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Abstract

This report will look into modelling fish in a number of different ways. A
basic model will initially be used and then built upon to make the inter-
actions between fish more realistic. Initially the fish have one interaction
zone surrounding them, then it gets increased to three, one smaller than
the original one and one much larger. After the three zones are imple-
mented a field of view is incorporated so that the fish cannot see all the
way around themselves. When the model has been built up a predator
is then introduced so that the interactions can be investigated. Once the
predator has been introduced, the model is then modified in order to
make the movement of both the predator and the fish more realistic. This
produces unexpected behaviour for the predator when it swims towards
the mean location of the fish.
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1 Introduction

In nature a large group of animals are seen to act together as a unit, for exam-
ple, large flocks of starlings, schools of fish, swarms of locusts and even herds
of wildebeest. Some group together for protection or foraging for food, but
others for heat. The increase in protection is due to that as a group they can
have a larger knowledge of what is going on around them. Being in a group
means that when one individual spots something, for example a predator, then
the whole group can learn more quickly than if they were on their own.

One of the most fascinating things about observing large groups of animals
is looking at the patterns which they create. In the UK large flocks of star-
lings are known as murmurations and produce spectacular aerial displays,
which can be witnessed all across the country, in cities as well as in rural ar-
eas. Schools of fish have similar collective behaviour to starlings and produce
some unique patterns: in some situations fish are known to swim in a torus,
(Figure 1.1). In nature fish are known to swim in a torus when the school
wants to stay stationary, for example when they are spawning, or when they
are being attacked and wish to confuse the predator [1].

Figure 1.1: Fish sometimes swim in a torus when they are being attacked by
a predator or the school wants to stay stationary before spawning. Picture
copyright: Jeff Rotman [2].

Over recent years there have been many different approaches for modelling
groups of animals with no leader. Vicsek et al. [3] used an agent based model
to examine self-driven particles. These self driven particles can be thought of
as fish, birds or even bacteria. The model they used looked at fixed distances
from a particle to its neighbours in order to update positions and directions.
Whereas in a similar model Huth et at. [4] used a fixed number of neighbours
to update the direction and position of each fish. There have also been papers
comparing the two to see which is most realistic. In 2007, a paper was writ-
ten by Ballerini et al. [5] that states it is more likely that the fish interact on
average with a fixed number of neighbours rather than those within a fixed
distance. A completely different method of modelling the movement of fish
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was used by Faugeras et al. [6], in their paper they used advection-diffusion
PDEs. The difficulties when using this model are apparent when expressing
the time and spacial advection-diffusion coefficients. In the paper by Faugeras
et al. they simplified the advection and diffusion by using a suitable parameter.

There have also been experiments tracking fish and recording the distances
between each fish. The results of one of these experiments was compared to
simulated results in the paper by Huth et al. [4]. They used the the closest n
neighbours model, and their simulated results agreed with the experimental
data.

This report looks at models of fish schools, examining how the parameters
of a model control simulated fish behaviours. A basic model will be built
upon and at each stage the model will be looked at in order to see where the
behaviours differ. The model starts with one interaction zone sounding each
fish. After some analysis it is possible to distinguish different behaviours when
the radius of the interaction zone is changed

Then making the model more complex, the interaction zone is split into three
distinct zones. Each zone causes different effects to how each fish will interact
with its neighbours. After some analysis of the model with three zones, remov-
ing zones individually allows the roles of the different zones to be interpreted.
The size of each zone is then changed to see the effects on the alignment of the
fish schools.

A field of view is introduced to make the model more lifelike. This causes
a blind spot behind each fish. Repeating the same analysis of the model with
three zones on the field of view model any effects the blind spot has on each
version of the model can be observed. The report will also look at how altering
the size of the field of view changes behaviour seen.

In the penultimate section, the report finally investigates how the introduc-
tion of a predator will affect the school with the parameters fixed. There are
two ways in which the fish react to the predator: swim directly away from
the location of the predator; and swim away with an angle determined by a
normal distribution. For each of the two versions this report will analyse the
simulated fish.

2 Basic Model

The simplest model this report looks at is a self propelled particle scheme that
was devised by Vicsek et al. [3]. In this model a fish changes its direction
by aligning itself with the average direction of its neighbours within a certain
distance [3]. Random noise is added to the new direction to allow for the
imprecise accuracy by which a fish can asses its neighbours’ directions. The
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initial state of the model gives each fish a random position and velocity;

x = (x, y),
v = (v cos θ, v sin θ).

Where θ is the direction of the fish such that −π ≤ θ ≤ π. We have split the
velocity into its components in the x and y direction. The magnitude of the
velocity, |v| = v, is constant. Hence for every fish, i,

fi = (xi, yi, vx,i, vy,i),

where i = 0, . . . , N, and N is the number of fish. In order to analyse the fish
and their behaviour their positions are updated for many time steps.

2.1 Updating the Location and Direction of the Fish

The update step starts by calculating the distances between all the fish using
Pythagoras’ theorem. The distance between fish i and j is given by

di,j =
√
(xi − xj)2 + (yi − yj)2, (1)

where fish i and fish j have positions (xi, yi) and (xj, yj) respectively. When
updating the fi vector the new velocity components become

vx,i =
1
N ∑

di,j<D
vx,j, (2)

vy,i =
1
N ∑

di,j<D
vy,j,

where D is a fixed radius, set as a parameter around each fish, and the index
j refers to the fish within this region. This updates the direction the fish is
swimming. The Euler time stepping method, x = δt · x + x0, calculates its new
position. The new vector for fish i therefore is,

fi = (xi + vx,i · dt, yi + vy,i · dt, vx,i, vy,i),

where dt is a short time interval. When updating the fi vectors, the current
position and direction of each fish are used. Therefore, in the final step when
updating the fish over one time step there are two vectors for each fish, fi,current
and fi,new. The fish move forward one time step by setting

fi,current = fi,new.

It is not known that fish average their neighbours direction, maybe they follow
a leader or a fish to their left or the closest few fish. Even if they do average
their neighbour’s direction there will be some error due to the opacity of the
water or the refraction of light in water. To mirror this in our model some
noise is added in calculating which direction to travel in next. To include this
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uncertainty in the model the angle at which the updated fish i is going to swim
is perturbed by a noise term, ω, where

−σ
π

2
< ω < σ

π

2
.

This ensures that when σ = 1 there is a possibility that the fish can be per-
turbed by an angle up to π

2 radians. So the fish direction of travel

θ = arctan
(

vy,i

vx,i

)
,

where vy,i and vx,i are calculated using the equations (2), becomes,

θ∗ = arctan
(

vy,i

vx,i

)
+ ω. (3)

This gives the new velocity components

vx,i = cos θ∗,
vy,i = sin θ∗.

