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In this report we consider two case studies. For our first case study we
have data on casualty counts and several explanatory variables for many
sites across the Northumbria Police Force area, supplied by the Northumbria
Safety Camera Partnership. Treated sites have a before and after period,
where high casualty values in the before period led to implementation of
mobile speed cameras. We will try to identify whether regression to the
mean has affected casualty counts at these sites, by using an accident pre-
diction model constructed using data from control sites. We will use both an
Empirical Bayes and Full Bayes analysis, and assess the differences between
these, also considering different prior specifications, determining which of
these is the most appropriate. For the second case study, we have accident
count data from the city Halle, in Germany, with data spanning nine years,
supplied by PTV Group, a traffic accident mapping software company. We
use all the data to construct an accident prediction model, then use a Fully
Bayesian procedure to estimate average accident counts. We can then use
the Bayesian posterior predictive distribution to forecast which of these sites
will be dangerous in the future, so we can take a proactive approach towards
the implementation of road safety schemes.
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Chapter 1

Introduction

1.1 Aims of this project

In this report we investigate the role of statistical modelling in the field of
road safety. We consider two case studies:

1. A before/after study aimed at assessing the effectiveness of mobile road
safety cameras (speed cameras) in the Northumbria Police Force area
in the UK;

2. An analysis of completely untreated, potentially dangerous road safety
‘hotspots’ in and around the city of Halle, in the state of Saxony-
Anhalt, Germany, aimed at predicting the true future road safety of
these locations and thus identifying which sites are genuine ‘hotspots’.

As we will describe, the data in both case studies are vulnerable to the effects
of selection bias, or regression to the mean (RTM), which we attempt to
quantify within the Bayesian framework. Case study 1 is retrospective - here,
road safety cameras have been applied as a treatment to a selection of 56 sites
considered dangerous, and we have figures relating to the number of casualties
before and after treatment, as well as several other measured variables. The
data were supplied by the Northumbria Safety Camera Partnership, to whom
we are grateful. In case study 2, no treatment has yet to be applied; we have
annual road traffic accident counts (and various other measured variables)
over a period of 9 years (2004 to 2012) for 734 sites in and around the city
of Halle, in Germany - the aim here is to identify sites worthy for treatment
based on their historic accident record, but also allowing for any potential
site-specific RTM effects. Typically (as was the case in case study 1) local
authorities would take a reactive approach to treatment, implementing a
road safety scheme once a high threshold of casualties or accidents has been
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observed at a particular location. The aim of case study 2 is to consider a
more proactive approach to treatment, predicting future levels of safety and
acting on these predictions before the threshold has been reached, potentially
saving casualties/lives. The data for case study 2 were supplied by PTV, a
traffic accident mapping software company based in Karlsruhe, Germany, to
whom we are grateful.

In this report we aim to assess the sensitivity of our estimates of regres-
sion to the mean to the choice of model structure: we initially use a simple
Empirical Bayes technique, later moving on to use MCMC methods to al-
low for non-conjugate prior distributions. The Empirical Bayes technique is
the industry gold standard, however we will show that this method is over-
optimistic when identifying regression to the mean effects, as the estimates
for casualty/accident rate are too precise due to posterior standard devia-
tions being too small. This method only allows the use of conjugate prior
distributions. However, for case study 1, we will show that a non-conjugate
specification is most appropriate. For case study 2 we aim to use the poste-
rior predictive distribution within the Bayesian framework to predict future
accident counts at the given sites, after accounting for RTM. This will help us
to determine which sites will become dangerous ‘hotspots’ in the next year.
The statistical software package R was used for computational work [1], [2].

1.2 Regression to the Mean

1.2.1 Sir Frances Galton and Regression to the Mean

The phenomenon of regression to the mean was first considered by Sir Frances
Galton (1822-1911). He published a paper [3] on a study of the heights of
parents and their grown children, establishing if and how they were related.
We would expect the height of the child to be the average of the two parents;
however, this was not the case. He discovered that if the parents were very
tall, the child would generally be shorter, and for very short parents, the
child would usually be taller. This can be described as an unusually high (or
low) value being followed by an average value, which might be closer to the
overall mean height of the children. He named this occurrence ‘regression to
the mean’ (RTM), as the heights of the children seemed to ‘regress’ back to
the average value. RTM can be seen in many areas of life - for example Sir
Galton also noticed its occurrence in the size of sweet pea seeds. The area I
will consider, however is road safety, and we will investigate how the casualty
or accident values at particular sites might generally regress back to some
underlying mean value.
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1.2.2 More examples of RTM

We have seen that RTM is prevalent in Biology - however it can also be
seen in the economy, medicine [4], sport [5] and the media [6]. Olympic gold
medalists, for example, seem to perform more poorly in the months after the
games. This could be because at their peak in the Olympics they have done
unusually well, so the attention on their performance is high. If they don’t
win the next competition, they appear to have gotten worse, rather than
just returned to their usual level. It can also be seen in alternative medici-
nal treatments, for example drinking lemon juice to reduce a headache. The
headache is going to disappear over time naturally; however, the lessening of
the pain might be attributed to the lemon juice. This is described as a co-
incidental recovery, whereby the treatment had no real effect. Disappointing
film sequels could also be due to regression to the mean. If the original film
was a triumph, the expectation would be high for the sequel. If the sequel
didn’t live up to this success it would be deemed a failure. However if it was
an original, it might be considered average quality.

1.2.3 RTM in Road Safety

In 2000, a department for Transport report revealed that each year on Britain’s
roads there are over 300,000 casualties, around 3,500 of these being fatal.
This information was part of a report Tomorrow’s Roads - Safer for Every-
one [7] aimed at reducing road casualties and making the roads safer for all
to use. Another incentive to reduce casualties was the financial burden of
these accidents, estimated to be around £3bn a year. For these reasons speed
cameras were deployed - initially under a two year pilot program involving
eight road safety camera partnerships, in April 2000 [8]. Due to the high
installation and running costs, they were financed using the money people
were fined for exceeding the speed limit. By the end of the year the results
looked promising and in 2001 there were safety camera partnerships across
the length and breadth of the UK.

Due to the rise in the numbers of speed cameras, and therefore a rise in
the number of people being fined, the general public became angry with the
scheme. Some people argued that they were “. . . just another government
tax” [9], and speed cameras in some areas were vandalized, seen in Figure 1.1.
Opponents of speed cameras were attempting to have the scheme stopped,
and their argument about the effectiveness included selection bias and the
resulting regression to the mean effects. The argument against the use of
speed cameras is as follows.
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Figure 1.1: Left: Cartoon published in the Independent, April 2001, Right:
Vandalism to speed cameras [9]

The number of casualties or accidents in a specific time period is observed,
and if that value exceeds some pre-determined ‘safety threshold’, a safety
scheme may be put in place, for example a speed camera. The ‘after’ period
takes place once this scheme is set up, and the same observation on casu-
alty/accident counts made. We find that, more often than not, these counts
decrease post-treatment, which can be taken as saying the speed camera has
reduced accidents/casualties (perhaps saving lives), so the safety scheme is
a worthwhile investment. The main problem with this type of study is the
lack of a control group, so we have nothing to compare the casualty rate at
the treated sites to. This amounts to using the ‘before’ period as the con-
trol group, so we assume that figures here give the average value of what we
would expect to see. However, selection bias has taken place - only the sites
with unusually high casualty values have been selected for a safety scheme.
This means these sites might not usually be this dangerous, but by chance
have had a large number of accidents in the selected time period. We will
call these sites ‘hotspots’.

Many people argue that these ‘hotspots’ were at the peak of a ‘blip’ - they
had a high value in the specific ‘before’ time period, however normally they
are not that dangerous. The lower value seen in the ‘after’ period is, naively,
viewed as a result of the treatment; however they believe the casualty value
would have reduced to this level naturally, regardless of a speed camera being
put in place, due to RTM. We can see the different effects of regression to
the mean in before/after studies in Figure 1.2.

We can see that in all cases the casualty value has decreased from the first
time it was measured. However here we have historic casualty data, so we
can see the underlying mean value, which makes regression to the mean
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Figure 1.2: Hypothetical outcomes of RTM in before/after studies. [8]

very noticeable. Following line 1, we can see when a safety scheme is put
in place the casualty rate decreases past the historic mean value, showing
the treatment has had a positive effect in reducing casualties. The second
line, however, only reduces from the peak of the ‘blip’ to the historic mean
value, which we would expect over time anyway, so the safety scheme put
in place has been a waste of money, as it has not saved any casualties from
occuring. Line 3 shows a safety scheme seemingly causing a negative effect on
the casualty rate - it has caused the number of casualties to rise higher than
the historic rate. Looking at just the ‘before’ and ‘after’ values, this is not
apparent. The fourth line shows the safety scheme installed when the casualty
rate is not at the peak of a ‘blip’, however the treatment has a positive effect
and decreases the casualty rate. Most reports of a before/after study would
conclude that this is what occurred, due to the decreased casualty rates,
when in reality it could be any of the above options. It has been found
in previous studies [8] that the average reduction in road casualties due to
speed cameras is around 30%, after accounting for regression to the mean.
This low value has led to fewer speed cameras being implemented, and the
government looking for different ways to prevent casualties, including road
safety advertising and safety talks in schools.

