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Abstract

This project will focus on the role that primordial gravitational waves from
the big bang have in modern cosmology. It will begin by defining these
fundamental waves, where they are located and what experiments have been
put in place to detect them. It will then include the theory of inflation,
and how various potential energies can be manipulated to result in graphical
plots of gravitational wave fluctuations against frequency density. Then two
models will be considered, using MATLAB to produce the plots required.
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Chapter 1

Introduction

This section provides information about gravitational waves, the cosmic
microwave background, polarisation into E-modes and B-modes, and the
claim of detection from 2014.

1.1 Gravitational Waves

In 1916, Albert Einstein produced a paper entitled “Nherungsweise In-
tegration der Feldgleichungen der Graviation”, (“Approximate integration
of the field equations of gravitation” in English), in which he predicted the
existence of gravitational waves [1]. This prediction was based on his the-
ory of general relativity, in which gravitation is explained via the spacetime
curvature [2]. The effect that the curved spacetime has on objects is more
commonly recognised as gravity [2].

So what exactly is a gravitational wave? When a big object moves, the
spacetime curvature must adjust as to follow the position of the object, re-
sulting in a delayed reaction time for spacetime to change; this is due to
nothing being able to travel faster than the speed of light [2]. This results in
a ripple effect within the spacetime itself, defined as gravitational waves [2].

The main problem with studying these waves is detecting them in the
first place, as attempts so far have proven unsuccessful, but they are still
an important area of study as they provide an exclusive insight into many
intense systems, such as the big bang [2].

This project will focus on primordial gravitational waves, i.e. ones that
are within the cosmic microwave background which were produced by the
big bang [2, 3].

2



Figure 1.1: A mapping of the anisotropies in the entire CMB as performed
by the Planck satellite. Taken from the European Space Agency’s website
[5].

1.2 Cosmic Microwave Background

The cosmic microwave background (CMB) is radiation which is the “af-
terglow” of the big bang [2], which was discovered accidentally by two radio-
astronomers in 1964 [4]. Since its discovery, the CMB has been heavily
studied, as it is thought to be the most convincing piece of evidence for the
big bang theory, as it preserves a picture of the early universe and could hold
the key to unlocking the initial conditions [5].

Unfortunately, measurements from earth face the problem of interference,
resulting in less accurate measurements. This is where the Planck satellite
comes in. On the 14th of May 2009, the Planck satellite was launched with
the primary objective to map the CMB; it did this by rotating on an axis
and measuring via strips to complete a full mapping [5]. Figure 1.1 shows the
completed CMB as surveyed by Planck [5]. It is possible to see the uneven
temperature distribution in the CMB, i.e. the anisotropies which are caused
by the effects of gravitational waves.

This is acknowledged as the definitive picture of the CMB, as Planck was
operated with an accuracy which was governed by fundamental limits [5].
Due to background noise, the limit of certainty Planck reached is the natural
limit of measurement accuracy, making its measurement of the temperature
variations the most accurate they will ever be [5].

The Planck satellite also performed many measurements of the temper-
ature fluctuations as well as mapping them. Figure 1.2 shows a graph of
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Figure 1.2: Observations of the temperature fluctuations in the CMB at
different angular scales as measured by Planck. The red dots are each indi-
vidual measurement, presented with error bars. The green curve represents
the ‘standard model of cosmology’. The pale green area represents all vari-
ations of this model which comply with the Planck data. Taken from the
European Space Agency’s website [5].

these measurements at different angular scales, from largest on the left to
smallest on the right, against the temperature fluctuations [5]. These tem-
perature fluctuations involve a term C(l), which represent Laplace’s spherical
harmonics. Each red dot is a measurement taken by Planck, with error bars
corresponding to errors in the actual measurement itself, and due to the
uncertainty that arises from there being only a few points in the sky that
measurements can be taken; this second uncertainty factor becomes more
prominent at the larger angular scales, as seen with the larger error bars to
the left of the plot [5]. The green curve corresponds to the ‘standard model
of cosmology’ which fits the Planck data the best, with the pale green area
to the left of the plot corresponding to all variations of this model which
comply with the Planck data [5].

At the smaller angular scales, the Planck measurements agree with the
predictions of the standard model, but as the angular scales get larger than
six degrees, the points deviate from the main green curve, and even one point
lies outside of the green area, implying that the standard model of cosmology
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Figure 1.3: A direct comparison of the measurements of the temperature
fluctuations in the CMB as measured by Planck (left) and WMAP (right).
Due to the smaller error bars and ability to plot more points as the angular
scale gets smaller, the Planck satellite is seen as the more accurate of the
two. Taken from the European Space Agency’s website [5].

might have some areas which need to be reassessed [5].
To show how accurate the measurements of the Planck satellite are, they

can be compared to the analysis of another mission to measure the CMB
fluctuations. The Wilkinson Microwave Anisotropy Probe (WMAP) was
launched in 2001, and it produced the first mapping of the CMB fluctuations
to a resolution of 0.2 degrees on the angular scale [6].

