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Abstract 
 

The aim of this project is to perform a statistical analysis of a dataset containing nutritional 

information on a sample of secondary school children, which was collected at two time points in 

different years, 2000 and 2009.  

It was hoped that, as a result of revised school food standards that were implemented between 2006 

and 2009, the quality of children’s diets would have improved in this time period. Specifically, this 

referred to reducing intake of energy, sodium and saturated fat, and increasing intake of vitamin C.  

This project analyses these data using linear regression techniques in order to assess the impact of 

the new standards. In doing so, various pitfalls and downsides of commonly used methods are 

identified and discussed, as well as ways in which to overcome them.  
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1 Introduction 

1.1 The childhood obesity crisis  

A balanced, nutritious diet is a crucial factor for good overall health. A person’s diet should provide all of the 

nutrients, vitamins and minerals needed for optimal growth, maintenance and repair. It is important for 

children in particular to maintain such a diet, as their bodies are developing and thus have even more nutrient 

requirements and high metabolic rates. Furthermore, a good diet can help to prevent numerous diseases, and 

to enhance brain development, which can result in a higher IQ and improved concentration levels (Wilson K. 

L., accessed 2015). 

Obesity is a potential consequence of long-term poor diet, caused by energy excess. It occurs when an 

individual frequently consumes much more energy than they use, typically from foods that are high in fat and 

sugar, over a long period of time (House of Commons Health Committee, 2004, p. 3). This leads the body to 

store the unused excess energy as fat. 

The impacts of obesity on health – both physical and psychological – are numerous. Examples of physical 

effects include high risk of cardiovascular disease, a range of cancers, type II diabetes, strokes, high blood 

pressure, osteoarthritis, fertility problems and reduced life expectancy (House of Commons Health 

Committee, 2004, p. 16-21). Psychological consequences include depression, anxiety and low self-esteem. 

(House of Commons Health Committee, 2004, p. 16-21). 

In the early 2000s, there was growing national concern about childhood obesity levels, which were rapidly 

increasing: in 2002, it was reported that 21.8% of boys and 27.5% of girls aged 2-15 years were clinically 

overweight or obese (National Centre for Social Research, 2002). This was a major cause for public concern, 

as the adverse outcomes of obesity were well known at the time. In addition, it was estimated at the time that 

the direct cost of obesity to the NHS was £46-49 million per year, and that the cost of treating obesity-related 

conditions was £945-1075 million per year (House of Commons Health Committee, 2004, p. 21). As a result, 

there was nationwide public demand to improve children’s diets. 

1.2 The demand to review school food standards 

“Every mum and dad knows that if you want your child to do well at school, and particularly to concentrate 

well in the classroom in the afternoon, a healthy meal at lunchtime is vital.” –Nick Clegg (Gove, 2014) 

In 2005, a campaign to review school food standards, and thus improve school meals, was launched by TV 

chef Jamie Oliver. For many pupils, school meals serve as the main meal of the day, making them a crucial 

source of essential nutrients (Mucavele et al., 2013, p.10). Oliver believed that if children received healthier 

school meals (which comprise roughly a third of daily food intake) and were educated in nutrition, they would 

be encouraged to make better dietary choices outside of school and in adulthood. He believed that improving 

the quality of school meals was a means to improve children’s diets overall and to tackle the obesity crisis 

(Jamie Oliver Food Foundation, 2015). 



 

The very first school food standards were introduced in 1941, but were removed in 1980 to cut government 

expenditure in schools – permitting cheap, but unhealthy, ‘convenience food’ was seen as a way to do this 

(School Meals Review Panel, 2005, p.17-18). It was not until 2001 that standards were re-established, but the 

adequacy of these standards was widely criticized after the broadcast of Oliver’s documentary series, Jamie’s 

School dinners, which subsequently led to his campaign, entitled Feed Me Better. His campaign made an 

online petition to thoroughly re-assess national school food standards and to commit long-term funding to this 

initiative. Signed by 271,677 people, the petition was delivered to 10 Downing Street on 20th March 2005 

(Jamie’s School Dinners, 2015). 

In response to the campaign and to other similar pressure groups, the Department for Education and Skills 

created the School Food Trust (now known as the Children’s Food Trust), a £60 million trust fund for the 

initiative. They sought recommendations for renewing the standards from an association called the School 

Meals Review Panel, which consisted of a variety of professions including dieticians, head teachers, school 

caterers, parents and governors (School Meals Review Panel, 2005, p.16). The Panel constructed 14 nutrient-

based standards and 9 food-based standards, which the government implemented in schools across the country 

between September 2006 and September 2009 (School Meals Review Panel, 2005, p.27-29). These standards 

are given in Appendix 7.1.   

The aim of the initiative was to improve school meals, and ultimately, the standard of children’s diets in 

general. There was particular emphasis on reducing intake of energy, salt and saturated fat and increasing 

intake of vitamin C. It was therefore essential to study the average nutrient intake of schoolchildren before 

and after the introduction of revised standards, to determine whether the initiative had been effective. 

Much evaluation of the impact of these standards has already been carried out, with positive findings (Gove, 

2014;  Mucavele et al., 2013, p.10). For instance, the number of primary school children eating the required 

amount of vegetables increased from 59% to 74% between 2005 and 2009, and secondary school children in 

2011 were found to consume 30% less sugar, salt, fat and saturated fat in their school meals than in 2004 

(Department for Education, 2014, p.4). Overall, the initiative was largely considered to be successful in 

improving the nutritional quality of school meals, although there were a number of operational drawbacks, 

such as the standards being too restrictive, too confusing and too expensive for school chefs to implement 

(Mucavele et al., 2013, p.4).  

1.3 Project objectives 

The purpose of this project is to perform a statistical analysis on the impact of the revised standards, using 

data collected from schools in the North East of England. Data were collected from both primary and 

secondary schools, to be considered separately. This project focusses only on the secondary school data, as 

the time-constraint of the project does not permit a thorough analysis of both.  

The key objectives of the project are: 



 

 To assess the efficacy of the initiative by comparing the consumption of various nutrients, pre- and 

post- implementation of new standards 

 To establish whether other variables (such as if a child has school or packed lunch) have an impact on 

the effectiveness of the standards, and to investigate such impacts 

 To present the findings and results in a clear and comprehensible format 

1.4 The data 

There were 6 secondary schools that participated in this study. A cross-sectional study design was used, where 

surveys were carried out at two separate time-points, one in 2000 and one in 2009, to represent pre- and post- 

changes. In total, 513 children across the 6 schools and the 2 time-points were surveyed. 

The surveys involved collecting nutritional data from the participants via ‘food diaries’ – self-written records 

of everything consumed by the individual, over two 4-day periods. Nutritionists then converted the lists of 

food in these diaries to numerical quantities representing the mean daily intake of various macro- and micro- 

nutrients. In addition, they looked at what was eaten specifically at lunch time, and subsequently quantified 

the mean lunchtime intake of these nutrients. The quantified nutrients are listed below, including their units 

of measurement:  

 Energy (kcal)  

 Carbohydrates (g) 

 Protein (g) 

 Fat (g) 

 Saturated fat (g) 

 Non-milk extrinsic sugars (mg) 

 Sodium (mg) 

 Vitamin C (mg) 

 Iron (mg) 

In addition to estimating each child’s daily and lunchtime intake of the above nutrients, nutritionists also 

estimated the percentage of their total energy intake that was accounted for by each nutrient. 

General personal data were also collected from the subjects, including their sex and post code of their home 

address.  

Furthermore, parents of secondary school children have the choice of providing them with a packed lunch or 

signing them up to receive school lunches, so each subject was labelled as either a school or packed lunch 

participant. This information was important because the revised school food standards obviously apply only 

to school lunches, and will not have had a direct impact on packed lunches, making it necessary to take account 

of lunch type.  

2 Simple analysis – illustrative example 

This chapter comprises of some initial, basic analysis of the energy intake data. The purpose of the chapter is 

purely to illustrate the shortcomings of naive analyses, so only the data for lunchtime energy intake will be 

MACRO-NUTRIENTS 

MICRO-NUTRIENTS 



 

considered, as a demonstrative example. Due to soaring obesity levels, children’s energy intake was 

considered too high and so the standards aimed to cause a reduction.  

2.1 Effects of year  

The effect of year on lunchtime energy intake is the key indicator of the impact of the new standards, as any 

substantial changes that occurred between 2000 and 2009 were most likely due to their implementation. The 

most basic form of analysis is simply to compare the mean energy intake from 2000 with the mean energy 

intake from 2009, and observe the difference. Table 2.1 shows these means, calculated from the data. 

 2000 (pre-implementation) 

𝒏 = 𝟐𝟗𝟖 

2009 (post-implementation) 

𝒏 = 𝟐𝟏𝟓 

Average lunchtime energy intake (kcal) 692.5 545.8 
Table 2.1: Mean lunchtime energy intake (kcal) of participants in 2000 and those in 2009, representing pre- and post- 

implementation of standards. The sample sizes in each year are also given, denoted by n 

Average lunchtime energy intake decreased by 146.7 kcal from 2000 to 2009, which is a fairly large reduction, 

in terms of the RDA (recommended daily amounts) for 11-14 year olds. The RDA for all nutrients is shown 

in Appendix 7.2. Roughly speaking, lunch should provide about a third of these values. Hence, boys should 

not consume more than 2220/3 =  720 kcal during lunch and girls should not exceed 1845/3 =  615 kcal.  

The 2000 mean of 692.5 kcal is for both sexes pooled together, but in either case, this value is either much too 

large or bordering on being too large. In contrast, the 2009 mean of 545.8 kcal is well within the recommended 

limits for both sexes. This simple analysis indicates that children consumed considerably less food at lunch in 

2009 than 2000, which suggests that there has been an improvement in the calorie content of lunches. 

However, this approach is much too simple to provide worthwhile conclusions. For instance, other factors 

such as lunch type have not been taken into account, as school food regulations only apply to school lunches. 

This is dealt with in the next section. 

2.2 Effects of lunch type on energy intake 

As aforementioned, packed lunches will not have changed as a direct result of the revised standards unlike 

school lunches. It is indeed possible that some parents could have altered the contents of their packed lunches, 

in accordance with public concern, but a priori, the standards were mainly expected to affect the school lunch 

children. In any case, the effects of lunch type require investigation.  

The mean lunchtime energy intake for each lunch type in each year are listed separately in Table 2.2.  

 

 

 2000 2009 Difference  

2009-2000 

School lunch   711.9 495.9 -216.0 

Packed lunch 612.3 574.2 -38.2 



 

Table 2.2: Mean lunchtime energy intake in kcal for school lunch and packed lunch participants separately in 2000 and 2009, along 

with the difference between the years 

As predicted, the decline in average energy intake was substantial in school lunch children, and slight in 

packed lunch children. This suggests that the standards made a big improvement to the calorie content of 

school lunches, but they appear to have affected packed lunches less. 

This analysis is still too simple, however, to provide meaningful conclusions. Although lunch type has now 

been investigated, no consideration has been given to the sex of the participants, which is another factor 

affecting energy intake. Even though this study places no concern on differences between boys’ and girls’ 

nutrient intake – in fact, nutritionists would prefer to pool the sexes together for their analyses – it is known 

and accepted that a difference exists, and a problem arises when it is not accounted for. The details of this are 

explained in the next section.   

2.3 The problem caused by imbalance in sex ratio 

A person’s sex affects how much energy they consume; specifically boys tend to eat more than girls. This is 

illustrated generally by the fact that boys have a greater RDA for energy, and for these data specifically, by 

Tables 2.3 and 2.4, which display the mean energy intake separately for each sex, averaged over the two time 

points.  