1.3 Modelling Techniques Used

For both case studies, the aim is to produce an accident prediction model
(APM), which tells us for each site, what accident/casualty rate we would
expect to see at these sites ordinarily, based on observations made at ‘similar’
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sites. For the Northumbria study, we have a set of control sites which we
use to construct the APM; in the Halle study, we use all sites to form the
APM and refer to the fitted values at each particular. In both cases, a log-
linear model is used to link casualty/accident counts to several explanatory
variables.

1.3.1 General Modelling Framework

For the Northumbria analysis we assume a Poisson distribution for casualty
frequency Yj at treated site j with rate mj. Similarly for the Halle analy-
sis we have a Poisson distribution for accident frequency Yj at site j, also
with rate mj. To begin with we use a conjugate prior distribution for ca-
sualty/accident rates mj - for a Poisson likelihood we need a Gamma prior.
We then move on to different non-conjugate cases, such as the lognormal and
Weibull distributions. For all these priors the mean value is E(mj) = µj.

We can then define the log-linear multiple regression model (APM) for µj as

µj = exp{β0 + β1x1j + · · ·+ βpxpj}, (1.1)

where xij, . . . , xpj represent covariate information, for example average speed.
For the Northumbria analysis, this model is estimated using information from
a set of control sites, and then applied to the same covariate information at
our treated sites. For the Halle analysis we fit the model using information
from all sites and then let µj be the fitted value at site j.

The sites that are most likely to suffer the effects of regression to the mean
will have a large discrepancy between the observed casualty/accident counts
and the values given by the accident prediction model. A site could have a
much larger casualty count than expected, or in some cases a smaller number
of accidents than expected. The difference between the observed values and
the posterior mean for mj is taken to be the RTM effect. The posterior mean
value can be shown to be a weighted sum of the observed value and the prior
mean - what we have seen, and what we expected to see.

1.3.2 Empirical Bayes Procedure

This method is the industry standard in the road safety literature, however
it only allows us to use conjugate priors, so here we must remain with the
Poisson-Gamma formulation. The unconditional distribution for yj is neg-
ative Binomial, so the error structure for µj in Equation (1.1) must have
the same form. We can use maximum likelihood estimation to estimate the
regression coefficients and the negative Binomial over-dispersion parameter
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κ in Equation (1.1). In a standard Empirical Bayes analysis, these parame-
ters are then treated as the true values; no acknowledgement is given to the
standard errors, and so estimates of µj are obtained directly on substitution
of covariate information into (1.1). Standard methods (eg. backwards elimi-
nation) can be used to discover which of the given explanatory variables are
significant.

1.3.3 Fully Bayesian Techniques

A fully Bayesian analysis is potentially more realistic in estimating RTM
effects, as we can allow for uncertainty in estimation of all parameters by
adopting prior distributions for the regression coefficients and negative Bi-
nomial over-dispersion parameter. These prior distributions could be chosen
by an expert in road safety, who could give their opinion on how these coef-
ficients should be distributed; however, here we will use vague priors in the
absence of such knowledge.

The Markov Chain Monte Carlo (MCMC) techniques [10] used in this sec-
tion allow us to make inferences on the parameter vector θ by simulating
realisations from the posterior distribution. This is adapted when using
non-conjugate prior specifications, due to the fact the posterior cannot be
calculated analytically, and the respective conjugate distribution might be
too restrictive for the situation.

The sampling method used in this report is the Metropolis-Hastings tech-
nique [10]. This simulates realisations from the posterior distribution via a
proposal distribution with density q(θ∗|θ), which is easy to simulate from.
This gives a method of proposing new values θ∗ from the current value θ.
The algorithm to produce this is given below.

1. Initialise the iteration counter to j = 1, and initialise the chain to θ(0);

2. Generate a proposed value θ∗ using the proposal distribution q(θ∗|θ(j−1));

3. Evaluate the acceptance probability α(θ(j−1),θ∗) of the proposed move,
where

α(θ,θ∗) = min

{
1,
π(θ∗|x)q(θ|θ∗)
π(θ|x)q(θ∗|θ)

}
; (1.2)

4. Set θ(j) = θ∗ with probability α(θ(j−1),θ∗), and set θ(j) = θ(j−1) oth-
erwise;
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5. Change the counter from j to j + 1 and return to step 2.

At each stage we generate a new value from the proposal distribution, which
is either accepted or rejected. If the value is accepted then the chain moves
to a new position, and if rejected stays where it is. This depends on the
acceptance probability, of which the optimal value is around 23.4% [10]. If
too many values are accepted then the chain will move slowly around the
parameter space, and if too few values are accepted then they will correspond
to large jumps in values. Both of these would mean the chain takes longer
to converge, which means more computational work.

The proposal distribution used in this project is a random walk with Normal
innovations. This means the proposed value θ at stage j is

θ∗ = θ(j−i) +wj, (1.3)

where the wj are independent and identically distributed random p× 1 vec-
tors, with Normal distributions, where p is the number of covariates used, i.e.
wj ∼ Np(0,Σ). We can then easily simulate an innovation wj and compute
the proposal value given in Equation 1.3. Via this method we can compute
realisations from the posterior distribution.

Due to the use of MCMC we can move on to non-conjugate prior distribu-
tions, which could be more appropriate for the situation. This leads to the
issue of deciding which prior distribution is the ‘best’ for this model. One
way to evaluate this is to consider the Deviance Information Criterion (DIC)
[11]. This value takes into account the goodness-of-fit of the model, and has
a term that depends on the complexity of the model. In general a more com-
plex model will give the best fit, but may be very complicated and have lots
of variables, so the idea is to compromise between simplicity and fit. The
lower the value of the DIC the better the model is.

The Full Bayes method hasn’t become industry standard yet due to the added
computational work, and isn’t mentioned much in the applications literature
in road safety. A few examples of a Full Bayes approach are [8] and [12], and
these papers have more realistic and accurate assessments of the regression to
the mean effect. Researchers in the School of Mathematics & Statistics and
Transport Operations Research Group (TORG) at Newcastle University have
recently been awarded a University Strategic Research Grant to address this
issue, the aim of which being to provide local authorities with user-friendly
software which performs fully Bayesian analyses of accident/casualty data,
to assess the impact of new road safety features.
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Chapter 2

Mobile Safety Cameras: A
Before/After Study

2.1 Background and Data

The data in this case study were provided by the Northumbria Safety Camera
Partnership (NSCP). This body comprises local authorities, the Northumbria
Police Force, academics from Newcastle and Northumbria Universities and
the local NHS secondary healthcare providers. This partnership joined the
national program as mentioned in Scetion 1.2.3 in April 2003, and in February
2004 investigated the role of mobile speed cameras in reducing casualties due
to road traffic accidents [8]. Mobile speed cameras are portable, and can be
operated from a Partnership vehicle in various locations. This lowers the
cost of installing and maintaining fixed speed cameras.

We have two time periods in this study: the ‘before’ period is from April 2001
to March 2003, and the ‘after’ period is from April 2004 to March 2006. We
have data over this period for 56 sites, for which mobile speed cameras had
been implemented in the ‘after’ period. We will refer to these as the treated
sites. We also have data in the ‘before’ period for 67 sites in the same area,
which didn’t have speed cameras deployed. We will refer to these as control
sites. Our aim is to use these control sites to build an accident prediction
model (APM) to apply to the treated sites to use as our prior mean µj; see
Equation (1.1) This means we can try to estimate what would happen at the
treated sites in an average time period, perhaps when casualties were not at
the ‘peak of a blip’ - will regression to the mean occur, and were the speed
cameras necessary?

The data for both treated and control sites included seven explanatory vari-
ables, and a casualty value. These explanatory variables were: speed limit,
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Table 2.1: Summary statistics for casualty counts

Mean Median St. Dev. LQ UQ Min Max

Contol 4.284 3 4.770 0 18.45 0 24

Treated (Before) 7.786 7 5.379 1 20.63 1 28

Treated (After) 5.321 4 4.023 0 15.25 0 16

average speed, 85th percentile speed, percentage of drivers over the limit,
percentage of drivers over 15 mph over the limit, traffic flow, road classifica-
tion (0, 1, 2 or 3), road type (1 = single carriageway, 2 = dual carriageway or
3 = mixed). We can look at some summary statistics and plots to investigate
the data.

We can see from Table 2.1 that the mean casualty value for the treated sites
in the ‘before’ period is much larger than for the control sites. This could
suggest the sites here are at the peak of a ‘blip’, so will be vulnerable to
regression to the mean; or they are actually dangerous ‘hotspots’ that need
to be treated. We can see the casualty value decreases for the treated sites
from ‘before’ to ‘after’ periods, which could show the positive result of speed
camera implementation, or the regression to the mean effect. However the
standard deviation values are large, leading to very wide 95% confidence
intervals. The maximum value has dropped from the ‘before’ to the ‘after’
period, once again suggesting the speed cameras have been effective.

Figure 2.1: Boxplots of Road Classification against ‘before’ casualty value
for Left: control, Right: treated sites

In Figure 2.1 we can see the casualty values against different road classifi-
cations in the ‘before’ period for treated and control sites. For the control
sites we can see the median values are all low, however they tend to have
longer tails leading to the higher casualty values, showing they are positively
skewed. There are a few outliers, but they are not all in one classification,
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showing that for the control sites there doesn’t seem to be a particularly
dangerous road classification. For the treated sites however there are three
outliers in one classification, suggesting the treated sites in this class could
be more dangerous. There is one very high outlier, but the tails of the plots
seem to be more even than for the control sites, suggesting less skew. The
median values are all higher, showing the larger number of casualties at these
potentially dangerous ‘hotspots’.

