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Abstract

This project aims to provide an extensive review of models for paired comparison data.

Two key models for paired comparison data, the Bradley–Terry model and the Thurstone

model, are thoroughly examined to identify any shared characteristics. A Bayesian ap-

proach to inference is adopted. Fundamental concepts, such as Markov chain Monte Carlo

(MCMC) methods are introduced. A methodology is presented for fitting Bayesian ver-

sions of models for paired comparisons to sports data with a binary outcome. A National

Collegiate Athletic Association (NCAA) basketball dataset is analysed to predict the out-

comes of the 2015 “March Madness” tournament to determine the best men’s collegiate

team in the United States.
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Chapter 1

Introduction

The roots of probability theory originate as far back as the 17th Century, when prominent

mathematicians such as Pierre de Fermat and Blaise Pascal tried to analyse games of

chance including roulette and poker. Nowadays, many statisticians across the world

attempt to analyse vast quantities of sports data in order to model uncertainty and thus

forecast results of a given match or event. A very important question arises naturally. Is it

possible to derive a statistical model which improves the possibility of correctly predicting

the outcome of an event other than just guessing? One of the most famous 20th Century

statisticians, George E. P. Box, once quoted “all models are wrong, but some are useful”.

The focus of this paper is to review some of the most fundamental models of predicting

probabilities for paired comparison data and to fit some Bayesian versions of these models

to National Collegiate Athletic Association (NCAA) basketball data.

1.1 Paired comparison data

There are numerous areas in which data resulting from paired comparisons (between

individuals, items, teams, etc) can arise. A published bibliography on this subject includes

several hundred entries (Hunter 2004). Analysis of paired comparison data can be traced

back to the early 20th Century in the field of psychometrics with Louis Leon Thurstone at

the forefront of such research. It was his law of comparative judgment (Thurstone 1927)

that completely revolutionised mathematical analysis of such data. Rather than letting

test subjects in his experiments rank the items in order of their preferences, Thurstone

asked these individuals to select the favoured option between two possible outcomes. He

then applied a type of binomial regression to the information collected. In general, paired

comparison data can be considered to be the result of a series of Bernoulli trials with

success and failure defined depending upon the setting. Paired comparisons considered in

this report occur in sports data, and in particular NCAA basketball data, and an example

of the nature of questions to be asked is: “What is the probability of Connecticut Huskies

beating Kentucky Wildcats?”

1



CHAPTER 1. INTRODUCTION 2

The rest of this report is structured as follows. Chapter 2 outlines key models for paired

comparison data. Chapter 3 considers a Bayesian approach to inference via Markov chain

Monte Carlo (MCMC) methods, as well as the need for specific computational software.

Chapter 4 describes an application of the methods to data from the NCAA basketball

tournament. Chapter 5 offers conclusions as well as further discussion.



Chapter 2

Models for paired comparisons

2.1 The Bradley–Terry model

The Bradley–Terry model is arguably the most important and well studied model for

paired comparison data. In this chapter, the Bradley–Terry model is presented as fol-

lows: firstly, it will be introduced in its original, most intuitive form, then some of its

applications as well as extensions will be presented.

2.1.1 Definition

The Bradley–Terry model (Bradley & Terry 1952) assumes that in a contest between two

teams, say team i and team j (i, j ∈ {1, . . . , K}), the probability that i beats j is

Pr(i beats j) =
λi

λi + λj
, (2.1)

where λz > 0 is a parameter associated to element z ∈ {1, . . . , K} representing the skill

rating or strength of a team. For example, as a quick illustration, suppose there are K = 3

teams with strength parameters λ = (λ1, λ2, λ3) = (1, 2, 3). The probability that team 2

beats team 3 can be calculated as follows

Pr(2 beats 3) =
λ2

λ2 + λ3
=

2

2 + 3
= 0.4.

It is very interesting to point out that the model described in Equation (2.1) was also

derived separately and independently by Zermelo (1929) and Ford (1957). Note that the

probability that i beats j is invariant to scalar multiplication of the strength parameters;

when the λ parameters are multiplied by a 6= 0, then

Pr(i beats j) =
aλi

aλi + aλj
=

aλi
a(λi + λj)

=
λi

λi + λj
.

Therefore a constraint is needed in order to be able to identify the parameters in this

model. Various different constraints can be imposed, for example a sum constraint,

3
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∑K
i=1 λi = 1, or fixing one of the skill parameters at a particular value. In this re-

port, the latter type of constraint is used and we set λ1 = 1. Independence between the

skill ratings is also assumed.

2.1.2 Applications

There are numerous potential scenarios to which the Bradley–Terry model can be applied.

The majority of research that implements this model is related to either the fields of

medicine, psychology or sport.

For instance, Matthews & Morris (1995) adapted this model to the measurement of pain

in patients undergoing long–term haemodialysis. Each patient was given two different

treatments and then was asked to specify which treatment was less painful. The efficiency

of each treatment was then analysed using the Bradley–Terry model with ties, which is

discussed in Section 2.1.3 of this report.

Paired comparison data arise frequently in psychology, because of the nature of the re-

search conducted. In many studies, participants are asked to choose between two scenarios

or rank their preferences. For example, facial attractiveness and the preference for either

upright or upside–down faces has been discussed by Bäuml (1994). On the other hand,

Kissler & Bäuml (2000) derived an attractiveness scale by fitting a Plackett–Luce model

(an extension of the Bradley-Terry model to experiments with more than two possible

outcomes) and Duinevald et al. (2000) analysed data on customers’ preference between

eight carbonated soft drinks.

Several authors employ Bradley-Terry type models to forecast various sporting tourna-

ments. McHale & Morton (2011) use it to predict tennis match results whilst Baker &

McHale (2014) apply it to determine who is the greatest tennis player of the Open–Era.

Recently, dynamic extensions to the Bradley–Terry model have been proposed. Cattelan

et al. (2013) introduce such a model to analyse data from the National Basketball Associ-

ation (NBA), whereas Tutz & Schauberger (2014) fit it to football data from the German

Bundesliga. However, the implementations of the Bradley–Terry model are not limited

to the above areas. Perhaps one of the most interesting and unusual applications of this

model can be found in Stuart-Fox et al. (2006), in which the Bradley–Terry model was

used to determine animal dominance and fighting ability between 36 male Cape dwarf

chameleons.

2.1.3 Extensions of the original model

Model with ties

The original Bradley–Terry model has its limitations. One of its biggest drawbacks is

the fact that it cannot be used to model events with more than two outcomes. In the

measurement of pain example presented by Matthews & Morris (1995), a patient could

have no preference between the two treatments. In this instance, the Bradley–Terry model
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becomes obsolete. Rao & Kupper (1967) suggested the following model as a solution to

this problem,

Pr(i beats j) =
λi

λi + τλj

Pr(i ties j) =
(τ 2 − 1)λiλj

(λi + τλj)(τλi + λj)
,

where τ , τ > 1 is the ties parameter.

Home advantage

In sports such as basketball, there tends to be a so–called “home advantage”, whereby

the chance a team wins is higher when it plays at home compared to it playing at a

neutral venue. According to Snyder & Purdy (1985), home teams in collegiate basketball

win 66% of their games, indicating very strong evidence of this phenomenon. One may

speculate that this is due to spectator booing: an away team might get intimidated by

the opposition’s fans and thus lose their self belief and confidence (Greer 1983). Often the

travelling team employs conservative tactics, setting up to defend, and this could also be

a plausible factor. However, contrary to most research, several authors, see for example

Baumeister & Steinhilber (1984), indicate that there might exist “home disadvantage”,

when a host team cannot cope with additional pressure and, subsequently, is more likely

to lose a match. Empirically, this counter hypothesis has not been confirmed (Jones 2014).