 Males 

𝒏 = 𝟐𝟒𝟕 

Females 

𝒏 = 𝟐𝟔𝟔 

Average  lunchtime energy intake (kcal) 645.0 618.0 
Table 2.3: Mean lunchtime energy intake (kcal) separately for males and females, averaged over the 2 years  

 

 2000 2009 

Males                             Females 

            𝑛 = 139                          𝑛 = 159 

Males                            Females 

           𝑛 = 108                           𝑛 = 107 

School lunch 731.3                              697.1 467.4                             527.4 

Packed lunch 653.7                              549.4 615.2                             534.9 
Table 2.4: Mean lunchtime energy intake (kcal) of males and females, categorised by lunch type and year 

Boys clearly consumed more energy than girls (in all but one of the categories – 2009 school lunch). This 

reinforces the existence of a sex effect but since there is no interest in comparing the boy means with girl 

means, because the sex effect is not related to the implementation of new standards, this effect needs to be 

corrected for. The comparisons of interest are the ones between the four treatment combinations: 

 2000 school lunch 

 2000 packed lunch 

 2009 school lunch 

 2009 packed lunch 

Since energy intake depends on sex, these groups are only comparable if they contain the same ratio of boys 

to girls. 



 

For instance, if a group contained mostly boys, then its sample mean for energy intake would probably be 

higher to reflect this large proportion of boys. Comparing this group to one that contains mostly girls, or with 

any slight different sex ratio for that matter, would lead to distorted results: the effects of year and lunch type 

would be confounded with the effects of sex and it would not be possible to know how much of the differences 

to attribute to each. Hence, these naïve comparisons between imbalanced groups can produce misleading 

results that do not accurately reflect the impact of the new standards.  

The sex ratio of the groups must therefore be investigated. Table 2.5 shows the proportions of girls in each 

category. Unfortunately, none of the proportions are equal to one another. The observed means given before 

in Table 2.2 are therefore not comparable for investigating the differences between the groups, as speculated. 

 2000 2009 

School lunch 136/240 =  𝟎. 𝟓𝟖 37/78 =  𝟎. 𝟒𝟕 

Packed lunch 23/58 =  𝟎. 𝟒𝟎 70/137 =  𝟎. 𝟓𝟏 
Table 2.5: Proportion of girls in each category 

To isolate the effects of year and lunch type in each category, the imbalances in sex ratio can be adjusted for. 

The method for doing so is explained in detail in the next chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 Detailed analysis – illustrative example  

Having identified the shortcomings of the simple analysis, this chapter describes a more suitable method for 

comparing the means for the four combinations of year and lunch type, overcoming the issue of sex imbalance. 

Again, only the data for lunchtime energy intake shall be used to demonstrate the methodology. 

3.1 The linear regression model 

The first stage of this analysis is to fit a linear regression model to the data. The model contains year, lunch 

type and sex as covariates, as well as the year by lunch interaction. This interaction is included because it is 

likely that the impact of year will be greater for school lunches than for packed lunches. The other two-way 

interactions and the three-way interaction are not considered further.  

Letting 𝑌𝑖𝑗𝑘ℓ denote the lunchtime energy intake for the ℓ𝑡ℎ subject, who participated in the 𝑖𝑡ℎ year, had 𝑗𝑡ℎ 

lunch type and was from the 𝑘𝑡ℎ sex, where 

Year: 𝑖 = {
0,    2000,
1,   2009,

         Lunch: 𝑗 = {
0,     school lunch,
1,   packed lunch,

         Sex: 𝑘 = {
0,       male,
1,   female,

 

gives the linear regression model below: 

 𝑌𝑖𝑗𝑘ℓ = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝛾𝑘 + 𝜖𝑖𝑗𝑘ℓ ,       (3.1) 

where 𝜇 is the overall mean, 𝛼𝑖 is the effect of the 𝑖𝑡ℎ year, 𝛽𝑗 is the effect of the 𝑗𝑡ℎ lunch type, (𝛼𝛽)𝑖𝑗 is the 

effect of the (𝑖𝑗)𝑡ℎ combination of year and lunch type, 𝛾𝑘 is the effect of the 𝑘𝑡ℎ sex and 𝜖𝑖𝑗𝑘ℓ represents the 

error of the ℓ𝑡ℎ  individual. To ensure model identifiability (Jacquez and Greif, 1985), the parameter 

constraints 𝛼0 = 𝛽0 = 0, (𝛼𝛽)0𝑗 = (𝛼𝛽)𝑖0 = 0 and 𝛾0 = 0 are imposed.  

The R summary output below shows estimates for the model parameters.  

Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      734.50      13.96  52.606  < 2e-16 *** 
yearf9          -219.71      22.27  -9.867  < 2e-16 *** 
lunchf1         -106.37      25.08  -4.241 2.65e-05 *** 
genderf1         -39.88      15.16  -2.631  0.00878 **  
yearf9:lunchf1   186.12      34.89   5.335 1.44e-07 *** 

 

For each covariate, R has produced an estimate of its coefficient along with its standard error. It has also 

provided a p-value for a two-tailed Student’s t-test, whose null hypothesis is that the population means for the 

levels of each factor are equal. Tests cannot prove hypotheses with certainty, but the p-value represents the 

strength of the evidence against the null hypothesis; it can be interpreted as the probability of obtaining a result 

that is at least as extreme on a repeated application, assuming truth of the null hypothesis. Therefore, very 

small p-values indicate that the differences in sample means are unlikely to have occurred by chance. P-values 

smaller than 0.05 are deemed statistically significant.  In this case, the p-values for all the variables are very 

small, so each covariate is significant and should be retained in the model. 



 

3.2 Fitted means 

The parameter estimates of the regression model permit the calculation of fitted means. For an individual with 

(𝑖𝑗𝑘)𝑡ℎ  combination of covariates, the fitted mean, denoted �̂�𝑖𝑗𝑘, is the expected value of their lunchtime 

energy intake. This is obtained by taking the expectation of (3.1). The expectation of the error terms is zero 

since the errors follow a 𝑁(0,1) distribution, and so the fitted mean for an individual of type (𝑖𝑗𝑘) is   

 �̂�𝑖𝑗𝑘 = 𝐸[𝑌𝑖𝑗𝑘] = 734.50 − 219.71 𝐼[𝑌𝑒𝑎𝑟 = 2009] − 106.37 𝐼[𝐿𝑢𝑛𝑐ℎ = 𝑠𝑐ℎ𝑜𝑜𝑙 ]

− 39.88 𝐼[𝑆𝑒𝑥 = 𝑓𝑒𝑚𝑎𝑙𝑒]

+ 186.12 𝐼[𝑌𝑒𝑎𝑟 = 2009 & 𝐿𝑢𝑛𝑐ℎ = 𝑠𝑐ℎ𝑜𝑜𝑙].    

 

(3.2) 

Here, 𝐼[𝐴] denotes an indicator function of event A, which is equal to one if A is true and equal to zero 

otherwise. Hence, the fitted mean for each type of individual is obtained by substituting 0 or 1 as appropriate 

for the indicator variables into equation (3.2).  

However, the fitted means for each type of individual are not actually of interest – the study is focussed on 

comparing the combinations of year and lunch type, with no relevance attached to the sex of an individual. 

Hence, it is the fitted mean for a (𝑖𝑗)𝑡ℎ type of individual, denoted �̂�𝑖𝑗, which is required. These are calculated 

by substituting either 0 or 1 as appropriate for year and lunch type, and then averaging over sex, by using the 

proportion of females in the category for the sex value. In other words, the fitted mean of an individual of type 

(𝑖𝑗) is given by 

 �̂�𝑖𝑗 = 734.50 − 219.71 𝐼[𝑌𝑒𝑎𝑟 = 2009] − 106.37 𝐼[𝐿𝑢𝑛𝑐ℎ = 𝑝𝑎𝑐𝑘𝑒𝑑 ]

− 39.88𝐹𝑒𝑚𝑎𝑙𝑒𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛

+ 186.12 𝐼[𝑌𝑒𝑎𝑟 = 2009 & 𝐿𝑢𝑛𝑐ℎ = 𝑝𝑎𝑐𝑘𝑒𝑑].                                             

 

(3.3) 

Using equation (3.3), with the appropriate female proportions from each category, the calculations for the 

fitted means of the groups are shown below. 

(I) 2000 school lunch  

  �̂�0,0 = 734.50 − (219.71 × 0) − (106.37 × 0) − (39.88 × 136
240⁄ ) + (186.12 × 0 × 0)

= 711.9013                                                                                                                     

(II) 2000 packed lunch  

�̂�0,1 = 734.50 − (219.71 × 0) − (106.37 × 1) − (39.88 × 23
58⁄ ) + (186.12 × 0 × 1)

= 612.3155                                                                                                                    

(III) 2009 school lunch  

�̂�1,0 = 734.50 − (219.71 × 1) − (106.37 × 0) − (39.88 × 37
78⁄ ) + (186.12 × 1 × 0)

= 495.8726                                                                                                                    

(IV) 2009 packed lunch  

�̂�1,1 = 734.50 − (219.71 × 1) − (106.37 × 1) − (39.88 × 70
137⁄ ) + (186.12 × 1 × 1)

= 574.163400                   



 

These fitted means are displayed in Table 3.1, next to the corresponding raw means from the previous chapter 

(from Table 2.2). On comparison, the fitted means appear to be very similar to the observed means. The values 

have been given to 4 decimal places so that the differences can be observed, as they are in fact identical to 2 

decimal places. This indicates that this model provides an excellent fit to the data.  

 2000 2009 

Observed mean Fitted mean Observed mean Fitted mean 

School lunch 711.9010 711.9013 495.8709 495.8726 

Packed lunch 612.3197 612.3155 574.1635 574.1634 
Table 3.1: Fitted means and observed means (from Table 2.2) of lunchtime energy intake (kcal) for each category  

If the saturated model had been used instead – a model including all terms and all interactions – the observed 

and fitted means would actually be identical, as all variation would be accounted for. The removal of a term 

(or terms) causes the fitted means to deviate from the observed means; with the extent of deviation depending 

on the importance of the removed variable(s).  

It is evident from the closely matched values in Table 3.1 that the omission of the various two-way interactions 

and the three- way interaction has only caused minute departures from the observed means. Therefore, these 

interactions clearly do not account for much of the variation and are unimportant. It is therefore sensible not 

to include them for the sake of a simpler model.  

Although the fitted means closely match the observed means, this does not address the problem of the varying 

sex ratio between groups, as shown in calculations (I) – (IV) above. This effect can be annulled by adjusting 

the means for the sex variable, which is demonstrated in the next section.  

3.3 Adjusted means (or least squares means) 

Having identified the need to correct for the sex imbalances, the concept of adjusted means is now introduced. 

Adjusted means are within-group averages, for which the imbalance in a certain covariate has been corrected 

(Dallal, 2001). They are based on the estimated value of the model parameters, and so they are also known as 

least squares means (Dallal, 2001). 

3.3.1 Manual calculation  

The fitted means for group (𝑖𝑗) were calculated using the female proportion of the group as the sex value, 

which were inconsistent amongst the groups. In contrast, the least squares means are found by using a fixed 

value of sex (usually the mean value) for all categories (Dallal, 2001). Letting 𝑚 =  0.5185185, the mean 

sex value from the dataset, the adjusted mean for an (𝑖𝑗)𝑡ℎ  covariate combination is calculated using the 

following equation. 

 �̂�𝑖𝑗 = 734.50 − 219.71 𝐼[𝑌𝑒𝑎𝑟 = 2009] − 106.37 𝐼[𝐿𝑢𝑛𝑐ℎ = 𝑝𝑎𝑐𝑘𝑒𝑑 ] − 39.88𝑚 

+ 186.12 𝐼[𝑌𝑒𝑎𝑟 = 2009 & 𝐿𝑢𝑛𝑐ℎ 𝑡𝑦𝑝𝑒

= 𝑝𝑎𝑐𝑘𝑒𝑑].                                             

(3.4) 

Thus, the calculations for the least squares means are as follows. 



