 is trivial and the case where `(w) = 1 is precisely (i). Now suppose
`(w) > 1. We consider two cases. If `(ws) = `(w) + 1 then by Theorem 2.3.4. we
have w(αs) > 0. Then by (i) Π(ws) = s(Π(w)) ∪ {αs} and s(Π(w)) ∩ {αs} = ∅. Thus
n(ws) = n(w) + 1 and so by induction `(w) = n(w). Similarly for `(ws) = `(w) − 1
Theorem 2.3.4. gives w(αs) < 0. Then we obtain Π(ws) = s(Π(w) \ {αs}) where
αs ∈ Π(w), implying n(ws) = n(w)− 1 and so by induction we are done.

2.5 Reflections

Still continuing to follow [5] we now consider the reflections in W . Let α = w(αs)
where w ∈ W and s ∈ S. We will now consider the action of wsw−1 on V ,

wsw−1(λ) = w{w−1(λ)− 2B(w−1(λ), αs)αs}
= λ− 2B(w−1(λ), αs)w(αs)

= λ− 2B(λ,w(αs))w(αs)

= λ− 2B(λ, α)α.
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Clearly wsw−1 does not depend on the choice of w or s, only upon α, and so we write
wsw−1 = sα. Note that sα(α) = −α and each sα fixes pointwise the hyperplane orthog-
onal to it and so each acts on V as a reflection. We denote the set of all such reflections
as follows,

T :=
⋃
w∈W

wSw−1.

Hence for each root α ∈ Φ we have specified an associated reflection sα ∈ GL(V ).
Now suppose sα = sβ, where α, β ∈ Φ then sα(β) = β − 2B(β, α)α, that is, β =

B(β, α)α. Both α and β are unit vectors so we conclude α = β. Hence we see that the
correspondence between roots and reflections is one-to-one enabling us to move freely
between the two.

Lemma 2.5.1. Let α, β ∈ Φ and β = w(α) for some w ∈ W , then wsαw
−1 = sβ.

Proof. The bilinear form B is W invariant and so the lemma follows immediately from
the formula for sβ.

Proposition 2.5.2. Let w ∈ W and α ∈ Π. Then `(wsα) > `(w) if and only if w(α) > 0.

Proof. Let `(wsα) > `(w). We will proceed by induction on `(w). When `(w) = 0 the
result is trivial. Now suppose `(w) > 0. There must exist some s ∈ s such that `(sw) <
`(w). Then `((sw)sα) = `(s(wsα) ≥ `(wsα)−1 => `(w)−1 = `(sw) and so by induction
sw(α) > 0. Now suppose w(α) < 0, then we must have w(α) = −αs by Proposition
2.4.1. Then sw(α) = αs, and so by Lemma (sw)sα(sw)−1 = s. We can rearrange to get
wsα = sw but then `(wsα) = `(sw) contradicting `(wsα) > `(w) > `(sw). We conclude
that w(α) > 0.

If we apply the statement we have just proved to wsα instead of w then `(wsα) <
`(w) implies wsα(α) < 0, that is w(α) > 0. Thus we conclude that w(α) > 0 only if
`(wsα) > `(w).

2.6 The Strong Exchange Condition

We are now able to state and prove the Strong Exchange Condition, a key combina-
torial property of a Coxeter group W concerning the reduced expressions of its elements.
This section is based off [5] and [6].

Theorem 2.6.1 (Strong Exchange Condition). Let w = s1...sr, where si ∈ S. If `(wt) <
`(w) for some t ∈ T , then we have wt = s1...ŝi...sk, for some index i. Further, i is unique
if the expression for w was reduced.

Proof. Write t = sα where α > 0. Then as we have `(wt) < `(w) Proposition 2.5.2.
implies w(α) < 0. Further as α > 0 there must exist some index i ≤ r such that
si+1 . . . sr(α) > 0 but sisi+1 . . . sr(α) < 0. Now by Proposition 2.4.1. there is only one
positive root that is sent to its negative by si, that is αsi . Then we have si+1 . . . sr(α) =
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αsi . Then by Lemma 2.5.1. we may obtain (si+1 . . . sr)t(sr . . . si+1) = si, that is wt =
s1...ŝi...sk as required.

Now suppose w is reduced, that is `(w) = r, and suppose there exist two distinct
indices i < j such that wt = s1 . . . ŝi . . . sj . . . sk = s1 . . . si . . . ŝj . . . sk. We can cancel
to obtain si+1 . . . sj = si . . . sj−1. Then we may may write w = s1...ŝi...ŝj...sr. This
contradicts `(w) = r and so i = j.

If we were to require t ∈ S for the above theorem we would obtain a weaker statement
called the Exchange Condition.

Corollary 2.6.2 (Deletion Condition). Given w = s1 . . . sr, where each si ∈ S, if w
is not reduced there exist indices 1 ≤ i < j ≤ r such that w = s1...ŝi...ŝj...sr. Here ŝ
denotes the omission of s.

Proof. Choose the largest i such that sisi+1 . . . sr is not reduced. Then `(sisi+1 . . . sr) <
`(si+1 . . . sr). Hence by the Exchange condition sisi+1 . . . sr = si+1 . . . ŝj . . . sr. We mul-
tiply on the left by s1 . . . si−1 to obtain s1 . . . sr = s1...ŝi...ŝj...sr.

Theorem 2.6.3. The three following statements are equivalent.

(i) (W,S) is a Coxeter system.

(ii) The Exchange condition holds for (W,S).

(iii) The Deletion condition holds for (W,S).

Proof. It is clear from the proof of the Exchange Condition that (i) =⇒ (ii). Further
the proof of the Deletion Condition uses only the Exchange Condition so (ii) =⇒ (iii).
Finally recall the proof of Theorem 1.4.1., that any group generated by a set of involutions
is a Coxeter group, relied solely on the Deletion Condition. Hence we conclude the proof
by noting that (iii) =⇒ (i).

2.7 Parabolic Subgroups

This section is also based off [6] and to a lesser extent [5]. Recall the definition of a
parabolic subgroup. For any Coxeter group with at least two generators we can construct
a non trivial subgroup that is also a Coxeter group by taking a parabolic subgroup on
some I ⊂ S.

Proposition 2.7.1. (i) (WI , I) is a Coxeter group.

(ii) `I(w) = `(w), for all w ∈ WI .

(iii) WI ∩WJ = WI∩J .
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Proof. First we will prove (ii). Let w ∈ WI . Then we may write w = s1s2 . . . sn where
si ∈ I for 1 ≤ i ≤ n. By the Deletion Condition we may assume that this expression is
reduced in WI . As I ⊆ S it follows that the expression is reduced in W so `I(w) = `(w).

Now we will prove (i). The Exchange Property holds in (W,S), as it is a Coxeter
group. In addition, `I(w) = `(w) by (i) so `I(sw) = `(sw), for all s ∈ I and so the
Exchange Property holds for (WI , I). Equivalently we have that (WI , I) is a Coxeter
group.