Figure 2.1 shows how using equations (2) and (3) in order to update the posi-
tion and direction of five fish looks pictorially. In Figure 2.1a a radius of size
6 is drawn around the first fish to be updated. The distances between all fish
are calculated using equation (1). Then the fish within this radius are coloured
orange. The dark purple fish shown in Figure 2.1b is where the fish being
updated would go if there was no noise, i.e. traveling in the average direction
of the orange fish. Since we want to have noise, here σ = 0.5, the pale purple
arrows represent where the fish will move to. Repeating this for all five fish
Figure 2.1c is produced. From this we can easily see where each fish will move
to. Finally in Figure 2.1d, all the fish have moved simultaneously to their new
positions.

2.2 Analysis of the Basic Model

Table 2.1 shows the parameters used throughout the analysis of this model.

Parameter Symbol Value Range Unit
Number of fish N 40-200 Dimensionless

Velocity v 0.25-1 Length per second
Time step dt 1.0 Seconds

Noise σ 0.0 - 1 Radians
Radius of Alignment D 2.0 - 15.0 Length

Table 2.1: Parameters of the basic model.

When running simulations of the basic model boundary conditions are re-
quired. The boundaries can either be very large so that the fish never reach
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(a) First step (b) Second step

(c) Penultimate step (d) Last step

Figure 2.1: Updating the location and position of five fish using equations (2)
& (3).

them or the boundaries can be smaller and periodic. For the work on the basic
model the boundaries are set to be periodic. The size of the boundaries are set
to be 50× 50 so it takes about

nx
v

=
50
1

= 50

time steps to cross the grid.

The value of D heavily dictates the patterns observed, as shown in Figure 2.2.
In Figure 2.2a the value for D, D = 15, is approximately a third of the width
of the domain, here the fish are all aligned. However, in Figure 2.2b where
the value for D is a third smaller, D = 5, the fish group together and are
aligned within these groups, but different groups might not be aligned with
each other.
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(a) D = 15. (b) D = 5.

Figure 2.2: Two simulations with N = 200 fish where the area is 50 × 50 units,
σ = 0.2. The alignment in (a) is a = 0.98 and in (b) is a = 0.10.

How well a school of fish are aligned can be quantified. This is done using

a =
1

Nv

∣∣∣∣∣ N

∑
i=1

vi

∣∣∣∣∣ , (4)

where vi = (vx,i, vy,i). This gives us 0 ≤ a ≤ 1. Where a = 0 is perfect non-
alignment (Figure 2.3a) and perfect alignment is when a = 1 (Figure 2.3b).

(a) a = 0. (b) a = 1.

Figure 2.3: Pictorial representation of alignment values calculated using equa-
tion (4)

In Figure 2.2 the alignment changes as the radius of alignment is changed.
However, the radius only has a small impact on the alignment values. This is
implied by Figure 2.4 and the mean values of alignment in Table 2.2. What can
be deduced is that for the first 15 time steps of the simulation, the simulation
with D = 1.0 has the lowest alignment, whereas the when D = 15.0 has the
highest alignment.

Due to the random nature of where the fish start and their random orientation
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it is not always the case that the simulations with a smaller radius of align-
ment have a lower alignment measurement. However, when averaging over
many simulations a smaller radius gives lower alignment. Using an example
of a school of fish with a small D value the group may split into two distinct
groups swimming in opposite directions, they would not interact with each
other because of the small interaction zone. In their own school they would
be very well aligned, however, alignment of all the fish will be approximately
a = 0. A similar simulation with a large D value will have a large alignment
since the only disturbance is coming from the noise parameter.

Figure 2.4: Running 3 simulations with the parameters N = 40, v = 0.25 and
σ = 0.2.

D Mean a Value Standard Deviation
1.0 0.84 0.07
5.0 0.95 0.04

15.0 0.96 0.02

Table 2.2: Mean and standard deviation values for three simulations run with
different D values. The mean and standard deviation are calculated over the
last 70 time steps.

The relatively small size of the domain leads to high a values for all D values.
Repeating the simulations above in a larger domain, of size 500× 500, where
the fish start in a 50× 50 square in the centre removes this phenomenon. In
Figure 2.5 alignment is plotted against time. The alignment values in the plot
are considerably smaller than values when the domain was 50× 50. This is
because the fish now have a much larger space to swim in, they never reach
the boundaries. Calculating the mean alignment values, Table 2.3, over the last
70 time steps gives an indication of the statistically steady mean. The standard
deviations over the three simulations are very similar.
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Figure 2.5: Running 3 simulations with the parameters N = 40, v = 0.25 and
σ = 0.2 in a larger domain, 500× 500.

D Mean a Value Standard Deviation
1.0 0.16 0.07
5.0 0.16 0.05

15.0 0.19 0.07

Table 2.3: Mean and standard deviation values for three simulations run with
different D values in a domain of size 500× 500

Altering the noise parameter and keeping D constant produces Figure 2.6. For
noise, σ = 0.0 (the red line), after some initial time the fish all become per-
fectly aligned and stay aligned for the rest of the run. This occurs since there
is no noise to make them deviate from being aligned once they have achieved
it. When increased to σ = 0.2, the noise has been increased by just a small
amount and the fish never reach perfect alignment. In fact they reach an av-
erage value of a = 0.73, shown in Table 2.4. This is due to the noise term
moving them them out of alignment. When increasing the noise methodically
the alignment doesn’t decrease linearly. It decreased slowly at the beginning
then faster near the middle then slowly again when at the highest σ values
used. There appears to be three different behaviours shown here. The first is
when σ = 0.0, here the fish are perfectly aligned and stay aligned. The second
comes from 0.0 < σ / 0.6 where the fish are relatively well aligned with small
oscillations. then the final behaviour comes from 0.6 ' 1.0 where the fish have
a very low alignment value with large, very frequent oscillations. The simula-
tion ran with σ = 0.6 appears to be a boundary as it spend some of the time
acting like the simulation where σ < 0.6 and the rest of the time like σ > 0.6.

This suggests that as the noise increases the average alignment decreases while
the oscillations, or standard deviation, about this average stay similar.
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σ Mean a Value Standard Deviation
0.0 1.00 0.00
0.2 0.73 0.17
0.4 0.62 0.17
0.6 0.52 0.21
0.8 0.32 0.14
1.0 0.24 0.11

Table 2.4: Mean and standard deviation of the alignment values for the six
simulations run with different noise. The mean and standard deviation are
calculated over the last 200 time steps.

Figure 2.6: Alignment over time plot for six simulations keeping N = 40, v =
0.31 and D = 7.0 while varying σ.