 

(V) 2000 school lunch  

�̂�0,0 = 734.50 − (219.71 × 0) − (106.37 × 0) − 39.88𝑚 + (186.12 × 0 × 0)

= 713.8215                                                                                                                    

(VI) 2000 packed lunch  

�̂�0,1 = 734.50 − (219.71 × 0) − (106.37 × 1) − 39.88𝑚 + (186.12 × 0 × 1)

= 607.4515                                                                                                                    

(VII) 2009 school lunch  

�̂�1,0 = 734.50 − (219.71 × 1) − (106.37 × 0) − 39.88𝑚 + (186.12 × 1 × 0)

= 494.1115                                                                                                                

(VIII) 2009 packed lunch  

�̂�1,1 = 734.50 − (219.71 × 1) − (106.37 × 1) − 39.88𝑚 + (186.12 × 1 × 1)

= 573.8615                                                                                                                

These means are shown in Table 3.2, alongside the corresponding fitted means from Table 3.1. 

 2000 2009 

Fitted Least squares Fitted Least squares 

School lunch 711.90 713.82 495.87 494.11 

Packed lunch 612.32 607.45 574.16 573.86 
Table 3.2: Least squares means, adjusted for sex, of lunchtime energy intake (kcal) for each category, alongside the fitted means 

calculated previously (Table 3.1) 

On comparison to the fitted means calculated beforehand, there have been fairly notable shifts in each 

category, suggesting that the unadjusted means were indeed skewed by sex imbalances. For instance, the raw 

mean of 612.3 kcal for the 2000-packed lunch group, which contained a small female proportion of less than 

40%, was likely to be dominated by the boys’ intake and thus be too large. As expected, the least squares 

mean has corrected for this by decreasing the mean to 607.45 kcal. Similar effects have occurred in the other 

groups in accordance with their proportions of males and females.  

Thus, despite the sex imbalance in the groups, these least squares means for the year and lunch type 

combinations have the desired comparability. 

3.3.2 Calculation by lsmeans  

A package called lsmeans can be downloaded in R to compute the least squares means more efficiently. 

The output summary below gives the least squares means for lunchtime energy intake, adjusted for sex. The 

model has been called ‘energy’ and the year and lunch type variables (called yearf and lunchf to show that 

they have been defined as factors) are included in the formula. This instructs the program to compute least 

squares means for combinations of these factors, adjusting for any leftover covariate(s) in the model – in this 

case sex.  

> lsmeans(energy,~yearf+lunchf) 
 yearf lunchf   lsmean       SE  df lower.CL upper.CL 
 0     0      714.5599 11.05279 508 692.8451 736.2747 
 9     0      494.8482 19.31055 508 456.9099 532.7866 
 0     1      608.1938 22.44414 508 564.0990 652.2885 
 9     1      574.6002 14.56874 508 545.9778 603.2226 
 



 

These adjusted means are displayed in Table 3.3, next to the manually derived adjusted means that were given 

in Table 3.2.  

 2000 2009 
lsmeans Manual lsmeans Manual 

School lunch 714.56 713.82 494.85 494.11 

Packed lunch 608.19 607.45 574.60 573.86 

Table 3.3: Least squares means, adjusted for sex, computed manually alongside those computed by lsmeans 

It appears that the least squares means calculated by lsmeans differ from those obtained manually. The 

differences are small, but for each group, they differ by the same amount, which requires further investigation: 

 714.56 − 713.82 = 0.74 

 494.84 − 494.11 = 0.74 

 608.19 − 607.45 = 0.74 

 574.60 − 573.86 = 0.74 

3.3.3 The difference between the manual method and lsmeans 

Recall that the manual method removed the sex effect by using a constant value of 𝑚 for all groups. This gave 

predictions for lunchtime energy intake at this uniform sex value. The mean sex value from the data set was 

used as the value of 𝑚, but in actual fact any choice of 𝑚 would be possible. Any 𝑚 would succeed in 

removing the sex effect, provided it is fixed, thus any 𝑚 would achieve the desired group-comparability.  

Using different values of 𝑚 would inevitably produce different adjusted means for the four groups, since they 

would substitute different values into (3.4). This is an identifiability issue – the adjusted means obviously vary 

depending on the value of 𝑚, making them not unique (Jacquez and Greif 1985). As such, they are not 

estimable quantities. In essence, the adjusted means themselves are unsuitable to compare due to their 

dependence on the subjective choice of 𝑚. 

However, this study is concerned with the comparison of groups, and the differences between the group means 

are in fact unique. This is because when one adjusted mean is subtracted from another to obtain the difference, 

the 𝑚’s cancel out, and so the differences are independent of 𝑚. These are therefore estimable quantities that 

can be given to the nutritionists for assessment.  

Consequently, the choice of 𝑚 is arbitrary. With that said however, a choice of 𝑚 that produces plausible 

means is favourable, because they are to be assessed by nutritionists, who may not have an in-depth knowledge 

of statistics and may be disconcerted by implausible mean intakes. 

The discrepancies between the manually adjusted means and those found by lsmeans are explained by the 

fact it applies a different choices of 𝑚. This section now proceeds to show which value is used by lsmeans. 

For models where all covariates are categorical, the lsmeans command begins by calculating the expected 

response for all combinations of all factor levels. In this case, it computes the expected lunchtime energy 

intake for each combination of year, lunch type and gender, of which there are eight. This is shown in the 

following output.  



 

> summary(ref.grid(energy)) 
 yearf lunchf genderf prediction       SE  df 
 0     0      0         734.5017 13.96239 508 
 9     0      0         514.7901 20.60255 508 
 0     1      0         628.1356 23.18240 508 
 9     1      0         594.5420 16.49927 508 
 0     0      1         694.6180 12.81805 508 
 9     0      1         474.9064 20.88665 508 
 0     1      1         588.2519 24.18631 508 
 9     1      1         554.6584 16.34603 508 

 

Thus, for each group (i.e. each year and lunch combination), there are two associated predictions instead of 

one – one for males and one for females. When lsmeans is called, by default it combines these two 

predictions by computing their simple average, giving a least squares mean for each group. Essentially, 

lsmeans adjusts the group means for sex by averaging the mean of the boys’ intakes and the mean of the 

girls’ intakes. For example, lsmeans gives the least squares mean for the 2000-school lunch group (year = 

0 and lunch = 0) by averaging the boy mean from this group and the girl mean from the group (highlighted in 

yellow above). Thus the adjusted mean lunchtime energy intake in 2000 for school lunch children is 

�̂�𝐿𝑆𝑀𝐸𝐴𝑁𝑆,0,0 =
734.5017 + 694.6180

2
= 714.56 

This matches the adjusted mean obtained from lsmeans given in Table 3.3. Similar calculations show that 

this is true for each of the groups, which confirms that this is indeed the method used by the lsmeans 

command. This method is equivalent to using 𝑚 = ½  in (3.4), the proof of which is as follows. 

Proof. The lsmeans package computes the least squares means for a group of type (𝑖𝑗) by averaging the boy 

and girl intakes of that group, i.e. 

                 �̂�𝐿𝑆𝑀𝐸𝐴𝑁𝑆,𝑖𝑗 =
1

2
(�̂�𝑖𝑗0 + �̂�𝑖𝑗1)                                                                                                                     

                  =
1

2
{(�̂� + �̂�𝑖 + �̂�𝑗 + (𝛼�̂�)

𝑖𝑗
+ 𝛾0) + (�̂� + �̂�𝑖 + �̂�𝑗 + (𝛼�̂�)

𝑖𝑗
+ 𝛾1)} 

                 =
1

2
(2�̂� + 2�̂�𝑖 + 2�̂�𝑗 + 2(𝛼�̂�)

𝑖𝑗
+ 𝛾0 + 𝛾1)                                           

                 =
1

2
(2�̂� + 2�̂�𝑖 + 2�̂�𝑗 + 2(𝛼�̂�)

𝑖𝑗
+ 0 + 𝛾)                                              

(where the parameter constraint 𝛾0 = 0 has been imposed and so the gender effect is equal to the female effect, 

i.e.  𝛾 = 𝛾1) 

 
      = �̂� + �̂�𝑖 + �̂�𝑗 + (𝛼�̂�)

𝑖𝑗
+

𝛾

2
.                                                            

(3.5) 

The adjusted mean for the (𝑖𝑗)𝑡ℎ group can also be given, as before, by 

 �̂�𝑀𝐴𝑁𝑈𝐴𝐿,𝑖𝑗 = �̂� + �̂�𝑖 + �̂�𝑗 + (𝛼�̂�)
𝑖𝑗

+ 𝑚𝛾.  (3.6) 

Equating (3.5) and (3.6) gives 



 

�̂� + �̂�𝑖 + �̂�𝑗 + (𝛼�̂�)
𝑖𝑗

+
𝛾

2
= �̂� + �̂�𝑖 + �̂�𝑗 + (𝛼�̂�)

𝑖𝑗
+ 𝑚𝛾                                        

⇒   
𝛾

2
= 𝑚𝛾                                              

⇒  𝑚 = 1
2⁄ .           □                              

The contrasting choices, 𝑚𝑀𝐴𝑁𝑈𝐴𝐿  =  0.5185185 and 𝑚𝐿𝑆𝑀𝐸𝐴𝑁𝑆 = 0.5, account for the discrepancies in the 

least squares means from the two methods. 

Since both choices of 𝑚  give plausible values, neither option is preferable to the other. So, for ease of 

calculation, lsmeans will be used throughout the rest of this project, as it is more time-efficient than manual 

computation.  

3.4 Diagnostic checks 

Diagnostic checks of the model must be performed throughout the analysis, to test its adequacy. This is 

because the multiple linear regression model relies on some fundamental assumptions (Poole & O’Farrell 

1970), which will be discussed in the upcoming section, and any inferences made from the model are not valid 

unless these assumptions are satisfied.   

3.4.1 Assumptions of the multiple linear regression model 

Note that in this section, subscript 𝑖 now indexes all data points, regardless of covariate value, instead of 

denoting the year variable as in the previous section.  

The underlying assumptions of linear regression are as follows.  

1. Linearity of the parameters. It is assumed that the response variable, Y, is a linear combination of the 

parameters, 𝛽0, 𝛽1, … , 𝛽𝑝 , but not necessarily a linear combination of the explanatory variables 

𝑋1, 𝑋2, … , 𝑋𝑝 (Williams et al., 2013). If this assumption is not met, then the coefficients can lead to 

inaccurate conclusions about the relationships between the variables. 

2. Zero conditional mean of errors. For any combination of covariate values, the errors (defined later) are 

assumed to have a mean of zero. Breach of this assumption can cause the coefficients to be biased 

(Williams et al., 2013). A reason for which this may occur is violation of the linearity assumption 

above. 

3. Independence of errors. It is assumed that the error terms are independent of one another, otherwise 

the estimates of the standard errors of the coefficients and significance may be biased. The estimates 

of the coefficients themselves would remain unbiased, despite violation of the assumption, but would 

be inefficient. Note that the assumption only requires independence of the errors – not the observations 

themselves (Williams et al., 2013).  



 

4. Homoscedasticity of errors. The errors are assumed to have an unknown, constant variance across all 

levels of the explanatory variables. Violation of this assumption would not cause the ordinary least 

squares estimates to be biased or inconsistent, but would make them inefficient (Williams et al., 2013). 

5. Normality of errors. The error terms are assumed to follow a Normal distribution. This assumption is 

not actually required to provide unbiased, consistent and efficient coefficient estimates, but rather to 

make significant tests and confidence intervals valid. Due to the central limit theorem, this assumption 

becomes less important as the sample size is increased (Williams et al., 2013).  

The error terms are defined as the differences between the observed values of the response variable and the 

values of the response predicted by the true regression model for the whole population. Since the true values 

of the parameters are rarely known, the errors cannot usually be calculated. It is therefore difficult to check 

that the assumptions on the errors hold. Instead, the assumptions can be checked for the estimated residuals, 

denoted by 𝑒𝑖, which are the differences between the observed response values and the values predicted by 

the estimated regression model. If the assumptions hold for the estimated residuals, it is reasonable to assume 

that they hold for the errors as well.  

However, it is not normally the raw estimated residuals themselves that are examined, but a standardized 

version instead. In this analysis, the studentized residuals will be used, given by 

𝑟𝑖 =
𝑒𝑖

√𝑀𝑆𝐸(1 − ℎ𝑖𝑖)
, 

where 𝑀𝑆𝐸 denotes the mean square error and ℎ𝑖𝑖 is known as the leverage, given by the 𝑖𝑡ℎ diagonal entry 

of the hat matrix, 𝐻 

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 

where 𝑋 is the data matrix. 

