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Abstract

The behaviour of quantised vortices in dilute-gas Bose-Einstein condensates is an area
of considerable current interest. We explore the dynamics of a collection of vortices in
an infinite domain through numerical simulations. We compare the suitability of sev-
eral models, including the Gross-Pitaevskii model, for our problem, selecting a model
based on a Hamiltonian description of vortex motion which allows us to simulate in
excess of 100 vortices in an infinite region. The formation and rapid escape of vortex
dipoles, and the diffusion of the unpaired vortices are observed. We suggest a link be-
tween the formation of dipoles and the diffusion of unpaired vortices, quantify the dif-
fusion process, and give preliminary results concerning the effect of multiply quantised
vortices on the diffusion process.



Contents

1 Introduction 3
1.1 Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Note on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modelling 6
2.1 Comparison of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The Gross-Pitaevskii Model . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Superfluid Hydrodynamic Equations . . . . . . . . . . . . . . . . 7

2.2 The Point Vortex Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Derivation of Equations of Motion . . . . . . . . . . . . . . . . . . 8
2.2.2 Details of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Numerical Methods 12
3.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Infinite Domain Setup . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Periodic Domain Setup . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Two-Vortex Interactions . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Periodic Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Assessing Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Runge-Kutta-Fehlberg Methods . . . . . . . . . . . . . . . . . . . 17
3.4.2 Autonomous Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Identifying Vortex Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Anomalous Diffusion 23
4.1 Standard Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 The Diffusion Equation & Gaussian Solution in One Dimension . 23
4.1.2 Random Walk Process . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Subdiffusion & Superdiffusion . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Diffusion of Point Vortices with Unit Circulation . . . . . . . . . . . . . . 27

4.3.1 Overall Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Dynamics of the Main Group . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Dynamics of Escaping Dipoles . . . . . . . . . . . . . . . . . . . . 32

4.4 Diffusion of Point Vortices with Multiple Circulation . . . . . . . . . . . 35

1



5 Conclusions & Future Work 38
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A Butcher Tableaux of Selected Runge-Kutta Methods 41

Bibliography 43

2



Chapter 1

Introduction

1.1 Vortices

Vortices, localised regions of vorticity (that is, infinitesimal rotation of the veloc-
ity field), are a characteristic feature of turbulence, and are present in a wide range of
physical systems on a vast range of length scales.

Figure 1.1: The ‘Great Red Spot’ in Jupiter’s atmosphere [1] (left) with length scale
∼ 107m, and a vortex in a soap bubble film [2] (right) with length scale
∼ 10−2m.

As well as highlighting the range of length scales that classical vortices exist at,
the systems in Fig. 1.1 can both be approximated as two-dimensional systems, as their
extent in one direction is several orders of magnitude less than in the other directions.
This approximation allows the use of the point vortex model, a two-dimensional model
that treats vortices as singularities based on the work of Helmholtz (See [3] for a trans-
lation of the relevant work). Although this model is only applicable to idealised sys-
tems, and at the time was seen as something of a ‘toy’ model, in recent years it has
garnered more interest, due to the theoretical prediction and experimental confirmation
of an exotic state of matter: Bose-Einstein condensates.

Bose-Eintein condensation occurs when a dilute gas of bosons (particles with inte-
ger spin) are cooled to temperatures very close (usually within 10−7K) to absolute zero.
Such condensates are observed to be superfluid, and hence inviscid, and their ability to
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Figure 1.2: Vortex lattice in a trapped
Bose-Einstein condensate [4]. Vor-
tex cores are visible as dark regions
corresponding to vanishing density.

support vortices is well documented experimentally, as in Fig. 1.2. The circulation, Γ,
of vortices in superfluids is quantised, that is it can only take certain values:

Γ = ±n ~
m
, n ∈ N+,

with m the mass of the boson in the condensate and ~ the reduced Planck constant.
Only vortices with Γ = ±~/m are stable; vortices with larger circulation rapidly de-
generate into multiple vortices with unit (n = 1) circulation. Moreover, these vortices
have a microscopically small core structure, identical across all vortices. In this context
some aspects of the point vortex model are no longer idealisations, but physically ac-
curate. Indeed, recent experiments with vortices in condensates such as [5] have shown
the point vortex model to give good agreement with the observed vortex dynamics.

1.2 Motivation

We consider the problem: given an initial configuration of quantum vortices (that
is, vortices with quantised circulation) in an open region, will the region of turbulence
spread out in space? To the best of our knowledge, nobody has tried to answer this
question. It is easy to see that vorticity spreads out in classical fluids; the fluid motion
of classical fluids is governed by the Navier-Stokes equation:

∂

∂t
u + (u · ∇)u = −1

ρ
∇p+ ν∇2u, (1.1)

with u the fluid velocity, p the pressure, ρ the density of the fluid, and ν the kinematic
viscosity. The vorticity ω is given by ω = ∇× u. Taking the curl of equation (1.1):

∂

∂t
ω = ν∇2ω −∇× [(u · ∇)u],

since the curl of a gradient is zero, and the curl commutes with the Laplacian operator
and temporal derivatives. This is a (highly) nonlinear diffusion equation, implying that
vorticity spreads. However, quantum fluids at sufficiently low temperatures are inviscid,

4



so the ν∇2ω term in (1.1) vanishes, and it is not clear how vorticity spreads out. The
problem is motivated by the experimental ability to generate two-dimensional vortices
in atomic Bose-Einstein condensates and observe their evolution, see, for example, [5].

1.3 Note on Terminology

Positive circulation corresponds to counter-clockwise motion about a vortex, and
negative circulation corresponds to clockwise motion about a vortex. We will at points
refer to vortices with negative circulation as anti-vortices or negative vortices, and to
vortices with positive circulation as vortices or positive vortices. We use the terms ‘vor-
tex’ and ‘vortices’ to refer both to vortices in general and vortices with specifically pos-
itive circulation; it should be clear which we mean in context.

A pair of vortices with opposite circulation and sufficiently small separation can,
as detailed in Sec. 2.2.2, effectively act as a unit, following parallel trajectories. We
refer to such pairs variously as ‘dipoles’, ‘pairs’, and ‘escaping pairs’.
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Chapter 2

Modelling

2.1 Comparison of Models

We examine the suitability of various models for our investigation, that is describ-
ing the behaviour of a collection of quantum vortices, giving consideration to the as-
pects of vortex interaction they best capture, the computational intensity required to
produce satisfactory - that is, quantitatively and qualitatively accurate - simulations,
and the potential to extend to three-dimensions in future work.

2.1.1 The Gross-Pitaevskii Model

The (time dependent) Gross-Pitaevskii Equation (GPE) for describing the dynam-
ics of a Bose-Einstein condensate is:

i~
∂Ψ(r, t)

∂t
=

[
− ~2

2m
∇2 + V (r) +

4π~2as
m
|Ψ(r, t)|2

]
Ψ(r, t), (2.1)

where ~ is the reduced Planck constant, m is the mass of the boson, V is the external
potential, as is the scattering length, and Ψ is the wavefunction associated with the
condensate as given in [6]. As a nonlinear partial differential equation (PDE) derived
specifically as a quantum mechanical description of condensates - see [7] for one such
derivation - the GPE is an obvious candidate as a model. It has distinct advantages:
it models phonon emission, vortex core (hollow regions of size ξ, a quantity called the
healing length) dynamics, and vortex-antivortex annihilation (that is, the mutual de-
struction of vortices over ranges comparable to the healing length), see references [8, 9].