Figure 2.6 shows that alignment decreases as the noise increases. To inves-
tigate Figure 2.7a, alignment against noise (σ) was produced by running 20
simulations each with a different noise value, ranging from σ =0 to σ = 5

π .
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(a) When N = 40 this is a rapid but relatively
smooth decline in alignment.

(b) Figure taken from the paper
by Vicsek et al (1995) [3].

Figure 2.7: Alignment vs noise plots from simulations ran using (a) our model
and (b) using the model by Vicsek et al. [3] where va = a and σ = η 2

π .

The value σ = 5
π was chosen in order to compare with the figure in the paper

by Vicsek et al (1995) [3] since they calculate their noise parameter differently,
σ = η 2

π . The alignment value for each noise was calculated by averaging over
15 simulations with the same noise value. Figure 2.7b has five different lines.
The line given by squares is equivalent to the purple line in Figure 2.7a. The
purple line is not as smooth as the Vicsek et al. plot. In their paper they did not
give information about how each point was calculated. If the two figures were
produced using the same method then Figure 2.7b was made using a larger
number of σ values and each was most likely averaged over a larger number
of simulations.

2.3 Different Behaviours in the Basic Model

Running multiple simulations of the basic model we produce the results in
Table 2.5. From the observations in Table 2.5, we can see that there are two
different behaviours in this model. The first behaviour observed is when 0 <
D < 9. In this range of alignment radii the fish clump together and swim
within these groups. The second, when D ≥ 9, the fish all become aligned
almost instantly. In the region 8 < D < 10 the fish move slightly closer
together before becoming aligned, this implies that the distinction between the
two behaviours is not a sharp transition.

10
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D Value Observations Alignment
15.0 aligned 0.98
14.0 aligned 0.98
13.0 aligned 0.98
12.0 aligned 0.98
11.0 aligned 0.98
10.0 aligned 0.98
9.0 aligned 0.98
8.0 clumping 0.97
7.0 clumping 0.97
6.0 clumping 0.95
5.0 clumping 0.90

Table 2.5: Observations varying D values, keeping N = 200 and σ = 0.2 in a
50×50 domain.

3 A Model with Three Zones of Interaction

3.1 Update Equations and Initial Analysis

So far there has only been one interaction zone around each fish. This section
introduces two other zones of interaction; a repulsion zone and an attraction
zone. A fish will have different update steps depending on where its closest
neighbours are.

Figure 3.1: Three zones of interaction: attraction, alignment, repulsion

The new zone of interaction are defined as follows.

1. The inner zone with radius R surrounding the fish acts as a repulsion
zone, i.e. stops collisions from occurring. The fish being updated will be
repelled from the fish within this zone. Hence the angle at which it will
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next swim, before the noise term is added, is

θ = arctan

( 1
N ∑(di,j<R) yj − yi

1
N ∑(di,j<R) xj − xi

)
+ π. (5)

That is, calculate the average position of the fish within this region, rela-
tive to fish i, then find the angle between fish i and this point. By adding
π the new updated angle will point directly away from the average posi-
tion of its nearest neighbours.

2. In the middle, alignment zone, where the radius is D, such that R < D,
the update steps are very similar as in Section 2 with the distances taken
into account changed. That is

vx,i =
1
N ∑

(R<di,j<D)

vx,j,

vy,i =
1
N ∑

(R<di,j<D)

vy,j. (6)

Note that here the update equation looks at the velocity components of
its neighbours where in Equation (5) the positions of the fish are used.

3. The final outer attraction zone has a very similar update step to that
of the repulsion zone. In the repulsion zone the fish are updated to
swim directly away the current average position of its nearest neighbours,
however, in this zone the fish swims towards the average position of its
neighbours between D and A. Hence the update equation is

θ = arctan

( 1
N ∑(D<di,j<A) yj

1
N ∑(di,j<A) xj

)
(7)

where A is the radius of attraction around the fish.

If there are no fish in the first zone then it looks at the second, and if there
is none in the second then it looks in the third. If there are no fish in any
interaction zone then the fish keeps its current direction.

For simulations in this Section all fish will be given a direction, θ = 3
4 π in

order to see the effect of the repulsion zone

Table 3.1 shows the parameters used analysing the three zones model.
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Parameter Symbol Value Range Unit
Number of fish N 40− 200 Dimensionless

Velocity v 0.25− 1 Length per second
Time step dt 1.0 Seconds

Noise σ 0.0− 1 Radians
Radius of Repulsion R 0.0− 6.0 Length
Radius of Alignment D 2.0− 14.0 Length
Radius of Attraction A 7.0− 15.0 Length

Table 3.1: Parameters of the three zone model.

(a) Zone of interaction (b) Alignment vs Time

(c) School at t = 50 (d) School at t = 190

Figure 3.2: Parameters set to R = 2.0, D = 7.0, A = 15.0, σ = 0.2. The circles
from (a) are then placed in the bottom corner of (b) and (c) to give an idea
of the scale of the interaction zones relative to the whole area within the new
larger periodic boundaries.

Running a simulation of the three zone model we can produce a number of
plots, shown in Figure 3.2. Figure 3.2a pictorially shows the relative sizes of
the zones of interaction about the centre point, the fish. Here red represents
the repulsion, green the alignment, and blue the attraction zone. It is set up
so that the repulsion radius is small, to stop fish from colliding. Here we will
use a radius of 2 units, i.e distance travelled in two time steps. The alignment
zone is of a similar size to that in Section 2, since the repulsion zone is radius
2 units the alignment radius is set to be 7 units. Finally the attraction zone is
large, 15 units, since for protection fish want to swim together. The boundaries
have been increased in order to witness the behaviour of the fish without the

13
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fish instantaneously moving from one side of the domain to the other.

From the two snapshots of the fish simulation it can be seen that fish start
off as one school and eventually splinter off into a number of smaller schools.
This can be quantified by the alignment values, as a large school will have a
high alignment value where as a group of smaller schools may have a much
lower alignment value, but the difference here is small.

In a similar fashion to Section 2, it is possible to plot how the alignment
changes over time: Figure 3.2b shows how the alignment in the 3 zone model
changes with σ = 0.2. The mean value is a = 0.84 with a standard deviation
of 0.03, which is similar to that of the basic model as the mean has slightly in-
creased, whereas the standard deviation has decreased. Hence the inclusion of
the other two new interaction zones has caused the standard deviation value
to reduce. The sharp dip at the beginning of the simulation’s alignment val-
ues is as a result of the repulsion zone. The repulsion zone update equations
force the fish to swim directly away from the fish that are too close, so since
the density of the initial fish is quite high it is very likely that most fish will
have neighbours within their repulsion zone. This causes them to flip direction
which will have a massive disturbance on the total alignment.

Figure 3.3: The alignment vs time plot for the 3 zones model, with N = 40, v =
0.31, R = 2, D = 7 and A = 15 constant in a domain of 50×50.