Figure 1.3 shows a direct comparison of the observations of the Planck
satellite and theWMAP [5]. As the angular scales get smaller, not only do the
points start to leave the main curve, the error bars for the WMAP readings
become much larger than Planck’s. Planck was also able to get readings
of much smaller angular scales than the WMAP, resulting in a significant
improvement; this was due to the increased angular resolution and sensitivity
of instruments which the Planck satellite had [5].

1.3 Claim of Detection

The way that gravitational waves could be detected in the CMB would be
to look at the polarisation patterns, as tiny fluctuations in the spacetime, due
to the rapid expansion of the big bang, could have produced a background
of gravitational waves that could still exist today [2].
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Figure 1.4: A visual example of the E-mode and B-mode polarisation angles
superimposed onto a plane wave travelling in the up-down direction. The
E-mode polarisations are parallel and perpendicular to the direction of the
wave. The B-mode polarisations are at forty-five degree angles to the direc-
tion of the wave. Taken from the B-modes section on Professor Wayne Hu’s
webpage [7].

Polarisation patterns separate geometrically into two cases, E-modes and
B-modes [7]. If a plane wave is travelling in the up-down direction, it can be
polarised in a number of different directions; if the polarisation is parallel or
perpendicular to the wave’s original direction it is called an E-mode polarisa-
tion, and if the polarisation occurs at a forty-five degree angle to the wave’s
original direction it is called a B-mode polarisation [7]. Figure 1.4 shows a
visual representation this [7].

The reason this is important, is because density perturbations can only
have a parallel polarisation, resulting in exclusively E-mode polarisation,
whereas gravitational waves can generate both polarisation patterns, mean-
ing that they have an element of B-mode polarisation [7]. Detection of B-
modes is a current hot-topic in cosmology, as their discovery implies gravita-
tional waves, which in turn provides experimental evidence for inflation and
the big bang.

The BICEP2 (Background Imaging of Cosmic Extragalactic Polarisation)
telescope is located in the South Pole. Its main objective was to locate the
B-modes located in the CMB [8]. In March 2014, the BICEP2 collaboration
published a paper, stating that they had detected B-modes created by the
gravitational waves; these results produced the value for the tensor-scalar
ratio (see section 2.6) as 0.2 with a confidence region of +0.07 and −0.05,
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which rejected the null hypothesis of the tensor-scalar ratio being equal to
zero [8].

However, in a revised edition of their paper which was submitted in June
2014, the BICEP2 collaboration added that there was lowered confidence in
these findings as there was a chance that the signal could have been caused
by a cosmological dust signal [8]. A joint analysis between the Planck and
BICEP2 data sets further concluded that the signal detected and the strength
of the dust signal was the same magnitude [9]. This led to the conclusion
that no matter how ‘clean’ an area of the sky is, the dust signal needs to be
examined [9].

All of these efforts to detect gravitational waves have not been in vain.
Although the gravitational waves have not yet been detected, due to a more
complete understanding of the dust signal, there are now extremely accu-
rate predictions of what signals the waves will produce [9], hopefully making
detection easier in the near future.

7



Chapter 2

Inflation

This section focuses on the theory of inflation, starting with a brief his-
tory and then going on to the crucial equations which define this method.
It will then finish with a worked example, showing all these equations in ac-
tion, resulting in a plot of gravitational wave fluctuations against frequency
density.

2.1 What is Inflation?

Prior to investigating gravitational waves further, it is necessary to review
the theory of inflation. The standard big bang model needs initial conditions;
unfortunately there are two things which make these conditions complicated
to explain. These are the horizon problem - the early universe is assumed
to be homogeneous even though separate regions were causally disconnected
- and the flatness problem - the initial value of the Hubble constant needs
to be chosen extremely precisely to be able to model the universe as flat as
what has been observed [10].

In 1981, Alan Guth provided the inflationary hypothesis in order to create
a scenario which avoided the horizon and flatness problems [10], and which
would help to explain the initial conditions for the big bang, as what trig-
gered inflation is still unknown. Figure 2.1 shows a visual example of the
inflationary model compared with the standard model.

In cosmological terms, inflation is defined as an era just after the big
bang when the universe expanded exponentially in an extremely small time
frame. As seen from Figure 2.1, this period is thought to have occurred 10−35

seconds after the big bang. During this extremely small time period, it is
thought that the size of the universe increased by a scale factor of around
1026 [6]. After this time period, the universe continued to expand but at a
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Figure 2.1: Graph showing the size of the universe against the time in
seconds measured after the big bang. This plot shows the inflationary
universe scenario compared with the standard big bang model. Taken
from a lecture by Andrei Linde in 2007, found at “http://www.mpa-
garching.mpg.de/lectures/Biermann 07/LindeLecturesMunich1.pdf”.

slower rate.
Since its inception, the theory has been extremely influential, and is

widely accepted as the favoured contender for the origin of structure in the
universe [11].