As a PDE, numerical solutions involve the discretisation of a chosen region into a
mesh, at every point of which Ψ and the relevant derivatives are evaluated in order to
use a time-stepping technique to evolve the system. A suitably fine spatial and tempo-
ral resolution is required, with sufficiently small grid spacing and step size to capture
the structure of the vortex core and its dynamics [10]. The equation can be solved in
two- or three-dimensions as we please.

However, while the GPE has many desirable properties, the techniques required
for producing numerical solutions render it a cumbersome option for our particular
scenario. As we plan to investigate the spread of a considerable number of vortices
through an infinite condensate, and have to consider the formation of high-velocity
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pairs [9], we anticipate the need to simulate a large region in comparison to the region
initially containing vortices, and thus an excessively large number of gridpoints, and we
simply do not have the computational resources available to us to do so.

2.1.2 Superfluid Hydrodynamic Equations

As Ψ(r, t) is complex, it can be rewritten as
√
n(r, t)eiθ(r,t), where θ(r, t) is the

phase of Ψ and
√
n(r, t) is the amplitude of Ψ, with n(r, t) the number density of bosons

in the condensate which we can relate to the more conventional mass density ρ via
ρ = mn. If we substitute this into (2.1) and separate out the real and imaginary parts
we arrive at two superfluid hydrodynamical equations. The first is the continuity equa-
tion:

∂n

∂t
= −∇ · (nu),

where the fluid velocity u is related to the phase of Ψ via:

u(r, t) =
~
m
∇θ(r, t).

The second equation takes the form:

m
∂m

∂t
= −∇ ·

(
mu2

2
+ V + ng − ~2

2m
√
n
∇2
√
n

)
, (2.2)

where g is an energetic cost associated with particle interactions, given by:

g =
4π~2as
m

,

with as the scattering length. For length scales less than the healing length and speeds
less than Mach 1 (the local speed of sound), as discussed in Sec. 1.2 of [11], the quan-
tum pressure term:

~2

2m
√
n
∇2
√
n,

becomes negligible and (2.2) reduces to the Euler equation for an inviscid fluid from
fluid dynamics. Although this allows us to interpret the condensate as a fluid, and
makes it possible to visualise the condensate more directly, the Euler equation is also
a PDE, and brings with it all of the disadvantages, in terms of computational intensity,
outlined for the GPE.

2.2 The Point Vortex Model

Another hydrodynamical approach, the point vortex model (PVM) describes the
velocity field around an embedded vortex in an idealised (incompressible, irrotational,
inviscid) fluid plane [12]. Vortices are treated as point singularities, immediately dis-
missing the possibility of examining vortex core structure through this model. The
equations of motion for the ith of n such vortices consist of pairs of coupled nonlinear
first-order ordinary differential equations (ODEs):

7



dxi
dt

= − 1

2π

n∑′

j=1

Γj(yi − yj)
r2
ij

,
dyi
dt

=
1

2π

n∑′

j=1

Γj(xi − xj)
r2
ij

, (2.3)

where (xi, yi) is the position of the ith vortex, Γi is the circulation, r2
ij = (xi − xj)

2 +
(yi − yj)2 is the separation of vortex i from vortex j, and the prime on the summation
indicates the omission of the singular term i = j. For the sake of simplicity we take
Γ to have integer values; if we wish to restore Γ = n~/m, n ∈ N it is a simple matter
of scaling. Although this model cannot be directly extended into three-dimensions, an
analagous model referred to as the vortex filament method exists, which treats vortices
as filaments and makes use of the Biot-Savart Law to calculate the dynamics of the
system, see for example pages 70-71 in [13].

2.2.1 Derivation of Equations of Motion

There are a number of ways to derive the point vortex model. Here we use equiv-
alent geometric and algebraic methods to derive the equations of motion based on the
fluid velocity around a point vortex.

The velocity around a vortex is entirely azimuthal, inversely proportional to the
distance r from the vortex, and proportional to the constant circulation Γ around the
vortex, such that uθ = aΓ/r for some constant a, and ur = 0. The circulation is given
by:

Γ =

∮
C

u · d~s

=

∫ 2π

0

aΓ

r
rdθ

= 2πaΓ,

so a = 1/2π to give |u| = uθ =
Γ

2πr
. We illustrate this in Fig. 2.1. From this we can

find ux and uy using a simple geometric argument:

ux = −|u| sin θ = − Γ

2πr

y

r
= − Γy

2πr2
, uy = |u| cos θ =

Γ

2πr

x

r
=

Γx

2πr2
.

From an algebraic perspective, recall that in polar coordinates |u|2 =
(
dr
dt

)2
+

r2
(
dθ
dt

)2
. As the velocity is completely azimuthal we have dr

dt
= 0, which imples |u| =

r dθ
dt

. Then, using x = r cos θ:

dx

dt
=

d

dt
(r cos θ)

= cos θ
dr

dt
+ r

d

dt
cos θ

= r
d

dθ
cos θ

dθ

dt
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= − sin(θ)r
dθ

dt
,

where we have used the result
dr

dt
= 0. Using

y

r
= sin(θ) and r

dθ

dt
= |u|:

dx

dt
= −y

r
|u| = − Γy

2πr2
,

and similarly for dy/dt. Both of these derivations describe the velocity around a vortex
at the origin; for a vortex at an arbitrary position (x0, y0) we let x→ x−x0, y → y− y0

and arrive at:

dx

dt
= −Γ(y − y0)

2πr2
,

dy

dt
=

Γ(x− x0)

2πr2
.

 
θ

 
θ

u

ux

uy

r

Figure 2.1: Direction of velocity at a point (r, θ) in the velocity field generated by a
point vortex with positive circulation (red cross) at the origin.

This describes the fluid velocity around a vortex. This flow pattern can be asso-
ciated with a stream function Ψ = − iΓ

2π
ln z which satisfies Laplace’s equation, so the

velocity field due to an arbitrary number of vortices is given by the linear combination
of the vortices’ velocity fields. The full model (2.3) can then be reached with one final
bit of information: the vortices are a material object [14], that is they move with the
fluid (Helmholtz’s second theorem of fluid dynamics).

2.2.2 Details of the Model

As the motion of the vortices is driven by the surrounding vortices, a solitary vor-
tex will remain stationary. We consider two of the most basic interactions between
quantised point vortices: configurations involving two vortices. First, the case where
the vortices have equal circulation: Γ1 = Γ2. Let the vortices have positions (x1, y1) and
(x2, y2) and velocities u1 and u2. Then from (2.3) we have:
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u1 =
1

2π

(
−Γ2[y1 − y2]

r2
12

,
Γ2[x1 − x2]

r2
12

)
,

u2 =
1

2π

(
−Γ1[y2 − y1]

r2
21

,
Γ1[x2 − x1]

r2
21

)
. (2.4)

Using r21 = r12 and Γ1 = Γ2, we rewrite (2.4) as:

u2 =
1

2π

(
Γ2[y1 − y2]

r2
12

,
−Γ2[x1 − x2]

r2
12

)
= −u1,

so the vortices have opposite velocities; their velocities are tangential to the line be-
tween the point vortices and they trace out a circular trajectory about their midpoint
([x1 + x2]/2,[y1 + y2]/2).

Now consider the case where the vortices have opposite circulation: Γ1 = −Γ2. Then:

u1 =
1

2π

(
−Γ2[y1 − y2]

r2
12

,
Γ2[x1 − x2]

r2
12

)
,

u2 =
1

2π

(
−Γ1[y2 − y1]

r2
21

,
Γ1[x2 − x1]

r2
21

)
.