No s ∈ I can be written as the product s1 . . . sn where si ∈ s, similarly for t ∈ J so
it follows that I and J are minimal generating sets for WI and WJ respectively. Then
we see WI∩J = 〈I ∩ J〉 = 〈I〉 ∩ 〈J〉 = WI∩J .

Any finite parabolic subgroup, WI , has a unique longest element that we shall denote
as wI . Further, this element is an involution. It is always true that `(w0) = `(w−1

0 ) and
as w0 is unique we must therefore have w0 = w−1

0 .
Define XI := {w ∈ W | `(sw) > `(w) for all s ∈ I} and X

′
I := {w ∈ W | `(ws) >

`(w) for all s ∈ I} where I ⊆ S.

Proposition 2.7.2. Any element w ∈ W is in XI if and only if all reduced expressions
for w begin with s /∈ I.

Proof. Clearly if all reduced expressions for w begin with s /∈ I0 then `(w) < `(tw) for all
t ∈ I. If w ∈ XI , then `(tw) = `(w) + 1, for all t ∈ I0. Hence in any reduced expression
of w = s1...sn we have s1 6= t.

Following the same steps as before we can see that an element w ∈ W is in X
′
I if and

only if all reduced expressions for w end with s /∈ I.

Proposition 2.7.3. Any w ∈ W can be written uniquely as w = uv, where u ∈ WI

and v ∈ XI . The lengths satisfy `(w) = `(u) + `(v). In addition, v is the minimal coset
representative of WIw. That is v is the unique smallest element in the coset WIw.

Proof. Let w ∈ W then choose some s1 ∈ I such that `(s1w) < `(w), if such an s1 exists.
Keep repeating the process of choosing si ∈ I such that `(si . . . s1w) < `(si−1 . . . s1w)
until no such si exists. We will write this as v = sk . . . s1. Clearly, `(v) = k ≤ `(w−1) =
`(w). By construction we have `(sv) > `(v) for all s ∈ I, so v ∈ XI . In addition we
have u = sk . . . s1 ∈ WI , hence w = uv, where u ∈ WI and v ∈ XI . We also have by
construction that `(w) = `(u) + `(v).

Now suppose we have some xy = uv, where x ∈ WI and y ∈ XI . Then y = x−1uv.
If x 6= u then we may write y = zv, where zv is reduced, for some z ∈ WI . But then we
have a reduced expression for y that begins with s ∈ I. This is a contradiction so x = u.
This implies y = v and thus the factorisation is unique.

For X
′
I a “mirrored” version of the proposition holds.

Proposition 2.7.4. Any w ∈ W can be written uniquely as w = uv, where u ∈ X ′I and
v ∈ WI . The lengths satisfy `(w) = `(u) + `(v). In addition, v is the minimal coset
representative of wWI . That is, u is the unique smallest element in the coset wWI .

To prove this we follow the same steps as for the corresponding proposition for XI .
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2.8 Irreducible Components

The following is again based off [5].

Definition 2.8.1 (Irreducible). A Coxeter system (W,S) is irreducible if the Coxeter
graph Γ is connected and non empty. Otherwise we say that (W,S) is reducible.

Equivalently (W,S) is reducible if and only if there exist some non trivial I, J ⊆ S
such that I ∪ J = S, I ∩ J = ∅ and every s ∈ I commutes with every s′ ∈ J .

Proposition 2.8.2. Let (W,S) be a Coxeter system with Coxeter graph Γ. Suppose Γ
has connected components Γ1, . . .Γn each corresponding to the respective subset S1, . . . Sn
of S. Then W = WS1 × · · · ×WSn and each Coxeter system (W,Si) is irreducible.

Proof. We will use induction on n. If n = 0 or 1 then the proposition is clearly true.
Note that the product of all the parabolic subgroups WSi

where 1 ≤ i ≤ n contains S
and so must be equal to the whole of W . Suppose n ≥ 2 then by induction WS\Sn is
the direct product of the WSi

’s where i 6= n. The elements of Sn commute with the
elements of Si where i 6= n and so the elements of S \ Sn commute with the elements
of Sn. Further by part (iii) of Theorem 2.7.1. WS\Sn ∩ WSn = WS\Sn∩Sn and so the
intersection is trivial. Hence we have a direct product of WS\Sn and WSn .

It follows from this proposition that much of the theory concerning finite Coxeter
groups can be reduced to the case when Γ is connected.

2.9 Classification

The irreducible finite Coxeter groups are classified by their graphs, the full details
of this classification are given in [7]. On the following page we list all possible finite
irreducible Coxeter graphs.

From Proposition 2.8.2. it follows that all finite Coxeter groups have Coxeter graphs
consisting of only of disconnected copies of these graphs. Equivalently, all finite Coxeter
groups correspond to arbitrary direct products of groups of the given types.

Recall the Coxeter graphs of Sn+1 and D2m seen in Example 2.2.7. From these we
see that the symmetric group is of type An and D2m is of type I2(m).
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An(n ≥ 1) . . .

Bn(n ≥ 2) . . . 4

Dn(n ≥ 4) . . .

E6

E7

E8

F4
4

H3
5

H4
5

I2(m)
m
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Chapter 3

Automorphisms of Coxeter Groups

In this section we will consider automorphisms of Coxeter Groups. Before we do this
we give some preliminary definitions.

Definition 3.0.1 (Automorphism). Let G be a group and ϕ : G → G be an isomor-
phism. We call ϕ an automorphism. The set obtained by taking all the automorphisms
of some group G is a group denoted as Aut(G).

Definition 3.0.2 (Inner Automorphism). Let G be a group and w ∈ G. We say the
automorphism ad(w) : G → G such that ad(w)(x) = w−1xw for all x ∈ G is an inner.
We denote the group of all inner automorphisms Inn(G).
Additionally, Inn(G) C Aut(G).

Definition 3.0.3 (Outer Automorphism). An outer automorphism is an automorphism
that is not inner. Further Out(G) ∼= Aut(G)/Inn(G).

Definition 3.0.4 (Internal Semidirect Product). Let G be a group, H ≤ G and N C G.
Suppose G = HN and H ∩N = {1} then we say G is the internal semidirect product of
H and N ,

G = N oH.

3.1 Automorphisms of Coxeter Groups of Type An

We will now determine the automorphism group of all Coxeter groups of type An.
This section will be based upon [8] and [9]. A Coxeter group of type An corresponds to the
symmetric group Sn+1. Elements of the symmetric group have the same cycle structure
if and only if they are in the same conjugacy class. Let wk, where 1 ≤ k ≤ n+1

2
, be

some element of Sn+1 that can be written as the product of k disjoint 2-cycles. Then
the set of all such elements form a conjugacy class, cl(wk). Each automorphism of Sn+1

maps the set of conjugacy classes onto itself bijectively. Also note that automorphisms
preserve order and all elements in Sn+1 of order 2 can be written as the product of k
disjoint transpositions.
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Lemma 3.1.1. Let α be an automorphism of Sn+1 such that α(cl(w1)) = cl(w1). Then
α is an inner automorphism.