2.2 Equations of Motion

The theory of inflation includes many equations which include a term for
potential energy, making it possible to interpret results for various potential
energy models. But first, it is necessary to look at the equations of motion
that define the universe. The properties of the materials contained inside the
universe control the expansion [11]; these are usually specified as the energy
density ρ (t) and the pressure p (t) (which are both functions of time). These
quantities are often related by an equation of state, i.e.

p (t) ≡ ρ (t) .

There are two equations which describe how the universe expands. These
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are the Friedmann equation, given by

3

(

ȧ2

a2
+

k

a2

)

= 8πGρ , (2.1)

and the fluid equation which is given by

aρ̇+ 3ȧ
(

ρ+
p

c2

)

= 0 , (2.2)

where a is the scale factor of the universe, k is a constant known as the
spatial curvature, G is the gravitational constant, c is the speed of light, and
the dots above the variables represent the time derivatives [11].

Equations (2.1) and (2.2) can be combined to form a new acceleration
equation, written as

ä = −
4

3
πG

(

ρ+
3p

c2

)

a ,

which does not have k appearing [11].
The spatial curvature k is usually scaled to either −1, +1 or 0, repre-

senting open, closed and flat universes respectively [11]. As it is preferred
that the universe is flat, from now on k shall be set to equal zero. Also, it is
common cosmological practice to choose limits in which the speed of light,
c, is set equal to one; note that this makes the energy and mass densities
interchangeable as now p/c2 = p [11]. This results in equation (2.1) becoming

3H2 = 8πGρ , (2.3)

where

H =
ȧ

a
, (2.4)

is defined as the Hubble Parameter. Similarly, equation (2.2) becomes

aρ̇+ 3ȧ (ρ+ p) = 0 . (2.5)

For a homogeneous scalar field, the field is a function of time alone. A
potential energy can be defined as V (φ), which includes the scalar field. The
mass density and the pressure can now be defined as

ρ =
1

2
φ̇2 + V (φ) , (2.6)

and

p =
1

2
φ̇2 − V (φ) , (2.7)
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where, in both equations, the first term can be thought of as kinetic energy,
and the second as potential energy. [11]. These equations can be substituted
into the equations of motion to obtain a new set of equations containing
the homogeneous scalar field. Substituting equations (2.6) and (2.7) into
equation (2.3) gives

3H2 = 8πG

(

V (φ) +
1

2
φ̇2

)

, (2.8)

and substituting equations (2.6) and (2.7) into equation (2.5) gives

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 . (2.9)

2.3 The Slow-Roll Approximation

Now the equations of motion containing a scalar field have been defined,
they can be solved. The standard practice to do this is a method called the
slow-roll approximation. It assumes that the potential is flat enough that the
scalar field would roll slowly towards a minimum, at which inflation would
end [11]. A visual example of this is shown in Figure 2.2, where the ball
represents the potential slowly rolling downwards.

The slow-roll approximation involves neglecting a term in each equation,
resulting in simpler expressions [11]. Ignoring φ̇ in equation (2.8) yields

3H2 = 8πGV , (2.10)

and ignoring φ̈ in equation (2.9) yields

3Hφ̇+
∂V

∂φ
= 0 . (2.11)

Slow roll parameters can be introduced as [12]

ǫ (φ) =
1

16πG

(

1

V

∂V

∂φ

)2

, (2.12)

and

η (φ) =
1

8πG

1

V

(

∂2V

∂φ2

)

, (2.13)

where the ǫ measures the slope of the potential and η measures the curvature
[11]. Almost all results of equations can be expressed in terms of these two
parameters, for example

φ̈

Hφ̇
= ǫ− η , (2.14)
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Figure 2.2: Visual example of a slow-roll potential. The potential used is the
soft SUSY model (see section 3.3). Think of the ball as the potential, slowly
rolling towards the minimum, hence the name ‘Slow-Roll’.

and
Ḣ

H2
= −ǫ , (2.15)

are two equations which will be used to derive later results.

2.4 Amount of Inflation

The slow-roll approximation is based on the idea that at some point
inflation will end. So under what conditions will this happen? Inflation
is defined as an acceleration, so, inflation will end when the acceleration is
equal to zero, as at this point the universe will no longer be expanding i.e.
accelerating outwards. As the equation for the Hubble Parameter contains a
term for velocity (ȧ), it seems logical to start by manipulating equation (2.4)
to give

ȧ = aH .

Differentiating this gives a term for acceleration on the left hand side, result-
ing in the equation

ä = ȧH + aḢ .
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Using equation (2.15) and the rearranged Hubble parameter, the above ex-
pression can be rewritten as

ä = aH2
− aH2ǫ .

By noting the common factor of aH2, this can be expressed as

ä = aH2 (1− ǫ) .