Checking for homoscedasticity of residuals 

To check for homoscedasticity of the residuals, scatterplots will be produced of the (studentized) residuals 

against the fitted values, and against each of the covariates. For the assumption to hold, the residuals should 

be randomly scattered around zero, throughout the full length of the plot. The appearance of any systematic 

trend or pattern would indicate a departure from the assumption, suggesting non-constant variance, which 

would weaken, but not completely invalidate, the analysis. 

Continuing with lunchtime energy intake as an example, the plots of the residuals of these data against the 

fitted values and covariates are shown in Figure 3.1. A graphical technique called ‘jittering’ has been 

implemented, whereby a random variable generated from a Uniform (−0.1, 0.1) distribution is added to each 

data point. This is because the covariates, year and lunch type, are 2-level factors, thus can only take one of 

two values. Consequently, simply plotting them against the residuals does not produce random scatter across 

the plots, but instead produces a ‘column’ of points at each value, which make the data difficult to view. 



 

Similarly, the fitted values can only take a limited number of values, for each combination of levels. Jittering 

the data means that the covariates and fitted values are no longer restricted to limited values, but are only 

changed inconsequentially. The jittered residual plots in Figure 3.1 show randomly scattered clouds’ of points 

around each value, with no apparent pattern or trend. Therefore, there is no evidence to suggest that the 

variances are not constant, so the assumption holds for lunchtime energy intake.  

Checking for Normality of residuals 

The assumption of Normality can be checked by producing a Normal probability plot. This is done by plotting 

the ordered residuals of the sample against the corresponding order statistics from a standard Normal 

distribution. The assumption of Normality is justified if the points fit reasonably well to a straight line; large 

deviations from the line are evidence to suggest non-Normality. Mild non-Normality is safe to ignore, but 

strong non-Normality should be addressed.   

For lunchtime energy intake, the Normal probability plot is shown in Figure 3.2. Most of the points lie on the 

straight line, with a few small deviations at the tails, but overall there is no apparent curvature and there is no 

reason to suspect non-Normality of the residuals. Thus this assumption holds for lunchtime energy intake.   

3.4.2 Influential observations 

As well as checking some of the model assumptions on the errors, it is important to check for the presence of 

influential observations, as part of the assessment of model adequacy. Influential observations are types of 

outliers that not only diverge from the general pattern, but significantly affect the parameter estimates. They 

are therefore considered disadvantageous to the analysis, because ideally, conclusions should not be 

dominated by individual observations that are extreme and not representative of the rest of the population.  

To detect influential observations, outliers that seem potentially influential should be flagged up and 

temporarily removed. If performing the regression without these points has a sizeable effect on the regression 

coefficients, this suggests that they are indeed influential and their role in the analysis requires careful scrutiny. 

The identification of an influential observation does not provide justification for excluding it, unless there is 

good reason to believe that the observation is invalid – for example, if there has been a recording error or if 

the subject was not from the intended population (Williams et al., 2013).  

The discrepancy between the current parameter estimate and the estimate obtained if that value was removed, 

can be measured by Cook’s distance. Plotting the points against their Cook’s distance is a good indicator of 

potentially influential observations; points with large distances in comparison to the others should be 

investigated. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Returning to the 

lunchtime energy intake 

Figure 3.1: Residual plots for lunchtime energy intake  

Figure 3.2: Normal probability plot for lunchtime energy intake 



 

data as an example, Figure 3.3 shows the plot of their Cook’s distances. Evidently, the 207th observation has 

a large value of Cook’s distance relative to the rest, so it is sensible to investigate the effects of removing it. 

Table 3.4 compares the original parameter estimates with the coefficients obtained having excluded the point 

in question. 

 

 

 

 

 

 

 

 

 

 

 Coefficients based on 

total data set 

Coefficients having 

omitted observation 207 

Difference 

Intercept 734.50 733.21 -1.29 

Year -219.71 -219.50 0.21 

Lunch -106.37 -118.54 -12.17 

Gender -39.88 -37.60 2.28 

Year*Lunch 186.12 198.20 12.08 
Table 3.4: Coefficients from model having removed the point with large Cook’s distance compared with the coefficients from 
the model based on total data set, along with the differences 

Most of the changes in parameter estimates are not severe and do not cause concern. The magnitude of the 

most drastic change is 12.17, in the coefficient for lunch type, followed by 12.08, in the coefficient for the 

interaction. These are actually fairly large, and perhaps warrant some further investigation. However, the 207th 

point will be retained in the analysis as we have no basis on which to omit it. 

3.5 Summary 

In summary, this chapter has addressed the problem of sex imbalance in the sample by making the groups 

comparable. This was achieved by fitting a linear regression model to the lunchtime energy data to obtain a 

regression equation, then adjusting the fitted mean of each group for the effects of sex, by fixing the sex 

variable at a uniform value. The choice of this value was found to be arbitrary, since it has no effect on the 

estimable quantities – the differences between the group means. Nevertheless, a choice that leads to credible 

means is preferable, so that they can be interpreted straightforwardly by nutritionists who do not have 

statistical backgrounds. Typically, the mean of the imbalanced variable is used as the fixed value, but the R 

package lsmeans uses 0.5 by default. Both are satisfactory choices as they lead to plausible means. For the 

Figure 3.3: Observations plotted against their Cook’s distance 



 

purpose of timesaving, lsmeans with default setting will be used for the upcoming analyses of other 

nutrients.  

Diagnostic checks of model adequacy was also covered in this chapter. Assumptions 4 and 5 about the errors 

can be checked using residual and Normal probability plots. In addition, plots of Cook’s distance were used 

to detect influential observations.  

The methodology developed in this chapter will be implemented to analyse some of the key nutrients in the 

next chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 Detailed analysis of key nutrients 

This chapter applies the methodology described in Chapter 3 to analyse several key nutrients: energy, sodium, 

saturated fat and vitamin C (other nutrients not included due to space constraints). For each nutrient, linear 

models will be fitted to both the lunchtime and daily intakes, enabling calculation of adjusted means for each 

group and then inferences will be made on their differences. Diagnostic checks will be performed throughout. 

The aim of this chapter is to present the findings in an accessible format for nutritionists to interpret. 

4.1 Presentation of data: is the interaction significant? 

Table 4.1 shows the p-values of each predictor variable, after fitting the linear regression model (3.1) to the 

lunchtime and daily intakes of each nutrient. The presentation of the results will vary, depending on whether 

the interaction term between year and lunch type is significant or not. 

 Lunchtime intake Daily  intake 

Interaction Year Lunch Interaction Year Lunch  

Energy <0.0001   0.172 <0.0001 0.438 

Sodium <0.0001   0.992 <0.0001 0.066 

Sat. fat <0.0001   0.120 <0.0001 0.991 

Vitamin C 0.361 0.093 0.513 0.783 0.015 0.409 
Table 4.1: p-values for predictor variables, obtained from fitting linear regression models to the data for lunchtime and daily 

nutrient intake  

Significant interaction term 

If the interaction term is significant, this suggests that the effects of year are different for each lunch type 

(and conversely, the effects of lunch type are different in each year). In this case, no importance should be 

attached to the p-values of the year and lunch variables, which correspond to their main effects, because 

there is no such thing as a ‘main’ effect of year if it behaves differently for each lunch type (and similarly 

there is no ‘main’ effect of lunch). To this effect, if the interaction is indeed significant, this means that the 

year and lunch variables are clearly significant, regardless of their p-values, via their interaction. This is why 

the p-values for year and lunch for nutrients with significant interaction are deliberately not provided in the 

table above. For these nutrients, a two-way table is necessary to present the means for each year and lunch 

type separately, along with their differences. 

Non-significant interaction term 

On the contrary, if the p-value for the interaction term is larger than 0.05, then there is no evidence to 

suggest that year affects intake differently for each lunch type (this does not necessarily mean that this is not 

the case, but it means that these data do not provide enough evidence to verify this). In this case, the 

inclusion of an interaction term complicates the presentation and visualisation of the results, yet does not 

add anything worthwhile to the model. For this reason, if the interaction is not significant, then the model 

will be re-fitted without it. This simplifies the presentation, as a two-way table is no longer required – 

instead, a one-way table for the difference between years and a separate one-way table for the difference 

between lunch types will be used to present the means.  



 

4.2 Energy  

At the time of the new standards, childhood obesity was a prevalent problem and so it was supposed that 

children were exceeding the RDA of energy. For this reason, it was intended that the standards would reduce 

average energy intake.  

4.2.1 Lunchtime energy intake 

When the model is fitted to lunchtime energy intake, the significant interaction term (p=1.44×10-7) between 

year and lunch signifies that a two-way table is required to present the means. These are shown in Table 4.2, 

along with the differences and the 95% confidence interval of these differences.  

 2000 2009 Difference  95% confidence 

interval of difference 

School lunch 714.6 494.8 -219.7 (-263.4,-176.1) 

Packed lunch 608.2 574.6 -33.6 (-86.1 18.9) 

Difference  -106.4 79.8 186.1 (117.6, 254.7) 

95% confidence 

interval of difference 

(-155.5, 57.2) (32.33, 127.2)   

Table 4.2: Least squares means, adjusted for sex, for lunchtime energy intake (kcal) of each year and lunch type combination 

It appears that between 2000 and 2009, school lunches decreased in energy content by around 220 kcal, which 

is quite a substantial decline, suggesting that an improvement was made to school lunches in this time period. 

The energy content of packed lunches decreased too, but only by around 34 kcal, which is not strong evidence 

for an improvement in packed lunches.  

In 2000, school lunches were on average about 106 kcal more calorific than packed lunches, but by 2009 they 

had become less calorific than packed lunches by about 80 kcal. These are reasonably large quantities, which 

is moderate evidence to suggest that packed lunches were the healthier option in 2000, but school lunches 

were the healthier option in 2009 (in terms of calorie content).  

The difference between the differences is 186.12 kcal. This is a little more complex to interpret. It means that 

the change in energy intake over the years was roughly 186 kcal more in school lunch children than in packed 

lunch children, and that the difference in energy intake between packed and school lunch children was 186 

kcal more in 2000 than it was in 2009.  

4.2.2 Daily energy intake 

When the model is fitted to the daily energy intakes, the large p-value for the interaction term (p=0.172) 

suggests that it is not significant and it is therefore removed from the model. A two-way table is thus not 

required.   

Table 4.3 shows the adjusted means for the two years, with the difference and corresponding confidence 

interval; Table 4.4 shows the adjusted means for the two lunch types, also with the difference and confidence 

interval.  

 2000 2009 Difference 95% confidence 

interval of difference 



 

Average daily energy 

intake 

1904.9 1640.2 -264.7 (-337.7, -191.7) 

Table 4.3: Least squares means, adjusted for sex, for daily energy intake (kcal) in each year 

 

 School lunch Packed lunch Difference 95% confidence 

interval of difference 

Average daily energy 

intake 

1766.8 1778.3 11.5 (-62.8, 85.9) 

Table 4.4: Least squares means, adjusted for sex, for daily energy intake (kcal) of each lunch type 

It appears that the mean daily energy intake decreased by about 265 kcal from 2000 to 2009, which is a 

reasonably large reduction, relative to the RDA. This suggests that the changes to school food standards had 

an overall positive effect on daily energy consumption for all children, regardless of lunch type.  

There is a marginal difference of just under 12 kcal between the daily energy intake of school and packed 

lunch children. Thus, neither lunch type appears to be the obvious better option, as there seems to be not much 

difference between them in terms of daily energy intake.  

4.2.3 Diagnostic checks 

The residual plots and the Normal probability plots for the lunchtime and daily energy analysis (not provided 

due to space constraints) do not give reason to suspect a departure from model assumptions. Likewise, the 

regression coefficients excluding points with large Cook distances do not suggest that any point is influential.  