Using r21 = r12 and Γ1 = −Γ2, we have:

u2 =
1

2π

(
−Γ2[y1 − y2]

r2
12

,
Γ2[x1 − x2]

r2
12

)
= u1,

so their velocities are equal. The values of Γ1, Γ2, x1 − x2, y1 − y2 and r2
12 are con-

stant here, and so the pair move together in relative equilibrium. Note that the speed
of their translation is inversely proportional to their separation.

Configurations involving more vortices exhibit less predictable behaviour, though
both of these behaviours are observed within larger configurations when the separation
within the pair is comparatively less than their separation from other vortices - we ob-
serve pairs of opposite circulation moving away from the main group of vortices with
considerable speed.

In physical systems the annihilation of vortices of opposite circulation which be-
come closer to each other than the healing length is observed, and the PVM as de-
scribed here does not model this. In practice we can approximate these events by mon-
itoring the separation between all vortices and removing at each time step any vortex-
antivortex pairs with rij ≤ ξ.

For pairs with the same circulation, inconsistency of the model with regard to the
physical systems simulated has more to do with numerical accuracy, although the in-
ability of this model to emulate phonon emission also contributes. As the speed of the
vortices is inversely proportional to their separation, and such pairs in relative isolation
trace out circles around their common center, a combination of small separation and in-
sufficiently small step size leads to such a path being approximated by just a few time
steps, inducing gross numerical errors; this applies to any tightly curved trajectories.
This does not just apply to vortices with rij ∼ ξ; the answer to ‘how close is too close?’
is particular to the numerical method and step size used, and the accuracy required.
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One method to avoid this second pitfall is to impose a Rankine vortex velocity
profile, displayed in Fig. 2.2, where the angular velocity remains unchanged at dis-
tances greater than some parameter a, and is proportional to r for distances less than a
(see, e.g., [15]):

Vθ(r) =

{
Γr/(2πa2), r ≤ a,
Γ/(2πr), r > a.

a

V
θ

r

Figure 2.2: Typical velocity profile of a Rankine vortex.

We return to the implications of these techniques in Sec. 3.4.2.
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Chapter 3

Numerical Methods

Without delving too deeply into the realm of the philosophy of science, when we
simulate some reality it is worth bearing the ‘map-territory relation’, as discussed in
[16], in mind. In all but the simplest cases, we have something of a play-off between
simplicity and accurately corresponding to reality - the perfectly accurate map is the
territory; the perfectly accurate simulation is the experiment. As we naturally find our-
selves directed towards simplifications to be able to make progress with simulations,
it is vital that we achieve accuracy where possible by careful considerion of numerical
methods.

3.1 System Setup

Before focusing on the methods we detail the systems which we will be simulating.

3.1.1 Infinite Domain Setup

We initially work in an infinite plane in which we place 250 vortices, half with pos-
itive circulation and half with negative circulation for a net circulation of 0, at random
locations within a disc of radius 1, which we visualise (with fewer vortices) in Fig. 3.1.
The vortices are observed to spread out with no intrinsic preferred direction - that is,
individual simulations may have preferred directions due to the randomness of the ini-
tial configuration, but over many simulations no preferred direction is apparent. We
aim to investigate this ‘diffusion’, and so as to simplify matters we work to limit the
spread of vortices to one dimension.

3.1.2 Periodic Domain Setup

We restrict the spread of vortices to one dimension by working in a domain which
is periodic in one dimension (we arbitrarily choose the y-direction), and initially plac-
ing the vortices in a vertically-aligned strip with −0.5 ≤ x ≤ 0.5, 0 ≤ y ≤ 5, as shown
in Figs. 3.2 and 3.3.
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Figure 3.1: Initial positions (left) and positions after 10 time units (right) simulating
the motion of 30 positive vortices (red) and 30 negative vortices (blue) in
an infinite plane. Note that the vortices have spread out. The size of the
markers does not correspond to some vortex core size; vortices are treated
as points in our model.
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Figure 3.2: Initial vortex configuration (top) and vortex configuration after 100 time
units simulating the motion of 250 vortices in a periodic domain.
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Figure 3.3: As in Fig. 3.2, but with a logarithmic scale for x to highlight the large
range of positions. Initially the vortices are generated within −0.5 ≤ x ≤
0.5; at t = 100 they are within −1000 ≤ x ≤ 1000.

To simulate the periodic boundary at y = 0, y = 5, we use so-called ‘ghost’ vor-
tices: the actual domain and vortices within it are repeated several times above and
below, and the positions of the vortices in these repetitions are updated to constantly
match the positions of the true vortices. A schematic of this is presented in Fig. 3.4.
When a vortex crosses the periodic boundary its position is instantaneously updated
so as to remain within the actual domain: if Ty is the period of the domain in the y-
direction, then at each time step the position of each vortex is transformed according
to (xi, yi) → (xi, yi (mod Ty)). Theoretically an infinite number of repetitions would
exactly mimic a periodic domain. In practice it is reasonable to truncate after only a
few repetitions, as the contribution of the vortices to the velocity is proportional to 1/r
with r the distance between vortices.
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Figure 3.4: Schematic of the technique employed to simulate a domain with periodic
boundaries in y. The actual system is in the strip 0 ≤ y ≤ Ty; the other
strips (two above and two below) contain ‘ghost’ vortices.

3.2 Runge-Kutta Methods

We use the Runge-Kutta family of time-stepping methods introduced in [17], which
can be viewed as an extension of the familiar Euler method, with particular methods
having a range of orders of truncation errors. The mechanism by which the methods
work can be seen intuitively as a linear combination of evaluations of a given time-
derivative at the current state of the system and at temporary predicted future states,
with coefficients such that the combination of terms agrees with the Taylor series ex-
pansion of the function up to a truncation order. We refer to nth-order Runge-Kutta
methods as RKn methods.

For a function ẏ = f(t, y), using the usual notation for temporal derivatives, the
value of y at time step n+ 1, yn+1, is given by:

yn+1 = yn +
s∑
i=1

hbiki,

where h is the step size, and:

k1 = f(tn, yn),
k2 = f(tn + c2h, yn + ha21k1),
k3 = f(tn + c3h, yn + h(a31k1 + a32k2)),
...
ks = f(t+ csh, yn + h(as1k1 + as2k2 + . . .+ as,s−1ks−1)).
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The particular Runge-Kutta method is specified by the number of stages s ∈ N+, and
the coefficients, weights and nodes aij, bi, ci ∈ R respectively.

For our system of coupled ODEs ẋ = fx(x,y), ẏ = fy(x,y), which have no time-
dependence, this extends to:

xn+1 = xn +
s∑
i=1

hbikxi

kx1 = fx(x,y),
kx2 = fx(x + ha21kx1,y + ha21ky1),
etc.

yn+1 = yn +
s∑
i=1

hbikyi

ky1 = fy(x,y),
ky2 = fy(x + ha21kx1,y + ha21ky1),
etc.

Values of s, aij, bi, and ci for selected methods are detailed in Appendix A. We use the
6th-order method given in this appendix for our simulations.

3.3 Tests

3.3.1 Two-Vortex Interactions

We can use the motion of two-vortex configurations given in Sec. 2.2.2 to test the
quantitative accuracy of our simulation. As mentioned, a vortex-antivortex pair will
translate linearly, and a pair of vortices with identical circulation will follow a circular
path around their combined center. The separation of the vortices should be constant.

When we simulate these interactions we find the trajectories to be of the correct
form, though the separation of vortices deviates from the initial value. For vortex-
antivortex pairs simulated using the 6th-order method in Appendix A with step size
h = 10−2 the relative (with respect to their initial separation) deviation is of the or-
der of 10−14 over 100 time units; smaller step sizes lead to larger values, so we are led
to believe this deviation stems from floating-point errors. For the pairs with identical
circulation we find a deviation of the order of 10−2 over 100 time units, a deviation due
to the numerical method.

