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Abstract

A black hole cannot be seen directly, however the surrounding area can give
indications of its presence. The three main observable aspects are gravita-
tional lensing, accretion disks and orbiting matter. The purpose of this paper
is to study the latter, focusing on test particles in orbit of a Schwarzschild
black hole. A black hole has substantial mass that creates a particular gravi-
tational field, influencing the behaviour of matter nearby. Generally, to have
predictions of this behaviour builds up knowledge of which patterns may
signify the presence of a blackhole and, more importantly, what the pattern
reveals about the features of the black hole, such as it’s size.

This paper will cover some of the motions of spinless and spinning test par-
ticle in the region of a Schwarzschild black hole.
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1 Introduction

1.1 General Relativity

In 1915, Albert Einstein published his general theory of relativity, stating
that gravity can be described as a distortion in spacetime, where spacetime
is is known to be the combination of three dimensional space and a fourth
dimension of time, see Figure 1. As gravity is proportional to mass, a massive
object will have a gravitational force that warps the spacetime around it,
known as a gravitational field.

Figure 1: 3D graphical representation of flat spacetime, where space is rep-
resented by the 2D plane called the hypersurface of the present and time
is the vertical axis. Anything that travels with a speed of light or less has
worldlines that exist in the light cone. Light travels along the edge, giving
the boundary, and massive particles travel within

Also, unlike in classical mechanics, general relativity gives observable time to
be dependent on an object’s velocity through ’flat’ space and through gravi-
tational fields, i.e. an object travelling through an area of large gravity will
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appear to be experiencing a slower passage of time to an outside observer.
Time will not be discussed in depth here and it is the shape of particle tra-
jectories that is of interest.

Due to the affects of observable time, orbits that are significantly close (and
plunge into) a black hole will be neglected. The interest here is to develop
motions that are detectable and matter that is too close to a black hole will
appear to have extremely slow motion that would need a long observation
time before any pattern could be recorded. These close orbits are known
as orbits of the second kind, as in[2], where they all inevitably end at the
sigularity and solutions for them can be found in [2]. This paper will fo-
cus on orbits of the first kind, which tend to begin at infinity and have the
possibility of being bound or unbound.

1.2 Test Patricle

In this paper, a test particle is taken to be of negligible mass, size and charge.
These qualities ensure that the test particle also has a negligible gravitational
field and therefore does not add any perturbation to the spacetime curvature.
Because of this, a free falling test particle follows a geodesic, which is the
path that follows the curves of spacetime.

The influence of mass is of interest and geodesics for a massless and a mas-
sive test particle will be studied, such as a photon and a neutron. Also, some
solutions will be gathered for a massive spinning test particle, which has a
motion that differs from a geodesic.

The actual motion of a test particle is found by appling the equations of
motion to the equation for the gravitational field, which in this case is deter-
mined by a Schwarzschild black hole.
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2 Schwarzchild Black holes

The distortion of spacetime for this paper is determined by the presence of
a Schwarzschild black hole.

2.1 Features

A Schwarzschild black hole is defined as having no charge and no angular
momentum, sometimes referred to as a static black hole. With spherical
symmetry and no other distinguishing features, a Schwarzschild black hole
is described by size alone, see Figure 2.

Figure 2: The anatomy of a Schwarzschild blackhole where the size of the
event horizon is determined by the radius and is directly proportional to the
mass.

The central singularity is an infinitely small point of extreme mass, this mass
will be denoted throughout as M . The singularity is then enclosed by the
event horizon, the size of which is determined by the Schwarzschild radius.
This is given as

rs = 2
GM

c2
, (2.1)

where G is the gravitational constant and c is the speed of light. It can be
noted here that rs ∝ M . The event horizon encloses an area where gravity
is strong enough to pull in light faster than it can escape, hence creating a
’black hole’.
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Surrounding this there is the photon sphere, known to be the last stable
orbit of a photon.

With these factors in mind, equations can now be developed to describe
the gravitational field.

2.2 Schwarzschild metric

In 1916, Karl Schwarzschild published the first exact solution to the Einstein
vacuum field equations, known as the Schwarzschild metric. The solution
describes the gravitational field in the empty space surrounding a spherically
symmetric, non-rotating, uncharged mass. It can also be used as a good
approximation for the gravitational field outside of a slowly rotating body,
such as our sun.

The line element for the Schwarzschild metric is given in [1] as

ds2 = −(1− 2GM

rc2
)c2dt2 + (1− 2GM

rc2
)−1dr2 + r2dθ2 + r2(sin2 θ)dφ2, (2.2)

where t denotes time for a stationary observer, r is the radial coordinate, θ is
the polar angle, φ is the azimuth angle, m is the mass of the black hole and
c is the speed of light. Also, ds2 = −c2dτ 2, where τ denotes proper time, the
time experienced by a moving object.

It can be seen that the first two metric coefficients are not defined at r = 0
and r = 2GM/c2. These values represent the singularity and the event
horizon, respectively. The interest here is to only study r → 2GM/c2 from
infinity, as beyond this there can be no physical observations.

This equation can be simplified by using Planck’s units, c = G = 1, such
that

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dθ2 + r2(sin2 θ)dφ2, (2.3)

It can be seen in equation (2.3) that the distance from the black hole alone,
2M/r, causes the gravitational field to differ from Minkowski spacetime.
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3 Non-Rotating Test Particle

3.1 Geodesics

To obtain the geodesic equations in Schwarzschild geometry, the Euler-Lagrange
equations of motion must be considered. These give equations of motion in
terms of each of the spherical coordiantes, which in [2] are given by

0 =
∂L

∂xλ
− d

dτ

(
∂L

∂ẋλ

)
(3.1)

where xλ = (x0, x1, x2, x3) = (t, r, θ, φ).