4.3 Sodium intake 

As for energy intake, it was hoped that the new standards would reduce the average sodium intake of 

schoolchildren, as it was believed that they were consuming too much. Sodium in the diet comes largely from 

salt, and this has negative effects on health, such as causing high blood pressure. 

4.3.1 Lunchtime sodium intake 

For the lunchtime sodium intake model, the p-value for the interaction term is very small (p=2.2×10-7), so a 

two-way table is required. Table 4.5 shows the adjusted means, along with their differences and confidence 

intervals, and the difference between the differences.  

 2000 2009 Difference  95% confidence 

interval of difference 

School lunch 891.8 515.9 -375.9 (-447.3, -304.5) 

Packed lunch 958.2 881.7 -76.5 (-162.3, 9.3) 

Difference 66.4 365.8 -299.4 (-411.5, -187.4) 

95% confidence 

interval of difference 

(-14.0, 146.8) (288.3, 443.4)   

Table 4.5: Least squares means, adjusted for sex, for lunchtime sodium intake (mg) of each year and lunch type combination 

There was a significant decline in mean lunchtime sodium intake, of almost 376 mg, from 2000 to 2009 in 

school lunch children, implying a big improvement was made to school lunches regarding sodium content. 

The mean for packed lunch children decreased by 76 mg, which is a slight reduction, giving no strong evidence 

of an improvement to packed lunches in the same time period.  



 

In 2000, the average lunchtime sodium intake of school and packed lunch children in the sample differed by 

just 66 mg, giving no indication of a significant difference between them. However, by 2009, the mean for 

school lunch children was 366 mg less than that of packed lunch children, suggesting that school lunches were 

the healthier option in 2009 in terms of lunchtime sodium intake.  

The difference between the differences is about -300 mg. This means that the change in lunchtime sodium 

intake from 2000 to 2009 was 300 mg more substantial in school lunch children than packed lunch children. 

Likewise, the difference between mean lunchtime sodium intake of school and packed lunch children was 300 

mg more in 2009 than in 2000.  

4.3.2 Daily sodium intake 

Fitting the model to the daily sodium intake results in a large p-value for the interaction term (p=0.992), and 

so it is excluded. Table 4.6 shows the mean daily sodium intakes for each year; Table 4.7 shows the mean 

daily sodium intake for each lunch type. 

 2000 2009 Difference 95% confidence 

interval of difference 

Average daily sodium 

intake 

2630.8 2150.3 -480.5 (-594.7, -366.3) 

Table 4.6: Least squares means, adjusted for sex, for daily sodium intake (mg) of each year 

 

 School lunch Packed lunch Difference 95% confidence 

interval of difference 

Average daily sodium 

intake 

2311.4 2469.7 158.3 (42.0, 274.6) 

Table 4.7: Least squares means, adjusted for sex, for daily sodium intake (mg) of each lunch type 

Due to the insignificant interaction, the daily sodium intake changes by the same amount across the years for 

both the lunch types. The change for both lunch types is a decrease of 481 mg, which is a considerable 

reduction. This is evidence to suggest that children’s overall diets improved in terms of daily sodium intake 

in this time period.  

In both 2000 and 2009, the average daily sodium intake of school lunch children was 158 mg less than that of 

packed lunch children. This is a reasonably large amount, so there is some evidence to suggest that having a 

school lunch caused children to consume less sodium per day compared to packed lunch.  

4.3.3 Diagnostic checks 

The plots for the diagnostic checks of both sodium models show no cause for concern. These models are 

therefore adequate.  

4.4 Saturated fat intake 

As for energy and sodium intake, the revised standards intended to reduce saturated fat intake, as it is 

associated with high cholesterol and cardiovascular disease.  



 

4.4.1 Lunchtime saturated fat intake 

The significant p-value of the interaction term (p=6.22×10-6) necessitates the two-way table to present the 

means, which are shown in Table 4.8. 

 2000 2009 Difference  95% confidence 

interval of difference 

School lunch 10.2 6.3 -4.0 (-5.0, -3.0) 

Packed lunch 9.7 9.3 -0.3 (-1.5, 0.9) 

Difference -0.6 3.1 -3.6 (-5.2, -2.1) 

95% confidence 

interval of difference 

(-1.7, 0.6) (2.0, 4.2)   

Table 4.8: Least squares means, adjusted for sex, for lunchtime saturated fat intake (g) of each year and lunch type 

combination 

For school lunch children, there has been a decrease of almost 4 grams in their lunchtime saturated fat 

consumption, which is considerably large relative to a third of the RDA, suggesting that the standards have 

improved the saturated fat content of school lunches. For packed lunch children, the mean lunchtime saturated 

fat intake changed by less than a third of a gram, so there is no evidence of a change to saturated fat content 

in packed lunches. 

In 2000, the school lunch children consumed about half a gram more saturated fat during lunchtime than the 

packed lunch children, giving no evidence of a real difference between the lunch types, whereas in 2009, the 

school lunch children actually consumed about 3 grams less than the packed lunch children, which is a 

reasonably large amount. This suggests that the improvement to school lunches caused them to become the 

healthier option by 2009, in regards to saturated fat content.  

The difference of differences is 3.64 grams, so the change in saturated fat intake from 2000 to 2009 was almost 

4 grams more amongst school lunch children than packed lunch children – a fairly large quantity. Similarly, 

the difference between mean saturated fat intake of school and packed lunch children was almost 4 grams 

larger in 2009 than 2000.  

4.4.2 Daily saturated fat intake 

The large p-value for the interaction term (p=0.120) means that it can be removed from the model and that 

two-way tables are not necessary to display the means. The means for the years of daily saturated fat intake 

are displayed in Table 4.9; the means for the lunch types are shown in Table 4.10.  

 2000 2009 Difference  95% confidence 

interval of difference 

Average daily 

saturated fat intake 

27.9 23.8 -4.1 (-5.6, -2.6) 

Table 4.9: Least squares means, adjusted for sex, for daily saturated fat intake (g) of each year 

 School lunch Packed lunch Difference  95% confidence 

interval of difference 

Average daily 

saturated fat intake 

25.2 26.4 1.2 (-0.3, 2.7) 

Table 4.10: Least squares means, adjusted for sex, for daily saturated fat intake (g) of each lunch type 



 

It seems that in 2009, children consumed 4 grams less saturated fat a day compared to 2000, which is not a 

relatively large amount, giving no strong evidence for an improvement in saturated fat intake.  

School lunch children consumed around 1 gram less of saturated fat a day compared to packed lunch children, 

which is a marginal difference, so there is no evidence to suggest that either lunch type leads to in a smaller 

daily intake of saturated fat. 

4.4.3 Diagnostic checks 

From the plots for the diagnostic checks, these models satisfy the assumptions of linear regression. 

4.5 Vitamin C intake 

The revised standards aimed to increase school children’s intake of vitamin C, as it is essential for the growth 

and repair of tissues. 

4.5.1 Lunchtime vitamin C intake 

The interaction term for this model has a large p-value (p=0.361) and so it is removed. Table 4.11 shows the 

mean lunchtime intakes of vitamin C for the years; Table 4.12 shows the means for the lunch types.  

 2000 2009 Difference  95% confidence 

interval of difference 

Average lunchtime 

vitamin C intake 

27.5 34.3 6.8 (2.3, 11.30) 

Table 4.11: Least squares means, adjusted for sex, for lunchtime vitamin C intake (mg) of each year 

 

 School lunch Packed lunch Difference  95% confidence 

interval of difference 

Average lunchtime 

vitamin C intake 

28.6 33.1 4.4 (-0.2, 9.0) 

Table 4.12: Least squares means, adjusted for sex, for lunchtime vitamin C intake (mg) of each lunch type 

The average vitamin C content increased by a little less than 7 mg from 2000 to 2009. This is not a large 

amount, and so does not provide strong evidence to suggest that an improvement occurred to the vitamin C 

content of children’s lunches.  

Likewise, the difference in vitamin C intake between the lunch types was also small; school lunches provided 

about 4 mg less vitamin C than packed lunches, which is not enough evidence to suggest that packed lunches 

were the better option in regards to vitamin C.  

4.5.2 Daily vitamin C intake 

There is a large p-value for the interaction term in this model (p=0.783), meaning the interaction is removed. 

Tables 4.13 and 4.14 shows the mean daily intakes of vitamin C for the years and lunch types respectively.  

 2000 2009 Difference 95% confidence 

interval of difference 

Average daily 

vitamin C intake 

78.9 93.6 14.7 (6.3, 23.1) 

Table 4.13: Least squares means, adjusted for sex, for daily vitamin C intake (mg) of each year 



 

 

 School lunch Packed lunch Difference  95% confidence 

interval of difference 

Average daily 

vitamin C intake 

83.0 89.5 6.5 (-2.1, 15.0) 

Table 4.14: Least squares means, adjusted for sex, for daily vitamin C intake (mg) of each lunch type 

It appears that throughout the day, children consumed around 15 mg more vitamin C in 2009 than in 2000, 

regardless of what lunch type they had. This quantity is relatively small compared to the RDA so this does not 

provide evidence for a change.  

In both years, children who had a packed lunch consumed about 6 mg more vitamin C throughout the whole 

day than those who had a school lunch. Once again, this quantity is not large enough to support the conclusion 

that one lunch type is a better option.  

4.5.3 Diagnostic checks 

For both the lunchtime and daily intakes, the diagnostic checks of these models reveal model inadequacies. 

Although the residual plots are satisfactory with randomly scattered points, on the other hand the Normal 

probability plot has numerous points that deviate far from the straight line. This can be seen in Figure 4.1. 

Curvature is evident in both plots, providing strong evidence of non-Normality of the residuals. This breaks 

the model assumption of Normality, which invalidates the significance tests and the confidence intervals 

above. Consequently, the conclusions that were made about the differences between years and lunch types are 

invalidated. The procedure to address the non-Normailty issue is described in the next chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Summary 

Before proceeding to resolve the non-Normality issue, the findings of this section will first be summarized.  

Figure 4.1: Normal probability plots for lunchtime and daily vitamin C intake 



 

For the lunchtime data of most nutrients, the year*lunch interaction was significant, whereas for the daily data 

it was not. This makes intuitive sense because the way that lunch type interacts with year is likely to be diluted 

when considering the consumption throughout the whole day rather than just during lunch. This was true for 

all nutrients except Vitamin C, but since these data broke the Normality assumption, the conclusions about it 

lost validity. This means that for lunchtime analysis, the lunch types are considered separately, but for daily 

analysis, they are pooled together.  

The lunchtime consumption of energy, sodium and saturated fat declined significantly over the years in the 

case of school lunch children, but not significantly for packed lunch children, which was expected due to 

standards being applied to school lunch only.  

The daily consumption of energy and sodium fell significantly over the years, but there was no evidence to 

suggest the same outcome for saturated fat. There was also no evidence to suggest that the daily consumption 

of any nutrients differed for school lunch and packed lunch children, which is an indicator that the revised 

standards had a similar impact on the daily diets of all children, irrespective of lunch type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 Departures from model assumptions 

This chapter describes how to deal with models that do not satisfy the Normality assumption of linear 

regression. Considerable departures from model assumptions, such as the ones for the lunchtime and daily 

vitamin C intakes, should not simply be ignored, as they can invalidate conclusions.  

5.1 Data transformation 

Data transformation, which means performing the same mathematical operation on all observations, is a 

commonly-used tool that has many roles in data analysis. One such role is to improve the Normality of a 

dataset. The aim is to determine a transformation such that when it is applied, the data become approximately 

Normally distributed – enough so that Normality of the residuals can be assumed. A transformation must not 

change the order of the values, but can alter the distance between successive points to modify the overall shape 

of the distribution and achieve a ‘bell curve’ that is typical of a Normal distribution.  

5.2 Box-Cox power transformation 

In 1964, statisticians George Box and David Cox devised a procedure for transforming non-Normal data to 

Normality (Box & Cox, 1964). Supposedly, the pair decided to collaborate on a paper whilst both in 

Wisconsin, due to the similarity of their surnames and the fact that they were both British. Their method, 

known as the Box-Cox power transform, is now one of the most popular and commonly used methods to 

remedy the breakdown of the Normality assumption (Asar et al., 2014).  