As a and H are positive constants, it can be inferred that inflation ends
when ǫ is equal to one, as this term reduces the right hand side of the above
equation to zero.

It is also possible to calculate the amount of inflation that takes place
between a measured point in time and the end of inflation. If t⋆ is denoted
to be the time which a measurement takes place and tf is denoted to be the
time at the end of inflation, it can be written that

N = ln

(

a (tf )

a (t⋆)

)

,

where N is called the number of e-folding’s, as the amount of inflation is
stated to be the log of the amount of expansion [11]. It is possible to show
that the above equation can be written as

N = −8πG

∫ φf

φ⋆

V

Vφ

dφ . (2.16)

The derivation of this is given in appendix A.1. As it has been seen that
inflation ends when ǫ is equal to one, it can be used to find the value for φf

in the integral. For simple potentials, N can be written in terms of slow roll
parameters.

The number of e-folds is believed to lie between fifty and sixty [13], so
the majority of plots that involve this term have two points joined by a line,
one where N is set equal to fifty, and one where N is set equal to sixty.

2.5 Primordial Power Spectrums

Primordial fluctuations in the universe are described by power spectrums
[14]. There are two main types; the power spectrum for scalar fluctuations,
i.e. the mean square density fluctuation amplitude δρ/ρ, and the power
spectrum for tensor fluctuations, i.e. the mean square of the gravitational
wave amplitude [14]. These equations are both evaluated when the co-moving

13



wavenumber, k, is equal to the horizon size, aH [14]. This is known as the
horizon crossing, i.e. when a mode crosses the horizon [14]. The power
spectrum for the scalar is given by

PS =
1

4π2

H4

φ̇2
, (2.17)

and the power spectrum for the tensor is given by

PT =
2

π2

H2

M2
p

, (2.18)

where M2
p is a constant with the value (8πG)−1 [14]. Both of these equations

are formulated via a Fourier transform.

2.6 Tensor-Scalar Ratio and Spectral Index

The tensor-scalar ratio, r, is defined as the ratio between the power spec-
trum for the tensor PT and the power spectrum for the scalar PS, i.e.

r =
PT

PS

.

It is possible to show that the above equation can be written as

r = 16ǫ . (2.19)

The derivation of this is given in appendix A.2. This is the equation for
the tensor-scalar ratio in terms of slow roll parameters. As r is the ratio
between the mean square of the gravitational wave amplitude and the mean
square density fluctuation amplitude, it is the term that directly involves
gravitational waves.

The expression for the power spectrum for the scalar fluctuations, PS,
can also be defined as a power law, which includes the scalar spectral index,
nS; this is given by

PS ≈ AknS−1 ,

where A is a constant and k is the co-moving wavenumber [14]. It is possible
to show that the above equation can be re-evaluated in terms of nS, resulting
in the equation

ns = 1 + 2η − 6ǫ+O (ǫ) . (2.20)

The derivation of this is given in appendix A.3. This is the equation for the
spectral index in terms of slow roll parameters.
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Figure 2.3: Plots of the tensor-scalar ratio on the y-axis against the spectral
index on the x-axis for potentials of φ and φ2. The dotted lines show where
N is equal to fifty and sixty for both potentials. Different coloured areas
represent the different data sets used, as labelled in the top right. The
darker areas show the 95% confidence regions, and the lighter areas show
the 68% confidence regions. Taken from the Planck 2015 XIII Cosmological
Parameters paper [15].

As these are observable parameters [14], the tensor-scalar ratio and the
spectral index can be plotted against each other. Figure 2.3 shows plots of
the tensor-scalar ratio against the spectral index for two different types of
potential, where the darker area is the 95% confidence interval, the lighter
area is the 68% confidence interval, ‘TT’ is the best fit for the Planck CMB
temperature power spectrum, ‘lowP’ is the use of polarisation information
from the Planck temperature and polarisation pixel-based likelihood, ‘BKP’
is the default configuration of the BICEP2/Keck Array and Planck likelihood,
‘lensing’ is the Planck lensing likelihood and ‘ext’ is external data [15].

As gravitational waves have not been observed yet, the null hypothesis is
to have r set equal to zero. This is why the 68% and 95% confidence regions
are centred around r equal to zero.
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2.7 A Worked Example

To show these equations in action a potential needs to be specified. To
keep things simple, the potential will be defined as

V =
1

4
λφ4 .

Substituting into equation (2.12) yields

ǫ =
1

16πG

(

4

λφ4
λφ3

)2

,

=
1

πGφ2
.

Similarly, substituting into equation (2.13) yields

η =
1

8πG

4

λφ4
3λφ2 ,

=
3

2

1

πGφ2
,

=
3

2
ǫ .

Now, substituting into equation (2.16) yields

N = −2πG

∫ φf

φ⋆

φ dφ ,

= −πG
[

φ2
]φf

φ⋆
,

= −πGφ2
f + πGφ2

⋆ .