In these equations, the Lagrangian equation, L, is defined to be 2L = ds2/dτ 2

and therefore, by manipulating equation (2.3), L can be expressed as

L =
1

2

(
− (1− 2M

r
)ṫ2 + (1− 2M

r
)−1ṙ2 + r2θ̇2 + r2(sin2 θ)φ̇2

)
, (3.2)

where the dot denotes differentiation with respect to τ . It can be seen that
the Lagrangian does not depend on t and so ∂L/∂t = 0. Therefore the
Euler-Lagrange equation for t can be stated as

0 =
d

dτ

(
∂L

∂ṫ

)
, (3.3)

where
∂L

∂ṫ
= −

(
1− 2M

r

)
ṫ = −E, (3.4)

for some constant E which represents energy.
This gives an equation for ṫ, in terms of r, namely

ṫ = E

(
1− 2M

r

)−1
(3.5)

Similarly, ∂L/∂φ = 0 and the Euler-Lagrange equation for φ becomes

0 =
d

dτ

(
∂L

∂φ̇

)
, (3.6)
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where
∂L

∂φ̇
=
(
r2 sin2 θ

)
φ̇ = A, (3.7)

for some constant A which specifies angular momentum.

Considering now θ, equation (3.2) gives ∂L/∂θ = r2 sin θ cos θφ̇2 and
∂L/∂θ̇ = r2θ̇, therefore the Euler-Lagrange equation for θ is given by

0 = r2 sin θ cos θφ̇2 − r2θ̈ − 2rṙθ̇. (3.8)

This equation has solutions θ = ±nπ and θ = π/2 ± nπ, for n ∈ N. At
this point, it is convenient to rotate the coordinate system such that any test
particle initially lies in the equatorial plane, i.e. θ = π/2. This value re-
mains constant throughout the particle’s motion and can be used to simplify
equation (3.7) and obtain

∂L

∂φ̇
= r2φ̇ = A. (3.9)

Rearranging this, an equation for φ̇, in terms of r, can be obtained. This is
given by

φ̇ =
A

r2
. (3.10)

Now, both equations (3.5) and (3.10), with θ = π/2, can be applied to the
Lagrangian to obtain an equation for ṙ in terms of r and the constants M ,
L, E and A. This equation is found to be

ṙ2 =

(
2L− A2

r2

)(
1− 2M

r

)
+ E2. (3.11)

Recalling that ṙ = ∂r/∂τ , an equation involving φ, instead of τ , can be found
by applying ṙ = (∂r/∂φ)(∂φ/∂τ) with the previous results, giving(

dr

dφ

)2

=
2L+ E2

A2
r4 − 4LM

A2
r3 − r2 + 2Mr. (3.12)

Use of the inverse radius u = 1/r creates an equation that is easier to solve,
substituting this in to equation (3.12) gives(

du

dφ

)2

=
2L+ E2

A2
− 4LM

A2
u− u2 + 2Mu3 = f(u). (3.13)
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The solutions of this geodesic equation must be found by first stating the
general factorization

f(u) = 2M(u− u1)(u− u2)(u− u3), (3.14)

where u1, u2 and u3 are the three solutions for f(u) = 0.

4 Photon

A photon is a light particle and has no mass, therefore travelling along a null
geodesic. From [2], a null geodesic requires 2L = 0 to be applied to equation
(3.13), giving

f(u) =
E2

A2
− u2 + 2Mu3, (4.1)

which describes the motion of a photon in Schwarzschild geometry.
There are different types of orbits that this equation can produce, but these
change with the values of E, A and M . To find these values, certain condi-
tions can be used depending on the type of orbit desired.

4.1 Solutions for photon

Equating (3.14) and (3.15) gives the conditions

u1u2u3 = − E2

2MA2
(4.2)

and

u1 + u2 + u3 =
1

2M
, (4.3)

where M > 0 and E2/A2 > 0.
Equation (4.2) is negative and real, therefore u1 can be chosen to be negative
and real where u2u3 is positive and real. Including the condition given by
equation (4.3), this can only be achieved if u2 and u3 are either both positive
and real or they are complex conjugates, with positive real parts.

The complex solutions will not be discussed here due to spacial limitations.
However, the details of these can be found in [2]. It can be noted that the
complex solutions do not produce a trajectory that is dissimilar to one that
can be found by real solutions.
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4.1.1 Critical Orbit

The critical orbit, seen in Figure 3 as the photon sphere, is the closest stable
orbit of a photon. It should be noted that this orbit is not stable in the long
term, but it is sufficient to think of it as so for this paper.

To start,the inflection point of the trajectory can be found by using
d2u/dφ2 = 0. From equation (4.1), it is found that

f ′(u) = 6Mu2 − 2u = 0, (4.4)

where the dash denotes differentiation with respect to u and which has a
solution at u = 1/3M . This value is also a repeated solution of f(u) = 0 if
A2/E2 = 27M2. Therefore, it can be stated that

u2 = u3 =
1

3M
, (4.5)

and so, from equation (4.3),

u1 = − 1

6M
. (4.6)

These roots can be substituted into equation (3.14) to obtain

f(u) = 2M

(
u− 1

3M

)2(
u+

1

6M

)
. (4.7)

The substitution

u = − 1

6M
+

1

2M
tanh2 1

2
(φ− φ0), (4.8)

taken from [2], is a satisfactory solution if it is taken that

tanh2 1

2
φ0 =

1

3
. (4.9)

Now, it can be seen that for φ = 0, u = 0 and, therefore, r →∞. Also, when
r = 3m, φ→∞. This describes a null geodesic which spirals in from infinity
and approaches the circle of radius 3m.
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Figure 3: The critical orbit of a photon with trajectory beginning at
r →∞ and approching a static black hole. Here, M = 2, therefore the orbit
approaches r = 6.