The most accepted way of accounting for home advantage in the Bradley–Terry model

was proposed by Agresti (1990). He suggested the following model

Pr(i beats j) =


ρλi

ρλi + λj
if i is home

λi
λi + ρλj

if j is home.
(2.2)

The parameter ρ, ρ > 0, measures the strength of the home advantage (ρ > 1) or disad-

vantage (ρ < 1). Again, for illustrative purposes, assume K = 3 and λ = (λ1, λ2, λ3) =

(1, 2, 3). Suppose team 2 plays against team 3 in front of its own supporters and that it

rarely loses a home match. It was elicited that ρ = 2, indicating a strong home advantage.

Then

Pr(2 beats 3 | 2 is at home) =
2× 2

2× 2 + 3
=

4

7
= 0.571.

This probability of team 2 winning this match with team 3 changed from 0.4 to 0.571

when team 2 is at home, showing that home advantage can play a major factor.

2.2 The Thurstone model

A closely related model to the Bradley–Terry model is the Thurstone model (Thurstone

1927). In the literature, this model is frequently referred to as the Thurstone–Mosteller
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model. Frederick Mosteller largely contributed to the development and analysis of this

model by calculating the least squares estimate as well as deriving a test of goodness of

fit (Mosteller 1951).

2.2.1 Definition

The Thurstone model assumes that the performance of team i, i ∈ {1, . . . , K} follows a

normal distribution Xi ∼ N(µi, σ
2
i ). In Thurstone’s original paper, five different variations

of this model were proposed. However, due to its simplicity and elegance, only the Case V

model is considered here. The two underlying assumptions in the Case V model are such

that team performances are uncorrelated and variances are equal, that is σ2
i = σ2 = 1/2,

for all i. In this setting, without loss of generality, the difference between the skill rating

of team i and team j follows a normal distribution Xi −Xj ∼ N(µi − µj, 1) and thus

Pr(i beats j) = P (Xi > Xj)

= P (Xi −Xj > 0)

= P (Xj −Xi − {µi − µj} > −{µi − µj})
= P (Z > −{µi − µj}) , where Z ∼ N(0, 1)

= P (Z < µi − µj)
= Φ (µi − µj) , (2.3)

where Φ(·) is the standard normal cumulative distribution function (CDF).

2.2.2 Applications

Perhaps the most well known application of the Thurstone model is to the FIDE World

Rankings in chess. First proposed by Elo (1978), this subject has been of interest to

many statisticians and has been thoroughly documented in numerous research journals.

Alternative modifications of the Elo rating system can be found for example in Henery

(1992) and Glickman (1999), whilst Joe (1990) extends such a model to make use of

various covariates including the age of a player.

The Thurstone model has found numerous applications in the field of medicine. Maydeu-

Olivares & Böckenholt (2008) provide a list of ten reasons why this particular model

should be used to make inferences for subjective health outcomes. Amongst them, they

list the ease of incorporating prior information into the model as well as being able to test

the validity of the results by using methods such as goodness of fit. Health indicators for a

particular individual, population, region, etc can be measured using the Thurstone model,

as seen in Kind (1982). Quantifying subjective outcomes, such as severity of side effects

or amount of pain can also be accomplished using this model, as proposed by Krabbe

(2008).
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2.3 Generalised linear models

In the normal linear model the ith observation Yi has a systematic component µi and a

random component εi with

Yi = µi + εi, (2.4)

where the εi have a normal distribution with constant variance and are independent. The

systematic component µi can be represented as

µi =

p∑
j=1

βjxij,

where β1, . . . , βp are parameters and xij is the value of covariate j for observation i. The

model specified in Equation (2.4) is often too restrictive and cannot be applied in a wide

range of scenarios. For example, when the outcome is binary, that is Yi = 0 or Yi = 1,

or strictly positive (Yi > 0), the assumption of normal variation is not feasible. Nelder

& Wedderburn (1972) proposed a unified approach called the generalised linear model

(GLM). This model can be defined in three stages, as defined by Gelman et al. (2004):

1. The linear predictor, ηi =
∑p

j=1 βjxij,

2. The link function g(·) that relates the mean µi and the linear predictor: ηi = g(µi) or

equivalently µi = g−1(ηi). The link function must be monotonic and differentiable.

3. The error distribution which then specifies the distribution of the outcome variable

Yi. It can be chosen from an exponential family of distributions, which includes

(amongst many others) normal, Poisson, binomial and gamma.

In binomial type problems, that is where Yi ∼ Bin(ni, µi) with ni known, the most common

link function is a sigmoid based on the distribution function of the logistic distribution. It

is most commonly known as the logistic transformation, g(µi) = log(µi/(1− µi)). Other

link functions can also be used, for example, the probit link, g(µi) = Φ−1(µi), where Φ(·)
is the standard normal CDF and Φ−1(·) is its inverse. These two link functions give rise

to the logistic and probit regression models, respectively.

2.3.1 Paired comparison models and binary regression

There exists a clear relationship between the Bradley–Terry model as defined in Equa-

tion (2.1) and the logistic regression model. By letting θi = log λi, it is possible to express

the Bradley-Terry model in the logit linear form

logit{Pr(i beats j)} = log

(
λi/(λi − λj)
λj(λi − λj)

)
= log λi − log λj

= θi − θj. (2.5)
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In this representation, home advantage can be accounted for easily as follows

logit {Pr(i beats j)} = δ + (θi − θj), (2.6)

where δ = log(ρ) represents the extent of home advantage (δ > 0) or disadvantage (δ < 0).

One of the biggest advantages of a GLM (logistic regression) formulation of the Bradley–

Terry model is the fact that it can be readily modified to include various covariates. For

example, by letting

ηk = logit {Pr(i beats j)} = (θi − θj) +

p∑
r=1

βrxkr,

in which the probability that team i beats team j in match k is related to the explanatory

variables xk1, . . . , xkp through a linear predictor with coefficients β1, . . . , βp. Hence, if

there is a strong belief that distance travelled, points scored in the previous game, or a

whole multitude of other factors affect team performance, then this information may be

incorporated into the original Bradley–Terry model.

Similarly, the Thurstone model defined in Equation (2.3) is related to probit regression.

For example, it can be represented, by letting θi = µi, in the probit linear form

Φ−1 {Pr(i beats j)} = θi − θj. (2.7)

Both probit and logistic regression yield very similar results when fitted to data. Cham-

bers & Cox (1967) proved that it is almost impossible to distinguish between these two

models. Indeed, the only tangible difference between these binary regression models lies

in the error distribution. In the logistic model, errors are assumed to follow a standard

logistic distribution, whilst errors in the probit model are normally distributed. Figure 2.1

illustrates the similarity between the two density and distribution functions.

2.4 Equivalence of paired comparison models

Bradley explored the logistic regression formulation of the Bradley-Terry model in his

two papers (Bradley 1953, 1965). He noted that by letting θi = log λi, θi − θj could be

regarded as the difference between the skill rating of team i and team j, which follows a

squared hyperbolic secant density (the density of a logistic random variable). Thus the

probability that i beats j can be expressed as follows

Pr(i beats j) = Pr(Xi > Xj) =

∫ ∞
−(θi−θj)

1

4
sech2 x

2
dx ≡ λj

λi + λj
.

As illustrated in Figure 2.1, the probability density function (pdf) of a standard logistic

distribution is symmetric, centered around a mean of zero and has unit variance. Several

other authors, such as Kuk (1995) consider the Thurstone and the Bradley–Terry model
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Figure 2.1: Probability density functions (left) and cumulative distribution functions

(right) of the normal and logistic distributions with mean 0 and variance 1

to be special cases of the linear paired comparison model (David 1988). The probability

that i beats j can then be written as

Pr(i beats j) = F (θi − θj) (2.8)

where F is a distribution function that is symmetric about 0 and θ1, . . . , θK correspond

to the strength parameters. Therefore, it can be shown that when F = Φ, the standard

normal CDF, this is the Thurstone model. Similarly, when F corresponds to the logistic

CDF, the linear paired comparison model takes the form of the Bradley–Terry model

presented in Equation (2.1) with λi = exp θi.