It can be written that

N =
1

ǫ (φ⋆)
−

1

ǫ (φf )
,

=
1

ǫ
− 1 ,

as ǫ (φf ) is the value of ǫ at the end of inflation, which is equal to one.
Now that equations have been defined , ǫ and η can be expressed in terms

of N . Rearranging the above expression yields

ǫ =
1

N + 1
.
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Now ǫ being equal to one implies that η (πf ) = 3/2. Also η = 3/2ǫ implies
that ǫ = 2/3η, so

N =
3

2η
−

2

3
.

Rearranging the above expression yields

η =

(

9

6N + 4

)

.

Now that the slow-roll parameters are expressed in terms of N , it is possible
to substitute these into the equations for the tensor-scalar ratio and spectral
index. Using equation (2.19) yields

r = 16ǫ ,

=
16

N + 1
.

Similarly, using equation (2.20) yields

nS ≈ 1 + 2η − 6ǫ ,

= 1 + 2

(

9

6N + 4

)

− 6

(

1

N + 1

)

,

= 1 +
9

3N + 2
−

6

N + 1
.

From before, N is usually believed to be between 50 and 60, so specific values
for the tensor-scalar ratio and the spectral index can be found for these two
separate values. When N is fifty

r ≈ 0.314 , nS ≈ 0.942 .

Similarly, when N is sixty

r ≈ 0.262 , nS ≈ 0.951 .

It is possible to plot these points on the graph of r vs. nS. Before plotting,
it is better to rescale φ to equal x/M2

p , which allows λ to drop out, making it
easier to plot. This results in the graph shown in Figure 2.4. The MATLAB
code for this plot is given in appendix B.1.

The graph has been edited to incorporate the Planck data, and to show
explicitly the values where N is equal to fifty and sixty. When comparing,
it is clear to see that the line is nowhere near the 95% or 68% confidence
regions, therefore it can be deduced that this is not a good model when
comparing with the Planck data.
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Figure 2.4: Plot of tensor-scalar ratio against spectral index for the potential
V = 1/4λφ4. The confidence regions of 68% and 95% from the Planck data
have been superimposed. The labelling of the points where N is equal to
fifty and sixty has been given in the top right of the plot.
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Chapter 3

Using MATLAB

This section introduces the need for programming due to complicated
potentials, as well as two examples, one of which is a model that is ’new’ in
the sense that it has not been studied in the Planck data release. Both result
in the style of plot as seen in section 2.7.

3.1 Why MATLAB?

Theoretically, any potential can be used to get a tensor-scalar ratio vs.
spectral index plot. The worked example in section 2.7 shows how relatively
simple potentials can be put through the equations of inflation, which in
turn result in numbers to be able to plot on a graph. However, due to the
equation for N being an integral, more complex potentials can be extremely
hard to solve analytically. Therefore MATLAB is required.

MATLAB is an incredibly powerful computing software that is extremely
helpful when it comes to evaluating complicating integrals. It also has a pow-
erful plotting tool which has proved advantageous when it comes to creating
graphs for the potentials described in this section.

3.2 Starting simple

To be able to check if the code that has been created is working, it is best
to start with a simple potential model that can also be solved analytically as
to be able to check the output. A suitable potential for this purpose is

V =
1

4
λ
(

φ4
0 − φ4

)

. (3.1)
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Before any sort of computing, it is much simpler in the long run if the po-
tential is scaled in term of x to get rid of any unwanted constants. It is
advantageous to use the substitution

φ =
x

x0

. (3.2)

This results in equation (3.1) becoming

V = 1−
x4

x4
0

. (3.3)

This is much simpler to work with in MATLAB. Note how the λ and 1/4
can be dropped as they would get cancelled out when calculating ǫ and η.

There are two things that need to be done by hand; the derivative and
the double derivative. Differentiating equation (3.3) gives

V ′ = −4

(

x3

x4
0

)

, (3.4)

and then in turn, differentiating equation (3.4) results in

V ′′ = −12

(

x2

x4
0

)

. (3.5)

Now that these have been evaluated, it is time to formulate the code.
Firstly, parameters and equations need to be defined by inputting our equa-
tions like so

x0 = 10.0;

v = @(x) 1 - (x.^4)/(x0.^4);

dv = @(x) -4*(x.^3)/(x0.^4);

d2v = @(x) -12*(x.^2)/(x0.^4);

eps = @(x) 0.5*((dv(x)).^2)./((v(x)).^2);

eta = @(x) (d2v(x))./v(x);

Therefore the potential, derivatives and slow-roll parameters have been
input into MATLAB. Here, the value for x0 has been given as ten, but at
this stage it does not matter too much. The M2

p has been omitted as the
substitution earlier means that the calculation of ǫ and η would have resulted
in it disappearing.