4.1.2 Distinct Roots: u1 < u2 < u3

One of the possible combinations of roots is that, as well as the negative
real root, the remaining two are positive, real and distinct. Specifically,
u1 < u2 < u3. For this case, it can be taken from [2] that

u1 =
P − 2M −Q

4MP
, (4.10)

u2 =
1

P
, (4.11)

and

u3 =
P − 2M +Q

4MP
, (4.12)

where P denotes the perihelion distance, Q is some constant determined by
P and all three roots are consistent with the conditions given by equations
(4.2 and 4.3).
Relating these equations to equation (3.14) gives

f(u) = 2M

(
u− P − 2M −Q

4MP

)(
u− 1

P

)(
u− P − 2M +Q

4MP

)
, (4.13)
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with the relations
Q2 = (P − 2M)(P + 6M), (4.14)

and
A2

E2
=

P 3

P − 2M
. (4.15)

In order to satisfy equations (4.10)-(4.12), u can be chosen to satisfy(
u− 1

P

)
= −Q− P + 6M

8MP
(1 + cosχ), (4.16)

and (
u− P − 2M −Q

4MP

)
= −Q− P + 6M

8MP
(1− cosχ), (4.17)

where u = 1/P for χ = π.
With these relations, it can now be found that(

dχ

dφ

)2

=
Q

P
(1− k2sin21

2
χ), (4.18)

where

k2 =
Q− P + 6M

2Q
. (4.19)

Then, integrating equation (4.18) produces the equation

φ = 2

√
P

Q

(
K(k)− F

(χ
2
, k
))

, (4.20)

where

F (ψ, k) =

∫ ψ

0

dγ√
1− k2 sin2 γ

, (4.21)

known as the Jacobian elliptical interval, and

K(k) =

∫ π/2

0

dγ√
1− k2 sin2 γ

. (4.22)

Equations (4.19)-(4.22), stated above, describe the geodesic of a photon that
approaches the black hole from infinity and, although the particle is not
captured, the trajectory is altered by the gravitational field. This is otherwise
known as light bending.
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5 Neutron

A neutron is a massive particle, without any charge, and travels along a
timelike geodesic. This requires 2L = −1, from [2], to be applied to equation
(3.13), giving

f(u) =
E2 − 1

A2
+

2M

A2
u− u2 + 2Mu3, (5.1)

where different values of E, A and M produce different orbits.

The roots of this equation can be found by equating (3.14) and (5.1). It
can be concluded that

u1u2u3 =
1− E2

2MA2
, (5.2)

u1u2 + u2u3 + u3u1 =
1

A2
(5.3)

and

u1 + u2 + u3 =
1

2M
, (5.4)

where A2 > 0 and M > 0. Therefore, the sign of equation (5.2) is dependent
on the energy, where E2 < 1 or E2 > 1.

5.1 Solutions when E2 < 1

In the case where E2 < 1, u1u2u3 > 0 and therefore one root, say u1, can
be taken to be real and positive, with the requirement that u2u3 > 0. The
roots u2 and u3 can be real or if they are complex then they must be complex
conjugates. Again, only the real solutions will be discussed but the details
of the complex solutions can be found in [2].

Given that the remaining roots are real then equations (5.3) and (5.4) can
be combined to shown that

u2 + u3 =
2M

A2
+ 2M(u22 + u23 + u2u3) > 0. (5.5)

Therefore, if the remaining roots are real then they must both be positive.

13



5.1.1 Distinct roots: 0 < u1 < u2 < u3

In the case where f(u) = 0 has three real roots, they can be defined as

u1 =
1

l
(1− e), (5.6)

and

u2 =
1

l
(1 + e), (5.7)

as by [2]. The positive constants l and e are defined to be the lactus rectum
and the eccentricity, respectively. The eccentricity value describes the flat-
ness of an ellipse, so for e = 0 these roots should produce a circle and for
e → 1 these roots should display a type of elongated ellipse. For E2 < 1,
o ≤ e < 1. Taking into account equation (5.4) it can be stated that

u3 =
1

2M
− 2

l
. (5.8)

Using the definition that u2 ≤ u3, it can be shown that

1

2(3 + e)
≤ M

l
= µ, (5.9)

where µ is a new parameter.
These conditions can be introduced in equation (3.14) such that

f(u) = 2M

(
u− 1− e

l

)(
u− 1 + e

l

)(
u− 1

2M
+

2

l

)
, (5.10)

shows the factorized equation for f(u).
Relating this to equation (5.1) and substituting in µ = m/l produces

1

A2
=

1

lM

(
1− µ(3 + e2)

)
, (5.11)

and
1− E2

A2
=

1

l2
(1− 4µ)(1− e2). (5.12)

From equation (5.2), (1− E2)/A2 > 0 and it is given that e < 1, therefore

µ <
1

4
. (5.13)
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From [2], u can be taken to be of the form

u =
1

l
(1 + ecosχ), (5.14)

where the new variable χ is known as the relativistic anomaly. This is con-
sistent with the aphelion and perihelion distances given by equations (5.6)
and (5.7), given that χ = π and χ = 0, respectively.

This new form can be substituted into (5.1) to give(
dχ

dφ

)2

= 1− 6µ+ 2µe− 4µe cos2
1

2
χ. (5.15)

This can also be given the form

dχ

dφ
= (1− 6µ+ 2µe)1/2(1− k2 cos2

1

2
χ)1/2, (5.16)

where

k2 =
4µe

1− 6µ+ 2µe
. (5.17)

An equation for φ can now be found, of the form

φ =
2

(1− 6µ+ 2µe)1/2
F (ψ, k), (5.18)

where F (φ, k) is the Jacobian elliptical integral stated in equation (4.21),
and

ψ =
1

2
(π − χ). (5.19)

Equations (5.17)-(5.19) can now be used to plot the possible geodesics. Figure
4 shows the potential elliptical orbits for different values of e. As e → 0
the aphelion and perihelion distances become closer together and the orbit
appears to tend to a circular one. This is confirmed by equations (5.6) and
(5.7). The perihelion precession seen in Figure 4(a) can be altered with
different values of M , see Figure 5. For large M the precession in large, but
as M → 0 the precession is smaller and the ellipses are closer together.
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Figure 4: a.(left)M = 1/2, e = 5/7 and L = 7 b.(right) M = 1/2, e = 1/11
and L = 7