We can use these data to try estimate our APM, as discussed in Section 1.3.1,
but we first need to consider if it is sensible to try and predict casualty rates
at the treated sites using the control sites - are these sites exchangeable?

2.2 Assessment of Exchangeability between

Treated and Reference Sets

As discussed in Section 1.3.1 our aim is to elicit a value for the mean of the
prior distribution for casualties at the treated sites by applying a regression
model, constructed using data at the reference sites, to covariate information
at the treated sites. To be able to use the control sites to predict what we
could expect to see at the treated sites, when casualties are not at the peak
of a ‘blip’, we must check they are exchangeable. We are looking to test
the null hypothesis H0: Sites are exchangeable against H1: Sites are not
exchangeable. This can be done via a permutation test [8].

To test this we need to find the distribution of the test statistic under the null
hypothesis. We can do this approximately, by generating multiple samples
via random permutations of the data. We estimate the p-value, P̂ , from
comparing the mean value of each explanatory variable used in our model.
We can calculate the value δp for each of these variables:

δp = |x̄TRTp − x̄CTRp |, p = 1, . . . , 7, (2.1)

where TRT and CTR denote the treated and control sites respectively.

In this permutation test we randomly re-allocate sites to the treatment and
control groups at each permutation. We then find δp at each permutation
Πk with k = 1, . . . , 10, 000. Next we compare the observed distributions
of δp from these random permutations with the values of δp in the original
allocation. We can define the indicator variable Ik as

Ik =

{
1 if δΠk

p ≥ δp,

0 otherwise.
(2.2)
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We can now estimate the p-value P̂ , which tests the null hypothesis. This
number is the proportion of values with a value of δΠk

p that is at least as large
as the original permutation value δp:

P̂ =
N∑
k=1

Ik
N
. (2.3)

We perform this calculation for all explanatory variables. All are greater than
0.05; for example, for average observed speed and percentage of drivers over
the speed limit, we have P̂1 = 0.0767 and P̂2 = 0.5954 (respectively). Thus
there is insufficient evidence to suggest these sites are not exchangeable.

Figure 2.2: Distributions of δp for p = 1, 2, with the mean value of δp for the
original permutation superimposed.

We can also look at the distribution of δp values, and compare with the
original permutation value. If this value is well within the centre of the
distribution then we can say that control and treated sites and exchangeable
for that variable. This can be seen in Figure 2.2, and we can conclude from
this that the sites are exchangeable for both explanatory variables, as the δp
values are close to the centre of each distribution.

Another method we can use to check exchangeability is a Principal Compo-
nents Analysis [13]. This method takes a large number of possibly correlated
variables and orthogonally transforms them to obtain a small set of linearly
uncorrelated principal components. The first principal component carries
the highest variance, and the second carries the second highest variance,
and so on. This method keeps most of the information and variation in the
data, however massively reduces the number of variables, leading to easier
visualisation of the data.

Using this method on our data, we obtain the information in Table 2.2. We
can see that the first principal component explains around 87% of the data,
and a combination of the first two components explains 96% of the data. This
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Table 2.2: Principal Component Analysis

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard Deviation 26.158 8.514 5.203 0.994 0.527
Proportion of variance 0.872 0.092 0.034 0.001 0.000
Cumulative proportion 0.872 0.964 0.998 0.999 1.000

Figure 2.3: Plots of score on first two Principal Components for control and
treated sites.

is a huge amount of the variability, so we can ignore the last three principal
components, and produce a plot using only the first two, seen in Figure 2.3.

Ideally in a graph of principal components, for groups that are interchange-
able we would see a completely random mix of the two groups. Here we
can see that most of the points are gathered along one central line, with a
seemingly random mix of control (black circles) and treated sites (red trian-
gles). We have a few treated sites in the middle at the top that are separate
from other control sites, so these sites might not be very well represented
by the control sites. However for the majority of points there is no clear
division between the two groups, so we can conclude again that the sites are
interchangeable.

2.3 Empirical Bayes Analysis

We use the posterior disrtibution of the mean casualty rate at each treated
site to estimate the effect of RTM, as discussed in Section 1.3.1. For the
casualty counts yj at each treated site j we use a Poisson distribution, with
mean mj. The classic Empirical Bayes analysis adopts a conjugate prior - ie.
a Gamma, with mean µj and variance µ2

j/γ. The unconditional distribution
of yj is therefore negative Binomial, with the over-dispersion parameter κ =
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γ−1. We therefore have

yj|mj ∼ Po(mj), (2.4)

mj ∼ Ga

(
γ,

γ

µj

)
. (2.5)

2.3.1 Estimating the Accident Prediction Model

We have previously seen the control data has seven explanatory variables,
which are: speed limit, average speed, 85th percentile speed, percentage of
drivers over the limit, percentage of drivers over 15 mph over the limit, traffic
flow, road classification (0, 1, 2 or 3), road type (1 = single carriageway, 2
= dual carriageway or 3 = mixed). To include the factorial variables in
our APM, of the form given in Equation (1.1), we must introduce indicator
variables. The value for flow is divided by 10,000 to make sure it doesn’t
dominate the regression equation due to the size of the values.

We now use these control sites to try to estimate the APM. We need to dis-
cover which of the explanatory variables significantly influence the number of
casualties. This can be done via a backwards elimination procedure, yielding
a log-linear model given by

µ̂ = exp
{

1.93−0.04x1−0.01x2 +0.44x3 +0.67xI4 +0.85xI5 +1.06xI6
}
, (2.6)

where µ̂ denotes the expected casualty value. The significant variables here
are x1 = average speed, x2 = percentage of drivers over the speed limit,
x3 = flow/10000, xI4, xI5 and xI6 are indicator variables, signifying road
classification A, B, C or U.

xI4 =

{
0 if road classification = B, C or U

1 if road classification = A.

xI5 =

{
0 if road classification = A, C or U

1 if road classification = B.

xI6 =

{
0 if road classification = A, B or U

1 if road classification = C.

The coefficient signs in Equation (2.6) can point towards what might make
a road dangerous. For example, the positive coefficient for flow shows that
if there is a large number of vehicles on the road each day, the more likely
an accident is to occur. We can perform a regression in R using the package
‘MASS’ [2]. This is given below.
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Call:

glm.nb(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6, init.theta = 2.494232366,

link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5331 -1.0084 -0.2509 0.5576 1.5056

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.933337 0.533574 3.623 0.000291 ***

x1 -0.041081 0.014733 -2.788 0.005297 **

x2 -0.012686 0.003921 -3.235 0.001215 **

x3 0.444237 0.193423 2.297 0.021636 *

x4 0.674396 0.417056 1.617 0.105870

x5 0.845727 0.422039 2.004 0.045080 *

x6 1.060389 0.380154 2.789 0.005281 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Negative Binomial(2.4942) family taken to be 1)

Null deviance: 117.331 on 66 degrees of freedom

Residual deviance: 75.525 on 60 degrees of freedom

AIC: 327.41

Number of Fisher Scoring iterations: 1

Theta: 2.494

Std. Err.: 0.774

2 x log-likelihood: -311.406

This regression gives us point estimates for the β̂i, i = 1, . . . , 6 and also for
the value of γ̂. Here we have

γ̂ =
1

κ̂
= 2.494,

where κ is the negative Binomial dispersion parameter. We can see the stan-
dard errors for the estimated regression coefficients, however in a typical
empirical Bayes analysis these are not used, and the estimated APM is ap-
plied directly to the data at the treated sites, the estimated coefficients being
used as the ‘true’ values.

We can now use this accident prediction model, based on data at the 67
control sites, to try and predict casualty values in the ‘before’ period at the
treated sites, if we weren’t at the peak of a blip.

2.3.2 Posterior distribution for mj

We have already formed the Gamma prior distribution and the Poisson like-
lihood, and due to the fact they are conjugate distributions, the posterior
distribution is easy to obtain.

π(mj|yj) ∝ π(mj)× f(yj|mj) (2.7)

∝ mγ−1
j e−mjγ/µj ×myj

j e
−mj
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∝ m
γ+yj−1
j e−mj(1+γ/µj)

We can see this is also a Gamma distribution; specifically we have

mj|yj ∼ Ga

(
γ + yj,

γ

µj
+ 1

)
, j = 1, . . . , 56. (2.8)

The mean of this distribution is then used as the Empirical Bayes estimate
of casualty frequency, which we calculate to be

E[mj|yj] =
γ + yj
γ/µj + 1

(2.9)

= αjµj + (1− αj)yj, (2.10)

where αj =
γ

γ + µj
.

We can see that the Empirical Bayes estimate of casualty frequency is a
weighted sum of what we observed at the treated sites, yj, and what we
would expect to see at that site during an average time period µj, which is
based on information from the control sites.

2.3.3 Results

We can now view results from this analysis, and look in particular at some
interesting sites, which we can draw conclusions from. Table 2.3 shows the
sites we have chosen to discuss, which all have some interesting features.