3.3.2 Periodic Domain

We perform the same two-vortex tests as above for a periodic domain and find
similar results.

To gain a better understanding of how many repetitions of the domain are neces-
sary to mimic a periodic domain we make use of a well known phenomena: various (in
fact an infinite number of) configurations of vortices are either stationary or in relative
equilibria, see e.g. [18]. One such stationary configuration is an infinite line of equally
spaced vortices with alternating sense. In our periodic domain this will be a line with
an even number of vortices of alternating sense, equally spaced including the distance
between the vortices nearest the boundary. We use 20 vortices, spaced 0.25 distance
units apart in a periodic domain with Ty = 5. We simulate this configuration with
different numbers of repetitions (R) and record the time (tc) it takes for any vortex to
move more than 0.01 distance units, after which the configuration rapidly breaks down.
For example, Fig. 3.4 shows R = 2 repetitions.
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Figure 3.5: Time tc taken for a given configuration (here a line of vortices with alter-
nating circulation) to become unstable (defined as when any vortex drifts
by 0.01 units or more from its initial position) as a function of the number
of repetitions.

From Fig. 3.5, we see that the value of tc is less than 2.5 time units better for 10
realisations than for 9, and we judge that the extra processing time needed to improve
on this is not necessary as this configuration is very sensitive to perturbations, while
the configurations we are working with are insensitive due to the chaotic nature of vor-
tex motion. All further simulations of periodic domains are performed using R = 10.

3.4 Assessing Accuracy

3.4.1 Runge-Kutta-Fehlberg Methods

A well known subset of Runge-Kutta methods contains the Runge-Kutta-Fehlberg
methods (RKF), proposed by Fehlberg in [19]. These methods use additional evalua-
tions of the function to calculate derivatives: one evaluation used to evolve the system
as with classical RK methods, and a second embedded evaluation which is of a higher
order and allows an estimation of the local truncation error by complete coverage of
the leading truncation error term. We refer to these methods as RKn(m) methods,
where n is the order of the method used to evolve the system and m is the order of the
higher order embedded method. Fehlberg provides a range of such methods in refer-
ences [20–22].

The most frequent use for the RFK methods is to implement an adaptive scheme,
where the step size is reduced when the local truncation error is above a chosen thresh-
old (and tentatively increased when the local truncation error is below some other thresh-
old, for efficient integration). While the local truncation error estimates are good mea-
sures of local accuracy, we need a measure of the global accuracy of the simulations.
The global truncation error for RK methods can be estimated by the order of the method
and step size used, but this estimate is potentially complicated by two things here: we
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are integrating a large number of coupled ODEs, not a single ODE, and if we use an
adaptive scheme the step size will not be constant.

3.4.2 Autonomous Hamiltonian

The autonomous Hamiltonian for a system of n point vortices with circulations Γi
and separations rij as in Sec. 2.2 is given by:

H = − 1

4π

n∑
i=1

n∑′

j=1

ΓiΓj ln rij, (3.1)

as derived by Kirchhoff in [23]. This quantity, which here describes the kinetic energy
of the fluid motion about the vortices as discussed in [12], is conserved, and can be eas-
ily calculated. We can use the absolute relative difference in the Hamiltonian at each
time:

|∆HR(t)| =
∣∣∣∣∆H(t)

H(0)

∣∣∣∣ =

∣∣∣∣H(t)−H(0)

H(0)

∣∣∣∣ ,
as an objective and comparable measure of the accuracy of each realisation of our simu-
lation. The calculation of the Hamiltonian does not add any significant processing time
to our simulation, and we are able to examine both the local and global changes over
time

In Fig. 3.6 we give the results of this test for the infinite domain scenario described
in Sec. 3.1.1. We use the RK6 method detailed in Appendix A to evolve the system
through 100 time units using a range of values for our step size h.
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Figure 3.6: |∆HR| for 250 vortices with a net circulation of 0 in an infinite domain, ex-
pressed as a percentage with step size h = 10−1 (red), h = 10−2 (blue), and
h = 10−3 (green)

In a periodic domain the autonamous Hamiltonian takes a slightly different form:
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H = − 1

4π

n∑
i=1

n∑′

j=1

ΓiΓj ln rij −
1

4π

R∑
k=1

n∑
i=1

n∑
j=1

ΓiΓj ln rkij, (3.2)

where R is the number of repetitions we use to mimic a periodic domain, and rkij refers
to the distance between the ith vortex in the actual domain and the jth vortex in the
kth repetition of the domain. Note that the second term does not omit the term with
i = j. We test the absolute relative difference as before, using a domain which has a
period of 5 distance units in y, with vortices randomly placed within a strip of width 1
distance unit. |∆HR| calculated in this way is shown in Fig. 3.7.
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Figure 3.7: As in Figure 3.6 but for simulations in a periodic domain. Note the differ-
ent scale of the y-axis.

In both cases |∆HR| decreases as the value of the step size h decreases, indicating
a more accurate simulation. If we compare visualisations of simulations using h = 10−2

and h = 10−3 we see little difference. We are content to work with |∆HR| ' 1% (so
select h = 10−2); clearly there is scope to improve upon this for future publication if de-
sired, particularly with investigation into the efficiency in terms of the number of func-
tion evaluations required to attain a particular level of conservation of the Hamiltonian
for a range of RK methods and values of h.

In the periodic domain setup the conservation of the Hamiltonian is an order of
magnitude better than in the infinite domain setup. Some proportion of this may be
attributed to the difference in the area in which vortices are initially placed, as when
we alter the width of the strip in the periodic domain so that the initial density of vor-
tices matches the initial density of vortices in the infinite domain, we find that the con-
servation of the Hamiltion is worse, as shown in Fig. 3.8. However, this does not ac-
count for all of the difference; investigation into why this should be the case is beyond
the scope of this work.

We return to the modifications to the PVM described in Sec. 2.2.2. If pairs of
vortices are suddenly removed from the model (so as to encapsulate annihilations), the
value of the Hamiltonian will change, and distinguishing the effects of this from the
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Figure 3.8: |∆HR| from Fig. 3.7 (light lines), and |∆HR| with altered initial number
density of vortices (dark lines)

effects of our numerical method on |∆HR| is not trivial. This breaks the Hamiltonian
description of our system.

Similarly, the motion about Rankine vortices does not precisely match that de-
fined by the Hamiltonian of the system, though the effects on |∆HR| may be more sub-
tle here and so harder to distinguish. A Rankine velocity profile should not be neces-
sary with a suitable time-stepping technique and step size; for the sake of ease when
interpreting |∆HR|, we make neither modification.

Finally, in Table 2.1 we present some summary statistics concerning the values of
|∆HR| at the final time step in the simulations our main results are based upon.

Min Max Mean Standard Deviation Q1 Q2 Q3

0.0107 0.0261 0.0151 0.00252 0.0134 0.0146 0.0167

Table 3.1: Summary statistics (to 3.S.F.) of the values for |∆HR| from 400 realisations
of our key simulation. Q1, Q2 and Q3 denote the first, second and third
quartiles.

3.5 Identifying Vortex Dipoles

Two separate processes lead to the spread of vortices in our model: the vortex-
antivortex pairs which move rapidly away for the main group, and the diffusion of the
main group. The first effect is perhaps more surprising, and we touch upon this in
our conclusions. The example in Fig. 3.9 shows clearly the trajectories of vortex pairs
which have escaped from the main group.