As in Section 2, running six simulations with different σ values allows inves-
tigation into how the noise parameter effects the alignment in the new model.
Figure 3.3 shows how alignment changes over time when the value of σ is
systematically decreased for the three zone model. Comparing this with Fig-
ure 2.6, as all parameters are the same, it can be observed that the oscillations
about the averages are larger in the three zones model. Also observe that the
time taken for simulations to become steady takes longer due to the repulsion
zone keeping fish apart. This is also causes the simulation with a σ = 0.0 to
never reach perfect alignment.

14
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Comparing the mean values in Table 3.2 and Table 2.4 notice that for four
of the σ values the mean alignment is smaller. For the value of alignment
at σ = 0.2 in the three zone model the value is higher than that of the basic
model. However, comparing the standard deviations the deviation is larger in
the basic model making the alignment value similar. The alignment values for
σ = 1.0 are similar, explained using the same argument.

σ Mean a Value Standard Deviation
0.0 0.92 0.04
0.2 0.83 0.09
0.4 0.52 0.17
0.6 0.41 0.16
0.8 0.28 0.12
1.0 0.28 0.13

Table 3.2: Mean and standard deviation values for the six simulations ran with
different σ values. The mean and standard deviation are calculated over the
last 200 time steps.

The following section discusses the different behaviours found when altering
the three radius parameters, R, D, A. In Section 3.2 the parameters which are
fixed are N = 250, σ = 0.2 and v = 1.

3.2 Removing Zones: The Roles of Different Zones

By removing individual interaction zones one by one it is possible to see what
effect that zone had on the behaviour of the fish. A different way of thinking
of removing the repulsion zone is setting R = 0, doing this there can be no
fish within zero distance of the fish, so the repulsion update equations get
passed over unused. By removing the repulsion zone observe that groups still
form as the attraction and alignment zone bring groups together and keep
them together respectively. Removing the alignment zone and attraction zone
is done similarly by setting D = 2 and A = 7 respectively.

The snapshots shown in Figure 3.4 show the location and direction of the fish
at the final time step. There are clear differences between each two zone model
and the full three zone model.

Comparing the snapshots of the model with no repulsion to the full model,
i.e. comparing Figure 3.4d and Figure 3.4a, the most significant difference is
how tightly packed the fish are together. This is what we would expect since
there is no code to stop the fish getting too close and colliding.

However, the main difference between these two models can be seen in their
alignment vs time plots, Figure 3.2b and Figure 3.5a. As was mentioned in
Section 3.1 the full model alignment vs time plot has a large drop before be-
coming statistically steady. The removal of the repulsion zone also removes
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(a) No repulsion zone (b) No alignment zone

(c) No attraction zone (d) Full-Model

Figure 3.4: Snapshots from Four Different models.

this drop, so the conclusion that the drop was made by the repulsion zone is
reinforced here. Interestingly the mean alignment value, Table 3.3, for the full
model is very similar with a smaller standard deviation. This is as a result of
the random nature of the model.

Analysing the full model compared to the model without the alignment zone,
the differences are more apparent. In the model with no alignment, the school
of fish barely move from their initial position. By considering how an indi-
vidual fish would update its position this behaviour is easily deciphered. An
individual fish with neighbours in its repulsion zone would update to swim
directly away from them. As soon at it has reached the point where there
are no longer fish in the repulsion zone, it then looks at its neighbours in the
attraction zone, since there is no alignment zone. It then updates to swim to-
wards those neighbours. This eternal switching of directions would keep the
fish within the initial 50× 50 positions, but taking into account the noise pa-
rameter, which we set to be 0.2, explains why the shape changes over the 200
time steps.

Just how little the fish move is even more apparent when looking at the trajec-
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(a) No repulsion zone

(b) No alignment zone

(c) No attraction zone

Figure 3.5: Alignment vs time plots for different models.

tories of five fish, Figure 3.6a, compared to those of the full model, Figure 3.6b.
The fish in the full model travel much further than those in smaller two zone
model. The two zone model stays in the centre whereas in the three zone
model they move away.

The differences become even more evident in the large contrast between the
alignment vs time plots, Figure 3.2b and Figure 3.5b. The alignment after the
first few time steps stays below 0.05 and then comparing the two mean values
from Table 3.3, the full model has a mean value almost 50 times larger.

Finally, comparing the full model with the model with no attraction zone it
can be seen that there are fewer schools of fish in the full model. This is a
result of the attraction zone keeping the current schools together, without this
it is difficult to rejoin a school since the fish uses the update equation where it
keeps going in its current trajectory.
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R D A Mean Standard Deviation
2.0 7.0 15.0 0.93 0.02
0.0 7.0 15.0 0.83 0.03
2.0 2.0 15.0 0.02 0.01
2.0 7.0 7.0 0.79 0.03

Table 3.3: Mean and standard deviations when removing individual zones
from the three zone model.

(a) A model with no alignment zone. (b) The full three zone model.

Figure 3.6: Trajectories of five fish over 200 time steps.

3.3 How the Zone Size Changes Alignment

Adding zones to the basic model to form two and three zone models shows
some new distinct behaviour patterns. This Section explores the differences
when the radii of the zones are at the extremes, that is to say radii that have
a difference of v× dt = 1 unit. As with all the simulations ran in a 500×500
domain the fish are in fact initialised in a 50× 50 square in the centre.

3.3.1 Maximal Alignment

Starting with a simulation with maximal alignment zone, where the distance
parameters are set to R = 2, D = 14, A = 15, here the behaviours are very
different to those seen so far in the three zone model. The fish swim together
as one school and are still approximately square at the end of the simulation.
Since the alignment zone is the largest, the alignment equations, Equation (6),
are used more frequently than the ones for repulsion and alignment. This
causes the fish to assume the direction average of its neighbours, this is ob-
served as the fish being very well aligned.

Figure 3.7a shows the school in its initial position. The fish are located in
a 50× 50 square in the middle of the x and y domains. At the end of the simu-
lation, Figure 3.7b, the square shape is still clearly recognisable. This reinforces
the idea that the fish become aligned very quickly and stay very aligned. Then
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looking at the alignment vs time plot, Figure 3.7c, it has the initial dip, which
is a characteristic of the three zone model. It then becomes almost level very
close to the maximal alignment value. This is what would be expected by
examining the snapshots of the fish’ movement.

(a) School at t = 0. (b) School at t = 190.

(c) Alignment vs Time

Figure 3.7: A simulation with distance parameters, R = 2, D = 14, A = 15.
The first two showing snapshots of the movement of the fish over the 200 time
steps. The lower figure shows how alignment changes over time.