Figure 5: a.(left)M = 1/5, e = 5/7 and L = 7 b.(right) M = 1/15, e = 5/7
and L = 7

The equation that describes the angle of this precession can be found in
section (5.3).
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5.1.2 Coincident Roots: u1 = u2 (Critical circular orbit)

As u1 = u2, it follows that e = 0. This correlates with the behaviour seen in
Figure 2. Applying this to equations (5.6) and (5.7) leads to

rc = l, (5.20)

and
µ =

m

rc
, (5.21)

where rc denotes the constant radius.
Equating these conditions with equation (5.11) gives the form

r2c −
A2

M
rc + 3A2 = 0, (5.22)

for which the solution is

rc =
A

2M

(
A±
√
A2 − 12A2

)
. (5.23)

This describes a circle, with a radius dependent on A and M , that is a stable
orbit of a neutron. This is also the case for when all three roots are coincident.

Figure 6: a = 5, m = 1/2 and therefore rc = 1
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5.1.3 Coincident Roots: u2 = u3

In this case u2 = u3 and so, following from equations (5.6) and (5.8), the
relation

l = 2m(3 + e), (5.24)

can be found.
This value of l can be substituted into u1 and u2 to find that

r1 =
2M(3 + e)

1− e
, (5.25)

and

r2 =
2M(3 + e)

1 + e
, (5.26)

where r1 and r2 represent the aphelion and perihelion distances, respectively.

In the case of equation (5.15), it becomes(
dχ

dφ

)2

= 4µe(1− cos2
1

2
χ) = 4µe sin2 1

2
χ, (5.27)

and so
dχ

dφ
= −2

√
µe sin

1

2
χ, (5.28)

where the negative square root has been chosen so that, as χ → 0 from π,
φ→∞ from 0.
The solution of equation (5.28) is given by

φ = − 1
√
µe

ln(tan
1

4
χ), (5.29)

which can be rearranged and substituted with the form for u to give

u =
1

l

(
1 + e cos

(
4arctan

(
exp(−φ√µe)

)))
, (5.30)

which can be used to plot the orbit of a neutron approaching a Schwarzschild
black hole from infinity and entering in to a circular orbit, see Figure 7.
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Figure 7: a.(left)M = 1, therefore rc = 2 and e = 1/3 b.(centre) M = 3/2,
therefore rc = 3 and e = 1/3 c.(right) M = 3/2, therefore rc = 3 and e = 1/9

5.2 Solutions when E2 > 1

In the case where E2 > 1, u1u2u3 < 0 and therefore one root, say u1, can be
taken to be real and negative, with the requirement that u2u3 > 0. Again,
the roots u2 and u3 can be real or if they are complex then they must be
complex conjugates. The complex solutions can be found in [2]. As in equa-
tion (5.5), if the roots are real then they must be positive.

For ease, equations (5.6) can be written as

−1

l
(e− 1), (5.31)

where equations (5.7) and (5.8) remain the same. Also, equation (5.12) can
be written as

E2 − 1

A2
=

1

l2
(1− 4µ)(e2 − 1). (5.32)

As the condition u1 < u2 ≤ u3 is similar to that for the solutions when
E2 < 1, many of the relations still hold. However, restrictions can be found
for this value of E because now e ≥ 1.

Since E2 − 1 ≥ 0 and L2 > 0, it can be stated from (5.11) that

µ <
1

3 + e2
. (5.33)
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When considering u2 = u3, equation (5.24) was found. This changes equation
(5.11) and (5.32) to

A2

M2
= 4

(3 + e2)

(3− e)(e+ 1)
, (5.34)

and

E2 − 1 =
e2 − 1

9− e2
, (5.35)

respectively. This gives the range of e to be 1 ≤ e < 3.

The substitution made for u in equation (5.14) is valid for when u2 < u3
but has restrictions due to this new range of e. Since e ≥ 1, u = 0 when

χ = cos−1(−e−1), (5.36)

and the perihelion passage still occurs when χ = 0. Therefore the new range
of χ is

0 ≤ χ < cos−1(−e−1). (5.37)

Therefore, the solution given in equation (5.18) must have this range applied
to it, giving

φ =
2

(1− 6µ+ 2µe)1/2

(
K(k)− F (ψ, k)

)
, (5.38)

where K(k) is given in equation (4.22), k is defined in equation (5.17) and
ψ is defined in equation (5.19). This describes an unbound orbit where a
neutron approaches the black hole from infinity and then departs to infinity
after the trajectory has been altered.

Similarly, when u2 = u3, the solution given in equation (5.29) holds, but
the new range of χ must be taken in to account. This describes an unbound
orbit that approaches from infinity and spirals around the black hole at the
perihelion distance an infinite number of times.
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5.3 Perihelion Precession

As seen in section (5.1.1), for distinct roots of the timelike geodesic equation
when E2 < 1, precession of the perihelion can alter the orbit of a neutron
substantially. The change in angle with each full orbit can be found to a
good approximation.

Differentiating equation (5.1) gives a second order, non-linear differential
equation, namely

d2u

dφ2
= 3Mu2 − u+

M

A2
. (5.39)

It is given in [4] that an appropriate solution is

u =
M

A2

(
1 + eF (φ)

)
, (5.40)

for some function of φ, F .
Substituting this into equation (5.39) gives

eF ′′(φ) +

(
1− 6M2

A2

)
eF (φ)− 3M2

A2
=

3M2

A2
(eF (φ))2 ≈ 0, (5.41)

where F ′′ denotes the second derivative of F with respect to φ. The approx-
imation is due to |eF (φ)| � 1 and higher order terms being negligible. Some
rearrangement now, gives

F ′′(φ) + ω2F (φ)− 3M2

eA2
= 0, (5.42)

where ω2 = 1− 6M2/A2.