We are interested in the diffusion of the main group, and as the identification of
dipoles by eye would be impractical and subjective we developed an algorithm to dis-
tinguish them from the main group. At each time step we establish a measure β of the
similarity in velocity:
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βij =

√(
uix − ujx
uix

)2

+

(
uiy − ujy
uiy

)2

,

with uix the x-component of the ith vortex’s velocity and so on. It should be apparent
that βij → 0 as the velocities approach being identical, and that βij 6= βji in general. If
βij and βji are both less than some threshold βC , then we consider the ratio γij of the
separation of the pair and their separation from the nearest other vortex. If γij is below
some critical value γC we identify the pair as an escaping dipole.
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Figure 3.9: The trajectories of 15 vortices with positive circulation (red) and 15 vor-
tices with negative circulation (blue) over 20 time units in an infinite do-
main. The initial configuration was within the grey circle (a visual marker,
not a physical object in the simulation). The trajectories of the vortices
forming one dipole are highlighted in bold; other such dipoles are evident.
A similar image is given on the cover of this report.

After experimenting a little, we use βC = 1/10 and γC = 1/3, although a range
of values give almost identical results. We give an example of the pairs this technique
identifies in Fig. 3.10.

We found this method far more likely to fail to identify a dipole than to incor-
rectly identify two vortices as a pair. The majority of these failures occured when two
dipoles move away from the main group, pass close enough to each other to fail the
separation test, before being reidentified at a later time. To account for this we exam-
ine the data on pairing: if two vortices are identified as a dipole, then not identified for
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up to 5 time units, then reidentified, we identify them as a dipole during that gap post
hoc. Observing visualisations of the simulation with dipoles identified verifies this tech-
nique.
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Figure 3.10: Demonstration of our technique. Vortex dipoles (hollow circles) have been
automatically identified. We refer to the remaining vortices (solid cir-
cles) as the main group. Dipoles with a small separation between the con-
stituent vortices may appear as a single marker, but do consist of two vor-
tices.
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Chapter 4

Anomalous Diffusion

4.1 Standard Diffusion

Before discussing anomalous diffusion we illustrate a standard diffusion process, in
order to have something to contrast anomalous diffusion with.

4.1.1 The Diffusion Equation & Gaussian Solution in One Di-
mension

Consider the diffusion equation in one spatial dimension: ut = Duxx, where u(x, t)
is a density as a function of position and time, D is the constant diffusion coefficient,
and subscripts denote partial derivatives. We now proceed to derive a Gaussian solu-
tion to this one-dimensional diffusion equation. Using the convention:

f̂(k, t) = F [f(x, t)] =

∫ ∞
−∞

f(x, t)e−ikxdx,

f(x, t) = F−1[f̂(k, t)] =
1

2π

∫ ∞
−∞

f̂(k, t)eikxdk,

for the Fourier transform, we take the Fourier transform of u: let û = û(k, t) = Fx[u(x, t)],
then ut = ût, uxx = −k2û. We restate the diffusion equation as:

ût = −Dk2û.

It is trivial to show that û = B exp {−Dk2t} for some constant B determined by initial
conditions. We use the inverse Fourier transform (IFT) and a standard result:

F−1

[√
π

a
exp

{
−k2

4a

}]
= exp

{
−ax2

}
,

and take the IFT of our solution for û:

u(x, t) = B

√
1

4Dtπ
exp

{
− x2

4Dt

}
, (4.1)
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a Gaussian solution where B is a constant to be determined from initial conditions and√
1/4Dtπ is a scaling factor that keeps the area under the curve constant. A Gaussian

function has the form:

f(x) = a exp

{
−(x− b)2

2σ2

}
,

a symmetric ‘bell’ curve centered about b, with the width defined by σ2, and a a scal-
ing parameter. Comparing this to our solution (4.1) of the diffusion equation, it is evi-
dent that σ2 ∝ t for a normal diffusion process.

4.1.2 Random Walk Process

The use of random walk processes to model diffusion processes, such as Brownian
motion, is well established, see e.g. [24]. We use such a process to illustrate a standard
diffusion process and the linear change in variance of a fitted Gaussian over time. We
simulate a random walk process by generating 250,000 non-interacting ‘particles’ in a
vertical strip from x = −0.5 to x = 0.5 and moving each particle a fixed distance in
a random direction at each time step, recording the x-positions of the particles at each
time. We use a domain which is periodic in y for consistency with our vortex simula-
tions, although the results are identical in a non-periodic domain. Some example tra-
jectories are shown in Fig. 4.1.
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Figure 4.1: Sample trajectories of 5 ‘particles’ following random walks for 100 time
steps. Particles have higher speeds here than in our simulated random
walk, to exaggerate their trajectories for this figure.

We count the number of particles in each region of width 0.1 in x, normalise the
frequency, and make use of Matlab’s in-built function fminsearch [25] to fit a Gaussian
function, as shown in Fig. 4.2. Although we start with a square distribution of parti-
cles, the distribution rapidly tends to a Gaussian form centred about x = 0. We plot
the value of σ2 for the fitted Gaussian against time in Fig. 4.3.
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Figure 4.2: x-distribution (black dots) of ‘particles’ in our random walk process at the
start (t = 0) of the simulation (top) and at three later times (t = 10, t =
20, t = 30), with Gaussian functions (blue) fitted to the distributions.
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Figure 4.3: σ2 (black dots) of the Gaussian function fitted to the x-distribution of
‘particles’ in the random walk process, with fitted line (blue). Note that σ2

is proportional to t, as expected.

This illustrates the linear relationship between σ2 and t in a standard diffusion
process. From our solution (4.1) to the diffusion equation, we have σ2 = 2Dt, so we
can recover a value for D. In this example we find D = 0.0402 (3S.F.), which is within
0.5% of the speed we gave to the particles.
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4.2 Subdiffusion & Superdiffusion

We now return to the one-dimensional diffusion equation and consider a more gen-
eral diffusion coefficient: D = D0t

α for some constants D0 and α, so that the rate of
diffusion varies with time. Setting α = 0 recovers standard diffusion. Setting α < 0
imples that the rate of diffusion diminishes in time, while setting α > 0 implies that the
rate of diffusion increases in time; the latter two situations are respectively referred to
as subdiffusion and superdiffusion, both forms of anomalous diffusion.

We begin by performing dimensional analysis on the generalised diffusion coeffi-
cient. For consistency we must have [ut] = [D][uxx]. In this context u is a number den-
sity, so has dimensions of 1/L in 1D. Then:

1

LT
= [D]

1

L3
=⇒ [D] =

L2

T
.

We must have [D0] = L2/T to be dimensionally consistent in the standard diffusion
case α = 0. This implies that [D] = L2/T 1−α, so we introduce a constant t0 with [t0] =
T , and use:

D = D0
tα

tα0
, (4.2)

which is dimensionally consistent. We transform to the frequency domain:

ût = −D0
tα

tα0
k2û

=⇒ û = B exp

{
−D0t

α+1k2

(α + 1)tα0

}
,

which we can rewrite as:

û = B

√
tα0 (α + 1)

4πD0tα+1

√
4πD0tα+1

tα0 (α + 1)
exp

{
−D0t

α+1k2

(α + 1)tα0

}
.

Using the same IFT result as in Sec. 4.1.1, we find:

u(x, t) = B

√
tα0 (α + 1)

4πD0tα+1
exp

{
−t

α
0 (α + 1)x2

4D0tα+1

}
,

and inspection of dimensions confirms that this is a number density. Comparing to the
Gaussian function, we find σ2 ∝ tα+1, which is consistent with the result for standard
diffusion in Sec. 4.1. As α < 0 implies subdiffusion and α > 0 implies superdiffu-
sion, we visualise the characteristic relationships between σ2 and time for the three cat-
egories of diffusion considered here in Fig. 4.4.
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Figure 4.4: Diagram showing how the variance σ2 of Gaussian distributions following
subdiffusion (blue), diffusion (black), and superdiffusion (red) changes in
time.