On the other hand, Stern (1990) recommends to treat the Thurstone model and the

Bradley–Terry model as special cases of a gamma paired comparison model, which he

defined as follows. Suppose that the number of points team i scores follows a Poisson

process with rate λi. Then the time Xi until team i scores r points follows a Gamma(r, λi)

distribution. Team i beats team j if and only if they score r points before their opposition.

As the number of points scored by each team is an independent process, the probability

that i beats j can be regarded as the probability that Xi ∼ Gamma(r, λi) is smaller than

Xj ∼ Gamma(r, λj). Thus

Pr(i beats j) = Pr(Xi < Xj) =

∫ ∞
0

∫ xj

0

λrix
r−1
i exp(−λixi)

Γ(r)
×
λrjx

r−1
j exp(−λjxj)

Γ(r)
dxidxj.

When the shape parameter r = 1, Stern recognises this as the simple Bradley–Terry
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model defined in Equation (2.1). When r is a large positive integer, then the gamma

model resembles the Thurstone model from Equation (2.3). As r increases (from r = 1),

Stern’s model provides a bridge between the Bradley–Terry model and the Thurstone

model.

Baker & McHale (2014) showed that a closed form expression for the probability that

team i beats team j can be derived under Stern’s gamma paired comparison model. An

alternative derivation of this result is shown below, where the probability that i beats j

can be expressed as

Pr(i beats j) = Pr(Xi < Xj)

= Pr(λiXi < λiXj)

= Pr

(
λiXi <

λi
λj
λjXj

)
= Pr

(
Z <

λi
λj
S

)
,

where Z = λiXi ∼ Gamma(r, 1) and, independently, S = λjXj ∼ Gamma(r, 1), therefore

Pr(i beats j) = Pr

(
Z

S
<
λi
λj

)
= Pr

(
Z
S

Z
S

+ 1
<

λi
λj

λi
λj

+ 1

)

= Pr

(
Z

Z + S
<

λi
λi + λj

)
= Pr

(
Y <

λi
λi + λj

)
,

where Y = Z/(Z + S) ∼ Beta(r, r) since Z and S are independent Gamma(r, 1) random

variables. In other words, the probability that i beats j is the distribution function of a

Beta(r, r) random variable, evaluated at the Bradley-Terry type ratio λi/(λi + λj),

Pr(i beats j) = P

(
Y <

λi
λi + λj

)
=

Γ(r + r)

Γ(r)Γ(r)

∫ λi
λi+λj

0

yr−1(1− y)r−1dy.

This Beta CDF can be readily computed in software such as R. When r = 1, Y ∼
Beta(1, 1) ≡ U(0, 1) and so Pr(i beats j) = λi/(λi + λj), the probability associated with

the Bradley–Terry model in Equation (2.1). This closed-form representation makes it easy

to fit Stern’s model, although it is debatable, given the similarity between the Bradley-

Terry model and the Thurstone model, whether this additional flexibility is worthwhile.



Chapter 3

Bayesian inference for paired

comparisons

3.1 Introduction

Most of the statistical analysis of paired comparison data has been performed from the

frequentist point of view. Recently however, several authors have proposed to perform

Bayesian inference for Bradley–Terry type models. Perhaps one of the earliest entries

related to this subject was published by Davidson & Solomon (1973). It provides estima-

tors of the skill parameters in the Bradley–Terry model. This topic is further discussed in

Leonard (1977) and then inferences are made regarding ‘the distribution of genital display

in a colony of six squirrel monkeys ’. More recently Yao & Böckenholt (1999) suggested an

efficient Bayesian procedure for inferring the parameters of Thurstonian models based on

the Gibbs sampler, whilst Caron & Doucet (2012) proposed efficient Gibbs samplers for

generalised Bradley–Terry models. In the next section, a brief overview of the Bayesian

approach to inference will be given, followed by an overview of Markov chain Monte Carlo

methods.

3.2 Overview of Bayesian methods

Consider a continuous (vector) parameter Θ and observed dataX. Both data and param-

eters are random variables. Prior beliefs about the parameters define the prior distribution

for Θ, specified by the density π(θ). A model is then formulated that defines the distri-

bution of X given the parameters, in other words a density fX|Θ(x|θ) is specified. This

can be regarded as a function of θ when there exists some fixed observed data x, called

the likelihood

L(θ|x) = fX|Θ(x|θ).

11



CHAPTER 3. BAYESIAN INFERENCE FOR PAIRED COMPARISONS 12

The prior and likelihood determine the full joint density over data and parameters

fΘ,X(θ,x) = π(θ)L(θ|x).

Given the joint density, it is then possible to compute its marginals as well as conditionals

fX(x) =

∫
Θ

fΘ,X(θ,x)dθ =

∫
Θ

π(θ)L(θ|x)dθ

and

fΘ,X(θ|x) =
fΘ,X(θ,x)

fX(x)
=

π(θ)L(θ|x)∫
Θ
π(θ)L(θ|x)dθ

,

where fΘ,X(θ|x) is most commonly known as the posterior density, and is usually denoted

π(θ|x). This leads to the continuous version of Bayes’ theorem

π(θ|x) =
π(θ)L(θ|x)∫

Θ
π(θ)L(θ|x)dθ

.

The denominator is not a function of θ, so we can in fact write this as

π(θ|x) ∝ π(θ)L(θ|x),

where the constant of proportionality is chosen to ensure that the density integrates to

one. Hence, the posterior is proportional to the prior times the likelihood. For most

models, the posterior is not available in closed form. One way to make inferences is

to sample values from this posterior distribution. This is most often done using Markov

chain Monte Carlo (MCMC) methods, which rely on sampling from a Markov chain whose

stationary distribution is the posterior distribution of interest. Before describing MCMC

in more detail, a brief introduction to Markov chains is given.

3.2.1 A quick note on Markov chains

The theory behind Markov chains can be traced back to the early 20th Century. Two

mathematicians simultaneously developed the theory behind this subject: Henri Poincare

and Andrei Markov. Markov, Pafnuty Chebyshev’s protégé, was interested in the occur-

rence of vowels and consonants in the famous novel written by Alexander Pushkin, Eu-

gene Onegin. For ease of notation, consider a discrete–time stochastic process {Xt}, t =

0, 1, 2, . . . , where Xt is a discrete random variable defined on a finite or countably infinite

state space S. Then the random variables X0, X1, X2, . . . form a homogeneous Markov

chain with state space S if

Pr(Xt+1 = j|Xt = i,Xt−1, . . . , X0) = Pr(Xt+1 = j|Xt = i)

for all t and for i, j ∈ S. In other words, a Markov chain is a stochastic process whose

future state is only dependent on the current state and is independent of the past. This

lack of dependence on the past, also known as the Markov property, allows for significant

simplification of complex problems and forms the basis of Markov chain Monte Carlo

methods.
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3.3 Markov chain Monte Carlo methods

Simulating Markov chains enables us to obtain realisations from virtually any posterior

distribution, regardless of how complicated it is. Perhaps the most common way of simu-

lating these chains are Metropolis–Hastings algorithms. Metropolis et al. (1953) came up

with a computer algorithm that enabled study of the properties of chemical substances

based on collisions between individual particles. Hastings (1970) on the other hand, mod-

ified this algorithm and discussed how it could be used in the field of statistics. The draws

from the posterior distribution can be obtained by considering reversible Markov chains

(a Markov chain can be called reversible, if the reverse order sequence of states also forms

a Markov chain). The following algorithm can then be defined (Gammerman & Lopes

2006):

1. Initialise the iteration counter to j = 1 and set an arbitrary initial value θ(0).

2. Propose a new value φ generated from a proposal density q(θ(j−1), ·).

3. Evaluate the acceptance probability of the move, α(θ(j−1),φ), defined by

α(θ,φ) = min

{
1,
π(φ)q(φ,θ)

π(θ)q(θ,φ)

}
.