Looking initially at site j = 1, we see a large observed casualty value in the
‘before’ period, compared with the very small value for µj which we would
expect to see at this site, based on the control sites. The posterior mean
is a weighted average of these two values. In the ‘after’ period there were
no observed casualties, meaning that without accounting for regression to
the mean, speed cameras appear to have saved twenty casualties. However,
comparing the ‘after’ value with the posterior mean, we see the speed cameras
have in fact saved around nine casualties, which is one of the most effective
safety schemes in this study. This is similar to line 1 in Figure 1.2. This,
of course, assumes there are no other casualty reduction factors between the
before and after periods, including trend.
Now considering site j = 5, simply comparing the ‘before’ and ‘after’ values
looks as though the safety scheme in place has saved around nine casualties.
However, comparing the posterior mean with the ‘after’ value shows that the
speed camera has been ineffective, as after accounting for regression to the
mean there has been no decrease in casualty frequency. This is comparable
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Table 2.3: Empirical Bayes results for sites j = 1, 5, 10, 13, 19. For full table,
including standard deviations, see Appendix.

Site yj µj αj E(mj |yj) yj,after Observed After RTM

j=1 20 1.61 0.61 8.81 0 -20 -9
j=5 17 1.67 0.60 7.83 8 -9 0
j=10 6 2.70 0.48 4.41 9 3 4
j=13 12 1.74 0.59 5.95 2 -10 -4
j=19 21 1.40 0.64 8.45 10 -11 1

Total 436 323 298 -138 -25

with line 2 in Figure 1.2, where the entire reduction appears to be attributable
to RTM.

Site j = 10 actually shows a larger value in the ‘after’ period than the ‘before’,
which is very unusual, as we would expect the value to decrease. Simply
comparing values, we see that the speed camera looks to have caused three
casualties, and when accounting for regression to the mean this increases to
four. The reason for this is not clear. It could be that trend in casualty
counts, which we have not taken into account, in that particular area is
increasing, or the ‘after’ period is actually the peak of the ‘blip’ and the
casualty values will decrease again in the near future.

Site j = 13 is quite similar to site j = 1, as it appears as though the speed
cameras have been effective and prevented casualties; however less effective
than they appeared to be by just comparing ‘before’ and ‘after’ values.

Finally site j = 19 is similar to line 3 in Figure 1.2. The comparison of
‘before’ and ‘after’ values looks like the speed camera has been effective,
however when taking into account regression to the mean, we can see that
the ‘after’ value is still higher than the posterior mean. This means the speed
camera has possibly had a negative impact on the casualty frequency.

We can consider the totalled values to make a rough judgement on the over-
all effectiveness of the speed cameras. The difference between the ‘before’
and ‘after’ values is huge, however the regression to the mean effect can be
calculated as around 26%, showing that a large amount of this difference is
not due to the speed cameras. However there still appears to be a substantial
decrease in casualty values, so the safety schemes put in place appear to have
been effective and necessary.

We can now look at some graphs illustrating the differences between the
number of casualties, the prior mean µj and the posterior mean E(mj|yj).
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Figure 2.4: Number of casualties in ’before’ period against µj.

Looking first at Figure 2.4, we see the number of casualties in the before
period against the prior mean. We can see most of the values are below the
line of equality, showing that most treated sites have a higher number of
casualties than we would expect to see. This could be evidence that they are
at the peak of a ‘blip’ and vulnerable to regression to the mean.

Figure 2.5: Casualty value against E(mj|yj), Left: ’Before’, Right: ’After’.

In Figure 2.5 we can see the number of casualties, both ‘before’ and ‘after’,
against the posterior mean. In the ‘before’ period we can see that nearly all
the values are below the equality line, showing that they have an unusually
high casualty value, compared to what we would expect after smoothing by
the prior means. However, looking at the ‘after’ period against the poste-
rior mean, we can see the points are fairly evenly spread around the line of
equality. This shows the casualty value has decreased to a level we would
expect at that ste, due to a combination of the safety scheme in place and
regression to the mean.

There are a few treated sites with very small casualty values, which seems
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unusual. The safety scheme could have been put in place for other reasons
than very high casualty rates, for example a primary school in that location,
or a new road layout.

2.3.4 Problems

The method we have discussed so far is known as the ‘gold standard’ in
the road safety literature, however this method has some limitations. We
have used a Gamma prior distribution as it is a conjugate distribution to the
Poisson, allowing us to form the Gamma posterior analytically. However,
this might not be the most appropriate distribution for the situation, so we
could be left with unrealistic conclusions. We have also used point estimates
of βi, i = 0, . . . , 6 and γ, without any regard to their estimation error. These
values in turn lead to the values of µj for each treatment site j = 1, . . . , 56.
This gives us low and possibly unrealistic values for SD[mj|yj]. We will
attempt to address these issues in the following section, where we perform a
Fully Bayes analysis on the data.

2.4 Fully Bayesian Analyses

2.4.1 Full Bayes Analogue of Empirical Bayes Analysis

Initially we will perform the Full Bayes analysis while continuing with the
Poisson-Gamma setup, so we can compare the differences between the Em-
pirical and Full Bayes methods like-for-like. However, now we need to define
some prior distributions for the βi, for i = 0, . . . , 6, and for κ = 1/γ. In the
absence of any expert prior information regarding these parameters, we use:

βi ∼ N(0, 100), (2.11)

ρ = log(κ) ∼ N(0, 100), (2.12)

where we have introduced the variable ρ to retain the positivity of κ in our
MCMC scheme, and log denotes the natural logarithm. These are vague
prior distributions, meaning the values for the βi and ρ could take positive
or negative values, and be of small or large magnitude, reflecting our degree
of prior uncertainty. The prior distributions for βi are independent, and if
we had more time, an improvement would be to use a multivariate Normal
prior to allow dependency between the βi through a covariance matrix.

We will initialise the Markov Chain at β
(0)
i , the maximum likelihood estimates

seen in Equation 2.6, and at ρ(0) = log
(

1/2.494

)
= −0.914. We do this to
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minimise any ‘burn-in’ period, which would result in us needing to discard
some of the iterations.

We will now perform the MCMC for K = 10, 000 iterations, and at each of
these we calculate the total casualty frequency from all sites, given by

T (k) =
56∑
j=1

m
(k)
j |yj, k = 1, . . . , K. (2.13)

Figure 2.6: Trace plots and densities for µj for j = 1, 5, 10, 19

We can see some of the trace plots and corresponding densities for µj for
j = 1, 5, 10, 19 in Figure 2.6. We can see the trace plots are remaining at
the same level that they were initialised at, and oscillating around this value.
The densities look to be positively skewed, suggesting higher casualty values
are rare, but expected. The acceptance probabilities for all the parameters
were in the range 20% to 40%, which is around the optimal probability of
23%. As a check, we also initialised the chains at several other values to
ensure convergence had been attained.

We can now make the main comparison between the two methods of analyses,
Empirical and Full Bayes. One way we can compare these is to look at the
standard deviation values for mj for each site j = 1, . . . , 56. This can be seen
in Figure 2.7.

We can see that all the points but two lie above the line of equality, which
shows that the Full Bayes method is more variable. This is probably due
to the parameters βi and κ being assigned prior distributions. This is one
of the reasons the Empirical Bayes method is used more frequently in road
safety literature. Comparing standard deviation values for casualty frequency
for the Fully Bayesian method, seen in Table 2.4, against Empirical Bayes
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Figure 2.7: Standard deviationsof mj for Empirical Bayes vs Full Bayes.

method, seen in Appendix, make it appear as though the MCMC method
is less accurate. However it is more realistic as it takes more sources of
variation into account. The Empirical Bayes method is over-optimistic in
it’s assessment of variability.

Now we will look again at the sites considered in the Empirical Bayes analysis,
and see the shape of the prior and posterior distributions for the sites j =
1, 5, 10, 19. These can be seen in Figure 2.8.

Concentrating first on site j = 1, we can see the very large ‘before’ value
which is very far from the prior distribution. The posterior is a weighted
average of these two, so we see the mean value lies roughly in the middle.
The posterior has a larger variance than the prior, due to the vague priors
given to the regression coefficients. The ‘after’ value is much lower than the
mean value of the posterior, showing that the speed cameras have had an
effect, and the reduction in casualty rate is not solely due to regression to
the mean.

For site j = 5 we can see the posterior is once again in between the prior
and the ‘before’ value. However at this site the ‘after’ value is in the area we
would expect the posterior mean to be - suggesting that the speed cameras
have had little or no effect on decreasing casualty frequency.

Once again we see site j = 10 is very unusual. The gap between the ‘before’
and the prior is only very small, due to a low casualty rate, so the posterior
is very similar to the prior, but it has a higher variance. The ‘after’ value
is very high, and is very close to the end of the upper tail of the posterior
distribution, which suggests the speed camera has had a negative effect on
the casualty frequency.
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Figure 2.8: Prior and Posterior densities, with ‘before’ and ‘after’ values at
sites j = 1, 5, 10, 19.

The posterior for site j = 19 is very low in comparison to the posterior,
showing a much larger variance. The ‘after’ value also lies slightly above the
posterior mean, suggesting that, as with site j = 10, the speed cameras has
had a negative effect on the accident count.
We can compare the values in the ‘after’ period with the 95% credible inter-
vals for mj given in Table 2.4. The ‘after’ value for site j = 1 is not included
in the confidence interval, as it is too low, suggesting we would not normally
see such low casualty frequencies at that site. This could show that the speed
cameras are doing a very effective job.

We can see from Table 2.4 that the mean values for the regression coeffi-
cients are roughly the same as the maximum likelihood estimates obtained
previously; however, they now have larger variability. We can see that none
of these intervals contain zero, which suggests again that all the explanatory
variables used are important.