4.3 Diffusion of Point Vortices with Unit

Circulation

We place 250 vortices, half with positive circulation and half with negative circu-
lation, randomly in a strip from x = −0.5 to x = 0.5 in a domain which is periodic in
y, with the period of the domain Ty = 5 and 10 repetitions of the domain above and
below to simulate this periodicity. We use the RK6 method detailed in Appendix A,
a step size of 10−2 time units, and allow the simulation to run for 100 time units. We
record the positions of the vortices at each time step, from which we can infer their ve-
locities and the pairing of vortices, and explore the statistics of their dynamics.

4.3.1 Overall Dynamics

The vortices are seen to spread out from the initial strip in two key fashions: vor-
tex dipoles form and move rapidly away from the main group, and the main group is
seen to spread out, generally in an inhomogeneous manner within an individual reali-
sation. We sort the x-positions of the vortices into bins of width 0.1 and normalise the
frequency. From a cursory inspection of Fig. 4.5 it appears that the distribution tends
to a Gaussian form after some initial time, as for the random walk ‘particles’ in Fig.
4.2.
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Figure 4.5: Normalised x-distribution of vortices: (top to bottom) initially, after 30
time units, after 60 time units, and after 90 time units. Note the changed
y-scale on the latter 3 plots. The area under the curve may not appear to
be conserved at first glance, but vortices are present at a low frequency to
values of x far outside the range shown.
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Figure 4.6: Detail of the x-distribution of vortices after 90 time units (black dots) with
a fitted Gaussian function in blue.

On closer inspection it becomes apparent that a Gaussian may not be the most
appropriate function to fit. In Fig. 4.6, the Gaussian appears to fit the central region
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of the distribution reasonably well. However, the Gaussian function tends to zero while
the distribution is still clearly non-zero, and the distribution of vortices far away from
the line x = 0 skews the variance of the Gaussian. We find this fit unsatisfactory; visu-
ally the fitted curve does not match the data, and when we calculate the sum of square
errors (SSE) we find a value on the order of 101, compared to a typical SSE of 10−1 for
the Gaussian functions fitted to the random walk data in Sec. 4.1.2.

Experimenting with various functional forms does not yield a satisfactory fit with-
out involving additional parameters or somewhat unusual functional forms, and as
John von Neumann (supposedly) had it: “With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.” - adding additional parameters with
no justification may give a pleasing fit, but the fit has a level of arbitrariness to it, and
is more likely to obfuscate the underlying processes than to allow any insight.

To make progress in analysing the spread and diffusion of vortices, we separate
the vortices into paired and unpaired vortices using the technique described in Sec. 3.5.
We examine the proportion, across all 400 realisations, of vortices identified as pairs in
Fig. 4.7.
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Figure 4.7: Proportion of vortices identified as pairs (dashed line) and proportion not
identified as pairs (solid line) by our algorithm.

From Fig. 4.7, we conclude that we are not left with a deficiency of data on either
the dipoles or the main group when we separate them. The rate at which pairs form
is higher at earlier times; this may be related to the average separation of vortices. At
earlier times the vortices are less separated, so pairs with smaller separation and thus
greater speed are more likely to form than at later times. At later times pairs may not
have sufficient speed to escape the main group before the chaotic flow around them dis-
rupts the pair.

4.3.2 Dynamics of the Main Group

As with the ‘particles’ in the random walk, we can compare the distribution of
vortices in our simulation to the form of the function we found for the non-standard
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diffusion equation. By inspecting Fig. 4.8, we can confirm visually that a Gaussian
is an appropriate function to fit to the distribution of vortices which we identify with
our main group. When we calculate the SSE for this fit we find values similar to those
found for Gaussian functions fitted to the random walk data, substantiating our assess-
ment of how well a Gaussian function fits the data.
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Figure 4.8: The distribution of point vortices in the main groups (black dots) with fit-
ted Gaussian in blue. We again start with a square distribution, at t = 0
(top), which rapidly tends to a Gaussian distribution. Plots show the distri-
bution (from top to bottom) at t = 0, t = 10, t = 20, t = 30.
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Figure 4.9: Variance (σ2) of the Gaussian functions fitted to the x-distributions of the
main cluster of vortices in 10 realisations.
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We then fit Gaussian functions to the distribution of the main group over time
separately for our 400 realisations and record the variance of the fitted Gaussian at
each time step. The variance of the fitted Gaussian versus time is shown in Fig. 4.9
for 10 difference realisations (the initial configuration varies randomly between realisa-
tions).

Although the trajectories shown in Fig. 4.9 are not identical, they exhibit sim-
ilar general behaviour. We are interested in the general diffusive behaviour of point
vortices, so we take the average value, over all realisations, of σ2 at each time step to
minimise any residual transient effects due to the particular configuration of individ-
ual realisations. We refer to this sample mean vector as µ, not to be confused with the
unknown population mean vector. We also calculate the sample standard deviation (ς)
vector of σ2 at all time steps to give an estimate of the margin of error, shown in Fig.
4.10.
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Figure 4.10: Mean variance of fitted Gaussians for 400 realisations and error bars
showing ±1ς. Note that for visualisation purposes we are not displaying
the full resolution of our data here.

Comparing Fig. 4.10 to the diagram shown in Fig. 4.4, it is clear that the main group
of vortices follow a subdiffusion process. Recall that in our solution to the non-standard
diffusion equation in Sec. 4.2 we had:

u(x, t) = B

√
tα0 (α + 1)

4πD0tα+1
exp

{
−t

α
0 (α + 1)x2

4D0tα+1

}
.

Comparing this to the general Gaussian function we fit to the data:

f(x) = a exp

{
−(x− b)2

2σ2

}
,

implies that:

σ2(t) =
2D0t

α+1

(α + 1)tα0
.
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We disregard the parameter b in the Gaussian, as it simply shifts the distribution
in x; the data is centred about 0 anyway. We establish the exponent α introduced in
Sec. 4.2 by fitting a function of this form with parameters D0, t0 and α to µ. We also
fit to µ± ς in Fig. 4.11.
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Figure 4.11: Curves fitted to the full data, plotted with the error bars shown in Fig.
4.10

From Table 4.1, the main group of vortices follow a subdiffusion process, with a
value for α in the region of (−0.2405,−0.2111). We give an interpretation of the pa-
rameters D0 and t0 in Sec. 4.4.

α D0 t0
µ+ ς −0.2405 0.0933 1.6547
µ −0.2318 0.0688 1.3500

µ− ς −0.2111 0.0461 0.6686

Table 4.1: Values found for the parameters α, D0 and t0 from fitting a function of the

form f(t) =
2D0t

α+1

(α + 1)tα0
to µ and µ± ς.

There is an intuitive explanation as to why vortices should follow a subdiffusion
process. The motion of a vortex in a fluid is driven by other vortices; a lone vortex is
stationary. As the vortices diffuse the mean separation of the vortices increases, and
so the mean speed of the vortices decreases, slowing down the diffusion process. We
anticipate that as t→∞, 〈|u|〉 → 0, 〈r〉 → ∞.

4.3.3 Dynamics of Escaping Dipoles

Our focus is primarily the spread of the main group of vortices, but we briefly in-
vestigate the distribution of the escaping dipoles. We show the normalised distribution
of vortices in escaping pairs at one point in time in Fig. 4.12.
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Figure 4.12: Normalised x-distribution of vortices in escaping pairs after 50 time units.
Note the symmetry of the distribution.