Proof. The set {(1, 2), (1, 3), . . . , (1, n)} generates Sn+1. Then for all a 6= 1 we have
α(1, a) = (1a, a

′) where 1a 6= a′. Now consider α((1, a)(1, b)) = (1a, a
′)(1b, b

′). As
(1, a)(1, b) = (1, b, a) has order 3 (1a, a

′)(1b, b
′) must also. That is, either 1b ∈ {1a, a′} or

b′ ∈ {1a, a′}. We can assume without loss of generality that 1b ∈ {1a, a′}.
Suppose we have 1c = 1a for some c and 1d = a′ for some d 6= c. Then we have

α((1, a)(1, c)) = α((1, c, a)) = (1a, a
′)(1c = 1a, c

′) = (1a, c
′, a′)

and
α((1, a)(1, d)) = α((1, d, a)) = (1a, a

′)(1d = a′, d′) = (1a, a
′, d′).

Then
α((1, c, a)(1, d, a)) = (1a, c

′, a′)(1a, a
′, d′) = (a′, d′, c′)

which has order 3 but (1, c, a)(1, d, a) = (1, d)(a, c) has order 2 so we have a contradiction.
Thus either 1b = 1a for all b or 1b = a′ for all b.

Now assume 1a = 1b for all b. Then α(1, b) = (1a, b
′) for all b as α is injective it follows

that b′ 6= c′ for all b 6= c. Now we can take x to be the permutation that takes 1 to 1a and
all other b to b′. Then x(1, b)x−1 takes 1a 7→ 1 7→ b 7→ b′ and b′ 7→ b 7→ 1 7→ 1a. Every
other c 6= b, 1 is fixed. So x(1, b)x−1 = α((1, b)). Recall that (1, b) forms a generating
set for An, it follows x(a, b)x−1 = α((a, b)). That is, α is inner. We can use the same
argument to show that α is inner when a′ = 1b for all b.

So an outer automorphism of Sn+1 can only exist if there is some cl(wk) that cl(w1) is
interchanged with. Clearly this is only possible when |cl(wk)| = |cl(w1)|. We can deter-
mine the size of this conjugacy class by considering the number of possible combinations
of k disjoint transpositions. First we choose a pair of distinct elements from the set of
size n + 1 permuted by Sn+1, then 2 more distinct elements from the remaining n − 1
and so on until we choose the kth pair from the remaining n+ 1− 2(k− 1) = n− 2k+ 3
possibilities. As the transpositions are disjoint their order doesn’t matter. That gives
the following formula,

|cl(wk)| =
(
n+ 1

2

)
×
(
n− 1

2

)
× · · · ×

(
n− 2k + 3

2

)
× 1

k!

=
(n+ 1)n

2
× (n− 1)(n− 2)

2
× · · · × (n− 2k + 3)(n− 2k + 1)

2
× 1

k!

=
(n+ 1)!

(n− 2k + 1)!
× 1

2k × k!

=

(
n+ 1

2k

)
× (2k − 1)× · · · × 3× 1.

In particular the conjugacy class of transpositions has size

|cl(w1)| =
(
n+ 1

2

)
.
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Now suppose 2 ≤ k < n−1
2

we have(
n+ 1

2

)
<

(
n+ 1

2k

)
and so (

n+ 1

2

)
<

(
n+ 1

2k

)
× (2k − 1)× · · · × 3× 1.

That is, |cl(w1)| < |cl(wk)|.
If k = (n− 1)/2, then(

n+ 1

2

)
=

(
n+ 1

n− 1

)
<

(
n+ 1

n− 1

)
× (n− 2)× · · · × 3× 1

That is, |cl(w1)| < |cl(wk)|.
If n is even and k = n/2, then

|cl(wk)| =
(
n+ 1

n

)
× (n− 1)× · · · × 3× 1 = (n+ 1)(n− 1)× · · · × 3× 1.

When n = 2 then k = 1 so we are only interested in n > 2. In this case we have
n/2 < (n− 1)× · · · × 3× 1, so we can conclude that

|cl(w1)| = (n+ 1)n

2
< (n+ 1)(n− 1)× · · · × 3× 1 = |cl(wk)|

If n is odd and k = (n+ 1)/2,

|cl(wk)| =
(
n+ 1

n+ 1

)
× n× · · · × 3× 1 = n× · · · × 3× 1.

When n = 3 we can easily see that

|cl(w1)| = (n+ 1)n

2
= 6 < n× · · · × 3× 1 = 3 = |cl(wk)|.

Now suppose n > 5. Then we see that

n+ 12 < (n− 2)× · · · × 3× 1

and so

|cl(w1)| = (n+ 1)n

2
< n× · · · × 3× 1 = 3 = |cl(wk)|.

Finally if n = 5 we have

n+ 1

2
= 3 = (n− 2)× · · · × 3× 1
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and so we conclude that |cl(w1)| = |cl(wk)| if and only if n = 5 and k = 3.
We have now seen that all automorphisms of Sn+1 must be inner when n 6= 5. That

is, every automorphism acts on Sn+1 by conjugation of some element w ∈ Sn+1. The
inner automorphism ad(w) = id if and only if w ∈ Z(An). Now recall that the center of
Sn+1 is trivial. It follows that

Aut(Sn+1) ∼= Sn+1.

Now suppose n = 5. Define the map ξ : S6 → S6 as

(1, 2)→ (13)(24)(56)

(2, 3)→ (16)(25)(34)

(3, 4)→ (14)(23)(56)

(4, 5)→ (16)(24)(35)

(5, 6)→ (12)(34)(56)

This is an automorphism. Further ξ maps cl(w1) to cl(w3) so it is an outer automorphism.
By checking that ξ2(s) = s for all s ∈ S we can show that ξ is involutive.

Suppose we have some outer automorphism α 6= ξ, by Lemma 3.1.1. and our counting
argument α must interchange cl(w1) and cl(w3). Then α−1ξ(cl(w1)) = cl(w1) and so
α−1ξ ∈ Inn(S6) again by Lemma 3.1.1. It follows that Aut(S6)/Inn(S6) has order 2 and
so is isomorphic to Z2

∼= 〈ξ〉. Now as Inn(s6) ∼= S6 C Aut(S6) we see that

Aut(S6) ∼= S6 o 〈ξ〉.

3.2 Involutive Automorphisms of Coxeter Groups of

Type An

We will now specify all the involutive automorphisms of Coxeter group of type An.
These precisely the involutive automorphisms of Sn+1.

2.a n 6= 5

First if n 6= 5 then the involutive automorphisms of Sn+1 are inner and so correspond
to the action by conjugation of some element x ∈ Sn+1. Such an automorphism ad(x) is
involutive if and only if ad(x) ◦ ad(x)(w) = w for all w ∈ Sn+1. That is, x2wx−2 = w,
this is the case precisely when x has order 2 as Z(Sn+1) is trivial when n 6= 5. That is,
the set of involutive automorphisms of Sn+1 is

{ad(x) | x ∈ Sn+1 and x2 = 1}.
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2.b n = 5

Now if n = 5, clearly the set of inner automorphisms

{ad(x) | x ∈ S6 and x2 = 1}

is a subset of the involutive automorphisms of S6. Further the outer automorphism ξ
is involutive. Hence the only remaining question is whether there are any involutive
automorphisms that can be expressed as a product of ξ and some inner automorphism
α. That is, does there exist some x ∈ S6 such that (ad(x) ◦ ξ)2 = id. We can find a
simplified version of this question.