3.3.2 Minimal Attraction

When changing the radii parameters to reflect a minimal attraction zone, R =
2, D = 7, A = 8, the observations are similar to having no attraction zone. The
only observable difference in the snapshots is the number of groups the initial
school breaks into. With the parameters set at R = 2, D = 7, A = 15 there
are 9 observable groups, whereas now with the attraction zone much smaller
there are now 15 groups. When comparing the alignment vs time plots for the
model with parameters R = 2, D = 7, A = 8 with the model with no attraction
zone no differences are discovered. Here Equation (7) is rarely used since the
difference between the D and A values is only the distance travelled in one
time step.
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Figure 3.8: Alignment values over time from a simulation with distance pa-
rameters, R = 2, D = 7, A = 8. Showing the alignment values again time.

3.3.3 Maximal Repulsion

The parameters needed to simulate a maximal repulsion zone are R = 6, D =
7, A = 8. This gives a behaviour with certain similarities to that of the model
with no alignment, however, there are some noticeable differences. The main
similarity between these two models is shown by the alignment vs time plot,
Figure 3.9a. The two alignment vs time plots have alignment values that stay
below 0.2 and oscillates about the mean with a lower frequency to that of the
two zone model.

However, looking at the snapshot of the simulation at t = 160, Figure 3.9b,
both similarities and differences are observed between this and the full three
zone model at the beginning of this section. In both models the fish stay close
to the initial positions, but when comparing the trajectories of five fish for
both models, Figure 3.9c and Figure 3.6a, it is clear to see that some fish in
the maximal repulsion model move much further than in the no alignment
model. This can be explained by thinking of what having a large repulsion
radius means for the update steps. In the no alignment model, the fish are
simulated to be repelled if they are closer than 2 to their neighbours. In the
current model however, the fish are repelled if they are within 6 from their
neighbours. So they are repelled to a distance further away from each other
than in other models.

3.3.4 Minimal Alignment

The final parameter set to be analysed is the parameters for minimal align-
ment. This is to be expected to be similar to the previous Section and to the
two zone model from Section 3.2 with no alignment. The parameters used are
R = 2, D = 3, A = 15. These are then used to simulate fish producing the
figures in Figure 3.10. As expected the alignment vs time plot, Figure 3.10a, is
remarkably similar to that of of previous models mentioned above. The align-
ment stays very low and oscillates about the mean with a high frequency.

From the trajectory plot, Figure 3.10c, the behaviour of the fish looks remark-

20



H. E. L. Moore 4 A MODEL WITH LIMITED FIELD OF VIEW

(a) Alignment vs Time

(b) Simulation of school at t = 160 (c) Trajectories of five fish

Figure 3.9: Alignment, snapshot and trajectories from a model with parameters
set to maximal repulsion, R = 6, D = 7, A = 15.

ably similar to that of the two zone model in Section 3.2 when alignment was
removed. However, when considering the snapshot taken at t = 190 the fish
actually move much further from the initial positions than the two zone model.
This is explained by how the fish update their positions and directions. When
a fish no longer has neighbours in the repulsion zone, there is a small distance
window where it can now align with its closest neighbours. When it has no
neighbours repelling, but ones aligned, they then have the chance to break
away from the main school. Nonetheless the window of alignment is so small
that most of the fish behave as though the zone was not there.

4 A Model with Limited Field of View

In previous sections, all the fish have been able to see all the way around
themselves. This is not entirely realistic, since a fish is unlikely to be able to
see its own tail. To put this in simulations a field of view is introduced, where
each fish can see α radians in each direction. A similar field of view method is
used in a paper by Couzin et al. [7].
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(a) Alignment vs Time

(b) Simulation of school at t = 190 (c) Tracking five individual.

Figure 3.10: Alignment, snapshot and trajectories from a simulation with min-
imal alignment parameters, R = 2.0, D = 3.0, A = 15.0.

Figure 4.1: Field of view for a fish

4.1 Update Equations and Initial Analysis

In order to include a restricted view into the model, the angle between the
direction of fish i and the position of fish j must be calculated, Figure 4.2. This
is done by finding the location of fish j with respect to the location of fish i
then calculating the angle towards this point. This angle is called γi,j. Then
γi,j is made relative to the direction of fish i by

βi,j = θi − γi,j − π,
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where θi is the direction of fish i. There are now two stages to the update step,
the first is whether the neighbouring fish can be seen. The second follows from
Section 3, the zone of interaction the neighbour is in. For the first update stage,
to determine which neighbours to take into account, a simple rule is used:

• If |βi,j| > α, then don’t include this fish in the update process,

• If |βi,j| < α, then include this fish in the update process.

The second stage follows Section 3 where only the appropriate neighbours are
used.

Figure 4.2: For each fish pairing the angle β must be found

The full three zone model with a restricted view produces Figure 4.3. As in
Section 3 Figure 4.3a pictorially shows the three interactions zones with the
blind spot blacked out.

(a) Zone of interaction (b) Alignment vs Time

(c) Simulation of school at t = 50 (d) Simulation of school at t = 190

Figure 4.3: From a simulation where R = 2.0, D = 7.0, A = 15.0, α = 2π
3
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There are large differences between the three zone model and the field of view
model. The simulation that produced Figure 3.2 uses the same parameters as
Figure 4.3, the only difference is which fish are used in the update process,
as some fish will be in the blind zone. When each fish has a restricted view
the alignment becomes much lower, 0.32 down from 0.84. A large decrease is
expected because each fish can not see all surrounding neighbours. From the
snapshots, Figure 4.3c shows that initially the two simulations start similarly
but then after the remaining time steps become much more spread out and
can become isolated (Figure 4.3d).

Now that a field of view has been introduced some of the behaviour seen
in Section 3 may have changed. The following sections will repeat the analysis
of the three zones model in order to see what implications the restricted view
has. The parameters used to analyse this model are shown in Table 4.1. Now
the fish are given a random direction at the start of the simulations since the
role of the repulsions zone is no longer under investigation.

Parameter Symbol Value Range Unit
Number of fish N 200 Dimensionless

Velocity v 1.0 Length per second
Time step dt 1.0 Seconds

Noise σ 0.2 Radians
Radius of Repulsion R 0.0 − 6.0 Length
Radius of Alignment D 2.0 − 14.0 Length
Radius of Attraction A 7.0 − 15.0 Length

Angle of View α
π

16
− 7π

16
Radians

Table 4.1: Parameters of the three zone model with a field of view.

4.2 Removing Zones When View is Restricted

Similarly to Section 3.2, zones are removed individually. Figure 4.4 shows
snapshots of the simulations at the end of their runs. There are massive differ-
ences between each of these three simulations and there are some differences
with their counterparts from Section 3.2.
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(a) No repulsion zone (b) No alignment zone

(c) No attraction zone (d) Full field of view model

Figure 4.4: Snapshots from four different models.