The Box-Cox power transformation for data 𝑌𝑖, 𝑖 = 1,2, … , 𝑛, is as follows. 

 

𝑌𝑖
(𝜆)

= {
𝑌𝑖

𝜆 − 1

𝜆
,      𝑖𝑓 𝜆 ≠ 0,

log(𝑌𝑖),      𝑖𝑓 𝜆 = 0,

                                          

 

(5.1) 

where the exponent 𝜆 is known as the transformation parameter and requires estimation. Equation (5.1) is the 

‘conventional,’ one-parameter version of the transformation. Clearly, it can be applied to positive data only. 

To address this restriction, a two-parameter version was devised for non-positive data, which allows for a shift 

before transformation. This is given by 

 

𝑌𝑖
(𝜆)

= {

(𝑌𝑖 + 𝜆2)𝜆1 − 1

𝜆1
,      𝑖𝑓 𝜆1 ≠ 0,

log(𝑌𝑖 + 𝜆2),            𝑖𝑓 𝜆1 = 0.

                          

 

(5.2) 

In this case, both the transformation parameter 𝜆1 and the shift parameter 𝜆2  require estimation, and the 

condition 𝑌𝑖 > −𝜆2, for all 𝑖, is imposed so that the data are made positive by the shift (note that (5.1) is simply 

the case of the two-parameter version (5.2) with a shift equal to zero, i.e. 𝜆2 = 0).  

Usually, the Box-Cox parameters are estimated using maximum likelihood, although alternative methods have 

been proposed, both by Box and Cox (1964) – for example, they developed a method that incorporates 

Bayesian techniques – and by other authors since then (Sakia, 1992).  



 

Generally, the estimate for the transformation parameter is rounded to the nearest sensible quantity, so that a 

practical and recognisable transformation (such as square root or inverse transformation, for example) can be 

implemented. 

Once the parameter(s) have been estimated and the Box-Cox transformation applied, a setback is that the 

transformed variable will typically be on a scale that is unfamiliar to practitioners. Since results are reported 

most accessibly when on the original scale, the characteristics of the inverse transformation need 

consideration.  

As demonstrated in the previous chapter, the models for both lunchtime and daily vitamin C violate the 

Normality assumption, and so Box Cox transformations shall be applied to both.  

5.3 Lunchtime vitamin C intake 

For the lunchtime case, the two-parameter version (5.2) is required, because there were some children that 

consumed no vitamin C during lunch, meaning that the dataset includes several zeroes. 

5.3.1 Box-Cox: estimation of parameters 

The Box-Cox parameters can be estimated in R, using a package called geoR, which allows use of the 

boxcoxfit command. When called, it returns a maximum likelihood estimate for the transformation 

parameter, 𝜆1. Since a shift parameter is required too, the command lambda2=TRUE is put in the argument 

to call for an estimate of 𝜆2 also. The covariate values for the fitted model are also provided in the argument 

in the matrix xmat, which instructs R to return estimates for the model parameters as well. When this code is 

run, the following output (truncated to 4 decimal places) is returned. 

> boxcoxfit(av_vitc_L,xmat,lambda2=TRUE) 
Fitted parameters: 
 lambda  lambda2 beta0   beta1   beta2   beta3   beta4   sigmasq  
 0.4022  0.0015  6.4378  0.0302 -0.1398 -0.5743  0.1154  9.4643  

 

This suggests that to achieve approximate Normality, the data could be transformed by a shift of 0.0015, 

followed by exponentiation to a power of around 0.5. In effect, the Box-Cox method has suggested a square 

root transformation, preceded by a minute shift. This shift is rounded down to zero without problem, since all 

observations including the zeroes can be square rooted. Hence, the Box-Cox transformation for these data is 

a simple square root transformation, which will now be applied. 

5.3.2 Square root transformation 

Model  

After square rooting the data and fitting the model to these transformed data, the interaction term is removed 

from the model due to its insignificance (p=0.1310). The other covariates are all of key interest and are retained 

regardless of their p-values, but for completeness, the year variable is significant (p=0.0153) and lunch type 

is not (p=0.1618).  



 

Diagnostic checks 

Diagnostic checks of this model present no cause for concern: the residuals are randomly scattered and the 

Normal probability plot now shows an acceptable fit (Figure 5.1). This suggests that the square rooted data 

are indeed Normal, which means that the square root transformation was successful in Normalizing the data.  

As another indicator of Normality, the residual skewness can be considered. If data follow an exact Normal 

distribution, then the skewness of their residuals is obviously zero. Of course, real data is never exactly 

Normal, so at least some residual skewness is always present in real life situations, but as long as it is small 

then Normality can be assumed. In this case, the residual skewness is calculated by R to be 0.136 (to 3 d.p.). 

This small value suggests that the transformed data are at least approximately Normal, which corresponds 

with the conclusion from the Normal probability plot.    

 

 

 

 

 

 

 

 

Inference 

Hence, the adjusted means for the square-rooted data can now be calculated and compared. They are shown 

in Tables 5.1 and 5.2. These values are not particularly useful to nutritionists, however, as they are summaries 

that have been obtained from transformed data, so they do not represent typical values for mean vitamin C 

intake. To provide values on an appropriate scale for nutritionists, the values can be back-transformed, by 

squaring. These back-transformed values are also shown in Tables 5.1 and 5.2, along with their differences, 

for which the confidence intervals have been left blank deliberately. The reason for this will be explained 

shortly.  

 2000 2009 Difference  95% confidence 

interval of difference 

Means of square-

rooted data 

4.8 5.4 0.5 (0.1, 0.9) 

Back-transformed  

means 

23.5 28.7 5.2  

Table 5.1: Least squares means, adjusted for sex, of square rooted lunchtime vitamin C intake (mg) for each year, along with the 

back-transformed values 

Figure 5.1: Normal probability plot for square-rooted lunchtime vitamin C intakes 



 

 School lunch Packed lunch Difference  95% confidence 

interval of difference 

Means of square-

rooted data 

5.0 5.3 0.3 (-0.1, 0.7) 

Back-transformed 

means 

25.0 28.1 3.1  

Table 5.2: Least squares means, adjusted for sex, of square rooted lunchtime vitamin C intake (mg) for each lunch type, along with 

the back-transformed values 

It appears that vitamin C intake increased by about 5 mg from 2000 to 2009 and that packed lunches contained 

about 3 mg more vitamin C than school lunches. 

Problem with back-transformation 

However, there is a problem with interpreting the back-transformed means and their differences. Back-

transforming by squaring the means of the transformed data ensures that they are converted back to the original 

scale. This is beneficial for nutritionists’ understanding, but it has been made apparent already (in section 4.5) 

that data on this scale violates the Normality assumption, which is the reason a transformation was sought in 

the first place. This violation means that confidence intervals for the difference of the back-transformed means 

cannot be found, hence why they are left blank in the tables. This is because confidence intervals are only 

valid if a number of assumptions can be reasonably made, one of which is that the population distribution is 

approximately Normal (Williams, 2013), which is not the case for data on the original scale. As a result, valid 

conclusions can be drawn from data on the square-root scale only, which makes this transformation redundant. 

Tables 5.3 and 5.4, which contain algebraic expressions for the contents of the tables above, are provided to 

enhance the clarity of the explanation. 

 2000 2009 Difference  95% confidence 

interval of difference 

Means on square-

root scale 
√𝑌2000

̂
 √𝑌2009

̂
 �̂� = √𝑌2009

̂
− √𝑌2000

̂
 �̂� ± 𝑠. 𝑒. (𝑑) 

Means on original 

scale 
�̂�2000 = (√𝑌2000

̂ )
2

 �̂�2009 = (√𝑌2009
̂ )

2

 (√𝑌2009
̂ )

2

-(√𝑌2000
̂ )

2

 
  

Table 5.3: Interpretation of square-root transformation for the least squares means of each year and their difference 

 

 School lunch Packed lunch Difference  95% confidence 

interval of difference 

Means on square-

root scale 
√𝑌𝑆𝐿
̂

 √𝑌𝑃𝐿
̂

 �̂� = √𝑌𝑃𝐿
̂ − √𝑌𝑆𝐿

̂
 �̂� ± 𝑠. 𝑒. (𝑑) 

Means on original 

scale 
�̂�𝑆𝐿 = (√𝑌𝑆𝐿

̂ )
2

 �̂�𝑃𝐿 = (√𝑌𝑃𝐿
̂ )

2

  (√𝑌𝑃𝐿
̂ )

2

− (√𝑌𝑆𝐿
̂ )

2

 
 

Table 5.4: Interpretation of square-root transformation for the means of each lunch type and their difference 

Therefore, although a square root transformation is successful in Normalizing these data as required, it is not 

particularly useful as it does not enable practical interpretation of the estimable quantities on the original 

scale. 



 

5.3.3 Log-transformation  

Although the Box-Cox parameter estimates suggested a square-root transformation for these data, the previous 

section showed that this possesses difficulties with interpretation. This section investigates a log-

transformation, which involves taking the natural logarithm of each observation, because it has the beneficial 

property of having an intuitive interpretation when the data are back-transformed. 

Unlike the square-root transformation however, a log-transformation cannot be applied to the zero 

observations in these data, as the logarithm of zero is undefined. This is resolved by adding a constant quantity 

to each observation before taking logs, but a sensible choice of constant must be determined – whichever one 

minimizes the residual skewness is the logical choice, since Normality corresponds to zero residual skewness.  

 

 

 

 

 

 

 

 

Figure 5.2 shows various constants plotted against the residual skewness that is obtained by adding it to the 

data prior to log-transformation. Minimal residual skewness is achieved with a constant of approximately 15, 

which gives the following transformation 

 𝑌𝑖𝑗𝑘
∗ = log(𝑌𝑖𝑗𝑘 + 15)   (5.3) 

where 𝑌𝑖𝑗𝑘 denotes the lunchtime vitamin C intake of an individual of type (𝑖𝑗𝑘). The transformed data will 

be referred to as the logged shifted data.  

Model  

Fitting the model to the transformed data leads to the removal of the interaction (p=0.1242). After this, year 

appears to be significant (p=0.0150), whilst lunch type appears not to be (p=0.1771). 

Diagnostic checks 

Diagnostic checks are now carried out to assess the Normality of the logged shifted data. The points on the 

Normal probability plot exhibit a close fit to the straight line, as shown in Figure 5.3, making it reasonable to 

accept the Normality assumption for the transformed data. 

Figure 5.2: Various constants plotted against their residual skewness 

obtained when added to the data prior to log-transformation 



 

Furthermore, the residual skewness of the model on these transformed data is only 0.018, indicating that the 

log-transformation has achieved approximate Normality. The residual skewness here is in actual fact smaller 

than that of the square rooted data, so in some sense, the log-transformation (with shift) is better than the 

square-root at Normalizing these data.  

 

 

 

 

 

 

 

Useful property of log-transformation 

An attractive quality of the log-transformation is that, upon back-transformation, an intuitive interpretation is 

possible, as mentioned at the beginning of this section. This is owing to the following general relationship 

between the geometric mean and arithmetic mean of some general data 𝑌1, 𝑌2, … , 𝑌𝑛, 

 

𝐺𝑀(𝑌𝑖) = (∏ 𝑌𝑖

𝑛

𝑖=1

)

1
𝑛⁄

= exp {
1

𝑛
∑ log(𝑌𝑖)

𝑛

𝑖=1

} = exp{𝐴𝑀(log(𝑌𝑖)},  

 

(5.4) 

where 𝐺𝑀(. )  and  𝐴𝑀(. )  denote the geometric and arithmetic means respectively of the data in their 

argument.  