One good thing about using MCMC methods is the ability to look at any
statistic of interest via inspection of the posterior, for example the median.
This could be used as more accurate judgement of the casualty frequency
due to the positively skewed shapes of the posterior distributions. However
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Table 2.4: Full Bayes results for βi, γ and sites j = 1, 5, 10, 19

Mean St.Dev. Median 95% Credible Interval

β0 1.933 0.477 1.935 (1.032, 2.888)
β1 -0.043 0.014 -0.043 (-0.071, -0.014)
β2 -0.013 0.004 -0.013 (-0.021, -0.004)
β3 0.474 0.215 0.475 (0.055, 0.903)
β4 0.708 0.435 0.693 (-0.089, 1.597)
β5 0.907 0.458 0.887 (0.059, 1.858)
β6 1.118 0.404 1.110 (0.374, 1.954)

γ = e−ρ 2.197 0.751 2.066 (1.172, 3.990)

j = 1 1.673 0.692 1.535 (0.727, 3.399)
µj j = 5 1.778 0.843 1.586 (0.687, 3.934)

j = 10 3.906 1.629 3.620 (1.493, 7.964)
j = 19 1.442 0.505 1.363 (0.712, 2.601)

j = 1 9.466 3.337 9.106 (4.069, 16.816)
mj j = 5 8.324 3.063 7.963 (3.290, 15.184)

j = 10 5.058 2.048 4.752 (1.936, 9.823)
j = 19 9.220 3.399 8.782 (3.969, 17.313)

Total 326 33.217 324 (237.284, 362.955)

from Table 2.4 we can see there is very little difference in the total values.

2.4.2 Sensitivity of Results to choice of Prior for mj

Now we have completed the MCMC for the Poisson-Gamma structure, we can
repeat the procedure for a non conjugate prior specification. Two distribu-
tions we have chosen to look at are the lognormal and Weibull distributions.
To allow some degree of fair comparison of results between the three different
priors, we choose the lognormal and Weibull priors such that the prior means
and variances are the same as those used in the Gamma prior.

Looking first at the lognormal distribution, we define the location and scale
parameters as λj and σ2 respectively. We need to solve two simultaneous
equations, one for the mean value and one for the variance. These are given
by

µ2
j

γ
=
(
eσ

2 − 1
)
e2λj+σ

2

and µj = eλj+
σ2/2 . (2.14)

Solving these, we obtain

σ2 = log(1 + γ−1), (2.15)

λj = log(µj)−
1

2
log(1 + γ−1). (2.16)
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This gives us a lognormal distribution with mean = λj, and variance = σ2.
We can now perform a MCMC analysis as described in Section 1.3.3 using
this as our prior for mj in Equation (2.4).

For the Weibull prior distribution, we introduce the scale and shape param-
eters ω and νj. Again we solve the simultaneous equations given by

ω
Γ(2ω−1)

Γ2(ω−1)
=

1

2
(1 + γ−1) and νj =

µj
Γ(1 + ω−1)

. (2.17)

The first of these cannot be calculated analytically, so must be obtained via
the ‘uniroot’ command in R. We can now perform a MCMC analysis for this
non-conjugate prior specification. Both the lognormal and Weibull priors for
mj produce MCMC output similar to Figure 2.6, which is not shown here.

To compare the choices of prior distribution we consider graphs similar to
Figure 2.8, and then compare the differences in the posterior distributions.
These can be seen in Figure 2.9 and 2.10 for lognormal and Weibull respec-
tively.

Figure 2.9: lognormal Prior and Posterior distributions, with ‘before’ and
‘after’ values at sites j = 1, 5, 10, 19.

Comparing Figures 2.8 and 2.9, we can see that for each site the lognormal
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Figure 2.10: Weibull Prior and Posterior distributions, with ’before’ and
’after’ values at sites j = 1, 5, 10, 19.

prior distribution is over a narrower range than that of the Gamma, which
results in a higher density value at the peak of the distribution. The priors
look to be slightly positively skewed, and they take lower values in general
in comparison to the Gamma densities. The resulting posterior distributions
are quite different to the Gamma equivalents. They are all shifted to the
right, suggesting higher casualty frequencies. The results of this would mean
that the speed cameras have had a greater effect, as the ‘after’ values look
lower compared to the posterior means.

Comparing Figures 2.8 and 2.10, we can see the prior densities for sites
j = 1, 5, 19 are more variable, leading to a lower maximum density value.
However for site j = 10 the Weibull prior is much narrower than the Gamma
prior, indicating it is more certain of the expected value at that site. The
resulting posteriors have lower mean values for the casualty rate, however
are much more positively skewed than the Gamma posteriors. This suggests
looking at a statistic such as the posterior median could be more useful for the
Weibull distribution. This shows low casualty values are normal, and high
casualty values are rare, but still expected, which seems sensible. The lower
values for posterior means however makes it look as though speed cameras
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havent had a positive effect at these sites, as all ‘after’ values are higher than
expected values, expect for at site j = 1.

We can produce a table similar to Table 2.4 for mj for each of the new priors.
The comparison of sites j = 1, 5, 10, 19 can be seen in Table 2.5.

Table 2.5: Full Bayes results for mj for Gamma, lognormal, Weibull priors

Mean St.Dev. Median 95% Credible Interval

j = 1 9.466 3.337 9.106 (4.069, 16.816)
Gamma j = 5 8.324 3.063 7.963 (3.290, 15.184)
mj j = 10 5.058 2.048 4.752 (1.936, 9.823)

j = 19 9.220 3.399 8.782 (3.969, 17.313)

Total 326 33.217 324 (237.284, 362.955)

j = 1 13.989 3.765 13.647 (7.599, 21.983)
lognormal j = 5 11.473 3.466 11.053 (5.751, 18.659)

mj j = 10 4.730 1.876 4.457 (1.930, 9.211)
j = 19 14.444 3.760 14.064 (7.667, 22.824)

Total 361 28.096 351 (286.920, 385.645)

j = 1 8.769 3.725 8.071 (3.230, 18.130)
Weibull j = 5 7.846 3.470 7.281 (2.827, 15.769)
mj j = 10 4.391 1.696 4.126 (1.841, 8.396)

j = 19 7.703 3.349 7.215 (2.607, 15.732)

Total 334 33.474 326 (249.034, 375.845)

We can see that values for mj assuming the lognormal priors are larger than
those using the Gamma or Weibull priors for each of the mean and the
median. This leads us to believe the lognormal distribution is overestimating
the number of casualties that could occur at these sites. The posteriors for
mj using Gamma and Weibull priors are very similar. The lognormal 95%
credible interval is also much narrower than the other priors.

Table 2.6 compiles some of the important results from each of the methods
used. We can see immediately that the biggest advantage of a Full Bayes
method is the fact we have access to the posterior via the MCMC, so any
summaries are easily obtained directly from the sample. Comparing the
three different prior distributions we can see the Gamma and the Weibull
produce very similar values, particularly for the median value, which we
mentioned might be more appropriate for the analyses using Weibull priors.
The lognormal distribution gives much higher values, and the confidence
intervals are narrower.

The Deviance Information Criterion (DIC) values can be used as an indicator
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Table 2.6: Comparison of Empirical and Full Bayes methods, with different
prior distributions.

Prior Mean Median 95% CI DIC

Empirical Bayes Gamma 323 - - -

Gamma 326 324 (237.3, 363.0) 692.4
Full Bayes lognormal 361 351 (286.9, 385.6) 785.6

Weibull 334 326 (249.0, 375.8) 646.1

of how well the model fits the data, with lower values suggesting a better
fit. We can see the lognormal DIC value is much higher than for the other
priors, so we can say that the lognormal prior distribution is probably the
least appropriate of these three to fit to the data. The Weibull distribution
has the lowest DIC value, and so we can say that this is possibly the best fit
to the data.

2.5 Discussion

We have discussed two main methods of performing Bayesian inference on
the mean casualty rate at sites treated with speed cameras in the Northum-
bria Police Force area. The results have shown that the best method to do
this is a Full Bayes analysis, which uses MCMC methods. This has the flex-
ibility of using non-conjugate prior distributions, and we have looked at two
alternatives to the Gamma prior that was initially used: the lognormal and
Weibull priors. The use of this method, however, does lead to wide confi-
dence intervals, as we have also given the βi and κ vague prior distributions.
The use of a lognormal prior seemed inappropriate for this analysis due to
the large DIC value found, suggesting it was not a good model for the data.
In conclusion the most appropriate prior distribution to use is the Weibull
or Gamma, as they produce very similar results.

The results we have found seem realistic and accurate, however we have
not accounted for trend. This could be a problem, as in recent years there
has been a general decline in traffic accidents due to increased numbers of
safety schemes and more information about the dangers of speeding. This is
something that will be taken into account in the Halle analysis, seen in the
next chapter.
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Chapter 3

Hotspot identification: A
pre-emptive study

3.1 Background and Data

The data in this case study were provided by PTV, a traffic accident map-
ping software company based in Germany. Researchers in the School of
Mathematics and Statistics and the Transport Operations Research Group
at Newcastle University are currently working with PTV’s Research & Devel-
opment Team to implement a Fully Bayesian approach to road traffic hotspot
identification in their software. Some of the methodology is based on work
in Fawcett & Thorpe (2013) [8]. PTV wish to exploit the Bayesian posterior
predictive distribution to predict where the ‘hotspots’ will occur in future
years. This is a pro-active response, where speed cameras or safety measures
would be put in place before the accidents have risen to a high threshold
based on the predictive distribution. This method eliminates the cost of un-
necessary safety schemes that might appear necessary, but in fact are not,
possibly due to trend and RTM in accident counts. Similarly, sites which,
in a particular year, might appear safe could have accident counts migrating
upwards towards some underlying mean value - RTM ‘in reverse’, compared
to the effects of RTM in the analyses in Chapter 2.