Starting with the model with no repulsion zone, we see that by restricting the
field of view most of the fish stay together in one school, Figure 4.4a. This is
the only version of the three zone model, with or without the restricted view,
with the distance parameters set to R = 2.0, D = 7.0, A = 15.0 that does so.
This is because the fish can be really close together, since there is no repulsion
zone, and then align. Some of the fish become leaders of the school since they
cannot see that there are other fish following them. Moving on to compare
the alignment over time plots for the models with and without a field of view,
there is only one observable difference when comparing the statistically steady
behaviour of the field of view model with the previous three zones model.

In Figure 4.5a the alignment levels off at a =0.83, whereas in Figure 3.5a the
alignment settles at a =0.85. Since the two alignment vs time graphs are
similar and the mean alignment values are almost the same these two model
variations give the same behaviour.

Comparing the two models with no alignment zones there is a startling dif-
ference. Before in Section 3.2 the fish stayed in the 50×50 square they started
in. However, due to the fish now having a blind spot and therefore not always
seeing any fish, the fish spread out much more. Having said this the alignment
over times graphs, Figure 3.5b and Figure 4.5b, are remarkably similar when
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the aligament values are statistically steady. The alignment stays very low in
the restricted view model because fish are swimming in every direction, so
their alignment value will be approximately 0.

There is significant differences between the two models with no attraction.
When the field of view is implemented the fish swim out almost radially,
Figure 4.4c. As with the model with an unrestricted view the school of fish
splinter into many groups since there is no update process keeping the group
together. When comparing the two alignment over time graphs the differences
become even more evident. Figure 3.5c shows the alignment dropping down
and then rising back up to level out at a =0.85. Whereas in Figure 4.5c the
alignment is always below 0.5. It starts much lower then rises for a short
period of time before settling to give a final mean value of a =0.16.

(a) No repulsion zone

(b) No alignment zone

(c) No attraction zone

Figure 4.5: Alignment vs time plots for different models with a restictive view.
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4.3 Changing the Size of Zones When View is Restricted

Exploring what happens in the three zone model when the radii of the zones
are at the extremes, was discussed in Section 3.3. Now this section will inves-
tigate if any of these behaviours change when a field of view is introduced.

4.3.1 Maximal Alignment

(a) Simulation of school at t = 40 (b) Simulation of school at t = 190

(c) Alignment vs Time

Figure 4.6: A simulation with R = 2.0, D = 14.0, A = 15.0, α = 2π
3 to mimic

maximal alignment.

Comparing the snapshots of a simulation with maximal alignment significant
differences are observed. In Section 3.3.1 the fish stay together in a square
shaped school. In this restricted view model, the fish stay together for approx-
imately a quarter of the time, Figure 4.6a. However, after this time the group
splinters off into a few individual schools, Figure 4.6b. Since approximately
half the fish swim in one direction and the other half in the opposing direction
the alignment significantly drops when the school splits. This can be seen in
the alignment over time graph, Figure 4.6c, at t ≈ 90 the alignment decreases
to around a =0.2 whereas before this drop the alignment as reaching a =0.8.
The differences are made even more clear when comparing the two trajectory
plots for five randomly selected fish, Figure 4.7.
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(a) Field of view model. (b) Three zone model.

Figure 4.7: Trajectories from five random fish for both the three zone model
and the field of view model. Each model has distance parameters set to R =
2, D = 14, A = 15.

4.3.2 Minimal Attraction

When previously looking at minimal attraction, Section 3.3.2, it was found
that it was very similar to that of the two zone model, with only repulsion
and alignment zones. However, when looking again at the minimal alignment
with a restricted view this is no longer the case. The fish break away from the
initial school approximately radially to form a number of smaller school after
only 50 time steps, Figure 4.8a. These then break up over and over again until
at t = 190 there are a larger number of groups, some only consisting of one
fish (Figure 4.8b).
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(a) Simulation of school at t = 50 (b) Simulation of school at t = 190

(c) Alignment vs Time

Figure 4.8: R = 2.0, D = 7.0, A = 8.0

The alignment over time graphs reinforce the differences between the two min-
imal attraction models. Figure 3.8 showed the alignment value being very
high, over a =0.8, after less than 25 time steps. However, when the field of
view is restricted the alignment value becomes a =0.4. This is caused by the
fish swimming approximately radially from the initial positions. The align-
ment is calculated using the velocity, where the velocity includes the direction
of travel. This causes the alignment to be very low.

4.3.3 Maximal Repulsion

The maximal repulsion models where R = 6, D = 7, A = 15 can be said to
be the same. Firstly comparing the alignment over time graphs, Figure 3.9a
and Figure 4.9a, the alignment after an initial time period oscillates over the
mean value with a high frequency. The mean value for both models is less
than a =0.1 and the oscillations, or standard deviation, are very small.

Moving on to compare the snapshots at t = 160, the visual behaviour of these
two models is also very similar. The main noticeable difference is between the
distance travelled by some of the fish. In Figure 3.9b the fish spread to an area
between 150 and 350 in the x domain and 150 and 400 in the y. However, when
the view is restricted the fish now spread to a region between 80 and 420 in x
and 80 and 400 in y. This can also be seen in the trajectory plots. The length of
the blue trajectory in Figure 4.9c, is much more stretched out than any of the
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(a) Alignment vs Time

(b) Simulation of school at t = 160 (c) Trajectories of five fish

Figure 4.9: Alignment, snapshot and trajectories for a simulation with R =
6.0, D = 7.0, A = 15.0

trajectories in Figure 3.9c.

From this it is possible to conclude that the size of the repulsion zone affects
the behaviour more than the implementation of the field of view. When the re-
pulsion zone is smaller the restricted view effects are more apparent, however
with a large repulsion zone the effects are not so easily noticed.

4.3.4 Minimal Alignment

Just like in Section 3.3.2 the behaviour is very similar to that of the model with
no alignment, Section 4.2. When comparing the snapshots for the final time
step, shown in Figure 4.4b and Figure 4.10b, there are no apparent differences
even when comparing the distances the fish have spread out to.

The only difference between these models can be seen by comparing the
alignment over time graphs, Figure 4.5b and Figure 4.10a. Considering the
graphs as a whole they look very similar, however, when considering only up
to t = 100 there are small differences. For the minimal alignment case the
alignment oscillates over the mean value but the mean value is only calculated
over the final 70 time steps to allow for models to become statistically steady.
When the alignment zone was removed the oscillations were approximately
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(a) Alignment vs Time

(b) Simulation of school at final time step

Figure 4.10: Alignment and snapshot for a simulation with R = 2.0, D =
3.0, A = 15.0, α = 2π

3 mimicking minimal alignment.

half the size and were all below the final mean value. After this time however,
the two models appear identical.