Equation (5.42) has a solution of the form

F (φ) = H cos(ωφ) + h, (5.43)

for some constants H and h. Substituting this in to equation (5.42) gives
h = 3M/ω2eA. Now, F and h can be inserted in to equation (5.40) to find
that

r =
A2

m

(
1 + 3M

A
− 18M2

A3 + e cos
(
ωφ
)) . (5.44)
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It is important to note here that this describes an elliptical orbit with period
2π/ω. To identify ∆φ as the change in angle between two consecutive points
of closest approach, it can be stated that

∆φ =
2π

ω
− 2π

= 2π

(
1− 6M2

A2

)−1/2
− 2π

≈ 2π

(
1 +

3M2

A2

)
− 2π

=
6πM

a(1− e2)
,

(5.45)

where a is the sum of the aphelion and perihelion distances. These are given
by equations (5.6) and (5.7), where r = 1/u. Therefore

a = r1 + r2

=
l

1− e
+

l

1 + e

=
2l

1− e2
.

(5.46)

Inserting this in to equation 5.45 gives

∆φ =
3πM

l
, (5.47)

therefore showing that the angle of advance is dependent on mass and l. The
higher the mass of the black hole, the bigger the perihelion precession.
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6 The Spinning Test Particle

A spinning test particle in this paper will be considered to be a free falling
gyro with mass enough so that the motion is timelike, but also small enough
that it does not create it’s own gravitational field.

When the velocity of the spinning particle is not too large, it can be said
that it will follow a motion that is similar to a geodesic but slightly per-
turbed.

Given in [1], the timelike geodesic equation can be written in terms of the
Christoffel symbols as

duα

dτ
+ Γαβγu

βuγ = 0, (6.1)

where the Christoffel symbols in polar coordinates are denoted in Appendix.

However, as well as the usual four-velocity vector u, a gyro has a space-
like spin four-vector s(τ) where s ·u = 0. It can be noted here that the total
spin s∗ = (s ·s)1/2. Taking spin in to account, the gyroscope equation is given
by

dsα

dτ
+ Γαβγs

βuγ = 0. (6.2)

This equation satisfies the criteria to reduce to dsα/dτ = 0 in flat spacetime,
to be linear in the components of spin (therefore allowing precession to behave
similarly for small or large spin) and this equation can be applied to all
coordinate systems.

6.1 Geodetic Precession

The geodetic precession of a gyro is best observed when simplifying the mo-
tion to be circular and on a plane.

In the simplest case, the motion of the gyro can be taken to be a circu-
lar orbit on the plane θ = π/2 with the spin initially orientated in the radial
direction. Examining this motion will display the geodetic precession of the
spin of the particle. This is the idea that after the gyro has completed one

23



full orbit around a shwarzschild black hole on an equatorial plane, its axis of
spin will be angled in a different direction, see Figure 8.

Figure 8: Spinning test particle in orbit around a Schwarzschild black hole,
following φ. The spin is orientated in the radial direction at t = 0 denoted by
s0. After one full orbit the spin is denoted by s1 where the change of angle
is denoted by ∆φgeodetic.

To begin, a circular orbit requires r = constant and θ = π/2. Therefore, for
uλ = dxλ/dτ where xλ = (x1, x2, x3, x4) = (r, θ, φ, t), it can be noted that

u = ut(0, 0, φ′, 1), (6.3)

where φ′ = dφ/dt. It is given [1] that

(φ′)2 =
m

r3
, (6.4)

and it is given in [5] that
s · u = 0, (6.5)

where s = (sr, sθ, sφ, st).
Sustituting the known conditions in to equation (6.5) gives

s · u = −

(
1− 2m

r

)
stut + r2sφφ′ut = 0, (6.6)

which can be rearranged to show that

st = r2φ′

(
1− 2m

r

)−1
sφ. (6.7)
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Using the Christoffel symbols, equation (6.6) can be used to find an equation
for dsr/dt, where

dsr

dτ
+ Γrφφs

φuφ + Γrtts
tut = 0., (6.8)

from equation (6.2).
Substituting in the Christoffel symbols for Schwarzschild geometry (Ap-
pendix) gives

dsr

dτ
− (r − 2m) sin2 θsφuφ +

m

r2

(
1− 2m

r

)
stut = 0, (6.9)

where sin2θ = 1, equation (6.7) can be substituted for st and the relations
in equation (6.3) can be used. This leaves

dsr

dt
− (r − 3m)φ′sφ = 0. (6.10)

Similarly, an equation for dsφ/dt can be found such that

dsφ

dt
+
φ′

r
sr = 0, (6.11)

where equations (6.10) and (6.11) are coupled equations.

Combining these equations gives

d2sφ

dt2
+

(
1− 3m

r

)
(φ′)2sφ = 0, (6.12)

for which, the solutions, sr(t) and sφ(t), can be found. i.e.

sr(t) = s∗

(
1− 2m

r

)1/2

cos(φ′′t), (6.13)

sφ(t) = −s∗

(
1− 2m

r

)1/2(
φ′

rφ′′

)
sin(φ′′t), (6.14)
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where

φ′′ =

(
1− 3m

r

)1/2

φ′, (6.15)

and the normalization has been chosen such that (s · s)1/2 = s∗.

Here, at t0 = 0, the axis of spin is pointing in the radial direction, sφ(0) = 0.
The angular velocity of the particle is given by equation (6.4) and it can
be seen that the time in which the particle will have made a full orbit is
t1 = 2π/φ′.