Lemma 3.2.1. The automorphism ad(x) ◦ ξ is involutive if and only if xξ(x) = 1.

Proof. Let w ∈ S6 and observe

ξ ◦ ad(x) ◦ ξ(w) = ξ(xξ(w)x−1) = ξ(x)wξ(x)−1.

Then by substitution we see

ad(x) ◦ ξ ◦ ad(x) ◦ ξ = ad(x)ad(ξ(x)) = ad(xξ(x)).

Then
ad((x) ◦ ξ)2 = ad(xξ(x)) = id

and this holds if and only if
xξ(x) = 1.

By using magma we can find an answer to this question, either directly or from
simplified form. The code is included in Appendix A.

Theorem 3.2.2. There are 36 automorphisms ad(x) ∈ Inn(S6) such that (ad(x) ◦ ξ)2 =
id. These automorphisms correspond precisely to elements x ∈ S6 listed below.

Id(G)
(1, 2)(3, 4)
(1, 5)(2, 4)
(2, 3)(4, 5)
(1, 3)(2, 5)
(1, 4)(3, 5)

(1, 2, 4, 5, 6)
(1, 6, 5, 4, 2)
(1, 3, 5, 6, 2)
(1, 5, 2, 6, 4)
(1, 4, 6, 2, 5)
(1, 3, 5, 4, 6)

(1, 5, 6, 3, 4)
(1, 2, 6, 5, 3)
(1, 6, 4, 5, 3)
(2, 3, 4, 6, 5)
(1, 6, 3, 2, 5)
(1, 4, 3, 2, 6)
(2, 5, 6, 4, 3)
(1, 6, 2, 3, 4)
(2, 6, 3, 5, 4)
(1, 5, 2, 3, 6)
(1, 4, 3, 6, 5)
(1, 3, 6, 4, 2)

(1, 2, 4, 6, 3)
(2, 4, 5, 3, 6)

(1, 3, 4, 5)(2, 6)
(1, 5, 3, 2)(4, 6)
(1, 4, 5, 2)(3, 6)
(1, 5, 4, 3)(2, 6)
(1, 2, 3, 5)(4, 6)
(1, 6)(2, 5, 3, 4)
(1, 2, 5, 4)(3, 6)
(1, 4, 2, 3)(5, 6)
(1, 3, 2, 4)(5, 6)
(1, 6)(2, 4, 3, 5)

We have now completely specified the involutive automorphisms for Coxeter groups
of type An.
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3.3 Pairs

In [8] it is shown that a large class of finite Coxeter groups only have automorphisms
that are inner by graph, where an automorphism is said to be inner by graph if it is in
the set generated by the inner and the graph automorphisms.

Suppose we have a Coxeter system (W,S). Let I0 ⊂ S and γ be an automorphism
of W such that γ(S) = S, that is, γ is an automorphism of the Coxeter graph Γ. In the
next section of this chapter we will follow [2] to show that we can construct a Coxeter
group using pairs {I0, γ} such that

(i) γ(I0) = I0;

(ii) wI0∪J ∈ NW (WI0) where J is a Γ-orbit in W .

In the final section of this chapter we will construct an involutive automorphism that is
inner by graph and is dependent on a pair {I0, γ} as above with one additional condition

(iii) γ|WI0
= ad(wI0).

As such, we will now determine all such pairs, given conditions (i) and (ii), when
we have a Coxeter group of type An. In the following we will not allow the choice
I0 = S although this choice would fulfill our criteria. There are only two involutive
automorphisms that preserve the whole generating set S, the identity automorphism
and the graph automorphism induced by ad(w0). We will consider each of these choices
for γ in turn.

First we take γ = id. The γ-orbits are Ji = {si}. Note that as γ = id condition (i)
is satisfied for all possible choices of I0.

Suppose we choose I0 = ∅. We can represent this choice on the Coxeter diagram for
type An using white vertices to denote s /∈ I0 and black vertices to denote s ∈ I0,

. . . . . .

Then wI0∪J = wJ ∈ NW (∅) and so condition (ii) is satisfied. Hence we may have I0 = ∅.
Suppose n is odd and consider I0 = S \ {s(n+1)/2},

. . . . . .

This gives wI0∪J = w0. Then w0WI0w0 = WI0 and so condition (ii) is satisfied. So we
may choose I0 = S \ {s(n+1)/2} when n is odd.

Suppose we choose I0 to be,

∗ ∗ . . . ∗ ∗

where ∗ denotes a block of k consecutive black vertices for some fixed k ∈ Z. Any choice
of orbit J = {si} will commute with all but two blocks of black vertices ∗1 and ∗2.
Further each block of black vertices ∗i commutes with every other block ∗j where i 6= j.
Thus we may write wI0∪J = wK0∪JwL0 , where K0 consists of the vertices in ∗1 and ∗2 and
L0 = I0 \K0. Now if we show that wK0∪J and wL0 it follows that wI0∪J . As wL0 ∈ WI0

it satisfies condition (ii). Now consider the subgraph consisting of vertices K0 ∪ J ,
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∗ ∗

From the above diagram we see that this reduces to the case n = 2k+ 1, that is n is odd
and I0 = S \ {s(n+1)/2} = S \ {sk+1}. We have seen above that this satisfies condition
(ii).

We will now rule out all other possibilities. Suppose there exists some block � con-
sisting of l ≥ 2 consecutive white vertices. Let si be the black vertex immediately to
the left of � lying in some block ∗ of k ≥ 1 black vertices. The block ∗ commutes with
all other s ∈ I0, further si+1 commutes with all s ∈ I0 such that s 6= si. Thus we can
consider the subgraph consisting of the vertices in ∗ and si+1.

. . .. . . . . .. . .
sisk si+1

* �

Now upon considering the orbit J = {si+1} we see that wI0∪J corresponds to the longest
element of this subgraph. Then ad(wI0∪J) interchanges si+1 and the leftmost vertex
sk ∈ ∗. Thus condition (ii) is not satisfied. We conclude that when I0 6= ∅ at least one
of the two adjacent vertices si, si+1 must be in I0.

We have just seen that when I0 6= ∅ every white vertex lies between two blocks, ∗
and ?, of black vertices. Now suppose ∗ contains k ≥ 1 black vertices and ? contains
l ≥ 1 black vertices where k 6= l.

∗ ?. . . . . .. . .
si

Consider the orbit Ji = {si} consisting of the white vertex between ∗ and ?. As all
s ∈ ∗ commute with all t ∈ I0 \ ∗ and respectively for ? we can consider the subgraph
consisting only of the vertices in Ji ∪∗∪ ?. Then in this subgraph wI0∪Ji is equivalent to
the longest element. We have seen that in this case condition (ii) does not hold. Hence
we cannot have blocks ∗ and ? of unequal size on either side of a white vertex. Further
it follows from this argument we that both s1, sn ∈ I0 whenever I0 is not empty.