The arithmetic mean of the logged shifted lunchtime vitamin C intake in 2000, for instance, is given by 

 

log (𝑌2000)̂ =
1

𝑛2000
∑ log(𝑌2000ℓ)

𝑛2000

ℓ=1

, 
 

(5.5) 

where ℓ denotes the individual and 𝑛2000 is the number of subjects in the year 2000. There is of course a 

similar expression for the mean in 2009 and for the means of each of the lunch types. From (5.4), the arithmetic 

mean for the logged shifted lunchtime vitamin C intake is clearly equal to the logged geometric mean, i.e. 

 log (𝑌2000)̂ = 𝐴𝑀(log(𝑌2000)) = log(𝐺𝑀2000). (5.6) 

Taking the difference between the years, i.e. between the means of logged shifted data for 2000 and 2009, 

which is the estimable quantity, gives 

 
log (𝑌2009)̂ − log (𝑌2000)̂ = log(𝐺𝑀2009) − log(𝐺𝑀2000) = log (

𝐺𝑀2009

𝐺𝑀2000
) .  

(5.7) 

Figure 5.3: Normal probability plot for lunchtime vitamin C intake 



 

Rather usefully, when this difference is back-transformed by anti-logging, it simply gives the ratio of the 

geometric means of the shifted data, which is a straightforward and comprehensible expression. This ratio can 

then be used as the ‘difference’ between the means on the original scale, which nutritionists will be able to 

interpret more easily.  

Due to the asymmetry of the log-transformation, the confidence interval of this ratio can be found directly by 

anti-logging the confidence interval of the difference, since this is not symmetrical about the ratio. 

Tables 5.5 and 5.6 summarize the above by giving algebraic expressions for each cell. 

 2000  2009 Difference / Ratio 95% confidence 

interval of difference 

Means on log scale log(𝐺𝑀2000) log(𝐺𝑀2009) 2009 - 2000: log (
𝐺𝑀2009

𝐺𝑀2000
) (𝐿, 𝑈) 

Means on original scale 𝐺𝑀2000 𝐺𝑀2009 2009 / 2000: 
𝐺𝑀2009

𝐺𝑀2000
 (exp(𝐿), exp(𝑈)) 

Table 5.5: Interpretation of log-transformation for the means of each year and their difference 

 

 School lunch Packed lunch Difference/Ratio  95% confidence 

interval of difference 

Means on log scale log(𝐺𝑀𝑆𝐿) log(𝐺𝑀𝑃𝐿) PL – SL: log (
𝐺𝑀𝑃𝐿

𝐺𝑀𝑆𝐿
) (𝐿, 𝑈) 

Means on original scale 𝐺𝑀𝑆𝐿 𝐺𝑀𝑃𝐿 PL / SL: 
𝐺𝑀𝑃𝐿

𝐺𝑀𝑆𝐿
 (exp(𝐿), exp(𝑈)) 

Table 5.6: Interpretation of log-transformation for the means of each lunch type and their difference 

Hence, when using the log-transformation, it is possible to produce a comprehensible expression for the 

estimable quantity on the original scale of the data, along with its confidence interval. This easy and intuitive 

interpretation makes the log-transformation a much more appealing option than the square-root 

transformation, despite the results of the Box-Cox method, particularly as the residual skewness is actually 

smaller when using the log-transformation. Due to this, the log-transformation will be used in favour of the 

square-root transformation for this project.  

Inference 

Having justified use of the log-transformation instead of the square-root transformation, inference is now 

made on the back-transformed shifted means and their differences, given in Tables 5.7 and 5.8.  

 2000  2009 Difference/Ratio 95% confidence 

interval of difference 

Means on log-scale 3.638 3.756 PL – SL: 0.118 (0.023, 0.212) 

Means on original scale 38.0 42.8 PL / SL: 1.12 (1.02, 1.24) 
Table 5.7: Least squares means, adjusted for sex, of logged lunchtime vitamin C intake (mg) for each year, along with back-

transformed values 

 

 School lunch Packed lunch Difference/Ratio  95% confidence 

interval of difference 

Means on log scale 3.664 3.730 PL – SL: 0.0664 (-0.0299, 0.1626) 

Means on original scale 39.0 41.7 PL / SL: 1.07 (0.97, 1.18) 



 

Table 5.8: Least squares means, adjusted for sex, of logged lunchtime vitamin C intake (mg) for each lunch type, along with back-

transformed values 

It appears that mean vitamin C intake in 2009 was 1.12 times as large as the mean in 2000, indicating that a 

reasonable increase has occurred. The lower limit of the 95% confidence interval for this ratio is greater than 

1, and so it is statistically very likely that the intake was higher in 2009 than in 2000. This suggests that the 

new food standards caused an improvement during lunchtime, in terms of vitamin C intake.  

Also, it seems that packed lunches on average contained 1.07 times as much vitamin C than school lunches. 

The span of the confidence interval for this ratio is mostly greater than 1, so there is strong evidence to suggest 

that the average packed lunch contains a little more vitamin C than the average school lunch.  

5.4 Transforming daily vitamin C intake 

Having analysed the lunchtime vitamin C values, the daily intakes now need consideration, as they too broke 

the Normality assumption. Unlike for lunchtime, the daily intakes are all non-zero, so individuals clearly 

obtained vitamin C outside of school, if not during lunch. Consequently, these data do not require a shift and 

the conventional one-parameter version of the Box-Cox method can be used.  

5.4.1 Box-Cox: estimation of parameter 

Once again, the boxcoxfit command can be used in R to obtain an estimate for the exponent. Since the 

shift parameter is not required, the lambda2 argument is not included here – R defaults it to ‘false’ in its 

absence. The matrix xmat is used again to obtain model parameter estimates, which produces the following 

output for the daily vitamin C intakes.  

> boxcoxfit(av_vitc_TD,xmat) 
Fitted parameters: 
 lambda  beta0   beta1   beta2   beta3   beta4   sigmasq  
 0.1997  6.6449  0.0458  0.1472 -0.0183  0.0073  1.4561  

 

The estimate for the transformation parameter is approximately zero, indicating that a log-transformation is 

optimal. This is advantageous because, as mentioned, the log-transformation has the unique property of having 

a straightforward interpretation of the differences on the original scale. It is also advantageous to use the same 

transformation for daily data as for lunchtime data for presentational purposes. 

5.4.2 Log-transformation 

Having applied the log-transformation to these data and found that the transformed data do indeed satisfy 

model assumptions (graphs not shown), adjusted means and differences are obtained, and then back-

transformed by anti-logging. The results, the geometric means of each category along with their ratio, are 

displayed in Tables 5.11 and 5.12. 

 2000 2009 Ratio (2009/2000) 95% confidence 

interval of ratio 

Average daily 

vitamin C intake 

68.9 83.1 1.21 (1.09, 1.33) 

Table 5.11: Adjusted mean daily vitamin C intake in mg for each year, where the averages are the geometric means 



 

 

 School lunch Packed lunch Ratio (PL/SL) 95% confidence 

interval of ratio 

Average daily 

vitamin C intake 

72.8 78.6 1.08 (0.97, 1.20) 

Table 5.12: Adjusted mean daily vitamin C intake in mg for each lunch type, where the averages are the geometric means 

The average daily intake of vitamin C was 1.21 times greater in 2009 than in 2000, which is a fairly large 

improvement. Moreover, the 95% confidence interval spans a range that is above 1, suggesting that an increase 

from 2000 to 2009 is highly likely.  

The average daily vitamin C intake of children who eat packed lunches is 1.08 times as large compared to 

those who have school lunches, suggesting that lunch type is a contributing factor to how much vitamin C is 

consumed daily, and that packed lunches affect vitamin C positively. Once again, the span of the confidence 

interval is mostly greater than 1, so it is likely that packed lunch children do indeed consume slightly more 

vitamin C throughout the day than school lunch children.  

5.5 Summary  

The aim of this chapter was to resolve the non-Normality of lunchtime vitamin C intake and daily vitamin C 

intake. This was done by taking the Box-Cox approach. The Box-Cox transformation for the lunchtime data 

was a square-root transformation, and for the daily data it was a log-transformation. However, after 

investigating the transformations further, it was found that the log-transformation possesses a very useful 

feature that makes it uniquely usable when making inferences on back-transformed values. Consequently, it 

was decided that a log-transformation would be used for both datasets. This could be justified for the lunchtime 

data as the log-transformed data still appeared to satisfy the Normal assumption and had small residual 

skewness.  

 

 

 

 

 

 

 

 

 



 

6 The relationship between sodium intake and energy intake 
This section draws attention to a potential flaw in the previous analysis of sodium intake, and proceeds to 

investigate ways in which to overcome it. 

6.1 The problem with fitting the previous model to the sodium data 

A key objective of the revised school food standards was to reduce the overall amount of sodium that children 

consume, and the results in Chapter 4 on daily sodium intake suggest that they have been successful in doing 

so. Table 4.6 below (reproduced directly from Chapter 4) shows how the average seemed to improve over the 

years – daily sodium intake dropped considerably between 2000 and 2009, by over 480 mg. However, the 

reasons for this sodium decrease merit further investigation. Table 4.3 (also from Chapter 4) shows that daily 

energy intake also fell considerably over the same time period, by almost 265 kcal. Since energy intake is a 

proxy for amount eaten, and obviously the more food one consumes, the higher the sodium intake, the issue 

to consider here is whether the reduction in sodium intake is simply attributed to the reduction in energy intake. 

If this is indeed the case, then the salt-density of children’s diets may have been unchanged over the years. 

 2000 2009 Difference 95% confidence 

interval of difference 

Average daily sodium 

intake 

2630.8 2150.3 -480.5 (-594.7, -366.3) 

Table 4.6: Adjusted mean daily sodium intake in mg for each year 

 

 2000 2009 Difference 95% confidence 

interval of difference 

Average daily energy 

intake 

1904.9 1640.2 -264.7 (-337.7, -191.7) 

Table 4.3: Adjusted mean daily energy intake in kcal for each year 

To aid visualisation, Figure 6.1 shows the scatterplot of sodium versus energy, with different coloured symbols 

for the two years: black circles represent 2000, red crosses represent 2009. The strong positive correlation 

between the two variables is apparent. The red crosses generally have smaller sodium values than the black 

circles, showing that sodium intake was indeed lower in 2009, but it can be seen that they have smaller energy 

values too. The fitted lines for the two years are very similar in gradient, which implies that the relationship 

between sodium and energy was similar in the two years. Indeed, more will be said about this shortly. 

Of course, one might argue that as long as average sodium intake is at an acceptable level, then the salt-density 

of diet is unimportant. However, it is advisable to maintain a less salt-dense diet, because food intake can vary 

considerably on a day-to-day basis, depending on a wide range of factors. Therefore, making a habit of 

choosing less salty foods ensures that one’s overall sodium intake is reduced in the long term, even on days 

when food intake is higher than normal.  

 



 

 

 

 

 

 

 

 

 

 

In summary, although the previous analysis suggests there has been a significant decrease (and therefore an 

improvement) in daily sodium intake, there may not have been such a substantial improvement in the density 

of salt in diet, if the variation in sodium intake is solely due to the variation in energy intake. There is, therefore, 

a need to investigate this further. 

6.2 Model for sodium intake with energy as covariate 

The most natural and obvious way to investigate how heavily sodium intake depends on energy intake, is to 

include energy intake as an explanatory variable in the model. This model is given by 

 𝑁𝑎 =  𝛼 + 𝛽𝐸 + 𝜖,               (6.1) 

where 𝑁𝑎 = daily sodium intake, 𝐸 = daily energy intake, 𝜖 = error, with 𝜖~𝑁(0, 𝜎2), and 𝛼 incorporates the 

effects of all other covariates as well as the general mean. 

Having fit this model to the data, the year and lunch interaction is removed due to its insignificant p-value 

(p=0.1352). The p-value for daily energy intake is extremely small and remains so after removal of the 

interaction (p=2.2 ×10-16), suggesting that it has a substantial effect on daily sodium intake, as expected. The 

year, lunch type and sex covariates are also very significant (all 𝑝 < 0.001), suggesting that they too affect 

the value of sodium intake considerably.  