To see what the graph of this potential looks like, the following commands
can be input into MATLAB
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Figure 3.1: Graph of V (φ) against φ for the model V = (1/4)λ (φ4
0 − φ4).

Here, x0 has been taken to be ten.

x = 1.0e-6:0.01:x0-1.0e-6;

y = v(x);

figure

plot(x,y)

which results in the graph seen in Figure 3.1. This shows that using the slow-
roll approximation is suitable as the potential slowly rolls to a minimum. As
the graph has a sheer drop off, it can also be inferred that this potential will
tend to a linear potential when x0 is large. For the amount of inflation, as
seen before, it is necessary to find when ǫ is equal to one. For this, MATLAB
has an inbuilt function, called fzero, to find when an equation is equal to zero
in a certain range. Setting up the following MATLAB code is sufficient

eps1 = @(x) eps(x)-1.0;

xr = [1.0e-6,x0-1.0e-6];

xf = fzero(eps1,xr);

as this will return the required result. Note the ǫ1 term subtracts one off ǫ,
so when ǫ is equal to one, ǫ1 will be equal to zero. The range xr is used due
to the potential having a term where x0 is on the denominator, so x0 cannot
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be equal to zero, but setting up the range as shown above bypasses this as it
can take a value extremely close to zero and not return an error. Finally, the
xf term uses the fzero function, so this term will be the value of the potential
when ǫ equals zero, i.e. when inflation ends.

It is now possible to set up the integral for the number of e-folds, using
the following code

xstar = 4.1357;

efolds = @(x) v(x)./dv(x);

N = -integral(efolds,xstar,xf)

which results in a value for N for a choice of x0 and x⋆. In this case, the x⋆ is
a value inputted and changed to find N equal to fifty and sixty by trial and
error. The e-folds term sets up the integral, and N uses MATLAB’s inbuilt
integral function to evaluate the value. As the potential has a negative
gradient, the limits on the integration have been swapped, and the negative
value of this is taken to return a positive value for N . By using trial and
error, N is roughly found to be equal to fifty when x⋆ is equal to 4.136, and
N is roughly found to be equal to sixty when x⋆ is equal to 3.873, with both
values for x⋆ given to four significant figures.

For a single value of x⋆, the tensor-scalar ratio and spectral index can be
calculated by setting up the equations like so

r = 16.*eps(xstar);

n = 1 + 2*eta(xstar) - 6*eps(xstar);

and once these values have been calculated, they can be plotted against each
other using

plot(n,r,’k’)

however, this just results in the one point being plotted for a singular x⋆.
To create a line, much like the one seen in the worked example earlier,

a for loop can be created which runs multiple values for x⋆, calculating the
tensor-scalar ratio for each one, then plotting on a graph. This for loop takes
the form

for i = 3.8728:0.0010516:4.1357

xstar = i;

r = 16.*eps(xstar);

n = 1 + 2*eta(xstar) - 6*eps(xstar);

plot(n,r,’k’)

xlim([0.94 1])
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Figure 3.2: Plot of tensor-scalar ratio against spectral index for the poten-
tial V = (1/4)λ (φ4

0 − φ4). Each line corresponds to a different value of x0,
starting from 5 and increasing to 50 in factors of five, then the values one-
hundred, five-hundred and two-thousand have been included to see where the
lines tend towards. The confidence regions of 68% and 95% from the Planck
data have been superimposed. The labelling of the points where N is equal
to fifty and sixty has been given in the top right of the plot.

ylim([0 0.1])

xlabel(’Spectral Index’)

ylabel(’Tensor-Scalar Ratio’)

hold on

end

which finds two-hundred-and-fifty different points, and after running, outputs
the effect of a singular line on a plot such as the one in the worked example.

It is possible to take this one step further and return multiple lines on the
same plot. However there is a problem with this. Each individual x0 requires
values for x⋆ when N is equal to fifty and sixty. As this is quite complex
to do in a for loop, it is best to find all the values of x⋆ for different x0 by
hand by running the code, and then copy and pasting the entire script into a
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separate file multiple times, inputting the different values. This results in a
MATLAB script which is over three hundred lines long for thirteen different
values of x0 yet only four different values (the x0, two values for x⋆ and
one two-hundredth of the difference between the two x⋆ values) need to be
changed for each different value of x0, making the code more effective than
it seems.

Figure 3.2 shows the resultant plot when the values for x0 range from five
to fifty in multiples of five, and then the values one hundred, five hundred
and two thousand to see where the lines are tending towards. The graphs
have been edited to incorporate the Planck data for a direct comparison,
and to show explicitly the values where N is equal to fifty and sixty for each
different value of x0.

A direct comparison with Figure 2.3 shows the trend towards a linear
potential as x0 gets larger, as expected from before.

When comparing the potential lines to the Planck data, the lines are full
within the 95% confidence regions when x0 is between twenty and fifty. Even
with the higher values of x0, the lines are fully within the 68% confidence
regions. Therefore it can be deduced that this is a suitable potential when
compared with the Planck data. However, there is a lack of experimental
evidence that supports this model.