We have now exhausted all possible choices of I0 when γ = id.
Now we will determine all permissible subsets I0 ⊆ S given γ = ad(w0). If n is even

then the γ-orbits are Ji = {si, sn−i+1}, if n is odd then the γ-orbits are Ji = {si, sn−i+1}
for i 6= (n + 1)/2 and J(n+1)/2 = {s(n+1)/2}. Condition (i) is satisfied if and only if I0

is the union of of some arbitrary set Λ of γ-orbits, that is I0 =
⋃
i∈Λ Ji. Hence we only

need to consider possible I0 of this form.
First we consider I0 = ∅,

. . . . . .

Following the same reasoning as for γ = id we can see that this choice is permissible.
Now suppose we have I0 = S \Ji. This can be represented graphically in one of three

ways. Either,
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. . . . . .∗

Or if n is even I0 could be,

. . . . . .

Finally if n is odd we may have,

. . . . . .

In all three cases we have wI0∪Ji = w0. Hence wI0∪JiWI0w0WI0w0 = γ(WI0) = WI0 . Thus
condition (ii) is satisfied and so we may choose I0 = S \ Ji for any γ-orbit Ji.

Let n be odd and consider I0 as given below,

∗ ∗ . . . . . .∗ ∗ ∗ ∗

Each block ∗j commutes with every other block ∗k when j 6= k. Consider the orbit
J(n+1)/2 and label the blocks of black vertices on either side ∗1 and ∗2. The orbit J(n+1)/2

commutes with all vertices s ∈ I0 \ (∗1 ∪ ∗2) so we can consider only the subgraph
consisting of the vertices in ∗1 ∪ ∗2 ∪ J(n+1)/2. Then conjugation by wI0∪J(n+1)/2

fixes
s(n+1)/2 and interchanges each vertex in ∗1 with one in ∗2. Thus condition (ii) is satisfied.
Now consider the arbitrary orbit Ji = {si, sn−i+1} orbit Ji. By commutativity we can
similarly reduce this case to the disconnected subgraph,

∗ ∗ ∗ ∗

As the graph is disconnected we see that it reduces to the case we considered above and
so condition (ii) is satisfied.

If n is even then we may have I0,

∗ ∗ . . . . . .∗ ∗ ∗ ∗

This follows via the same argument as for the previous case where n was odd.
Suppose we take I0 to be a block ∗ of k vertices with a block of l white vertices on

either side. That is,

∗. . . . . .

Any orbit J /∈ I0 will either commute with all elements of I0 or it will be next to leftmost
and rightmost vertices in I0. In either case condition (ii) is satisfied.

Now we will rule out all other remaining possibilities. Suppose we have a block, �, of
white vertices from two or more different orbits, that is . Further suppose � lies between
two blocks of black vertices, ∗L and ∗R. Then if we take JL to be the orbit of the leftmost
vertex sL ∈ � we obtain wI0∪JLtwI0 = sL /∈ I0 for some t ∈ ∗L unless JL consists of the
two vertices on either side of ∗L. This implies that the center of the graph is to the left of
�. In this case we can take JR to be the orbit of the rightmost vertex sR ∈ � and obtain
wI0∪JRt

′wI0 = sR /∈ I0 for some t′ ∈ ∗R. Here JR cannot consist of the two vertices on
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either side of ∗R as the center of the graph is to the left of sR. We have shown that we
cannot have a block of k ≥ 2 white vertices between two blocks of black vertices unless
n is even in which case we may take Jn/2 to be such a block with k = 2.

Suppose Ji = {si, sn−i+1} ⊆ I0 and there is some sj where i < j < n+i−1 that is not
in I0. Then if Ji−1 * I0 and either Ji−1 = J1 or Ji−2 * I0 we have wI0∪Ji−1

swI0∪Ji−1
= si−1

where s is in the same block of black vertices as si. Thus condition (ii) is not satisfied.
We have now exhausted all possible choices of I0 when γ = ad(w0) and so determined

all possible pairs {γ, I0}.

Proposition 3.3.1. The pairs {γ, I0} such that γ(I0) = I0 and wI0∪J ∈ NW (WI0) for
all J ∈ J are precisely those given in Table 3.1.

γ = id . . . . . .

∗ ∗ . . . ∗ ∗

. . . . . .

γ = ad(w0) . . . . . .

∗ ∗ . . . . . .∗ ∗ ∗ ∗ (if n odd)

∗ ∗ . . . . . .∗ ∗ ∗ ∗ (if n even)

∗. . . . . .

. . . . . .∗

. . . . . . (if n even)

. . . . . . (if n odd)

Table 3.1: Pairs {γ, I0} in An subject to conditions (i) and (ii).

We will now determine the subset of pairs {γ, I0} obtained when we add condition
(iii)

It is clear that the pairs we can choose will be a subset of all the pairs {γ, I0}.
Suppose γ = id then γ|WI0

= ad(wI0) is equivalent to s = wI0swI0 for all s ∈ I0. That
is, the restriction holds if and only if every element s ∈ I0 commutes with every other
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element in I0. If we look at Table 3.1. we see that this condition is satisfied in only two
cases. We can take I0 = ∅,

. . . . . .

or we can take I0 to be

. . . . . .

Now consider γ = ad(w0). Clearly we may have I0 = ∅,

. . . . . .

Now suppose we have a block of black vertices, B with either a white vertex or
nothing on either side of it. Then all elements of B commute with all elements of I0 \B,
meaning wI0BwI0 ∈ B. If B is not central then it can not contain the γ-orbits of the
vertices it contains and so w0Bw0 /∈ B. If B is central then w0Bw0 = wI0BwI0 . Hence
the only other possible choice I0 = An−2i for all 1 < i < b(n+1)/2c, where I0 is centered,

∗. . . . . .

Proposition 3.3.2. The pairs {γ, I0} such that γ(I0) = I0, wI0∪J ∈ NW (WI0) for all
J ∈ J and γ|WI0

= ad(wI0) are precisely those given in Table 3.2.

γ = id . . . . . .

. . . . . .

γ = ad(w0) . . . . . .

∗. . . . . .

Table 3.2: Pairs {γ, I0} in An subject to conditions (i), (ii) and (iii).

3.4 Fixed Point Subgroups

In this section we take I0 to be fixed a subset of S such that γ(I0) = I0 and wI0∪J ∈
NW (WI0) for all γ ∈ Γ. We define the Γ-fixed points of W to be W Γ := {w ∈ W | γ(w) =
w for all γ ∈ Γ} and W := {w ∈ W | w ∈ XI0 and wWI0 = WI0w}.

Define sJ := wI0∪JwI0 = wI0wI0∪J and J to be the set of all Γ-orbits in (W, S\I0). In
[2] it is shown that (W Γ, {wJ | J ∈ J }) is a Coxeter system. Further the paper states that
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a similar method can be used to show that the Γ fixed points ofW form a Coxeter group
with generators of the form sJ . In fact this is the general case, (W Γ, {wJ | J ∈ J }) is the
special case where I0 = ∅. We will now work through this proof in full detail following
the same structure as in [2].