4. If the move is accepted, set θ(j) = φ. If it is not accepted, set θ(j) = θ(j−1) and the

chain does not move.

5. Change the iteration counter from j to j + 1 and return to step 2 until convergence

is reached.

A special case of the Metropolis–Hastings algorithm, where the proposed value is always

accepted, is called the Gibbs sampler. The Gibbs sampler was first derived by Geman &

Geman (1984), but at that time it failed to achieve any major recognition in the world

of statistics. Following the work of Tanner & Wong (1987) and Gelfand & Smith (1990)

this iterative procedure of sampling from the posterior distribution became one the most

well researched topics in Bayesian statistics. Gammerman & Lopes (2006) describe the

following algorithm defining the Gibbs sampler:

1. Initialise the iteration counter to j = 1 and set an arbitrary initial values θ(0) =(
θ
(0)
1 , . . . , θ

(0)
d

)T
.

2. Obtain a new value θ(j) =
(
θ
(j)
1 , . . . , θ

(j)
d

)T
from θ(j−1) through successive generation
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of values

θ
(j)
1 ∼ π

(
θ1|θ(j−1)2 , . . . , θ

(j−1)
d

)
,

θ
(j)
2 ∼ π

(
θ2|θ(j)1 , θ

(j−1)
3 , . . . , θ

(j−1)
d

)
,

...

θ
(j)
d ∼ π

(
θd|θ(j)1 , . . . , θ

(j)
(d−1)

)
.

3. Change the iteration counter from j to j + 1 and return to step 2 until convergence

is reached.

3.3.1 Markov chain Monte Carlo methods in practice

Suppose a Markov chain with a stationary distribution π(·|x) equal to the posterior dis-

tribution has been constructed using MCMC methods. Ideally, each random variable θ(j)

should have the desired, target posterior distribution π(·|x). However, there is no guaran-

tee of this, as direct simulation from π(·|x) is theoretically impossible. For large enough

j and independent of the starting distribution π(0), it is possible to assume that the chain

will converge towards the target distribution. The best scenario would be to make the

number of iterations of the chain approach infinity, but this is not attainable in practice.

Instead, the simulated chain is run for a certain number of iterations, say N . These N

iterations are then discarded in a process known as burn–in and are not included in the

further inference. The subsequent iterations can be regarded as (dependent) samples from

π(·|x). Various diagnostic methods can be performed to further ensure that the chain has

reached equilibrium. The study of convergence can be split into two main approaches:

theoretical and empirical. Many authors have proposed different solutions to this problem,

see for example Meyn & Tweedie (1994). Using theoretical results is often cumbersome.

There is no proof of geometric convergence for the generic sampling algorithms, such

as the Metropolis–Hastings algorithm for an arbitrary target, which makes theoretical

analysis for such cases virtually impossible. Alternatively, however, convergence of the

chain can be studied based on the empirical data. The analysis of the chain output is

performed to fully assess whether the target posterior distribution can be approximated

by this particular chain. Three such methods are used throughout this report.

1. Time series (trace) plots: by inspection of the trace plots, it is possible to determine

whether the chain has not reached stationarity and to check whether it explores

the parameter space efficiently. This is done by the ‘thick pen test’ (Gelfand et al.

1990). If the lines in the trace are further apart than the width of a thick pen, then

it is impossible to make an assumption of stationarity. Trace plots can also be a

useful tool in determining the size of a burn–in period. An increasing or decreasing

trend in trace plots would indicate that the burn–in is not over.
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2. Thinning: since draws from Markov chains are not independent, it is sensible to

look at their autocorrelation plots (Markov chains can often be approximated by

the AR(1) process). If the autocorrelation is high, thinning, in which only every k-th

sample from a chain is kept and the rest is disregarded, may be applied. The samples

obtained this way are less autocorrelated than for the full chain. For chains that

mix well, autocorrelations are expected to decline rapidly beyond lag 0. Thinning

also reduces the computational overheads of a long time series.

3. Multiple chains: a number of parallel chains starting from different initial values is

run and then the output from each is then compared. While an individual chain

may show no particular evidence for lack of convergence, the time series plots for a

particular variable might show that different chains have not converged to the same

marginal distribution for that variable.

3.4 Implementation of MCMC in rjags

There exists vast amounts of legacy code and additional packages in R, such as the

package BradleyTerry2 (Turner & Firth 2012, Firth 2005), which help to specify and

fit Bradley–Terry type models. However, these packages are deemed ineffective from a

Bayesian point of view and original code has to be adapted in order to analyse paired

comparison data. An extension to R, called rjags, is used throughout this report.

3.4.1 Overview of rjags

The R package rjags provides an R interface to the JAGS software (Plummer 2013). The

name of this software is an acronym of Just Another Gibbs Sampler, although it has the

ability to deal with far more complex scenarios than just those which use a Gibbs sampler.

JAGS uses MCMC methods to sample from a posterior distribution. This happens in five

steps:

1. Definition of the model

2. Compilation

3. Intialisation

4. Adaptation and burn–in

5. Monitoring

This information is then fed into R and various convergence diagnostics and model per-

formance measures can be performed.
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3.4.2 An illustrative example

To demonstrate how rjags works, the following example is considered. Suppose a tourna-

ment has been simulated, with n = 500 games played between K = 4 teams. Let Yi be

the result of the ith game, which is played between teams ti1 and ti2, ti1, ti2 ∈ {1, 2, 3, 4}
and let λ = (λ1, λ2, λ3, λ4) = (1, 2, 3, 4) be the vector of skill parameters for the 4 teams.

The following Bradley–Terry model is assumed

Yi|λ, t ∼ Bern(pi), independently for i = 1, . . . , 500

where

pi =
λti1

λti1 + λti2
.

Note that inference on the parameter λ1 need not be performed since all 4 parameters are

not identifiable; see the discussion in Section 2.1.1. To overcome this lack of identifiability

the constraint that λ1 = 1 is imposed. The following prior distribution is assigned

λj ∼ Gamma(1, 1) ≡ Exp(1), independently for j ∈ {2, 3, 4}.

This prior distribution aims to provide a level playing field in which no particular team

is considered to be superior to the others.

The aim of this analysis is to make inferences on the skill parameter vector λ. According

to Bayes’ theorem, it is possible to combine the data with the prior distribution in order

to update the beliefs about these parameters. This is done in rjags by sampling from

the posterior distribution of the Bradley–Terry model parameters π(λ|D), where D =

{Y , t} denotes the observed results. Three parallel MCMC chains with different initial

conditions were run. Each chain ran for 1,000 iterations as burn-in and then a further

50,000 iterations with a thin of 5. Convergence can be checked by looking at the trace

and autocorrelation plots in Figure 3.1. From Figure 3.1, it is clear that these three

chains explore the parameter space efficiently. They are virtually indistinguishable from

each other and by applying the ‘thick pen test’, stationarity can be safely assumed. No

significant autocorrelation beyond lag 0 (which, by definition always equals to one) can

be seen. Marginal posterior densities are fairly symmetric and roughly centered around

the true values for each skill parameter. From the rjags output, it is also possible to

determine values for posterior means of the parameters (with standard errors to indicate

their accuracy) and posterior standard deviations. These values can be found in Table

3.1. The posterior means are very close to the true values indicating that the data have

been reasonably informative about the parameters.