We have data for 734 sites over the course of nine years, from 2004 to 2012
inclusive, as full records from 2013 are not yet available. These sites are
from in and around the city of Halle, which have some of the worst road
traffic accident rates in Germany. We will use these data to build an accident
prediction model (APM) to use as our prior mean µj for accident rates at site
j. The data included accident counts for each of the nine years (as opposed
to casualty counts studied in Chapter 2), and eight explanatory variables,
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which were: traffic volume, urban (yes/no), intersection (yes/no), signalised
(yes/no), speed limit, major road (yes/no), major intersection (yes/no) and
four legs (yes/no). Volume is the only continuous variable; all the others,
excluding speed limit, are indicator variables. Speed limit has six categories
(80, 70, 60, 50, 45 or 30 km/h); however all other indicator variables have only
two groupings (0=No or 1=Yes). We can look at some summary statistics
and plots to investigate the data.

Table 3.1: Mean Accident Values 2004 to 2012 for all 734 sites

Year Mean Median St. Dev. LQ UQ Min Max

2004 3.65 2 4.63 0 17.35 0 29

2005 3.73 2 4.95 0 19.00 0 35

2006 3.57 2 5.07 0 19.00 0 38

2007 3.71 2 4.98 0 18.00 0 52

2008 3.55 2 4.51 0 16.67 0 29

2009 3.64 2 4.80 0 17.00 0 39

2010 3.29 2 4.40 0 14.67 0 41

2011 3.11 2 4.40 0 15.67 0 48

2012 2.97 1 4.57 0 15.67 0 46

We can see from Table 3.1 that the mean accident rate over these nine years
is generally declining. Due to this decreasing trend we will account for the
year in our accident prediction model by allowing the time unit 1, 2, . . . , 9
to be a explanatory variable. We can see the standard deviation values are
quite large, leading to wide 95% confidence intervals.

Figure 3.1: Boxplots of total accident value against: Left: Major Intersection,
Middle: Signalized, Right: Speed Limit.

In Figure 3.1 we can see some of the indicator variables plotted against total
accident count. On the left we can see the variable major intersection. We
can see both groups have similar median values, and they are both positively
skewed, with many identified outliers. The highest outlier is for a site which
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is not a major intersection, suggesting smaller roads may be less likely to
have high accident counts. However, the two groups look quite similar so we
cannot draw any conclusions regarding the usefulness of this variable as a
predictor.

In the middle we can see the signalized groups against total accident value.
The sites that are signalised (1) clearly have a much larger variability in
accident count, and they have a larger median than the non-signalised sites.
This variable also shows positive skew for both groups, with outliers at the
top of the accident range. The largest outlier is at a signalised site, suggesting
the traffic signal could be causing accidents, or this could be due to the fact
traffic signals are usually in place in larger junctions with a higher volume of
cars.

On the right we have the six different groups of speed limit values (ignoring
the zero value as this site cannot be classified, perhaps due to a variable speed
limit) against total accident count. We can see that the median values are
highest at speeds 45 to 60 km/h, suggesting most accidents occur on these
roads. These categories also have the highest values of outliers and are the
most positively skewed, once again suggesting that these could be the most
dangerous sites.

We can now use the information at these sites to form our accident prediction
model, giving us the prior mean µj for accident rates at site j.

3.2 Fully Bayesian Analysis

In Chapter 2 we highlighted the shortcomings of an Empirical Bayes analysis,
with posterior estimates of casualty frequency being over-optimistic in terms
of their variability. We also illustrated the possibility of using non-conjugate
prior specifications within a fully Bayesian analysis, one of which was shown
to be superior to the standard conjugate case. With this in mind, we will
consider a fully Bayesian analysis of the Halle dataset.

3.2.1 Initial investigations: The Accident Prediction
Model

We need to discover which of our explanatory variables are significant pre-
dictors of accident count. Most of these variables are indicator variables, one
of which has six categories. We will partition the values for speed limit into
three new groups: 30, 45-50, 60+. This gives us roughly even groups and
means we only need to create two new indicator variables. As suggested by
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researchers at PTV, we work with log(volume). After doing this, we perform
backwards elimination, which gives a log-linear model given by

µ̂ = exp{−0.91−0.02x1 + 0.01x2 + 0.64xI3 + 1.10xI4 + 0.51xI5+ (3.1)

1.94xI6 + 0.29xI7 + 0.52xI8 − 1.60xI9 − 1.67xI10},

where µ̂ denotes the expected accident value, and I denotes an indicator
variable. The xi correspond to the variables given below in order, with xI9
and xI10 corresponding to the speed indicator variables, given by

xI9 =

{
0 if speed limit = 30, 60+

1 if speed limit = 45-50.
(3.2)

xI10 =

{
0 if speed limit = 30, 45-50

1 if speed limit = 60+.
(3.3)

Call:

glm.nb(formula = accidents ~ time + logvolume + urban + intersection +

signalized + majorroad + majorintersection + fourlegs + speed1 +

speed2, init.theta = 1.326735172, link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4628 -1.0783 -0.3831 0.3451 3.7792

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.905747 0.078026 -11.608 < 2e-16 ***

time -0.028152 0.005092 -5.528 3.23e-08 ***

logvolume 0.004962 0.001587 3.126 0.00177 **

urban 0.640265 0.054375 11.775 < 2e-16 ***

intersection 1.100730 0.046387 23.729 < 2e-16 ***

signalized 0.512033 0.032654 15.680 < 2e-16 ***

majorroad 1.942131 0.645278 3.010 0.00261 **

majorintersection 0.294036 0.037121 7.921 2.36e-15 ***

fourlegs 0.519212 0.030793 16.861 < 2e-16 ***

speed1 -1.603662 0.644929 -2.487 0.01290 *

speed2 -1.667385 0.643822 -2.590 0.00960 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Negative Binomial(1.3267) family taken to be 1)

Null deviance: 10011 on 6605 degrees of freedom

Residual deviance: 7286 on 6595 degrees of freedom

AIC: 29094

Number of Fisher Scoring iterations: 1

Theta: 1.3267

Std. Err.: 0.0370

2 x log-likelihood: -29070.4260

We can see that all the variables are significant, so we include them all in
our model. The coefficient signs from Equation 3.1 can show us what makes
a road dangerous. The coefficients for Intersection and Major road are both
large and positive, showing that more accidents would typically happen at a
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site that which had either of these criteria. The large negative values for the
speed indicator variables suggest that as the speed increases the accident rate
decreases. This could be due to the lack of pedestrians on motorways, or due
to the fact that these faster roads would generally not have as many traffic
signals or intersections. We can see the significant negative trend through
time, showing we cannot assume a constant value for µ for each site. There
could be some significant interactions, however to keep the model relatively
simple, we have not accounted for these.

This regression gives us maximum likelihood estimates for the β̂i for i =
0, . . . , 10, and for γ̂, the negative Binomial dispersion parameter. In this
case study

γ̂ =
1

κ̂
= 1.327.

Although we are performing a fully Bayes analysis, we will use these max-
imum likelihood estimates as starting values in our MCMC, to reduce any
burn-in period.

3.2.2 Fully Bayes Setup

As with the work in Chapter 2, we assume a Poisson distribution for accidents
at each site j with rate mj. Although the use of MCMC means we are able to
use a non-conjugate prior distribution for mj, we will initally use a Gamma
prior with mean µj, µj itself being defned as a log-linear function of explana-
tory variables with regression coefficients and negative Binomial dispersion
parameters having the following uninformative, independant priors:

βi ∼ N(0, 100), (3.4)

ρ = log(κ) ∼ N(0, 100), (3.5)

as before. Here i = 0, . . . , 10, and again we use ρ to retain the positivity
of κ. Unlike the analysis in Chapter 2, we do not have a set of reference
sites to build the APM; here we apply the regression to all sites and estimate
µj by using the fitted values from the APM. The estimated coefficients in
Equation (3.1) will be used as initial values in our MCMC. As seen previously
in Section 2.4.1, these are vague prior distributions, as we know very little
about what values these variables could take. We will run the MCMC for
10,000 iterations.
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3.2.3 Results

We can look at some of the trace plots and densities for µj for sites j =
2, 286, 306, 308, 421, 650 in Figure 3.2. These sites have been chosen as ex-
amples due to interesting characteristics in the accident counts. We can see
the trace plots are oscillating around the initial values, showing the lack of
a ‘burn-in period due to initialising the chain at the maximum likelihood es-
timates. We can see the densities look roughly Normal, without much skew.
The acceptance probabilities for all the variables were in the region 20% to
40%.

Figure 3.2: Trace plots and densities for µj for j = 2, 286, 306, 308, 421, 650

In Figure 3.3 we can see observed accident counts, expected accident value
µj, and the posterior mean, with 95% credible intervals, for six sites over
nine years.