3.3 Soft SUSY

What about a more complicated model? With supersymmetry, a poten-
tial can be defined as

V ≃
1

32π2

[

∑

i=1,2

(

m2
i +

1

2
λφ2

)2

− 2

(

m2
f +

1

2
λφ2

)2
]

ln

(

φ

Q

)

,

where m1 and m2 are masses for the real and imaginary part of a complex
field, mf is the mass of the field’s fermionic partner and Q is the renormal-
ization scale [16]. When mi is equal to mf , the result supersymmetry, and
the potential collapses to equalling zero.

There are two breaking cases for this model. The first is when there is
spontaneous SUSY breaking, which gives 2m2

f = m2
1 +m2

2, and the resulting
potential is

V ≃
(m2

1 −m2
2)

2

64π2
ln

(

φ

Q

)

,

as the coefficient of φ2 disappears [16]. The other case is when there is soft
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SUSY breaking, which is when mf is equal to zero, resulting in

V ≃
1

32π2
λ
(

m2
1 +m2

2

)

φ2 ln

(

φ

Q

)

,

as here the quadratic term overrides the others [16]. This is the basis for
the soft SUSY model that will be investigated here, by rescaling λ so the
potential becomes

V =
1

2
λφ2

(

ln

(

φ2

φ2
0

)

− 1

)

+
1

2
λφ2

0 , (3.6)

which is a simpler potential to work with in MATLAB.
As before, it is best to rescale the potential in terms of x. Using the

substitution x = φ/φ0 results in the potential becoming

V =
1

2
x2
(

ln
(

x2
)

− 1
)

+
1

2
. (3.7)

This scaling is different to before, which effects the MATLAB code, as will
be shown later,

The derivative and the double derivative of the potential is needed. Dif-
ferentiating equation (3.7) yields

V ′ = x ln
(

x2
)

, (3.8)

and in turn, differentiating equation (3.8) results in

V ′′ = 2 + ln
(

x2
)

. (3.9)

These equations are defined in MATLAB using the following code

x0 = 10.0;

v = @(x) 0.5*x.*x.*(log(x.*x)-1.0) + 0.5;

dv = @(x) x.*log(x.*x);

d2v = @(x) 2 + log(x.*x);

eps = @(x) (0.5*((dv(x)).^2)./((v(x)).^2))/(x0.*x0);

eta = @(x) ((d2v(x))./v(x))/(x0.*x0);

where the x−2
0 terms in the ǫ and η are due to the choice of substitution.

As before, the potential can be plotted using the code

x = 1.0e-6:0.01:1-1.0e-6;

y = v(x);

figure

plot(x,y)
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Figure 3.3: Graph of V (φ) against φ for the soft SUSY model. Here, x0 has
been taken to be ten.

where the range has changed from x0 in the earlier potential to one in this
potential, which is also due to substitution. This plot, seen in Figure 3.3,
also shows that using the slow-roll approximation is suitable as the potential
slowly rolls to a minimum, as before.

The only differences to the code in the earlier section and this code is the
scaling with the x−2

0 terms, i.e. the xr is now

xr = [1.0e-6,1.0-1.0e-6];

and the e-foldings term is now

efolds = @(x) (x0.*x0).*(v(x)./dv(x))

otherwise, the code carries on the same. Next is to find the values for when
N is 50 and 60 when x0 is equal to 10. By using trial and error, N is roughly
found to be equal to 50 when x⋆ is equal to 0.003188, and N is roughly found
to be equal to 60 when x⋆ is equal to 0.0001886, with both values for x⋆ given
to four significant figures.

This trial and error method can be performed multiple times, as before.
Figure 3.4 shows a plot of the soft SUSY model for smaller values of x0; these
values are the values between ten and twelve in factors of 0.2, and then the
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Figure 3.4: Plot of tensor-scalar ratio against spectral index for the soft
SUSY model for small values of x0, starting at ten and increasing in factors
of 0.2 until twelve, then the plots for thirteen, fourteen and fifteen have been
included to see where the lines are tending towards.

integers up to fifteen, as beyond this the lines are no longer on the plot due
to the axes limits. This graph is different to what has been seen before as the
lines have taken on a different shape, and by looking at the axes, it is clear
to see that it has a completely different range of values for the tensor-scalar
ratio and power spectrum. These plots for the lower values of x0 are also
nowhere near the Planck data. However, as x0 gets larger, the lines seem
to tend towards the Planck 68% and 95% confidence intervals. Therefore, it
seem intuitive to look at the larger values of x0 and then comparing graphs.

Figure 3.5 shows the resultant plot using the values for x0 as the integers
from ten to twenty, and also the values from twenty to fifty in multiples of
five, however the spectral index axis has been limited to only plot between
the values of 0.9 and 1, so any lines to the left of 0.9 are not shown in this
figure.