The Bradley–Terry model can also be used to work out probabilities of each team winning

(or losing), with pi = λti1/(λti1 + λti2), the probability that team ti1 wins game i. It is

then possible to plot histograms of the posterior samples of these probabilities, which can

be found in Figure 3.2. Comparison between the actual probabilities, calculated from the

true values of the skill parameters and those obtained from the Bradley–Terry model can

be made. The histograms are roughly centered around the true probabilities, indicated by
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Figure 3.1: Convergence diagnostic plots
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Skill parameter Posterior Mean S.d Naive SE Time-series SE

λ1 1.0000 0.0000 0.0000 0.0000

λ2 2.0860 0.3348 0.0019 0.0022

λ3 2.8440 0.4699 0.0027 0.0030

λ4 4.0760 0.6877 0.0040 0.0044

Table 3.1: Posterior means for the skill parameters
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Figure 3.2: Histogram of probabilities

the red vertical lines in Figure 3.2. This suggests that this paired comparison model can

be a useful tool for any potential forecasts. This analysis also demonstrates the usefulness

of rjags as a tool for performing MCMC for Bayesian inference.
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3.5 A note on a semi–conjugate analysis

For the example above, it is also possible to perform Bayesian inference using the Gibbs

sampler of Caron & Doucet (2012). The likelihood function is given by

L(λ) =
∏

1≤i 6=j≤K

(
λi

λi + λj

)wij

=
K∏
i=1

λwii
∑

1≤i≤j≤K

(λi + λj)
−nij ,

where wij is the number of comparisons in which i beats j, nij = wij + wji is the total

number of comparisons between i and j, wi is the total number of wins for team i and K

is the number of teams. By letting λk ∼ Gamma(ak, b), (independent for k = 1, 2 . . . , K)

be the prior distribution, it is possible to work out the posterior distribution using Bayes’

Theorem

π(λ|x) ∝ π(λ)L(λ)

=
K∏
k=1

bakλakk − 1

Γ(ak)

K∏
k=1

λwkk
∏

1≤i<j≤K

(λi + λj)
−nij .

Unfortunately, this posterior is not conjugate to its prior, thus making the analysis very

difficult. It is possible to make the inference semi–conjugate by introducing latent vari-

ables zij ∼ Gamma(nij, λi + λj) for 1 ≤ i < j ≤ K and nij > 0. A Gibbs sampler can be

constructed for sampling from the joint density of parameters, latent variables and data

as described in Caron & Doucet (2012). In this report, however, this approach will not

be further pursued as rjags provides a more efficient way of obtaining samples from the

posterior distribution for the more complex models that will be introduced in the next

chapter.



Chapter 4

Analysis of US college basketball

results

4.1 “March Madness” NCAA basketball tournament

The annual “March Madness” basketball tournament, played at the end of March each

year, is one of the most popular sporting events in the United States. It was founded

in 1939 by the National Collegiate Athletic Association (NCAA) and is designated to

determine the best men’s collegiate basketball team in the country. The format of this

competition has changed since its inception. At present, it is the culmination of a regular

season, where 354 colleges are split into 31 conferences. During the very short period of

time of 21 days in March/April, 67 games are played involving 68 teams, including 32

Divisional I conference champions; this hectic schedule is where the tournament gets its

name “March Madness”. The remaining 36 teams are chosen by the “Selection Commit-

tee” (a body of 10 NCAA athletic directors and conference commissioners) at the end

of each regular season. These 68 teams are then split into 4 regions depending on their

geographical location. In 2015, these regions were:

1. Midwest (Host: Cleveland State University, Cleveland, Ohio)

2. West (Host: Pepperdine University, Los Angeles, California)

3. East (Host: Syracuse University, Syracuse, New York)

4. South (Host: Rice University and University of Houston, Houston, Texas)

Teams are then seeded from 1 to 68, with the “best” team receiving a number 1 rank.

Currently, there are 7 rounds to the tournament:

1. The First Four, where the four lowest seeded teams chosen by the Selection Com-

mittee battle it out against the four lowest seeded conference champions.

20
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2. Round of 64, where the highest seeded team in the region plays against the lowest

seeded team in that region, that is #1 challenges #16, #2 contests #15, and so on.

3. Round of 32, where the remaining 32 teams are reduced to 16.

4. Regional semifinals, otherwise known as “Sweet Sixteen” round.

5. Regional finals, otherwise known as “Elite Eight”, where regional champions are

determined.

6. National semifinals, also called Final Four containing four regional champions.

7. National Championship, where two winners of the National semifinals battle it out

to find out the winner of the competition and hence the best US college team.

The tournament is single–elimination, where the loser of a match is immediately elimi-

nated from the competition. Although slightly more complicated at first, the format of the

“March Madness” competition resembles closely that of the Wimbledon Championship

in tennis. The so-called “bracket” in Figure 4.11 helps to visualise the structure of the

tournament and contains all match results from 2014. The main aim of this project is

to apply some of the paired comparison models described previously to form predictions

for the 2015 “March Madness” competition, such as the probability that the Duke Blue

Devils will beat the Kentucky Wildcats, and thus in turn to “fill out the bracket”.

4.2 Kaggle competition and dataset

Kaggle2 is an online platform for predictive modelling. Individuals, companies and re-

search institutions can post their data, which is then accessible for download from Kaggle’s

website. Numerous competitions are advertised, some with monetary prizes awarded for

the best model. One of them, the March Machine Learning Mania 2015 3 competition,

sponsored by Hewlett-Packard and with a $15,000 jackpot is intended to find the best

prediction of the 2015 “March Madness” tournament. Throughout the remainder of the

report the data and structure of this Kaggle competition will be used to guide our pre-

dictions for the 2015 tournament.

The dataset available from Kaggle contains a large amount of historical results. It includes

the game by game results for the last 31 regular seasons, from 1984 to 2015. A total of

139,920 matches were played during this time. A wide variety of additional information,

such as the number of points scored by each team, assists, rebounds and interceptions

can also be accessed. The Kaggle competition itself was split into two stages. A non-

compulsory first stage offered an incentive to build and test statistical models against the

1http://i.turner.ncaa.com/dr/ncaa/ncaa7/release/sites/default/files/external/

gametool/brackets/basketball-men_d1_2013.pdf
2https://www.kaggle.com/
3https://www.kaggle.com/c/march-machine-learning-mania-2015
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Figure 4.1: NCAA “March Madness” 2014 Results

legacy data available. During the main stage, 2015 “March Madness” forecasts were made

immediately prior to the start of the tournament on March 19th 2015, based on the data

available up to that point. This was done by predicting the probability that one team

would beat another team for all 68 × 67 = 2287 possible match–ups of the 68 teams in

the tournament.

4.2.1 Assessing the predictions

The criteria used by Kaggle to assess the quality of predictions is the log loss, also known

as the predictive binomial deviance. The log loss can be expressed in the following way

log loss = − 1

n

n∑
i=1

[yi log(p̂i) + (1− yi) log(1− p̂i)],

where n is the number of games played in the prediction sample, p̂i is the predicted

probability of team ti1 beating team ti2 and yi is the outcome of each game, taking a

value of 1 when team ti1 wins and 0 otherwise. The smaller the log loss, the better.

Models with good fits and therefore accurate predictions are expected to achieve log loss

values near zero. Another criteria that can be used to assess predictions is computing

the proportion of games correctly predicted using a model which compares the results

of a simulated tournament to the actual results. Note that the probability of correctly
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predicting all the tournament games is even smaller than the chances of winning the

National Lottery jackpot. The odds of filling out the perfect bracket are 267 to one (67

games, either win or loss, so 267 possible outcomes), thus making it virtually impossible.