The data shown in Fig. 4.12 appear to follow some sort of power law. We make
use of the symmetry in x and plot the absolute distribution in x on a logarithmic scale
in Fig. 4.13.
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Figure 4.13: As in Fig. 4.12, but with absolute values of x and plotted on scales which
are logarithmic in x and y. The blue line corresponds to the half width
at tenth maximum of the Gaussian function fitted, as in Fig. 4.8, to the
x-distribution of the main group at this point in time.

We also indicate the half width at tenth maximum (HWTM) of the Gaussian fit-
ted to the x-distribution of the main group at the same point in time in Fig. 4.8. The
HWTM of a Gaussian function can be calculated as

√
2 ln 10σ, and we use it here to
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give a rough indication of where the region containing the main group extends to. In
Fig. 4.13 we see two different relations: in the region to the left of the HWTM the den-
sity of dipoles increases with x, and to the right the density of dipoles decreases with x.
We can think of these regions as corresponding to the formation of dipoles within the
main group and escaped dipoles outside the main group respectively.

If two variables have a power law relationship, the logarithms of the variables will
follow a linear relationship. While there may be some evidence of this in some regions
of Fig. 4.13 (such as HWTM ≤ x ≤ 70), it is unlikely that the distribution in the es-
caping dipole region can be fitted by a single line. The minimal data in some regions
(many data points come from only ∼ 10 observed vortices, or half that many dipoles,
over all 400 simulations) is not conducive to fitting, and we do not attempt to quantify
any potential power law at this point.
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Figure 4.14: Distribution of the speed u of vortices at t = 0 (top), t = 20, t = 40,
and t = 60. The overall distribution is normalised and shown in black,
the distribution for vortices in the main group is shown in red, and the
distribution for vortices in escaping pairs in blue. The distributions for
vortices in the main group and vortices in escaping pairs are scaled so as
to sum to the overall distribution.

In Fig. 4.14 we show the distribution of the speed of vortices. There are interest-
ing parallels with the Maxwell-Boltzmann distribution for particle speeds in ideal gases.
As time increases, the overall curve becomes less ‘spread out’, the height of the curve
increases, and the peak moves toward the origin. For a Maxwell-Boltzmann distribu-
tion this would reflect the cooling of an ideal gas; however here we are considering vor-
tices, not particles, in an ultracold medium. The high-u end of the distribution is domi-
nated by escaping pairs, as seen in the bottom plot of Fig. 4.14; this may be analagous
to the evaporation of the particles with greatest speed in an ideal gas, an analogy pre-
viously drawn by C.F. Barenghi in [26].
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4.4 Diffusion of Point Vortices with Multiple Cir-

culation

Although vortices in superfluids with circulation other than ±h/m are unstable
and decay into a number of vortices with ±h/m circulation [27], there is still interest
in how such vortices would behave and diffuse - whether a direct relation between the
quantum of circulation and the diffusion coefficient exists is an open question. Solu-
tions to the GPE exhibit this decay, but in the PVM vortices are persistent, and simu-
lating larger circulations is a simple matter of inputting larger values of Γ to the model.

There are a number of caveats to our results in this section: we have used 20
realisations for Γ = ±2, and 30 realisations for Γ = ±3, so have less reliable data which
may still exhibit transient effects from individual simulations. Because larger circula-
tion leads to larger velocities, the numerical issues mentioned in Sec. 2.2 are amplified,
and so the Hamiltonian is not as well conserved. We halve the step size h for the
realisations using Γ = ±3 to reduce this effect. We present summary statistics for the
absolute relative change in the Hamiltonian, |∆HR| in Table 4.2.

Regardless of this, we can present some preliminary results on the relation be-
tween vortex circulation and diffusion. In Fig. 4.15 we examine the proportion of vor-
tices identified as pairs to ensure we have a reasonable amount of data on the main
group to work with.

|Γ| h NR Min Max Mean σ Q1 Q2 Q3

1 10−2 400 0.0107 0.0261 0.0151 0.00252 0.0134 0.0146 0.0167

2 10−2 20 0.0169 0.0347 0.0222 0.00440 0.0188 0.0220 0.0247

3 5× 10−3 30 0.0164 0.0265 0.0204 0.00371 0.0174 0.0238 0.0246

Table 4.2: Summary statistics of the values for |∆HR| at the final time step of our sim-
ulations. Here only σ refers to the standard deviation in the absolute rel-
ative change in the Hamiltonian, not the standard deviation of the Gaus-
sian functions fitted elsewhere. Q1, Q2 and Q3 denote the first, second and
third quartiles, and NR denotes the number of realisations for the particular
choice of circulation |Γ| and step size h.

With reference to the analogy drawn between the speed-distribution of vortices
and the Maxwell-Boltzmann distribution in the previous section, it may be of interest
to note that pairs are formed at a higher initial rate, and the final proportion of vor-
tices that have formed dipoles by the end of the simulations is somewhat greater, for
larger magnitude circulation. As larger magnitude circulation leads to greater speeds
in a system such systems have higher energy; this can readily be seen from the form of
the autonamous Hamiltonian in infinite and periodic domains in (3.1-2). This could be
interpreted as more evaporation occuring in systems with higher energy, as we see with
an evaporating liquid in a classical context.

Returning to the x-distribution of vortices in the main group, we perform the
same analysis as in Sec. 4.3.2. We show the mean values of σ2 for the Gaussian func-
tions fitted in Fig. 4.16.
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Figure 4.16: Mean variance of fitted Gaussians for Γ = ±1 (red), Γ = ±2 (green), and
Γ = ±3 (blue).

From Fig. 4.16, it is apparent that vortices with larger circulation spread out more.
To quantify this, we again fit functions of the form:

f(t) =
2D0t

α+1

(α + 1)tα0

to our data, as well as to 1 standard deviation above and below. We summarise this
in Table 4.3, referring to the parameters found as α+, D0,+, t0,+ and α−, D0,−, t0,− for
µ + ς and µ − ς for 1 standard deviation above and 1 standard deviation below re-
spectively. Note that the + and − relate to the standard deviation above or below the
data, they do not imply any expectation of a larger or smaller value for a parameter.

36



Γ = ±1 Γ = ±2 Γ = ±3

α+ −0.2405 −0.2053 −0.2813

α −0.2318 −0.2306 −0.2517

α− −0.2111 −0.2963 −0.1684

D0,+ 0.0933 0.2157 0.2656

D0 0.0688 0.1449 0.1653

D0,− 0.0461 0.0974 0.0823

t0,+ 1.6547 0.7828 1.7886

t0 1.3500 1.2731 2.3407

t0,− 0.6686 1.2075 2.4047

Table 4.3: Parameter values found fitting to µ and µ ± ς, as defined in Sec. 4.3.2, for
our data using Γ = ±1, Γ = ±2, Γ = ±3.

We do not have enough data to make conclusions about the relation between α and |Γ|,
that is how the rate of diffusion changing varies with the circulation of the vortices, but
the values found in Table 4.3 for the mean vectors suggest that α may be unaffected
by the absolute circulation of the vortices. We are also interested in how the rate of
diffusion changes with the circulation. Recall the form of the diffusion coefficient (4.2)
in our solution to the non-standard diffusion equation in one dimension. D0 and t0 are
constants that scale the diffusion coefficient, so we calculate the value of D0/t

α
0 for the

parameters found in Table 4.3.