Proposition 3.4.1. sJ ∈ WΓ and s2
J = 1 for all J ∈ J .

Proof. By definition we have sJ = wI0∪JwI0 = wI0wI0∪J . Thus

s2
J = wI0∪JwI0wI0∪JwI0 = wI0∪JwI0wI0wI0∪J = 1.

Now we will show sJ ∈ WΓ. This is equivalent to showing the following three
conditions hold,

(i) γ(sJ) = sJ ,

(ii) sJWI0 = WI0sJ ,

(iii) sJ ∈ XI0 .

For condition (i), note that for all γ ∈ Γ we have γ(I0) = I0 by definition and, as J
is an orbit, γ(J) = J . Then γ(wI0) = wI0 and γ(wI0∪J) = wI0∪J as γ preserves length.
Thus γ(sJ) = sJ .

Now let w ∈ WI0 . Consider sJwsJ = wI0wI0∪JwwI0∪JwI0 . As wI0∪J ∈ NW (WI0) we
have wI0∪JwwI0∪J = w′ ∈ WI0 . Then clearly wI0w

′wI0 ∈ WI0 and so condition (ii) is
satisfied.

Finally consider

`(sJ) = `(wI0∪JwI0) = `(wI0∪J)− `(wI0).

As `(twI0) < `(wI0) for all t ∈ I0 we have

`(tsJ) = `(twI0wI0∪J) > `(wI0∪J)− `(wI0) = `(sJ).

That is, sJ ∈ XI0 .

Lemma 3.4.2. Any w ∈ WΓ may be written as w = sJ1 . . . sJr such that `(w) = `(sJ1)+
· · ·+ `(sJr). That is, WΓ = 〈sJ | J ∈ J 〉.

Proof. Let w ∈ WΓ. We use induction on `(w). First suppose `(w) = 0. Then w = 1
and so there is nothing to prove.

Now suppose `(w) > 0. By definition w ∈ W and so we may let u = wI0w = wwI0
where `(u) = `(wI0) + `(w). As `(w) > 0 and w ∈ XI0 by Proposition 2.7.2. there must
exist some s ∈ S \ I0 such that `(su) < `(u). Choose the Γ-orbit of s to be J1. Then
`(γ(su)) = `(γ(s)u) = `(tu) < `(u), for all t ∈ J1. Similarly, as γ(I0) = I0, we have
`(s′u) < `(u) for all s′ ∈ I0. Write u = vx where v ∈ WI0∪J1 , x ∈ XI0∪J1 and `(u) =
`(v) + `(x). For all t′ ∈ I0 ∪ J1 we have t′v ∈ WI0∪J1 and so `(t′vx) = `(t′v) + `(x). This
implies `(t′v) < `(v) for all t′ ∈ I0∪J1, that is, v = wI0∪J1 . Then w = wI0wI0∪J1x = sJ1x
and `(w) = `(u)− `(wI0) = `(wI0∪J1)− `(wI0) + `(x) = `(sJ1) + `(x).

We can proceed by induction on x.
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From here on we will use x • y to denote xy with `(xy) = `(x) + `(y).

Lemma 3.4.3. Let w ∈ WΓ. If we have two expressions

w = sJ1 • · · · • sJr = sI1 • · · · • sIp

where Ji, Ii ∈ J , then r = p.

Proof. The proof uses induction on `(w). If `(w) = 0 then w = 1 and so there is nothing
to prove.

Assume `(w) > 0, it follows that r > 0 and p > 0. If we have I1 = J1 then

w′ = sI1w = sJ2 • · · · • sJr = sI2 • · · · • sIp .

By induction we may assume r − 1 = p− 1 and so we have r = p.
Now suppose I1 6= J1. Let K := I0 ∪ I1 ∪ J1 and XK = {x ∈ W | `(sw) >

`(w) for all s ∈ K} be the set of distinguished coset representatives of WK in W . Let
u = wI0w = wI0∪J1 • sJ2 • · · · • sJr = wI0∪I1 • sI2 • · · · • sIp . We may write u = v • x,
where v ∈ WK and x ∈ XK . Then we have `(su) < `(u) for all s ∈ K. Hence we must
have `(sv) < `(v) for all s ∈ K, that is, v = wK and so WK is finite. Now consider
WΓ

K := {w ∈ WK | wWI0 = WI0w and w ∈ XI0}.
We will show that wI0wK ∈ WΓ

K . First γ(wI0wK) = γ(wI0)γ(wK) = wI0wK . Observe
that `(wI0wK) = `(wK)− `(wI0) and `(twI0wK) ≥ `(wK)− `(twI0) = `(wK)− `(wI0) + 1
for all t ∈ I0. It follows that `(twI0wK) > `(wI0wK) for all t ∈ I0, that is, wI0wK ∈ XI0 .
Now let s ∈ I0 and v′ be a reduced expression for wI0wK = wKwI0 . Consider v′sv′,
clearly sv′ ∈ WK and `(v′sv′) = `(s). Then v′sv′ is not reduced so we can apply the
Deletion condition `(v′) times to obtain a reduced expression. As sv′ and v′s are reduced
expressions applying the Deletion Condition forces us to delete one factor from the left
v′ and one factor from the right v′. Upon doing so `(v′) times we are left with only s,
that is v′sv′ = s. Hence wI0wKWI0 = WI0wI0wK and so wI0wK ∈ WΓ

K .
It follows that x ∈ WΓ. So by Lemma 3.4.2. we may write x = sL1 • · · · • sLq where

Li ∈ J . Now we will consider

sJ1 • · · · • sJr = w = wI0wK • x. (1)

By Lemma 3.4.2. WΓ
K = 〈sI1 , sJ1〉. As sI1 and sJ1 are involutions we have thatWΓ

K is the
dihedral group of order 2m for some m ∈ Z. As wI0wK is an involution and wI0wK ∈ WΓ

K

we must have,
wI0wK = sI1 • sJ1 • sI1 • . . .︸ ︷︷ ︸

m

= sJ1 • sI1 • sJ1 • . . .︸ ︷︷ ︸
m

.

Now by substituting into (1) we obtain

sJ1 • · · · • sJr = w = sJ1 • sI1 • sJ1 • . . .︸ ︷︷ ︸
m

•sL1 • · · · • sLq .
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Canceling sJ1 gives

sJ2 • · · · • sJr = sI1 • sJ1 • . . .︸ ︷︷ ︸
m−1

•sL1 • · · · • sLq .

We conclude r − 1 = (m− 1) + q. Applying the same strategy to

sI1 • · · · • sIp = w = sI1 • sJ1 • sI1 • . . .︸ ︷︷ ︸
m

•sL1 • · · · • sLq .

gives p− 1 = (m− 1) + q and so we have r = p.

Define λ :WΓ → N0 to be the length function on WΓ with respect to the generators
{sJ | J ∈ J }.