The angle, ∆φgeodetic, shown in Figure 6 can be found by taking the scalar
product of the unit vector of the spin at time t1 with the unit vector at time
t0, i.e. in the radial direction. This obtains[

s(t)

s∗
· er̂

]
t=2π/φ′

= cos

(
2π

√
1− 3m

r

)
, (6.16)

therefore proving that axis of spin is orientated differently after an orbit.
Therefore the geodesic precession is given by

∆φgeodetic = 2π

(
1−

√
1− 3m

r

)
, (6.17)

for each orbit.

6.2 Non-circular Equatorial Motions

Any small disturbance to the state of a spinning test particle in circular or-
bit will essentially create a non-circular orbit. For ease, the case where the
perturbation does not take the particle out of the equatorial plane can be
considered.

These motions are not suitable to be approximated by the geodesic equa-
tions and this is where the Mathisson-Papapetrou equations must be used.
The initial idea of the Mathisson-Papapetrou model is to find the worldline
of the centre of mass of the test particle. The definition of the centre of mass
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is still debated amongst mathematicians and so there are a few different con-
ditions that can be applied. Here, what is known as the Mathisson-Pirani
supplementary condition will be used.

The equations that describe the motion of a spinning test particle in an
arbitrary gravitational field were published by Papapetrou in 1951 and are
given as

ṗa = −1

2
ScdubRa

cdb, (6.18)

Ṡab = paub − pbua, (6.19)

where
pa = mua + Ṡabub, (6.20)

and m is the mass of the particle. They can be simplified in to the two
equations

D

ds
(muα + uβ

DSαβ

ds
) +

1

2
uρSηµRα

ρηµ = 0 (6.21)

DSβν

ds
+ uβuµ

DSνµ

ds
− uνuµ

DSβµ

ds
= 0 (6.22)

where D/ds denotes a covariant derivative along the 4-velocity uα = dxα/dτ ,
Sαβ is the antisymmetric angular momentum tensor of the particle and Rα

ρηµ

is the Riemann curvature tensor (determined by the gravitational field).
In these two equations, it can be seen that for vanishing spin, the equations
describe a geodesic. It can noted here that there exists the general relation-
ship uµu

µ = 1, which can be used to simplfy expressions.

Next, the spin supplementary condition must be chosen, which here will
be the Pirani SSC

Sαβuβ = 0. (6.23)

For the case in this section, equatorial motions will have spin that is orthog-
onal to the equatorial plane. According to [7]

S2 = ru4S0, (6.24)

where S2
0 = (1/2)SµνS

µν and S1 = 0 and S3 = 0.
Using equation (6.24), three non-trivial equations from equation (6.21) can
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be written as

S0rH(u3ü4 − ü3u4) + u̇1

(
m− 3S0u

3u4
(

1− 3M

r

))
−3S0Hu

1u4u̇3 +
3MS0

r
u1u3u̇4 − 3MS0

r2

(
1− M

r

)
H−1(u1)2u3u4

+rS0H
(

1− 3M

r

)
(u3)3u4 − MS0

r2
H
(

1− 3M

r

)
u3(u4)3

+mΓ1
µνu

µuν +
3M

r2
HS0u

3u4 = 0,

(6.25)

S0

r
(u4ü1 − ü4u1)− 6MS0

r3
H−1u1u4u̇1 + u̇3

(
m− 3S0Hu

3u4
)

−3MS0

r3
u̇4
(
H−1(u1)2 −H(u4)2

)
+

6MS0

r4

(
1− M

r

)
H−2(u1)3u4 − 3S0

r
Hu1(u3)2u4

−2MS0

r4

(
1− 3M

r

)
u1(u4)3 + 2mΓ3

13u
1u3 = 0,

(6.26)

and

S0rH
−1(u3ü1 − ü3u1)− 3S0

(
1− M

r

)
H−2u1u3u̇1

−3S0u̇
3
(
r2(u3)2 −H−1(u1)2

)
+ u̇4

(
m+

3MS0

r
u3u4

)
+

3MS0

r2

(
1− M

r

)
H−3(u1)3u3 − rS0H

−1
(

2− 3M

r

)
u1(u3)3

−3MS0

r2
H−1

(
1− 3M

r

)
u1u3(u4)2 +

3MS0

r2
H−1u1u3

+2mΓ4
14u

1u4 = 0

(6.27)

where H = 1− 2M/r.

From [8], the first integrals of the Mathisson-Papapetrou equations in a
Schwarzschild field are needed, where

A = −mu3 − g33uµ
DS3µ

ds
− 1

2
g33,1S

13, (6.28)

and

E = mu4 + g44uµ
DS4µ

ds
− 1

2
g44,1S

14, (6.29)
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for angular momentum A and energy E. Substituting in equation (6.24)
gives

A = mr2u3 −HS0u
4 − rS0(u

1u̇4 − u4u̇1 + 2Γ4
14(u

1)2u4 − u4Γ1
µνu

µuν),
(6.30)

and

E = mHu4−M
r
S0u

3 + rS0(u
3u̇1−u1u̇3 +u3Γ1

µνu
µuν− 2Γ3

13(u
1)2u3). (6.31)

Now equations for u̇3 and u̇4 can be found, namely

u̇3 = u̇1
u3

u1
+
u3

u1
Γ1
µνu

µuν − 2Γ3
13u

1u3 − E

rS0u1
− M

r2
u3

u1
+

m

rS0

H
u4

u1
(6.32)

and

u̇4 = u̇1
u4

u1
+
u4

u1
Γ1
µνu

µuν − Γ4
µνu

µuν − L

rS0u1
+
mr

S0

u3

u1
− 1

r
H
u4

u1
(6.33)

These two equations can be differentiated and combined to find an expression
for u3ü1− ü3u1 , see full equation in [6], and equation (6.72) can be simplified
to be of the form

u̇1 =
1

r
(u1)2 + 2rG(u3)2 +

G

r
− rE

S0

u3 +
AG

rS0

u4 (6.34)

u̇3 = −u
1u3

r
+ rG

(u3)2

u1
− E

rS0u1
(1 + r2(u3)2)