Γ = ±1 Γ = ±2 Γ = ±3

D0,+/t
α+

0,+ 0.1053 0.2051 0.3128

D0/t
α
0 0.0738 0.1532 0.2048

D0,−/t
α−
0,− 0.0423 0.1030 0.0954

Table 4.4: Values for D0/t
α
0 calculated from values for D0, t0 and α given in Table 4.3.

Again, we do not have enough data at this point to draw conclusions, but the val-
ues of D0/t

α
0 found for the mean vectors, given in Table 4.4, are suggestive of a pro-

portional relation between D0/t
α
0 and |Γ|; that is the rate of diffusion scales with the

absolute circulation of the vortices in the system.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

The point vortex model predicts that a collection of quantum vortices in a two-
dimensional condensate will spread out in two ways: the formation and rapid escape of
vortex dipoles, and the spreading of the remaining vortices through a subdiffusion pro-
cess. There is an intuitive explanation as to why the rate of diffusion should decrease:
the motion of a vortex is not driven by itself, but by the vortices around it, with the
magnitude of the velocity contribution of another vortex inversely proportional to the
distance between them. If vortices begin to spread out, then the distances between
them increase, and so their speeds decrease, slowing their spread.

We find the exponent α governing this subdiffusion process to be in the region
of α ∈ (−0.2111,−0.2405) for vortices with unit magnitude circulation. For vortices
with larger circulation, the analysis of our data suggests that the exponent governing
the process may be independent of the magnitude of the circulation, though the overall
rate of diffusion may be proportional to the magnitude of the circulation.

There may be a deep connection between the formation of vortex dipoles and the
diffusion of the main group, which is captured by the Hamiltonian description of the
dynamics. We generate a circular distribution of vortices in the infinite plane, half with
positive unit circulation and half with negative unit circulation, and calculate the au-
tonamous Hamiltonian of the system, which we call H0. We then increase the separa-
tion between all vortices by scaling their (x,y) coordinates and calculate the autona-
mous Hamiltonian for this scaled system, HS. Doing so for a range of scaling factors,
we summarise this in Fig. 5.1. It is clear from this figure that more spread out versions
of a system have more energy. We can formalise this by considering the formula for the
autonamous Hamiltonian:

H0 = − 1

4π

n∑
i=1

n∑′

j=1

ΓiΓj ln rij.

If we scale x and y positions of the vortices by a factor of S ∈ R, then rij → Srij, and
so:

HS = − 1

4π

n∑
i=1

n∑′

j=1

ΓiΓj lnSrij
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= − 1

4π

n∑
i=1

n∑′

j=1

ΓiΓj[ln rij + lnS]

= H0 −
1

4π

n∑
i=1

n∑′

j=1

ΓiΓj lnS.

The ΓiΓj factors are +1 if Γi = Γj and −1 if Γi 6= Γj. As there are an equal number of
positive vortices and negative vortices these terms would all cancel if it were not for the
omission of the i = j terms; instead we find:

HS = H0 +
n lnS

4π
.

Scaling Factor
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Figure 5.1: Increase in the value of the Hamiltonian as the separation within a system
is increased. This curve uses one configuration, which is then scaled, but is
representative of the general effect of increasing the separation uniformly
within a system of point vortices.

As the vortices in our model follow trajectories defined by the Hamiltonian, it is
reasonable to expect that in order for some vortices to spread out other vortices must
move closer together, with some forming dipoles, although we offer no formal proof of
this.

5.2 Future Work

Our next objective is to improve the numerical accuracy of our simulations. We in-
tend to do this by two means, firstly by considering higher order time-adaptive Runge-
Kutta-Fehlberg and related methods. A number of these are available to us, so before
performing a large number of simulations with one method we will analyse the effi-
ciency of a selection of methods in terms of the number of function evaluations required
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to attain particular levels of conservation of the Hamiltonian for our particular model.
Additionally, although we have previously used a standard point vortex velocity pro-
file, we will investigate the separation of vortices of identical circulation at which non-
neglible numerical errors occur, and consider imposing a Rankine vortex profile with a
suitable core size based on this information.

Having made these adjustments, we aim to produce more realisations of our sim-
ulations, in particular those with larger values of circulation, in order to establish more
reliable results and a more precise relationship between the circulation of vortices and
the diffusion process they exhibit. We also intend to dedicate some time to refining the
identification of vortex dipoles; although the effects of misclassified vortices on the dis-
tribution should be negligible over a large number of runs, there are no detrimental ef-
fects anticipated, except perhaps a miniscule increase in processing time required, and
the technique may be useful in other similar simulations.

In this report we have focused our analysis on the main group, however we al-
ready have a lot of data on the vortex dipoles and will be generating more. We are
keen to investigate the relation between the energy of the system, and the formation
of pairs and their velocity distribution.

For comparison with the results concerning the diffusion of the main group ob-
tained using the point vortex model, we will produce numerical solutions to the Gross-
Pitaevskii equation in two-dimensions. Here we are not interested in dipoles once they
move away from the main group, so can remove them using the ‘unwinding’ technique
discussed in [28] once their separation from the main cluster becomes such that their
contribution to the velocity field within the group becomes negligible. This will allow
us to simulate a smaller region than would otherwise be necessary, saving a great deal
of computational resources.

We then plan to expand our research into three-dimensions, using both the vortex
filament model based on the Biot-Savart law to investigate the broad dynamics, and
the Gross-Pitaevskii equation in 3 dimensions to explore the effects of phonon emis-
sion, vortex-antivortex annihilation, and other effects not modelled by the point vortex
model or the vortex filament model.
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Appendix A

Butcher Tableaux of Selected
Runge-Kutta Methods
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Table A.1: Coefficients, weights and nodes for the original 4th-order Runge-Kutta
method.
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Table A.2: Coefficients, weights and nodes for a 6th-order method introduced by P. J.
Prince & J. R. Dormand in [29]
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[27] M. Möttönen et al. Splitting of a doubly quantized vortex through intertwining in
Bose-Einstein condensates. Phys. Rev. A, 68, Aug 2003.

[28] M.T. Reeves et al. Identifying a superfluid Reynolds number via dynamical simi-
larity. Phys. Rev. Lett., 114, Apr 2015.

[29] P.J. Prince and J.R. Dormand. High order embedded Runge-Kutta formulae.
Journal of Computational and Applied Mathematics, 7(1):67–75, Mar 1981.

44

http://uk.mathworks.com/help/matlab/ref/fminsearch.html
http://uk.mathworks.com/help/matlab/ref/fminsearch.html

	Introduction
	Vortices
	Motivation
	Note on Terminology

	Modelling
	Comparison of Models
	The Gross-Pitaevskii Model
	Superfluid Hydrodynamic Equations

	The Point Vortex Model
	Derivation of Equations of Motion
	Details of the Model


	Numerical Methods
	System Setup
	Infinite Domain Setup
	Periodic Domain Setup

	Runge-Kutta Methods
	Tests
	Two-Vortex Interactions
	Periodic Domain

	Assessing Accuracy
	Runge-Kutta-Fehlberg Methods
	Autonomous Hamiltonian

	Identifying Vortex Dipoles

	Anomalous Diffusion
	Standard Diffusion
	The Diffusion Equation & Gaussian Solution in One Dimension
	Random Walk Process

	Subdiffusion & Superdiffusion
	Diffusion of Point Vortices with Unit Circulation
	Overall Dynamics
	Dynamics of the Main Group
	Dynamics of Escaping Dipoles

	Diffusion of Point Vortices with Multiple Circulation

	Conclusions & Future Work
	Conclusions
	Future Work

	Butcher Tableaux of Selected Runge-Kutta Methods
	Bibliography