Adopting a Bayesian approach to prediction, a prediction of the outcome of a match

between two teams i and j is provided by the posterior predictive probability

Pr(i beats j|D) =

∫
Pr(i beats j|λ, D)π(λ|D)dλ = Eλ|D

[
λi

λi + λj

]
,

where D = {Y , t} denotes the observed results. This probability can be estimated from

the MCMC output by

P̂ r(i beats j|D) =
1

M

M∑
m=1

λ
(m)
i

λ
(m)
i + λ

(m)
j

,

where λ
(m)
i , λ

(m)
j for m = 1, . . . ,M are sampled values from the posterior distribution

π(λ|D).

4.3 Fitting the models

The various models will be first tested against the regular season data before actually fore-

casting the 2015 “March Madness” tournament. It became evident that it was impractical

to compile rjags models using the entire dataset of 139,920 games due to the prolonged

period of time required to do this. Some of the more sophisticated models would take

days to run thus making them computationally expensive and inefficient. Only a sub-

set of this vast dataset was used, namely the match results of the 2015 regular season.

There are 354 teams that played 5354 matches in total that took place during 120 “match

days”. The number of games varies every match day and ranges from 4 to 151, with an

average of 45 games. Depending on the size of the conference, each team plays either 14,

16, 18 or 20 matches, half of them in front of their own supporters and the other half

away from home (with the exception of New Jersey Institute of Technology, which had to

play an unusually high number of 33 matches, due to not being affiliated with any of the

conferences). Let Yi be result of a contest between teams ti1 and ti2, ti1, ti2 ∈ {1, . . . , 354}
and λ = (λ1, . . . , λk) be the skill parameter corresponding to each team and n = 5354 be

the number of matches played. The random variable Yi is a binary outcome, and Yi = 1

corresponds to team ti1 winning a match and Yi = 0 to team ti1 losing. This dataset will

be analysed sequentially and in chronological order. For match day 1, the predictions

for all the games played on that day will be calculated using the prior distribution. For

match day 2, the forecasts will be made using the data available for match day 1 and the

desired paired comparison model. For match day 3, this will be done by incorporating

the data from match days 1 and 2 and so on, so that predictions for matches on day t are

based on the data up to day t− 1. At each step, the log loss function will be calculated
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for each candidate model to see how it evolves through time and the model with the

smallest overall cumulative log loss will be chosen and then used to predict the results of

the “March Madness” tournament. In the results presented shortly, all the MCMC chains

ran for 1,000 iterations as burn–in and then used a further 10,000 iterations to obtain

the posterior sample. No thinning was required. The constraint λ1 = 1 was also imposed

in order to solve the identifiability issue; this corresponds to the strength parameter for

Abeline Christian University.

4.3.1 Basic models

The basic Bradley–Terry model as defined in Equation (2.1) and the Thurstone model

described in Equation (2.3) were fitted to the data; JAGS code for all the models considered

is listed in the Appendix. As expected, the results were very similar and it confirms the

hypothesis that these two models are virtually indistinguishable. In both cases, the prior

distribution λj ∼ Gamma(1, 1) ≡ Exp(1) independently for j ∈ {2, 3, . . . 354} was fitted,

assuming a level playing field. Because of the striking resemblance between the two

models, it seems reasonable to focus on only one of them and then try to modify it.

4.3.2 Home advantage

The phenomenon of home advantage was discussed in Section 2.1.3 of this report and it

will be applied to the Bradley–Terry model. A global version of the home advantage will

be considered, where there is no assumption of this factor playing a more important role

for some teams than for others. The following model was then considered

Yi|θ, t, δ ∼ Bern(pi), independently for i = {1, 2, . . . , 5354}

where

logit pi = δhi + θti1 − θti2
and

θti1 = log λti1 for i = {1, . . . , 354}.

The following prior distributions were assigned

λj ∼ Gamma(1, 1) ≡ Exp(1) independently for j = {2, . . . , 354}
δ ∼ N(0, 1).

The additional parameter δ represents the home effect and hi is a binary indicator (hi = 1

if team ti1 is at home and hi = 0 otherwise). The choice of δ ∼ N(0, 1) reflects a belief

that home advantage is just as likely as home disadvantage.
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4.3.3 Recent form

Whilst it is reasonably straightforward to extend the Bradley–Terry model to include

home advantage, it is much harder to factor in recent form. A sudden change of fortune,

alteration in personnel, injuries to key players and so forth, can all shift the momentum,

no matter how much silverware any given team has won in the past. In the literature,

many authors have proposed their own solutions to circumvent this issue. First proposed

by Glickman (1993), the most common way is to ensure that skill parameters vary in time.

This subject has been pursued further by other researchers, for example Knorr-Held (2000)

applied a dynamic paired comparison model to the 1996–1997 German football league data

and more recently Cattelan et al. (2013) applied a slightly different model to the 2008–2009

Italian Serie A and 2009–2010 NBA league. In this report two methods of accounting for

recent form are considered. Firstly an indicator parameter β ∈ R of whether the last game

was won is added to the model. A normal distribution with mean 0 and unit precision is

assigned as the prior to this parameter. Secondly, and perhaps more importantly, more

weight is given to recent results. This can be done by introducing another parameter

α ∈ [0, 1], which then can be either fixed at a particular value or assigned a Beta prior

distribution. This in turn gives rise to three possible candidate models. For example, the

Bradley–Terry model with home advantage, and parameters α and β as described above

can be specified as

Yi|θ, t, δ, α, β ∼ Bern(pi), independently for i = {1, 2, . . . , 5354}

where

logit pi = δhi + β(Iti − Itj) + αdi(θti1 − θti2)

and di is the number of days in the past that the game was played. Iti is an indicator of

whether the last game for team ti1 was won (Iti = 1) or lost (Iti = −1). The following

prior distributions were assigned

λj ∼ Gamma(1, 1) ≡ Exp(1) independently for j = {1, . . . , 354}
δ ∼ N(0, 1)

α ∼ Beta(99, 1)

β ∼ N(0, 1).

Note that the prior mean of α is 0.99 indicating that a match played yesterday is expected

to be 99% as important as a match played today. As a quick illustration of how this model

works, suppose a match took place today and for the time being assume α is fixed at 0.99.

In this setting, di = 0 and thus αdi = 0.990 = 1. Now consider a game played 14 days

ago, hence di = 14 and αdi = 0.9914 = 0.869 (3 d.p). Clearly more weight is attached to

the recent results. With α < 1, αdi → 0 as di →∞ and thus logit(pi)→ δhi +β(Iti − Itj)
indicating that effectively the difference in team strengths has no impact on the probability

of a win.
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4.4 Model choice

During the sequential analysis, the log loss function was calculated for each of the 5354

games using the five models described above. The simple Bradley–Terry model is referred

to as model 1. The Bradley–Terry with home advantage as model 2. The Bradley–Terry

model with home advantage and time weighting with an assigned prior distribution as

model 3. The Bradley–Terry model, where the time weighting is fixed at a particular

value (α = 0.99) is referred to as model 4. Finally, model 5 is the Bradley–Terry model

with home advantage, time weighting and an indicator whether the last game was won or

lost.

The results of fitting these five models to the 2015 regular season results are summarised

in Table 4.1 and Figure 4.2.

Model Cumulative log loss Avg. log loss per game

1 3213.6300 0.6002

2 3076.0190 0.5745

3 3077.6900 0.5748

4 3100.0530 0.5790

5 3080.3480 0.5753

Table 4.1: Log loss for the five candidate models

From Table 4.1 it can be seen that Model 1 has the highest overall cumulative log loss and

hence the highest log loss value per game. Therefore, according to the theory presented

in the previous section, this model performs the worst. The difference between the other

four remaining models is negligible, but the log loss for model 2 is marginally the smallest.

This highlights the importance of the home advantage as a factor in this type of analysis.