Lemma 3.4.4. For any w ∈ WΓ that can be written as sJ1 . . . sJp and λ(w) = p we have
w = sJ1 • · · · • sJp.

Proof. We will use induction on p. If p = 0 or p = 1 then clearly the lemma is true.
Now consider w such that p ≥ 2. We may set w′ := sJ2 . . . sJp where λ(w′) = p− 1 so by
assumption w′ = sJ2 • · · · • sJp ∈ WΓ.

Now suppose `(sw′) > `(w′) for all s ∈ J1. Then w′ ∈ XJ1 , further w′ ∈ XI0 by
definition of WΓ and so `(sJ1w

′) = `(sJ1) + `(w′). Hence we have shown that w =
sJ1 • · · · • sJp .

Otherwise, `(sw′) < `(w′) for some s ∈ J1. Then we have that `(γ(sw′)) = `(tw′) for
all t ∈ J1 and so as in the proof of Lemma 3.4.2. we may write w′ = sL1 • · · · • sLq where
Li ∈ J and L1 = J1. By Lemma 3.4.3. we have that p − 1 = q. Thus w = sJ1w

′ =
sL2 • · · · • sLq and `(w) < `(w′). This is impossible so we are done.

Corollary 3.4.5. Let w,w′ ∈ WΓ. We have `(ww′) = `(w) + `(w′) if and only if
λ(ww′) = λ(w) + λ(w′).

Proof. Let λ(w) = p and λ(w′) = q. Then by Lemma 3.4.2. we have w = sJ1 • · · · • sJp
and w′ = sI1 • · · · • sIq where Ji, Ii ∈ J .

Suppose `(ww′) = `(w) + `(w′). Then ww′ = sJ1 • · · · • sJp • sI1 • · · · • sIq . Let
r := λ(ww′) ≤ p + q. Again by Lemma 3.4.2. we have ww′ = sL1 • · · · • sLr where
Li ∈ J . Then Lemma 3.4.3. implies r = q + p.

Now if λ(ww′) = λ(w) + λ(w′) = p + q. Then we have ww′ = sJ1 . . . sJpsI1 . . . sIq
and by Lemma 3.4.4. ww′ = sJ1 • · · · • sJp • sI1 • · · · • sIq . Hence we see that `(ww′) =
`(w) + `(w′).

Theorem 3.4.6. Suppose we have w ∈ WΓ and J ∈ J . Let λ(w) = p and w =
sJ1 . . . sJp where Ji ∈ J . If λ(sJw) ≤ λ(w), then there exists some i ∈ {1, . . . p} such
that sJw = sJ1 . . . sJi−1

sJi+1
. . . sJp. That is, the Exchange Condition is satisfied for the

pair (WΓ, {sJ | J ∈ J }).
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Proof. Suppose we have `(sw) > `(w) for all s ∈ I0 ∪ J , then w ∈ XI0∪J and so
`(sJw) = `(sJ) + `(w). Corollary 3.4.5. implies that λ(sJw) = λ(sJ) + λ(w) > λ(w).
This contradicts our assumption that λ(sJw) ≤ λ(w). Hence there must exist some
s ∈ I0 ∪ J such that `(sw) < `(w). In fact as w ∈ XI0 we can further see that s ∈ J . In
addition, by Lemma 5.4.4 we have that w = sJ1 • · · ·•sJp . If we take reduced expressions
for all sJi then we have a reduced expression for w. The Exchange Condition holds for
(W, S) so there exists some index i ∈ {1 . . . p} such that

sw = sJ1 . . . sJi−1
xsJi+1

. . . sJp

where x ∈ WJi∪I is equivalent to the reduced expression of sJi less one factor. Now take
z := sJ1 . . . sJi−1

, then we have
z−1sz = xsJi

Note that z ∈ WΓ so we have z−1γ(s)z = γ(xsJi) ∈ WI0∪Ji for all γ ∈ Γ. In addition,
zs = sz for all s ∈ I0 so z−1sz = z−1zs = s ∈ WI0∪Ji . We conclude u = z−1sJz ∈ WI0∪Ji .
Further as u = sJ1 . . . sJi . . . sJ1 we have u ∈ WΓ. Thus, u ∈ WΓ

I0∪Ji . By Lemma 3.4.2
u ∈ WΓ

I0∪Ji = 〈sJi〉 = {1, sJi}. Then we must have u = sJi giving sJ = zsJiz
−1 and so

sJw = sJ1 . . . sJi−1
sJi+1

. . . sJp as required.

Corollary 3.4.7. (WΓ, {sJ | J ∈ J }) is a Coxeter system.

Proof. By Theorem 3.4.6 the Exchange Condition is satisfied for the pair (WΓ, {sJ | J ∈
J }). This is equivalent to the pair being a Coxeter System.

3.5 An Involutive Automorphism

Define Θ := ad(wI0) ◦ Γ, where Γ is defined as in the previous section but with the
additional restriction

γ|WI0
= ad(wI0).

This map is the product of two automorphisms and so must itself be an automorphism.
Upon observing that γ preserves length and γ(I0) = I0 by definition we see that wI0 is
γ invariant for all γ ∈ Γ. It follows that

Θ2 = ad(wI0) ◦ Γ ◦ ad(wI0) ◦ Γ

= Γ ◦ ad(wI0) ◦ ad(wI0) ◦ Γ

= id.

Hence we have that Θ is an involutive automorphism. We have constructed Θ to be
inner by graph in the sense of [8]. The choice of Γ is natural as it is the group of graph
automorphisms. The choice of ad(w0) is less obvious but still not unreasonable as the
longest element is always involutive.

Proposition 3.5.1. WI0 ⊆ WΘ.
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Proof. Let w ∈ WI0 , then w = s1 . . . sn where si ∈ I0. We defined Θ to be the product
of two group homomorphisms so it follows that Θ must also be a group homomorphism.
That is,

Θ(w) = Θ(s1) . . .Θ(sn).

As a result to complete the proof it is sufficient to prove that all s ∈ I0 are contained in
WΘ. That is, Θ(s) = s for all s ∈ I0. Consider

Θ(s) = wI0γ(s)wI0 = wI0wI0swI0wI0 = s.

Proposition 3.5.2. WΓ ⊆ WΘ.

Proof. Let w ∈ WΓ. First we will note that γ(w) = w by definition so we have

Θ(w) = wI0γ(w)wI0 = wI0wwI0 .

Now by definition we have wWI0 = WI0w and so wwI0 = uw, where u ∈ WI0 . Also
by definition we have w ∈ XI0 meaning `(wwI0) = `(w) + `(wI0) = `(uw). Then as
`(uw) ≤ `(u) + `(w) we see that u = wI0 . That is, wI0 and w commute. Thus

Θ(w) = w.

We know WΓ is a Coxeter group and that WI0 is a parabolic subgroup of W . That
is, they are both groups. Hence having shown that each of them is contained by WΘ is
sufficient to conclude that WΓ ≤ WΘ and WI0 ≤ WΘ.

Proposition 3.5.3. WΘ = WI0WΓ.