We have chosen to look at site j = 2 as this was one of the sites with close to
the mean total accident value (31.2 accidents) over the nine years. We can
see, however, that this site has large accident counts in 2004 and 2005, but in
later years appears to be a relatively safe site, with less than four accidents
each year. Initially the observed values are very far away from the expected
value µ, however from 2010 to 2012 these values are nearly identical, and
from 2006 both of these values are encompassed within the 95% confidence
interval of the posterior distribution. RTM seems to be affecting this site,
with the peak of the ‘blip’ occurring in 2004 and 2005. We can see that the
posterior is a weighted sum of what we expect to see and what we observed,
as the posterior mean is between these two values.

Site j = 286 is one of the sites with the minimum number of accidents in the
nine years (1 accident). We can see the observed values are lower than the
values for µ which is very unusual. This suggests that regression to the mean
would work in the opposite way to what we have seen so far - this site is
seeing an unnaturally low number of accidents, and in the next few years we
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would expect it to increase. Both the observed values and µ are contained
within the 95% confidence intervals, however the posterior mean is closer to
the observed values, suggesting this information is more heavily weighted.

Figure 3.3: Plots showing observed accident values, µj, posterior mean and
posterior 95% confidence intervals for sites j = 2, 286, 306, 308, 421, 650.

We have considered site j = 306 as this is the site with the highest accident
value (348 accidents). The value for µ suggests we ought to see around 10
accidents there each year, however the observed value is always over twice
that. The accident count seems to be increasing with time, with only a slight
decrease in 2008. The posterior means and confidence intervals are very close
to the observed values, showing the expected value at this site doesn’t carry
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much weight towards the posterior mean.

The accident value at site j = 308 has increased the most over the nine years
(increase of 40). In 2004 the accident count was lower than expected, but
rises steadily, with a decrease in 2008. These two years are the only ones
that the posterior confidence intervals includes both the observed value and
µ. The observed values are at the very top end of the confidence intervals,
and look to be still increasing.

Site j = 421 has close to the average accident change from 2004 to 2012
(0.68 accidents). This particular site has a very low accident count in all
years. Similarly to site j = 286 we can see the value for µ is higher than
the observed value, so we expect the accident value to increase over the next
few years, as it regresses to what we expect to see at a site similar to this.
The posterior mean values are very close to the observed values, however the
confidence intervals seem to be skewed towards larger accident values. The
intervals usually include both the observed and expected values.

The last site we consider here is site j = 650, which has the largest decrease
in accident values over the nine years (decrease of 19). Here we can see the
large accident count in the years 2004 to 2006. These values are very far
from the values of µ, which means we expect much lower values. Indeed in
2007 onwards the accident value drops below expected, suggesting regression
to the mean has already come into effect, with the ‘blip occurring until 2006.
We can see that had a speed camera been put in at this time that it would
have been a waste of money, as the accident count hugely decreased naturally.
After 2007 the values for µ and the observed values are both encompassed in
the posterior confidence intervals, showing these low values are expected at
this site.

We can see that for all sites the value for µ is decreasing, which is due to the
declining trend in accidents over time.

In Table 3.2 we can see some summary statistics for the coefficients of the
explanatory variables, and the values for µ and m at site j = 2 over the nine
years. We can see that the credible intervals for all βi dont include the value
zero, showing again that all the explanatory variables are significant. Due to
space we have just considered one site, which can be seen in Figure 3.3. The
decreasing value of µ can be seen, and we also notice the posterior standard
deviation decreases over the nine years. The median values are very similar
to the mean, which we observed in the density plots in Figure 3.2 due to the
lack of skew. For the value of m we can see a large decrease in the mean
value over the first few years, which we also notice in the values for standard
deviation. The median values for this site are consistently lower than the
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mean, suggesting the posterior distribution has a slightly positively skewed
distribution. The total mean accident count is close to 26,000, however due
to the large posterior variability, the confidence interval has a range of around
500 accidents.

Table 3.2: Full Bayes results for βi, γ with µj, mj for site j = 2

Mean St.Dev. Median 95% Credible Interval

β0 -0.922 0.076 -0.920 (-1.082, -0.786)
β1 -0.028 0.005 -0.028 (-0.038, -0.017)
β2 0.005 0.002 0.005 (0.002, 0.008)
β3 0.646 0.051 0.647 (0.542, 0.741)
β4 1.108 0.046 1.105 (1.014, 1.199)
β5 0.512 0.033 0.512 (0.447, 0.578)
β6 1.366 0.321 1.294 (0.888, 1.981)
β7 0.294 0.037 0.294 (0.225, 0.370)
β8 0.521 0.030 0.521 (0.462, 0.579)
β9 -1.027 0.320 -0.954 (-1.654, -0.553)
β10 -1.089 0.319 -1.016 (-1.722, -0.609)

γ = e−ρ 1.325 0.047 1.324 (1.256, 1.399)

2004 1.072 0.057 1.069 (0.965, 1.152)
2005 1.043 0.053 1.041 (0.943, 1.152)
2006 1.014 0.050 1.012 (0.920, 1.118)
2007 0.986 0.048 0.985 (0.896, 1.087)

µ2 2008 0.960 0.046 0.959 (0.872, 1.055)
2009 0.933 0.045 0.934 (0.848, 1.025)
2010 0.908 0.045 0.908 (0.824, 0.999)
2011 0.883 0.045 0.883 (0.799, 0.973)
2012 0.859 0.045 0.859 (0.774, 0.950)

2004 5.526 1.635 5.316 (2.920, 9.108)
2005 3.173 1.225 3.042 (1.273, 5.970)
2006 1.469 0.931 1.303 (0.319, 3.383)
2007 1.876 0.924 1.741 (0.531, 3.985)

m2 2008 1.824 0.896 1.697 (0.530, 3.919)
2009 1.826 0.908 1.679 (0.504, 3.919)
2010 0.960 0.711 0.812 (0.157, 2.507)
2011 0.943 0.679 0.797 (0.153, 2.507)
2012 0.906 0.635 0.769 (0.143, 2.402)

mj Total 26388 1415.48 26354 (26090, 26633)

We will now use try to achieve similar results using a non-conjugate distri-
bution to explain the data. This is easily done due to the use of MCMC in
this chapter.
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3.2.4 Sensitivity of Results to choice of Prior for mj

Now we have completed our MCMC procedure for a conjugate prior, we can
repeat this method for a non-conjugate prior specification. As in Chapter 2,
to allow a like-for-like comparison, we choose the lognormal prior such that
the prior mean and variance is the same as that used in the Gamma prior.
This gives us the lognormal distribution with mean = λj and variance = σ2,
with these given by

σ2 = log(1 + γ−1), (3.6)

λj = log(µj)−
1

2
log(1 + γ−1). (3.7)

We can now perform the MCMC analysis described in Section 1.3.3 using this
as our prior for mj. As the results in Table 3.3 show, posterior summaries
for the mean accident rate at site j = 2 barely change when adopting a
lognormal prior for mj. In fact this was true for all other sites (results not
shown here). DIC values for the Gamma and lognormal priors are 945.2 and
1023.4 respectively, showing that the analysis using the Gamma priors, as
discussed in Section 3.2.2 to 3.2.3, would be preferred. Thus it is the Poisson-
Gamma specification that will be carried forward into the next section.

Table 3.3: Full Bayes results for mj for site j = 2 using lognormal prior

Mean St.Dev. Median 95% Credible Interval

2004 5.821 1.800 5.563 (3.310, 9.501)
2005 3.285 1.355 3.002 (1.299, 6.020)
2006 1.525 1.021 1.442 (0.353, 3.452)
2007 1.935 1.000 1.852 (0.550, 4.025)

m2 2008 1.905 0.950 1.805 (0.581, 4.050)
2009 1.900 0.909 1.752 (0.600, 4.105)
2010 1.052 0.755 0.959 (0.205, 2.582)
2011 0.992 0.721 0.851 (0.195, 2.565)
2012 0.925 0.681 0.890 (0.154, 2.438)

mj Total 26402 1583.55 26372 (26110, 26750)

3.3 Predicting accident values for 2013

It is the aim of clients of companies like PTV to predict future accident rates
at potential accident hotspots. It is often the case that a local authority
waits until an ‘accident threshold’ has been exceeded at a particular location
before a road safety scheme is implemented at that site. However, it would
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be preferable for such authorities to adopt a proactive, rather than reactive,
approach to safety scheme implementation, acting before an accident thresh-
old has been observed to prevent such high accidents. This is where the
Bayesian posterior predictive distribution can be extremely useful. Suppose
a future accident rate zj at site j is Posson distributed with mean mj, and
our posterior, at the current time, is mj|yj ∼ Ga(γ + yj, γ/µj + 1). Then we
can calculate the posterior predictive distribution to be

f(zj|yj) =

∫
Mj

f(zj|mj)π(mj|yj) dmj (3.8)

=

∫ ∞
0

m
zj
j e−mj

zj!

(γ/µj + 1)γ+yj m
γ+yj−1
j e−(γ/µj+1)mj

Γ(γ + yj)
dmj

=
(γ/µj + 1)γ+yj

Γ(γ + yj) zj!

∫ ∞
0

m
zj+γ+yj−1
j e−mj(γ/µj+2) dmj

=
(γ/µj + 1)γ+yj

Γ(γ + yj) zj!

Γ(zj + γ + yj)

(γ/µj + 2)zj+γ+yj

=

(
zj + γ + yj − 1

γ + yj

)(
γ/µj + 1

γ/µj + 2

)γ+yj(
1− γ/µj + 1

γ/µj + 2

)zj
, (3.9)

where zj is a predicted future value. In fact, this is negative Binomial dis-
tribution with size = γ+ yj and probability = γ/µj+1/γ/µj+2, we can estimate
the probabilities of observing future accident value zj = c, for c = 0, 1, 2, . . . ,
in the next year.