Figure 4.2 contains a time series plot illustrating how the log loss values for each model

relative to model 2 change over time. Model 1 does not achieve a satisfactory log loss

value and is not recommended for the future forecasts. Models 3, 4 and 5 all provide very

similar results approximately up to halfway through the season. After around match day

58, the log loss values for model 4 increase significantly indicating poorer predictions. On

the other hand, models 3 and 5 provide similar predictions, with model 3 having slightly

smaller log loss values. Several conclusions spring to mind. Firstly, an indicator of whether

the last game was won or lost does not appear to provide a significant improvement in

the forecasts. Secondly, time weighting appears to have the second highest impact on the

forecasts, after the inclusion of home advantage. It is better to assign a prior distribution

to this parameter, rather than fixing it. Overall, model 2 provides the most accurate

predictions. Model 3 also generates very reasonable results, however, compared to model

2, it is more complex and therefore less computationally efficient. Therefore model 2,

the Bradley–Terry model with home advantage, is chosen to produce forecasts for the

2015 March Madness tournament and the related Kaggle contest. This section not only
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Figure 4.2: Log loss over time for each model, relative to model 2; values above 0 indicate

a worse log loss than model 2

provides a means of selecting the optimal model, but also a way of checking the validity

and appropriateness of these models. Simulating match predictions using the posterior

distribution and comparing it to the actual results using a quantitative measure, such

as log loss gives a chance to test the models against any potential major discrepancies.

Goodness of fit can also be checked using more standard diagnostic procedures, such as

plotting residuals. It is possible to calculate residuals for binary data, transform them

in such a way that they are approximately normally distributed, and then analyse these

using classical least squares theory. This approach however is not recommended, as it does

not yield optimal results in a Bayesian setting. Johnson & Albert (1999) advise to use

Bayesian residuals instead. This can be done by examining the probability distribution of

the difference between the observed and the fitted observations. Such Bayesian residuals

may be defined as

ri,b = yi/ni − p̂i

where yi takes a value of 1 if team ti1 wins the game or 0 otherwise, ni is the match number

for team ti1 (which here is 1) and p̂i is the model-based probability that team ti1 wins.

Several other types of residuals have also been proposed, such as posterior–predictive,

cross–validation and Bayesian latent residuals. These, however, are not discussed in this

report.
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4.5 Forecasting the 2015 March Madness results

4.5.1 Tournament picture

The Kentucky Wildcats, runners–up in the 2014 March Madness tournament, entered the

2015 tournament unbeaten and were widely backed to be the favourites after recording

one of the longest winning streaks in the history of the tournament (34-0). Last year’s

winners, the Connecticut Huskies did not qualify after finishing fifth in their conference.

Three teams, Buffalo Bulls, UC Irvine Anteaters and North Florida Ospreys qualified to

the tournament for the first time in their history. New Mexico State Aggies, Stephen

F. Austin Lumberjacks and Georgia State Panthers were lower seeded teams identified

by the experts as “Cinderellas”, that is, teams with a potential to have a deep play–off

run. The eight best teams according to three different measures: Associated Press (AP)4

Ranking, ESPN Power Index5 and official NCAA seeding information6 are presented in

the Table 4.2.

AP Ranking ESPN Power Index NCAA seeds

Kentucky Kentucky Kentucky

Arizona Wisconsin Villanova

Wisconsin Arizona Duke

Duke UVA Wisconsin

Kansas Villanova Virginia

North California Duke Arizona

Florida Gonzaga Gonzaga

Louisville Kansas Kansas

Table 4.2: Top 8 best teams according to three different sources

4.5.2 Application of the chosen model for prediction

As mentioned previously, the Bradley–Terry model with home advantage was chosen

as the model with which to make predictions. As also mentioned previously, the whole

dataset is not used in making the final predictions. This is due to two reasons. Firstly, the

algorithm incorporating all 139,920 games would be computationally inefficient and very

slow to compile. Secondly, and perhaps most importantly, the teams’ strength parameters

may have changed substantially over a long time period, for example decades. This would

therefore lead to less accurate predictions, even with the time weighting factor included in

the model. For instance, the Kentucky Wildcats suffered a severe decline in form during

4http://espn.go.com/mens-college-basketball/rankings/_/year/2015/week/1/seasontype/2
5http://espn.go.com/mens-college-basketball/bpi
6http://www.sbnation.com/college-basketball/2015/3/15/8220261/

ncaa-tournament-2015-full-seed-list-dayton
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the Final Four drought from 1999–2011. Thus including information from these years

would result in a much lower estimated skill parameter than would be anticipated for this

team. A compromise needs to be reached, whereby enough data is used to ensure that

it improves the forecasts, but not the whole dataset, as this would slow the algorithm

too much and impact the predictions in a negative way. There is no quantitative way of

deciding this and subjective judgment is the only potential option. By trial and error, it

was decided that using the dataset from the 2015 regular season is the optimal size for

forecasting the 2015 March Madness tournament.

Each of three MCMC chains ran for 1,000 iterations as burn–in and then took further

10,000 iterations with no thinning. The trace and autocorrelation plots were produced

for each of the 68 teams that qualified for the tournament. In this report, however, con-

vergence diagnostic plots are only presented for the 2015 Final Four teams: Kentucky

Wildcats, Duke Blue Devils, Wisconsin Badgers and Michigan State Spartans. These

findings are summarised in Figure 4.3. The MCMC chains explore the state space effi-

ciently and therefore mix well. The ‘thick pen’ test indicates that the stationarity can be

safely assumed. There is no significant autocorrelations beyond lag 0 and these indeed

decrease rapidly, thus showing that that no thinning was required. It can be seen that the

marginal posterior density for Kentucky Wildcats’ strength parameter is centered around

the highest value of λ ≈ 6.7. This indicates that, according to the model fitted, Kentucky

Wildcats can be regarded as the strongest team in the Final Four of the competition.

Similarly, as the marginal posterior density is centered around the smallest value of λ

(λ ≈ 2.5), this implies that Michigan State Spartans can be considered to be the weakest

team in the Final Four. As the strength parameter for this particular team is consid-

erably lower than for the remaining three Final Four teams, one might perhaps refer to

the Michigan State Spartans as this year’s “Cinderella” team, an underdog who exceeded

expectations. Some more detailed results are provided in the following section.

4.5.3 Results

It is possible to rank the teams according to the posterior mean of their strength parameter

λ. These findings are summarised in Table 4.3 for the teams reaching the final 64 of the

tournament. According to the model fitted, Kentucky is clearly the best team and was

expected to win the whole tournament. This agrees with the experts’ beliefs presented in

Table 4.2. There are no major discrepancies between the top 8 best teams according to

the model fitted and those in Table 4.2, with the exception of Northern Iowa featuring

as the 8th best team according to the Bradley–Terry model with home advantage. The

lowest ranked teams agree with the official seeding information.

Based on the posterior distribution of the strength parameters, predictive probabilities

for each of the 63 games in the final 6 rounds of the tournament can be obtained using

the method outlined in Section 4.2.1. These predictive probabilities can be compared to

the actual results from the 2015 tournament and a log loss can be calculated. The log

loss value for this particular model is 0.570 (3 d.p). The proportion of games correctly
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Figure 4.3: Convergence diagnostics plots
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Ranking Team Posterior mean λ Posterior s.d. λ

1 Kentucky 6.686 2.056

2 Villanova 5.731 1.856

3 Wisconsin 5.376 1.746

4 Virginia 5.271 1.705

5 Duke 5.223 1.651

6 Arizona 5.113 1.656

7 Gonzaga 5.087 1.720

8 Northern Iowa 4.119 1.253
...

...
...

...

29 Michigan St 2.472 0.895
...

...
...

...