Proof. To prove this we will show containment in both directions.
First we will show that WI0WΓ ⊆ WΘ. Let w ∈ WI0WΓ. We may write w = uv,

where u ∈ WI0 and v ∈ WΓ. Upon noting that WI0 and WΓ are both subgroups of WΘ

we see that w = uv ∈ WΘ as it is the product of two elements in WΘ.
Now we will show that WΘ ⊆ WI0WΓ. Let w ∈ WΘ. Then we may write w = uv,

where u ∈ WI0 and v ∈ XI0 . We have wI0γ(v)wI0 = v and v ∈ XI0 hence γ(v) ∈ X ′I0 .
Further γ preserves length so for all s ∈ I0 we have

`(vs) = `(γ(vs)) = `(γ(v)t),

where t ∈ I0. Thus v ∈ X ′I0 .
Now consider

wI0vwI0 = γ(v).

Clearly the LHS is not reduced so by the Deletion Condition we may delete two factors
from the LHS to obtain an equivalent expression. Both of these factors may not lie in
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v as v is reduced. If one of the factors lies in v and the other in wI0 on either side it
contradicts the fact that vwI0 and wI0v are both reduced. Hence one factor must come
from each of the wI0 ’s. It follows that any reduced expression of γ(v) must in fact be v.
Thus

γ(v) = v.

Further if we let x be some reduced expression for wI0s, where s ∈ I0 we obtain

wI0vx = vs

and following the argument above an equivalent expression is obtained by deleting one
factor from wI0 and one factor from x. If we do this the maximum amount of times our
equation becomes

tv = vs,

where t ∈ I0. That is for all s ∈ I0, there exists some t ∈ I0 such that svt = v. Hence
we have

vWI0 = WI0v.

It follows that
v ∈ WΓ.

Hence we have shown that
w = uv ∈ WI0WΓ.

Corollary 3.5.4. WΘ ∼= WI0 oWΓ

Proof. We have seen that WΘ = WI0WΓ. Let w ∈ WΓ, then w ∈ XI0 and so any reduced
expression of w must not begin with s ∈ I0. This means w /∈ WI0 unless w = 1 and
so we conclude WI0 ∩ WΓ = {1}. Now let w′ ∈ WΘ can be written as w = uv where
u ∈ WI0 and v ∈ WΓ. Clearly u commutes with WI0 and by the definition of WΓ we
also have vWI0 = WI0v. We conclude that wWI0 = WI0w and so WI0 C WΘ. It follows
that WΘ ∼= WI0 oWΓ.

We have shown that WΘ ∼= WI0 oWΓ. That is, WΘ is isomorphic to the semidirect
product of two Coxeter groups. It is also true thatWΓ C WΘ and WΘ =WΓWI0 , so we
could further say WΘ ∼=WΓ oWI0 .
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Conclusion

We have given a brief overview of the theory of Coxeter groups and it’s motivation
from finite reflection groups. In the first two chapters of the report the approach we
took was primarily geometric. Alternatively we could have approached the subject from
a more combinatorial point of view. Such an approach would have been less natural in
terms of motivation, however, as evidenced in Chapter 3, the combinatorial properties of
Coxeter groups are very useful. One of the most fundamental combinatorial properties
of Coxeter groups that has been ommitted in this report is the Bruhat order.

We have proved that (WΓ, {sJ | J ∈ J ) is a Coxeter system and we have constructed
a group of involutive automorphisms Θ := ad(wI0) ◦ Γ. Further we have shown, WΘ ∼=
WI0 oWΓ where WI0 and (WΓ are Coxeter groups with canonically defined Coxeter
generators, I0 and {sJ | J ∈ J } respectively.

The motivation for doing this was to make progress towards a classification of the
involutive automorphisms of Coxeter groups. As such two further questions arise.

Let Θ := ad(wI0) ◦ Γ, where γ(I0) = I0, wI0∪J ∈ NW (WI0) and γ|WI0
= ad(wI0) for

all γ ∈ Γ. Further define Θ′ := ad(wI′0) ◦Γ′, where {γ′, I ′0} is a pair such that γ′(I ′0) = I ′0
and wI′0∪J ∈ NW (WI′0

) for all γ′ ∈ Γ′. Now the questions are as follows.

(i) Fix Θ′. Does there exist some β ∈ Aut(W ) such that βΘ′β−1 = Θ, for some Θ as
above?

(ii) Given (i) is true, then is every involutive automorphism of W conjugate to some
Θ := ad(wI′0) ◦ Γ′?

If the answer to both of these questions were positive then we would obtain a classification
for the involutive automorphisms of finite Coxeter groups.
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Appendix A

Magma Code

Given in this appendix is the code used to determine the involutive automorphisms of
S6.
Define S6:
Define the generators:

G := Sym(6);
g1 := G! (1,2);
g2 := G! (2,3);
g3 := G! (3,4);
g4 := G! (4,5);
g5 := G! (5,6);

Define the automorphism ξ:
xi:= hom< G − > G | g1 − >
g1*g2*g1*g2*g3*g2*g5, g2 − >
g1*g2*g3*g4*g5*g4*g3
*g2*g1*g2*g3*g4*g3*g2*g3,
g3 − > g1*g2*g3*g2*g1*g2*g5, g4− >g1*g2*g3*g4*g5*g4*g3
*g2*g1*g2*g3*g2*g3*g4*g3, g5 − > g1*g3*g5>;

The following code counts the number of w ∈ S6 for which (ad(x) ◦ ξ)2(w) = w for
each x ∈ S6 and returns x precisely when this number is |S6| = 720. That is, when
ad(x) ◦ ξ is involutive.

for i in G do
n:=0;
for j in G do
l1:=i*j/i;
l2:=xi(l1);
l3:=i*l2/i;
if xi(l3) eq j then

n:=n+1;
if n eq 720 then
print i;
end if;
end if;
end for;
end for;

Alternatively the code given below checks directly whether x ∈ S6 satisfies xξ(x) = 1
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for i in G do
for j in G do
if alpha(i)*j eq Id(G) then
print i;
end if;
end for;

Both sets of code give identical output.

41



Appendix B

Bibliography

[1] H. S. M. Coxeter, “The complete enumeration of finite groups of the form,” Journal
of the London Mathematical Society, vol. s1-10, no. 1, pp. 21–25, 1935.

[2] M. Geck and L. Iancu, “Coxeter groups and automorphisms,” 2014.

[3] G. Lustig, “Hecke algebras with unequal parameters,” 2002.

[4] I. R. Shafarevich and A. Remizov, Linear Algebra and Geometry. Springer-Verlag
Berlin Heidelberg, 2013.

[5] J. Humphreys, Reflection Groups and Coxeter Groups. Cambridge University Press,
1990.

[6] A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups. Springer, 2005.

[7] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4-6. Springer, 2008.

[8] W. Franzen, Automorphisms of Coxeter Groups. PhD thesis, School of Mathematics
and Statistics, University of Sydney, 2001.

[9] J. J. Rotman, An Introduction to the Theory of Groups Fourth Edition. Springer-
Verlag Berlin Heidelberg, 1995.

42