4.4 Altering the Size of the Field of View

So far the angle of view has been set to α = 2π
3 . In this section the radii will be

fixed to R = 2, D = 7, A = 15 and the angle will be altered. Table 4.2 shows
the range of angles used to investigate the effect the size of the field of view
has on the behaviour of the fish. Note a full field of view has been included.

When looking at the final snapshots, Figure 4.11, there is a change in behaviour
when the fish are able to see behind themselves for the first time. Looking at
the first three snapshots within Figure 4.11, the fish all move out radially and
rarely form schools. This is due to the small number of fish been seen due to
the large blind spot and hence few fish are included in the update equations.
Moving on to look at the Figures 4.11c to 4.11f it is possible to see small schools
forming. When α = π

2 very few schools form, from this it easily follows that
α = π

2 must be the boundary, or very close to the boundary, between two
different behaviours.
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α / radians Schematic α / radians Schematic
.

1
16

π
1
3

π

1
2

π
2
3

π

15
16

π π

Table 4.2: Angles used to observe change in behaviour when restricted view is
altered, schematics also included.
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(a) α =
1
16

π (b) α =
1
3

π

(c) α =
1
2

π (d) α =
2
3

π

(e) α =
15
16

π (f) α = π

Figure 4.11: Final snapshot where R = 1, D = 7, A = 15 for each α value
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(a) α =
1
16

π (b) α =
1
3

π

(c) α =
1
2

π (d) α =
2
3

π

(e) α =
15
16

π (f) α = π
15
16

Figure 4.12: Alignment over time graphs for each of the α values, with radii
set to R = 1, D = 7, A = 15. The time tick marks are the same as previous
alignment over time plots.

This is then reinforced when considering the alignment over time graphs; Fig-
ure 4.12. Figure 4.12a and Figure 4.12b have very similar changes in alignment
after an initial time. From the snapshots of these two simulations, Figure 4.11a
and Figure 4.11b, this is what was expected. Figure 4.12c shows the align-
ment changing over time when α = 1

2 π. The alignment is much more erratic,
for short periods of time it is close to zero, then it increases up to a =0.2 for
another short period of time. This continues throughout the simulation until
approximately t = 170. At this point the alignment increases above a =0.2, this
is due to the fish beginning to school, causing the total alignment to increase.

Figures 4.12d to 4.12f clearly show that after a certain point the fish do be-
come more aligned. Each of the three figures show the fish becoming aligned
up to a certain value and then staying very close to this value for the rest of
the simulation. Figure 4.12e shows the fish become most aligned with an α
value of 15

16 π. Looking at the snapshots for the end of these simulations, it is
clear that when α = 2

3 π the alignment is lower since there are a number of fish
swimming in each direction.

Comparing the last two figures, Figure 4.11e and Figure 4.11f, it is clear which
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of the two have a higher alignment. The model with α = 15π
16 has an align-

ment value of approximately a =0.1, higher than that of the full vision model.
Considering how similar the shapes of these two graphs look this is probably
down to the random nature of the starting locations and orientations. This is
easier to see in the combined plot shown in Figure 4.13.

Figure 4.13: Combined alignment over time plot for the six simulations in
Figure 4.12

5 Including a Predator

In this final section a predator will be introduced to observe how the simulated
fish react to danger. There are three subsections where in each there is a
different update procedure for either the fish or predator or both. In the first
subsection when the fish enter the predator interaction zone the fish swim
directly away from the predator and the predator follows a fixed trajectory.
In the second, the predator will swim towards the mean position of the fish
while the fish will swim directly away from the predator once they enter the
interaction zone. In the final subsection, the amount a fish reacts to a predator
is determined by a normal distribution.

5.1 Fish Repelled Directly Away from a Predator Following a
Fixed Trajectory

To implement a simulated predator, the distance between each fish and the
predator is calculated,

dp,i =
√
(xi − xp)2 + (yi − yp)2.

If dp,i < P, where P is the radius of repulsion around the predator, then the
fish are repelled from the predator. The fish are repelled in so that they swim
directly away from the predator, Figure 5.1.

The update equation for all fish i such that dp,i < P is

θ = arctan
(

yi − yp

xi − xp

)
+ π (8)
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Figure 5.1: Each fish, blue, updates to swim directly away from the predator,
red, taking the direction of the dashed arrows.

and since the predator is following a fixed trajectory its direction is constant.

Figure 5.2 is made by running a simulation with parameters R = 2.0, D =
7.0, A = 15.0, σ = 0.2 and P = 30.0. To make a clear contrast to the fish the
predator has a higher velocity, vp = 1.5 units per second. The predator is set
to start below the fish swimming at an angle of π

2 .

(a) Zone of interaction (b) Alignment vs Time

(c) Simulation of school at t = 100 (d) Simulation of school at t = 190

Figure 5.2: From a simulation where R = 2.0, D = 7.0, A = 15.0, α = 2π
3 and

P = 30.0.
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As with running the initial simulations in Sections 2, 3 and 4 a schematic of the
interaction zones around each fish is included, Figure 5.2a. The new orange
sector is the predator interaction zone, if a predator is within this zone then
the fish reacts to it. However, if there is no predator then the update equations
for this zone are passed over.

From the alignment over time graph observe that the total alignment decreases
to almost zero at approximately t = 100. Looking at the snapshot for this time,
Figure 5.2c, each of the fish are facing away from a centre point. This causes
the alignment to be very low. From both the alignment over time plot and
the final snapshot, the fish attempt to realign in schools once the danger has
passed.

5.2 Predator Attracted Towards Mean Location of Fish

Now the update process for the predator is changed so that it swims directly
towards the mean position of the fish. Now there is a non trivial update
equation for the predator. In the previous section the predator followed its
initial direction with no deviations. Now we set the predator direction to

φ = arctan

(
1
N ∑j yj
1
N ∑j xj

)
,

whilst the direction of the fish continue to be updated by using equation (8).

Running a simulation with the same parameters as in Section 5.1 there are
noticeable differences. By firstly looking at the trajectories of five randomly
located fish and the predator, shown in Figure 5.3, the major difference is the
length of the black line. The distance traveled by the predator is much shorter
when it is attracted to the mean location of the fish. This enables the fish to
swim past the predator, whereas before when the predator was following a
straight line, the fish were repelled from the predator and could not pass it.

To explain what happens the the predator and why it does not travel much
further than the centre of the domain consider Figure 5.4. When updating its
current direction and hence its location the predator calculates the mean loca-
tion of the fish. At t = 120 the mean location was just in front of the predator,
however, after just one tilmestep the location becomes behind it. Hence the
predator switches its direction. This is as a result of the fish surrounding the
predator and therefore confusing it. In an article published by Havforskn-
ingsinstituttet [1], a marine institute in Norway, Nilon and Vibó state that fish
swim in circles in order to confused predators. This is confirmed by this sim-
ulation, despite the fish not circling the predator.
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(a) Fixed Trajectory (b) Towards Mean Location

Figure 5.3: Trajectories of five fish and the predator, shown by the black line,
using two method of updating the predator.