57 Belmont 1.257 0.551

58 Coastal Car. 1.239 0.579

59 New Mexico St. 1.160 0.518

60 Lafayette. 1.150 0.480

61 Texas Southern 1.110 0.505

62 UAB 0.885 0.350

63 Robert Morris 0.820 0.347

64 Hampton 0.402 0.180

Table 4.3: Top 8 highest ranked and bottom 8 lowest ranked teams according to the model

fitted

predicted by the Bradley–Terry model with home advantage is approximately 73%. This

would indicate that this particular model provides more accurate predictions than just

guessing, where one is expected to correctly predict 50% of matches on average. Having

said that, forecasting “March Madness” results proved to be a very challenging task, due to

an unexpected deep play–off run by the Michigan State Spartans, a team ranked 29th best

by the model, as well as poorer than anticipated performance by the Kentucky Wildcats.

For example, consider the last three games of the tournament: Kentucky vs Wisconsin,

Duke vs Michigan State and the subsequent Championship final Duke vs Wisonsin. Using

the model fitted, it is possible to calculate probabilities for each of the match–ups as well

as produce posterior probability density plots for these. From Figure 4.4, Kentucky

were the favourites to win their semi–final with a probability of approximately 60%.

Wisconsin, however, ended Kentucky’s unbeaten streak by recording a 71–64 win against

the Wildcats. There were no upsets in the second semi–final, where Duke was a clear

favourite to beat Michigan State with a probability of approximately 73%. Duke indeed

progressed to the National Championship match by defeating Michigan State 81–61. The

Bradley–Terry model with home advantage picks Wisconsin as the marginal favourites

for the final. However, Duke under the leadership of Mike Krzyzewski took the title

by beating Wisconsin 68–63. This illustrates one of many challenges related to sports
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Figure 4.4: Probability densities for the final three games of the tournament

forecasting. It is extremely difficult, if not impossible, to predict all the games correctly.

There is no way of accounting for any potential “David beats Goliath” scenarios.



Chapter 5

Conclusions and further discussion

5.1 Conclusions

This project provides an overview of models for paired comparison data. The Bradley–

Terry model and its generalisations arise in numerous applications ranging from sport to

medicine. A link between paired comparison data models and binary regression models

has been explored. The Bradley–Terry and the Thurstone model arise as special cases

of the linear paired comparison model or the gamma paired comparison model. A closed

form of the latter has been derived. Most of the research on paired comparison data has

been performed from the frequentist point of view. Recently, however, several authors

proposed to perform Bayesian inference for this type of data. This was also a favoured ap-

proach in this report. Fundamental concepts, such as MCMC methods and in particular

Metropolis–Hastings and Gibbs sampling algorithms for sampling from a Markov chain

whose stationary distribution is the posterior distribution of interest have been discussed.

These methods are computationally demanding and cannot be performed without sophis-

ticated statistical software. The R package rjags, which provides an R interface to the

JAGS software was our preferred option. A synthetic dataset was firstly considered to il-

lustrate how inference on paired comparison data can be carried out. Similar methodology

was then applied to the NCAA basketball dataset to rank and subsequently determine

the best men’s collegiate team. It was found that the Bradley–Terry model and the

Thurstone model provide virtually the same results when fitted to data. Home advantage

proved to be the most significant factor in the analysis. The final model chosen to forecast

the 2015 “March Madness” tournament results was the Bradley–Terry model with home

advantage. 73% of all games were predicted correctly by this particular model, but the

eventual winner of the tournament, Duke, was only ranked as the 5th best team by this

model. Such a result is not particularly surprising given the single-elimination format of

the March Madness tournament.

33
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5.2 Further discussion

There are many possible extensions of this project. Team–specific home advantage could

be considered instead of the global version of this phenomenon. Finding clusters of

teams of similar ability and then comparing them in turn is another possibility. Tutz

& Schauberger (2014) consider applying this methodology to German Bundesliga data.

Rather than comparing two teams at a time, group comparisons could be made. Caron &

Doucet (2012) and Huang et al. (2006) discuss this in further detail. As the Bradley–Terry

model could be extended to incorporate ties (Rao & Kupper 1967), it is feasible to use this

type of a model to analyse sports data with three different outcomes (usually win, loss

or a draw), such as football or rugby. Whilst most of the research on paired comparisons

in sports data focuses on ranking teams or individuals, other extensions could also arise.

For example, uncertainty is rarely, if ever, taken into account in the presentation of sports

data. It would be fascinating to test whether the onset of professional eras has had any

discernible impact on relevant sports.
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Appendix: JAGS model code

## Various models for paired comparisons in jags format

## Bradley-Terry model

bt = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

p[i] <- lambda[x[i,1]]/(lambda[x[i,1]] + lambda[x[i,2]])

}

for(j in 1:K)

{

lambda[j]~dgamma(1,1)

}

}

"

## Bradley-Terry model (logistic regression)

bt.logit = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

logit(p[i]) <- theta[x[i,1]]-theta[x[i,2]]

}

lambda[1] <- 1

theta[1] <- log(lambda[1])

for(j in 2:K)

{

lambda[j]~dgamma(1,1)

theta[j] <- log(lambda[j])

}

}

"

39
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## Bradley-Terry model with home advantage (logistic regression)

bt.logit.ha = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

logit(p[i]) <- eta*h[i] + theta[x[i,1]]-theta[x[i,2]]

}

lambda[1] <- 1

theta[1] <- log(lambda[1])

for(j in 2:K)

{

lambda[j]~dgamma(1,1)

theta[j] <- log(lambda[j])

}

eta ~ dnorm(0,1)

}

"

## Bradley-Terry model (logistic regression) with home advantage and

## time-weighting

bt.logit.ha.tw = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

logit(p[i]) <- eta*h[i] + (alpha^t[i])*(theta[x[i,1]]-theta[x[i,2]])

}

lambda[1] <- 1

theta[1] <- log(lambda[1])

for(j in 2:K)

{

lambda[j]~dgamma(1,1)

theta[j] <- log(lambda[j])

}

eta ~ dnorm(0,1)

alpha ~ dbeta(99,1)

}

"
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## Bradley-Terry model (logistic regression) with home advantage and

## time-weighting (fixed)

bt.logit.ha.twfix = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

logit(p[i]) <- eta*h[i] + (alpha^t[i])*(theta[x[i,1]]-theta[x[i,2]])

}

lambda[1] <- 1

theta[1] <- log(lambda[1])

for(j in 2:K){

lambda[j]~dgamma(1,1)

theta[j] <- log(lambda[j])

}

eta ~ dnorm(0,1)

}

"

## Bradley-Terry model (logistic regression) with home advantage,

## time-weighting and an indicator of whether the last game was won

bt.logit.ha.tw.wlg = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

logit(p[i]) <- eta*h[i] + (alpha^t[i])*(theta[x[i,1]]-theta[x[i,2]])

+ beta*(wlg[i,x[i,1]]-wlg[i,x[i,2]])

}

lambda[1] <- 1

theta[1] <- log(lambda[1])

for(j in 2:K){

lambda[j]~dgamma(1,1)

theta[j] <- log(lambda[j])

}

eta ~ dnorm(0,1)

alpha ~ dbeta(99,1)

beta ~ dnorm(0,1)

}

"
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## Thurstone-Mosteller model (probit regression)

tm = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

probit(p[i]) <- theta[x[i,1]]-theta[x[i,2]]

}

for(j in 1:K)

{

lambda[j]~dgamma(1,1)

theta[j] <- log(lambda[j])

}

}

"

## Thurstone-Mosteller model with home advantage (probit regression)

tm.ha = "

model

{

for(i in 1:n)

{

y[i] ~ dbern(p[i])

probit(p[i]) <- eta*h[i] + theta[x[i,1]]-theta[x[i,2]]

}

for(j in 1:K)

{

lambda[j]~dgamma(1,1)

theta[j] <- log(lambda[j])

}

eta ~ dnorm(0,0.1)

}

"