The introduction of energy as a covariate gives rise to another interaction of interest – it is plausible that energy 

intake affected sodium intake differently in the two years, and so the year and energy interaction requires 

consideration also. Assessing the p-value for this term is essentially a test for parallelism: if it is not significant 

it is removed, and so the regression lines for each year will have equal gradients, whereas if the interaction is 

present, the gradients will differ. When this interaction is incorporated into the model, its p-value is not 

significant (p=0.3344), so the term is excluded. This suggests that the way in which energy affected sodium 

Figure 6.1: Daily sodium intake versus daily energy intake, with different points for the years 



 

was not significantly different in the two years. This in turn implies that the slight difference between the 

gradient of the fitted lines of the two years in Figure 6.1 is simply down to chance.  

The diagnostic checks for this model provide no reason to believe that the usual assumptions do not hold. The 

plots of the residuals against the covariate values, jittered where appropriate (for the categorical covariates), 

show randomly scattered points across the plot, with no apparent trend and the Normal probability plot exhibits 

a relatively straight line of points, with only some minor deviations.  

Since the model is adequate, it can be used to compute least squares means for the daily sodium intake in each 

year, which can then be compared. These are displayed in Table 6.1. This time, the means are not only adjusted 

for sex as before, but also for energy intake, meaning that energy is fixed at an arbitrary value. In other words, 

the least squares means have been calculated as if the energy intake was the same in each year. (As discussed 

in Chapter 3, any value for energy can be used, as it will not affect the difference between years – making this 

an estimable quantity). This allows for comparisons to be made between the mean sodium intakes of each 

year, as the effects of year will no longer be confounded with the variations in energy intake.  

 2000 2009 Difference 95% confidence 

interval of difference 

Average daily sodium 

intake  

2497.5 2323.8 -173.7 (-254.2, -93.2) 

Table 6.1: Adjusted mean daily sodium intake (mg) for each year, adjusted for sex and energy 

It appears that the mean daily sodium intake, for any fixed value of energy intake, has decreased by 173.70 

mg. This means that on average, even if a child consumed the same amount of energy in both years, their 

average daily sodium intake will still have decreased by over 170 mg. Compared to the difference of 480 mg 

between the means that were unadjusted for energy intake, this is still a reasonably large amount, suggesting 

that a reasonable amount of the reduction in sodium is not just due to the reduced energy intake. This in turn 

implies that there has indeed been a reduction in salt density, which is of course a desired effect. 

6.3 Model for proportion of energy intake provided by sodium 

Nutritionists often like to analyse the proportion of daily energy intake that comes from sodium, so this section 

fits a model to this proportion, given by 

 𝑁𝑎

𝐸
= 𝛼 + 𝜖,               

(6.2) 

where 𝑁𝑎, 𝐸, 𝛼 and 𝜖 have the same interpretation as in section 6.1. The idea of this approach is to incorporate 

energy intake into the response, by division, in order to achieve a model that does not depend on energy intake 

but still takes account of it. 

Fitting this model causes the p-values for all covariates, except the interaction term, to be small (all 𝑝 < 0.01). 

Removal of the interaction does not drastically alter the other p-values (all remain less than 0.01), so all 

covariates seem to have a significant effect on the proportion.  



 

The diagnostic checks for this model do not reveal any inadequacies, suggesting that it is a satisfactory model 

that complies with the Normality and constant variance assumptions about the residuals. It is thus possible to 

proceed with analysis of the means.  

To help the reader become attuned to values that are typical for the ratio of sodium (in mg) to energy (in kcal), 

the raw means of this proportion, for each year and lunch type combination, are given in Table 6.2. 

 2000 2009 Difference  

School lunch 1.3360 1.3034 -0.0325 

Packed lunch 1.4780 1.3477 -0.1303 
Table 6.2: Raw means of the ratio of sodium intake (mg) over energy intake (kcal) for each year and lunch type combination in 

mg/kcal 

With these means as an approximate benchmark, it seems that the proportion of sodium over energy in 

mg/kcal is typically somewhere between 1.0 and 1.5. 

The least squares means of the proportions, adjusted for sex as usual, can now be calculated using the model 

and then compared. They are given in Table 6.3, along with their difference plus a confidence interval for the 

difference. It appears that between 2000 and 2009, the proportion decreased by about 0.07 mg/kcal. With 

respect to the typical values shown before in Table 6.2, this is a fairly reasonable decrease. This suggests that 

the proportion of sodium in the children’s total daily energy intake decreased slightly between the years, which 

is compatible with the conclusion in section 6.2, that the salt-density of the children’s diets decreased.  

 2000 2009 Difference 95% confidence 

interval of difference 

Mean of proportion  1.3923 1.3194 -0.0729 (-0.1169, -0.0289) 
Table 6.2: Mean proportion of daily sodium (mg) over daily energy (kcal) for each year  

Fitting a model to the sodium over energy proportion, as done above, is a technique favoured by nutritionists. 

However, whilst this model is valid, it does not include energy intake as a covariate, meaning that none of its 

variation has been accounted for, even though it may well affect the Na/E proportion. Energy should therefore 

be added to the model to see if there are truly grounds on which to not include it. 

The new model is then given by 

 𝑁𝑎

𝐸
= 𝛼 + 𝛽𝐸 + 𝜖. 

(6.3) 

When this is fitted, the year* lunch and year*energy interactions are again insignificant, and thus excluded. 

The p-value for energy is indeed very small (p=1.19×10-5), indicating that energy intake has a significant 

effect on the dependent variable, as expected. As a result, there are no grounds on which to remove it and it 

should be retained in the model, making (6.3) preferable to (6.2). 

However, the idea of fitting a model to Na/E was to use a model that takes account of energy intake but does 

not depend on it, allowing nutritionists to analyse changes in sodium that are not attributed to changes in 

energy. However, from a statistician’s viewpoint, energy intake should be included in this model anyway due 

to its evident significance (p=1.19×10-5). Although the regression coefficient of energy is very small (-1.161 



 

×10-4), which means that its effect is only minor, its very small p-value means that this small effect is still very 

significant and so the model is not free of energy. It could be argued however, that for practical purposes, 

since the effect of energy is so small, it could be ignored. 

              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.603e+00  5.452e-02  29.408  < 2e-16 *** 
yearf9      -1.036e-01  2.312e-02  -4.484 9.08e-06 *** 
lunchf1      8.969e-02  2.245e-02   3.995 7.41e-05 *** 
genderf1    -6.935e-02  1.986e-02  -3.491 0.000523 *** 
av_kcal_TD  -1.161e-04  2.623e-05  -4.424 1.19e-05 *** 

 

6.4 Modification of model 

It would be ideal if the techniques above could be combined in some way, so that nutritionists could use a 

model for the specified proportion, that is free of energy intake and with which statisticians agree. To do this, 

an attempt can be made to adjust the model so that it no longer depends on energy.  

Looking again at model (6.1), which includes energy as a covariate, and dividing throughout by energy intake, 

𝐸, gives 

 𝑁𝑎

𝐸
=

𝛼

𝐸
+ 𝛽.               

(6.3) 

The response is now the specified proportion, but the right hand side is clearly not free of energy intake. 

Instead, an alternative model can be considered, given by 

 log(𝑁𝑎) = 𝛼 + 𝛽 log(𝐸).        (6.4) 

(The reader might notice that taking the log of the sodium data is potentially problematic, since the sodium 

data is assumed to be Normal, and taking the log of Normal data does not produce Normal data – see Appendix 

7.3 for an explanation as to why this is not an issue.) This model takes the variation in energy into account, 

through the log(𝐸) term. Subtracting 𝛽 log(𝐸) from both sides gives 

 
log (

𝑁𝑎

𝐸𝛽
) = 𝛼.               

(6.5) 

Clearly, if 𝛽 is equal to 1 (or at least close to 1), then (6.5) provides a model whose response is a function of 

Na/E and is independent of E. Thus, the estimate of 𝛽, the coefficient of log(E), needs to be obtained and 

checked. Fitting model (6.4) in R gives the following output. 

                Estimate Std. Error t value Pr(>|t|)     
(Intercept)      1.41785    0.25705   5.516 5.53e-08 *** 
yearf9          -0.07465    0.01710  -4.364 1.55e-05 *** 
lunchf1          0.06568    0.01663   3.950 8.92e-05 *** 
genderf1        -0.04944    0.01467  -3.371 0.000807 *** 
log(av_kcal_TD)  0.85265    0.03394  25.119  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.163 on 508 degrees of freedom 
Multiple R-squared:  0.6251, Adjusted R-squared:  0.6221  
F-statistic: 211.7 on 4 and 508 DF,  p-value: < 2.2e-16 
 



 

The estimate of 𝛽 is 0.853, which for practical purposes is close enough to 1. Thus, (6.5) is indeed a model 

whose response is a function of the desired proportion and is free of energy, so it can now be fitted and means 

obtained. 

When (6.5) is fitted, the p-value for the year and lunch interaction is large (p=0.1308), so the term is excluded 

usual. After this, the p-values for the other covariates, year, lunch and sex, are all small (all p<0.01), indicating 

that they all significantly affect the logged proportion of sodium over energy.  

Diagnostic checks of the residuals give no cause for concern, indicating that this model satisfies the residual 

assumptions. The least squares means of the logged proportion are then calculated from the model and are 

shown in Table 6.3, along with their back-transformed values, so that they can be compared.  

 2000 2009 Difference/Ratio 95% confidence interval of 

difference/ratio 

Means on log scale  0.316 0.264 2009 - 2000: -0.053 (-0.085, -0.020) 

Means on original scale 1.37 1.30 2009 / 2000: 0.95 (0.92, 0.98) 
Table 6.3: Least squares means, adjusted for sex, for each year of proportion of sodium (mg) over energy (kcal) 

It appears that between 2000 and 2009, salt density of children’s diets, represented by sodium over energy 

proportion, experienced a decrease, so that in 2009 it was 0.95 times the amount that it was in 2000. In other 

words, it has decreased by about 5%. This is a reasonable decrease, and supports the conclusions from the 

other models – that sodium intake in children’s diets has indeed decreased and not simply because the amount 

eaten has decreased. 

6.5 Summary 

This section has detailed several techniques for investigating how much of the sodium decrease is attributed 

to the energy decrease. The same techniques could be applied to test if the decrease in saturated fat was largely 

due to energy decrease, but due to space-constraints this analysis is not included.  

The three models that were used gave similar conclusions: that children’s sodium intake decreased over the 

years and not purely because their overall food consumption had lessened. This in turn indicates that the salt-

density of their diets may have decreased. 

 

 

 



 

7 Appendices 
7.1 Revised school food standards 

 

 

 

7.2 Recommended Daily Amounts (RDAs)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7.3 Taking logs of a Normal distribution 

Let 𝑋 be a random variable. Assume that 𝑋~𝑁(𝜇, 𝜎2).  

Then, standardising 𝑋 gives 

𝑍 =
𝑋 − 𝜇

𝜎
 ~ 𝑁(0, 1), 

⇒ 𝑋 = 𝜇 + 𝜎𝑍,   𝑍~𝑁(0, 1). 

Taking the log of the Normally distributed variable, 𝑋, gives 

log(𝑋) = log(𝜇 + 𝜎𝑍) 

                       = log {𝜇 (1 +
𝜎

𝜇
𝑍)} 

                                   = log(𝜇) + log (1 +
𝜎

𝜇
𝑍). 

Provided that the standard deviation is small, relative to the mean, then 𝜎𝑍
𝜇⁄  is a small number, and in that 

case log(1 + 𝜎𝑍
𝜇⁄ ) is equivalent to the log of a number that is just over 1, which is also a small number. 

Hence, 

log(𝑋) ≈ log(𝜇) +
𝜎

𝜇
𝑍. 

This implies that 𝑌 = log(𝑋) ~ 𝑁(log(𝜇), 𝜎
𝜇⁄ ) approximately. In other words, if 𝑋 is Normally distributed 

with mean 𝜇  and standard deviation 𝜎 , then provided that 𝜎 ≪ μ , the variable 𝑌 = 𝑙𝑜𝑔(𝑋)  will also be 

approximately Normally distributed.  
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