+
G

r

u3

u1
+

H

ru1S0

(M + Au3)u4
(6.35)

where G = 1− 3M/r.
Therefore the equations of motion can be described in terms of r and φ, using
the condition uµu

µ = 1. These are

r̈ =
ṙ2

r
+ 2rGφ̇2 − rE

S0

φ̇+
G

r
+

A

rS0

(
ṙ2 +H(1 + r2φ̇2)

)
, (6.36)

and

φ̈ = − ṙφ̇
r

+ rG
φ̇3

ṙ
− E

rṙS0

(1 + r2φ̇2) +
m+ Aφ̇

rṙS0

(
ṙ2 +H(1 + r2φ̇2)

)
, (6.37)
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which describe any possible motion of a spinning particle in the equatorial
plane of a Schwarzschild black hole, except for u1 = 0 which describes a
circular orbit. In this case u1 6= 0.

It can be noted that for S0 → 0, E ≈ mu4 and L ≈ −mu3

6.3 Partial Solutions of Non-equatorial Circle Orbit

Having evaluated the geodetic precession for a circular equatorial orbit, cir-
cular orbits that deviate from the equatorial plane are now of interest. Only
partial solutions are aimed for in this section.

6.3.1 The Existence of Solutions

It has been shown in [9] that the geodesics describing non-equatorial circular
motions do not exist in Kerr metric, but here we will apply the idea to the
Schwarzschild metric, that is if any solutions exist.

If solutions do exist they must satisfy the conditions that

r = constant, (6.38)

θ = constant, (6.39)

dφ

dτ
= constant, (6.40)

and
dt

dτ
= constant, (6.41)

where none of the constants are zero and θ 6= π/2, π.

First, equation (6.22) can be looked at in terms of the 3-vector of spin,
i.e.

Si =
1

2

√
−gεiklSkl, (6.42)

given in [7], with εikl as the Levi-Civita symbol and where, by equation (6.23),

Sit =
uk
ut
Skl, (6.43)
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Now, from [7], three independent equations can be formed, with the use of
equations (6.38)-(6.41),as

Ṡr + Sφu
φutut(Γ

t
rt − Γφtφ) = 0, (6.44)

Ṡθ − SφuφututΓφθφ = 0, (6.45)

and
Ṡφ + Sruφ(gttΓrtt − gφφΓrφφ)− SθΓθφφuφgφφ = 0, (6.46)

It can be seen that these equations have a partial solution for

Sr = constant, (6.47)

Sθ = constant, (6.48)

Sφ = 0, (6.49)

and
Sr(g

ttΓrtt − gφφΓrφφ)− SθΓθφφgφφ = 0. (6.50)

This last equation can be transformed in terms of the Schwarzschild metric
to give

Sr =

(
1− 3m

r

)
+ sθ

cos θ

r sin θ
= 0 (6.51)

Similarly, equation (6.21) can be rewritten, using equations (6.38)-(6.41) and
exchanging the Riemann tensor for Christoffel symbols (Appendix). For
λ = 1

m(Γ1
33u

3u3 + Γ1
44u

4u4)+

+u3(Γ1
33 + g44g33Γ

1
44)

1√
−g

(g44Γ
4
14u

4u4S2+

g33Γ
3
13u

3u3S2 − g33Γ3
23u

3u3S1)

= −3M

r3
u3S2 sin θ,

(6.52)
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for λ=2

mΓ2
33u

3u3+

+u3Γ2
33

1√
−g

(g44Γ
4
14u

4u4S2

+g33Γ
3
13u

3u3S2 − g33Γ3
23u

3u3S1)

= −3M

r3
u3S1 sin θ,

(6.53)

and therefore, these two equations can simplified (Appendix) and be written
as

(u3)2

(
S2

r
− S1 cot θ

)
sin θ −mu3 − MS2

r4 sin θ
(u4)2 = − 3MS1

r3 cos θ
(6.54)

and

−m(u3)2 sin2 θ +
3u3

r3

(
S2 − S1r

(
1− 3M

r

)
tan θ

)
sin θ

+
m

r2

(
1− 2M

r

)
(u4)

2 = 0.

(6.55)

It can be seen that these two equations are just second order equations of u3

and u4. Also taking onto account equation (6.51) these two equations can be
said to be of the form

a1(u
3)2 + a2u

3 + a3(u
4)2 = 0, (6.56)

b1(u
3)2 + b2u

3 + b3(u
4)2 = c, (6.57)
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where

a1 = 1 a2 = − 6S2

mr3 sin θ
a3 = −1− 2M/r

r2sin2θ

(6.58a)

b1 =

S2

(
1− 3M

r
sin2 θ

)

r sin θ

(
1− 3M

r

) b2 = −m b3 = − MS2

r4 sin θ

(6.58b)

and c =
3MS2

r4 sin θ

(
1− 3M

r

)−1
(6.58c)

It can be indicated here that r 6= 3M . This is because, for equation (6.51), if
r = 3M then there are two possible cases. Firstly, cos θ = 0, giving θ = π/2
as a solution. This gives the case for equatorial circular motion, which is not
of interest here. Or secondly S2 = 0, which can be shown to not satisfy the
condition uµu

µ = 1. For these purposes, this condition is of the form

g33(u
3)2 + g44(u

4)2 = 1, (6.59)

as given in [6], and can be applied to equations (6.56) and (6.57) to find that

(u3)2(a1 − a3
g33
g44

) + a2u
3 +

a3
g44

= 0 (6.60)

and

(u3)2(b1 − b3
g33
g44

) + b2u
3 +

b3
g44
− c = 0. (6.61)

Here, the values of a1, a2 and a3 from (6.58) can be applied and, with rear-
rangement, it follows that

u3 = − mr

6S2 sin θ
, (6.62)

proving that S2 6= 0 and therefore r 6= 3M .
This equation for u3 can be used in (6.60) to find that

u4 =
mr2

6 |S2|

(
1 +

36S2
2

m2r4

)1/2(
1− 2M

r

)−1/2
. (6.63)
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Now, to find the requirement under which equations (6.56) and (6.57) satisfy
the condition in equation (6.59), u3 can be substituted into (6.61) to give

sin2 θ =

(
1− 2M

r

)(
M

r

(
4− 9M

r

)(
1 + 36

s22
m2r4

)
−6
(

1− 2M

r

)(
1− 3M

r

))−1
.