Figure 3.4: Posterior predictive probability distributions for future accident
counts (in the year 2013) for sites j = 2, 286, 306, 308, 421, 650.

This can be seen in Figure 3.4. We can see for sites j = 2, 286, 421 and 650
that the most likely accident value to occur in 2013 is zero. Sites 306 and 308
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however look likely to have accident counts of around 50 and 40, respectively.
These were the sites with highest overall accidents and biggest increase in
accident value, so these sites were quite likely to have high accident values
in the future.

Figure 3.5: Plots showing observed accident values, µj, posterior mean, pos-
terior 95% confidence intervals, posterior predictive mean, and posterior pre-
dictive 95% confidence intervals for sites j = 2, 286, 306, 308, 421, 650.

In Figure 3.5 we can see the posterior predictive mean, with the 95% credible
intervals, added to the plots previously seen in Figure 3.3. We can see very
low predictive accident counts for sites j = 2, 286, 421 and 650, with very
narrow confidence intervals. Sites 306 and 308 have predicted mean accident
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values that are very similar to the values in the previous year, suggesting a
lack of RTM. The predicted accident counts are much higher than all previous
values for µ, suggesting these sites have an unusually high accident value
compared to other similar sites. These sites also have much wider posterior
predictive confidence intervals, suggesting the accident count in the next
year could be very variable. Local authorities could use such information
to direct future funding of road safety schemes. For example, the plots in
Figure 3.4 could be used to determine the predictive probabilites of exceeding
a certain accident threshold; if such a probability is deemed high enough, a
road safety scheme could be implemented before a high accident count is
observed - potentially saving accidents/lives.

3.4 Discussion

In this section we have used MCMC methods to perform Bayesian inference
on the accident count at 734 sites in and around Halle in Germany. This
method has the advantage of using non-conjugate prior specifications, how-
ever, we have found that, via the DIC, the most appropriate is the conjugate
Gamma prior. This analysis accounts for trend, and we have found that the
average accident rate decreases over time. We have also used the Bayesian
posterior predictive interval to predict the accident counts in future years,
to allow organistions using PTV software to make judgement on which sites
should have a road safety scheme implemented.
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Chapter 4

Conclusion

In this report we have considered two case studies; one investigating the ef-
fects of speed cameras on road traffic casualties in the Northumbria Police
Force area in the UK, and the other attempting to identify road traffic ac-
cident hotspots in and around the German City of Halle using the Bayesian
posterior predictive distribution. Both studies attempt to filter out the effects
of regression to the mean by combining raw casualty/accident counts with
carefully elicited prior distributions for the mean casualty/accident rates; the
second study also attempts to incorporate trend. Both of these studies used
an accident prediction model, which estimates what we expect to observe at
these sites when not under the influence of RTM.

In the Northumbria study we have two sets of data; a control set, which had
not had speed cameras deployed to, which we used to estimate an accident
prediction model; and one treated set, for which we have data from two time
periods, both spanning two years: the before and after period, with speed
cameras implemented for the ‘after’ period. We use the APM estimated from
the control sites to predict the average casualty value in the ‘before’ period
at the treated sites. We then performed an Empirical Bayes analysis, which
is the ‘gold-standard’ used in the road traffic safety literature. We found that
this method was over-optimistic in its assessment of variability of estimates
of the mean casualty rate at the treated sites, and a Fully Bayesian analysis,
using MCMC methods, was more appropriate. Using this procedure also
leads to the possibility of using non-conjugate prior specifications, and we
discovered that the most appropriate prior distribution for these data was
the Weibull prior. The lognormal distribution was found to be the least
appropriate for our analysis.

In the Halle case study we had one set of sites, data from which were used to
create the APM. We had data over nine years, from 2004 to 2012 inclusive.
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Due to the length of time over which the data were collected, we were able
to account for trend. For this study we started with the Fully Bayesian pro-
cedure, with the conjugate Gamma prior distribution. We then considered
an alternative prior: the lognormal distribution. This was found again to be
inferior due to the large DIC value. The conjugacy of the Poisson-Gamma
setup meant we could calculate the Bayesian posterior predictive distribu-
tion to be a negative Binomial. We can use this distribution to estimate
future accident count values, from which local authorities can take a proac-
tive response on the implementation of road safety schemes. We estimated
the posterior predictive mean accident value for 2013, and used this to as-
sess which sites could be potentially dangerous. This predictive distribution
also gives us the probability of future accident counts at each site, so local
authorities can implement a safety scheme if these values are over a certain
threshold. This method has the potential to be used in many real life situa-
tions, and by using this procedure, accidents can be prevented, rather than
fitting a safety scheme as a reactive response.
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5.2 Appendix

Table 5.1: Empirical Bayes results for all 56 treated sites used in Chapter 2,
in the Northumbria analysis

yj µj αj E(mj |yj) SD(mj |yj) yj,after Observed After RTM

Site j=1 20 1.61 0.61 8.81 1.86 0 -20 -9
Site j=2 4 1.67 0.60 2.61 1.02 0 -4 -3
Site j=3 9 0.89 0.74 3.02 0.89 5 -4 1
Site j=4 3 3.30 0.43 3.13 1.34 0 -3 -4
Site j=5 17 1.67 0.60 7.83 1.77 8 -9 0
Site j=6 1 1.38 0.64 1.24 0.67 1 0 -1
Site j=7 3 0.82 0.75 1.36 0.58 1 -2 -1
Site j=8 4 1.84 0.58 2.76 1.08 0 -4 -3
Site j=9 7 5.88 0.30 6.67 2.16 6 -1 -1
Site j=10 6 2.70 0.48 4.41 1.51 9 3 4
Site j=11 8 3.16 0.44 5.86 1.81 4 -4 -2
Site j=12 5 1.62 0.61 2.95 1.08 2 -3 -1
Site j=13 12 1.74 0.59 5.95 1.56 2 -10 -4
Site j=14 3 4.63 0.35 3.57 1.52 1 -2 -3
Site j=15 4 2.59 0.49 3.31 1.30 5 1 1
Site j=16 8 3.37 0.43 6.03 1.86 3 -5 -4
Site j=17 6 3.24 0.43 4.80 1.65 8 2 3
Site j=18 11 3.45 0.42 7.83 2.13 10 -1 2
Site j=19 21 1.40 0.64 8.45 1.74 10 -11 1
Site j=20 1 2.59 0.49 1.78 0.95 2 1 0
Site j=21 3 2.00 0.56 2.44 1.04 6 3 3
Site j=22 4 3.82 0.40 3.93 1.54 2 -2 -2
Site j=23 11 1.34 0.65 4.71 1.28 7 -4 2
Site j=24 5 1.49 0.63 2.80 1.02 2 -3 -1
Site j=25 8 5.60 0.31 7.26 2.24 6 -2 -2
Site j=26 9 1.92 0.56 5.00 1.48 10 1 4
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yj µj αj E(mj |yj) SD(mj |yj) yj,after Observed After RTM

Site j=27 7 1.94 0.56 4.15 1.35 8 1 3
Site j=28 3 1.79 0.58 2.29 0.98 9 6 6
Site j=29 16 2.59 0.49 9.43 2.19 4 -12 -6
Site j=30 8 3.02 0.45 5.75 1.77 4 -4 -2
Site j=31 4 3.40 0.42 3.75 1.47 3 -1 -1
Site j=32 4 2.55 0.49 3.28 1.29 2 -2 -2
Site j=33 28 3.94 0.39 18.66 3.38 16 -12 -3
Site j=34 13 3.87 0.39 9.42 2.39 10 -3 0
Site j=35 2 4.94 0.34 2.99 1.41 7 5 4
Site j=36 15 4.01 0.38 10.79 2.58 14 -1 3
Site j=37 1 1.64 0.60 1.39 0.74 3 2 1
Site j=38 4 3.70 0.40 3.88 1.52 3 -1 -1
Site j=39 7 1.46 0.63 3.51 1.14 2 -5 -2
Site j=40 8 1.63 0.60 4.15 1.28 4 -4 -1
Site j=41 7 3.12 0.44 5.28 1.71 5 -2 -1
Site j=42 5 3.23 0.44 4.23 1.54 4 -1 -1
Site j=43 6 8.30 0.23 6.53 2.24 7 1 0
Site j=44 7 4.94 0.34 6.31 2.05 7 0 0
Site j=45 2 2.95 0.46 2.44 1.15 5 3 2
Site j=46 8 3.99 0.38 6.46 1.99 5 -3 -2
Site j=47 16 7.07 0.26 13.67 3.18 5 -11 -9
Site j=48 7 3.30 0.43 5.41 1.75 4 -3 -2
Site j=49 11 2.58 0.49 6.87 1.87 3 -8 -4
Site j=50 8 1.19 0.68 3.39 1.05 3 -5 -1
Site j=51 11 2.13 0.54 6.21 1.69 16 5 9
Site j=52 4 1.49 0.63 2.43 0.95 4 0 1
Site j=53 5 4.49 0.36 4.82 1.76 4 -1 -1
Site j=54 12 4.06 0.38 8.98 2.36 14 2 5
Site j=55 7 6.11 0.29 6.74 2.19 9 2 2
Site j=56 7 3.18 0.44 5.32 1.73 1 -6 -5

Total 436 323 298 -138 -25
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