(a) t = 120 (b) t = 121

Figure 5.4: Snapshot of the simulation at two consecutive time steps.

When the fish circle the predator the alignment becomes very low. The align-
ment settles to a value of 0.12 and stays very close to this value once it achieves
statistical stability.

5.3 Amount the Predator and Fish Can Turn is Restricted

The amount a fish or predator can change its angle each time step so far has
been solely down to the fish it is interacting with. In the case of the predator
this is the position of all the fish. Now the change of angle is restricted to a
maximum change of ±τf and ±τp for the fish and predator respectively.

When running a simulation, with τf =
2π
3 and τp = π

2 , the visual appearance
looks very similar. However, when comparing two snapshots of consecutive
time steps, Figure 5.5, it is possible to observe where the restriction has been
implemented.
When comparing the alignment over time graphs, Figure 5.6 for the models
with and without the turning being restricted there is only a slight difference.
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(a) t = 61 (b) t = 62

Figure 5.5: Snapshot of the simulation at two consecutive time steps.

When the turning becomes restricted the alignment becomes lower signifi-
cantly earlier.

(a) Not restricted

(b) Resticted

Figure 5.6: Alignment over time graphs when (a) the turning is unrestricted
and (b) when turning of the fish is restricted to 2π

3 and the predator to π
2 .

39



H. E. L. Moore 5 INCLUDING A PREDATOR

5.4 The Amount Fish React Determined by a Gaussian Distri-
bution

In this final section the amount the fish reacts to the predator is determined
by a gaussian distribution. To find the appropriate distribution the height,
centre position and spread has to be found. Since the x-axis will represent the
distance away from the predator, the value of the function is required to be
larger the closer it get to 0 in order to implement the sense of danger in the
fish. The closer the fish are the more they react. The distribution is shifted so
that it is centered on 0.0. Since the fish currently react to the predator when it
is within 30 units a distribution with a similar spread is needed. The spread,
or standard deviation, is therefore set to 12. This is chosen so that the values at
±30 are small. The scale of the distribution is set so that the maximum value
of the distribution is 1.0 so that the values given by the distribution can be
used as the fraction of a full turning away from the predator. Combining this
information gives the following function,

f (dp, µ, σ) = e−
(dp)2

288 .

Figure 5.7: The gaussian distribution. The x values represent the distance
away from the predator and the y values are then calculated to represent the
percentage of reaction to the predator. Hence fish closer to the predator will
react more to those further away.

In order to use the values from the gaussian distribution the change in angle,
δ, must be calculated

δ = θ − β.

Where θ is the fish’ current direction and β is the direction the update equa-
tions have calculated. The amount of this change used is now determined by
the modified distribution. A fish at distance dp from the predator gives a value
n from the gaussian distribution. The new angle at which it will travel is

η = n(θ − β).
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It is now possible to run a simulation with parameters as in Table 5.1. This
produces the results shown in Figure 5.8. Comparing these figures with the
figures from previous predator models the differences are large. Starting with
the alignment over time graph, Figure 5.8a, in previous predator models the
alignment decreased initially. In Figure 5.2b the alignment starts to increase af-
ter t = 100, the approximate time the predator has passed through the school.
Whereas in the other two models where the predator follows the mean, at
t ≈ 100 the alignment is very low and stays low until the end of the simula-
tion. In this model, where turning is restricted as to a normal distribution, the
fish alignment increases in the first few time steps. This is due to the fish fur-
ther away aligning with the fish which have a large restriction to their change
in angle. This causes the school to break up into smaller schools and hence
the overall alignment drops much earlier, at around t = 60. Figure 5.8b shows
there are a number of smaller schools where approximately half are traveling
up and right whereas the other half are travelling down and left. But as seen
from t > 60 they have the potential of re-aligning again once the danger has
passed.

Quantity Symbol Value
Number of fish N 200

Velocity v 1.0
Noise σ 0.2

Radius of repulsion R 2.0
Radius of alignment D 7.0
Radius of attraction A 15.0

Predator repulsion radius P 30.0
Predator velocity vp 1.5

Table 5.1: Parameters used in the modified normal distribution model.

Moving on, the trajectory plot of the predator, shown as a black line, now has
a much longer length. This is due to the mean position of the fish no longer
approximately being the position of the predator. Now the predator appears
to chase the school containing the fish, represented by the red and yellow lines.
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(a) Alignment over time.

(b) Snapshot of fish at t = 60. (c) Trajectories of 5 fish and predator.

Figure 5.8: Alignment, snapshot and trajectories from a simulation using the
modified normal model, with parameters set to those in Table 5.1.

6 Conclusion

A basic model is initially used to to see how the noise effects the alignment
values of schools of fish. Then the model is modified to incorporate three
regions of interaction, a repulsion, alignment and attraction zone. The radii
parameters are then increased or decreased to see how the ratios of the radii
affect the alignment. Then a restricted field of view is introduced, where α is
the angle to which the fish can see to the left and to the right. By changing the
size of α the effects of the blind spot can be observed in the alignment values.
Finally a predator is added in order to see how fish simulated with a restricted
view react to danger.

Good alignment values come from models where the noise parameter is small,
σ ≤ 0.2. Good alignment is also seen when the size of the alignment param-
eter is almost as large at the size of the attraction parameter. This produces
a school of fish with almost perfect alignment. When a field of view is intro-
duced the best alignment comes from when the fish have a small blind spot.
This gives better alignment values than when the fish have a unrestricted view.

When the noise value is large, σ ≥ 0.8, the alignment values are very small.
The alignment is also poor when the repulsion zone is large and when the

42



H. E. L. Moore 6 CONCLUSION

alignment zone is small, a ≈ 0. When introducing a field of view the fish have
poor alignment when the blind spot covers over 50% of the region surround-
ing each fish.

The alignment values are also very low when a predator is introduced. How-
ever, when the predator is following the mean location of its prey, the fish
successfully manage to confuse the predator by encircling it. This ensures the
mean location of the fish to be approximately the current location of the preda-
tor. When the turning of the fish is restricted and determined by a gaussian
distribution, the predator then appears to chase after small groups of fish.

To follow on from this report, a simulation looking into 3D would be inter-
esting to see if any of the models examined would produce results such as a
torus shaped school. This was previously managed by Couzin et al. in their
paper published in 2002 [7]. It would also be interesting to see if the same
results could be found if the update steps look at a fixed number of fish to
interact with instead of the fish within a fixed distance.
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