(6.64)

Therefore, for a non-equatorial circular orbit, where r 6= 3M , there exists the
partial solutions in equations (6.62)-(6.64).

The range for which these solutions exist can be found by further relations
between S0 and S2 and applying this to the equations found here, details are
given in [6].

7 Conclusions

To summarize, the precurement of results for a non-spinning test particle can
said to be much simpler than for a spinning particle.

The roots of the geodesic equations could be categorized in to positive or
negative and real or complex. The complex solutions for the Neutron motion
were not covered here but can be found in [2] by the name of orbits with
imaginary roots and eccentricities. All of these orbits can be found to plunge
in to the singularity.

Analysis of the geodesics revealed some interesting patterns and behaviours.
Light bending for example was not examined in depth in this paper, but the
angle at which the light it bent can be derived and is explained in detail
in [10]. Knowledge of this behaviour is extremely beneficial when observing
space. As shown in section (4.1.2), light rays that reaches earth from space
have the possibility that they have been deflected at some point on it’s tra-
jectory. Therefore, a star in the sky may just be a deflected light ray and the
star is actual in a different position to what is observed. Studying this can
help to ’see behind’ a black hole that is known to exist, but also to detect an
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otherwise unknown black hole. The study of this bending, when caused by
the sun, is one of the three classical tests of general relativity theory.

In addition, perihelion precession creates an interesting orbit and one that
is affected by small perturbations factors such as mass. Elliptical orbits are
common in our universe, specifically in our solar system, but the precession
angle found in section (5.3) is greatly exaggerated, in comparison. The study
of the perihelion precession of the planet mercury around the sun is another
classical test for general relativity.

The third classical test in known as the study of gravitational redshift. That
is where the wavelength of light is affected by the gravitational field it must
pass through. In terms of black holes, light on the edge of the event horizon
would not suddenly disappear, but would appear to freeze in time and would
slowly turn red. This is because the light wave is stretched and the period
of the wave becomes longer, slowly moving in to the red spectrum of light.
This affect takes into consideration time and proper time. These were not
discussed here. However, future evaluations of these three tests may be of
interest.

Another topic not discussed here is that of orbits of the second kind. These
are solved by starting at the singularity and working outwards, therefore
meeting orbits of the first kind at some critical orbit. These orbits may be
interesting to study to see if the behaviours match at the critical radius.

For the study of spinning particles, the derivation of solutions is much more
complex. Some of the solutions can be found by limiting the movement of
the test particle in some way. For example, in section (6.1), the particle
motion was limited to the equatorial plane and to be circular, r = constant,
and in section (6.2) the motion was, again, in the equatorial plane but de-
cidedly un-circular. The algebra becomes more complicated in section (6.3)
where, even though the motions are taken to be circular, the condition that
they are not equatorial creates elaborate equations. Only partial solutions
were found and they only applied to a specific region. Not much literature
exists on the more general motions of spinning particles near Schwarzschild
black holes and it seems that to gain knowledge of all these possible motions,
relationships must be found between the many limited solutions.
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Any potential problems in the solutions for a spinning test particle would
most likely be due to the assumptions made when using Papapetrou’s equa-
tions of motion. A test particle has a negligible gravitational field and so any
mass that adds additional perturbations to the background spacetime will
behave differently to a test particle. Also, the Tulczyjew condition could also
have been used instead of Pirani’s, but, in the weak field approximation, it is
known to produce the same results as for Pirani’s conditions. This is given
by

SµνPν = 0 (7.1)

There is therefore no reason to have preference for one over the other,
except for what is most commonly used in other literature. However, it may
be that future solutions have problems caused by the differences between
these two conditions.

A future study of interest would be to find more solutions for the case of
the spinning test particle and possibly to compare the different conditions
that can be applied to the equations of motion.

This paper focused only on the geometry near a Schwarzschild black hole,
that is a static spherically symmetric gravitational field. This is the most
simple case of a gravitational field, even giving a lower bound of the radius
for observable behaviour. It is possible, however, for a black hole to be rotat-
ing and/or charged. A rotating black hole would be of most interest as this
would be common for a black hole and the solutions can then also be applied
to other rotating astronomical bodies. But, most interestingly, a spinning
test particle could be applied to a region of spinning black hole. Charged
particles and charged black holes would also be an intriguing combination.
However, these much more complicated cases would need substantially more
room than given for this paper.

To improve on this particular study, a catalogue of graphs of trajectories
and their conditions would add simplicity, giving the reader context to the
mathematics. However, even without many graphs, a detailed picture has
been built about geodesic motions and the solutions given can be easily ap-
plied to the context of interest. Also, a thorough introduction to spinning
particles has been achieved, from which further evaluations could be estab-
lished.
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8 Appendix

Christoffel symbols in Schwarzschild geometry:

Γttr = (M/r2)(1− 2M/r)−1

Γrtt = (M/r2)(1− 2M/r)
Γrrr = −(M/r2)(1− 2M/r)−1

Γrθθ = −(r − 2M)
Γrφφ = −(r − 2M) sin2 θ

Γθrθ = 1/r
Γθφφ = − cos θ sin θ

Γφrφ = 1/r

Γφθφ = 1/ tan θ

Riemann Curvature Tensor:

Rl
ijk =

∂

∂xj
Γlik −

∂

∂xk
Γlij + ΓljsΓ

s
ik − ΓlksΓ

s
ij
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