As before, the graphs have been edited to incorporate the Planck data
for a direct comparison, and to show explicitly the values where N is equal
to fifty and sixty for each different value of x0.

With small x0, the logarithm part of the expression dominates, and this
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Figure 3.5: Plot of tensor-scalar ratio against spectral index for the soft
SUSY model. Each line corresponds to a different value of x0, starting from
the integers between ten and twenty, then the values from twenty to fifty
in factors of five have been included to see where the lines tend towards.
The confidence regions of 68% and 95% from the Planck data have been
superimposed. The labelling of the points where N is equal to fifty and sixty
has been given in the top right of the plot.

is where the plot acts strangely. It is possible to see the evolution of the
lines curving round and transforming into the straight lines of the potentials
seen so far as the x0 gets larger. In fact, a direct comparison with Figure 2.3
shows the trend towards a φ2 potential as x0 gets larger, as expected from the
earlier assumptions, due to the (1/2)λφ2

0 dominating. This would imply that
larger values of x0 are needed so that the model complies with the Planck
data.

When comparing with the earlier Planck data, it is only when x0 becomes
larger than seventeen when the lines enter the 68% confidence regions, and
none of the lines enter the 95% confidence regions. Due to this it can be
deduced that this is not the best model to use, although it can be argued that
when x0 is between twenty and twenty-five, the majority of the line is within
the 68% confidence region, so ideally using these values might be acceptable
to use when modelling. Despite this, the soft SUSY model has experimental
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data on its side, whereas the V = (1/4)λ (φ4
0 − φ4) model (which seems like

the better model to use as it is fully within the confidence regions) does not.
Therefore it might be preferable to use the soft SUSY model after all.
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Chapter 4

Summary

To summarise, it has been shown that gravitational waves are an im-
portant field in modern cosmology. Found in the CMB, the fact that they
exclusively polarise into B-modes makes it possible to detect. However, this
is harder than at first thought. It is possible to get these signals confused
with cosmic dust, as experienced by the BICEP2 collaboration. However the
joint work done by the BICEP2 and Planck teams produced the most accu-
rate description of the characteristics of the gravitational waves, hopefully
meaning detection is not too far away. This detection would result in the
first batch of clear experimental evidence for the theory of inflation and the
big bang.

Inflation is a key part of gravitational wave analysis, as the power spec-
trum for the tensor incorporates the mean square of the gravitational wave
amplitude. This has made it possible to plot the ratio of the gravitational
wave amplitude and the density fluctuations against the spectral index. In-
flation allows the use of different potential energy equations, meaning an
almost endless amount of possibilities as to which can be modelled. How-
ever, experimental data can rule out most potentials after direct comparisons
with confidence regions on the plots.

The use of MATLAB has paved the way for even more potential energy
equations to be considered. The integral for the number of e-folding’s proves
a difficulty when trying to solve more difficult potentials by hand, however
due to MATLAB’s powerful problem solving ability, this no longer becomes
a problem. Using this method, it has been shown that a potential of

V =
1

4
λ
(

φ4
0 − φ4

)

,

is suitable to use when considered with the Planck data, yet has a lack of
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experimental evidence, and a soft SUSY potential, given by

V =
1

2
λφ2

(

ln

(

φ2

φ2
0

)

− 1

)

+
1

2
λφ2

0 ,

does not lie within the confidence regions as fully as desired, yet it can be
argued to be a suitable model as it does have experimental data on its side.

As elusive as finding them seems to be, scientists are on the cusp of
detecting these primordial gravitational waves, which could possibly result
in the discovery of the initial conditions for the origin of the universe, and
hopefully an answer to the age old question of ‘how did we get here?’.
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Appendix A

Derivations

This section provides derivations of equations that were too large to fit
into the main text.

A.1 Derivation of E-folds Equation

Starting with the equation for the number of e-folding’s given earlier as

N = ln

(

a (tf )

a (t⋆)

)

.

Using laws of differentiating log functions, the equation above can be ex-
pressed as

N =

∫ a(tf)

a(t⋆)

da

a
,

which can also be written as

N =

∫ φf

φ⋆

1

a

da

dt

dt

dφ
dφ .

By using dots above parameters to denote time derivatives, and equation (2.4)
for H the above equation can be expressed as

N =

∫ φf

φ⋆

H
dφ

φ̇
.

This equation can be rewritten by using equation (2.11) to give

N = −

∫ φf

φ⋆

3H2dφ

Vφ

,
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where Vφ = dV/dφ. To get the final expression, equation (2.10) can be
substituted into the above equation, and constants can be taken outside of
the integral to give

N = −8πG

∫ φf

φ⋆

V

Vφ

dφ ,

as required.

A.2 Derivation of Tensor-Scalar Ratio

The equation for the tensor-scalar ratio was given earlier as

r =
PT

PS

.

The expressions for PS and PT from equations (2.17) and (2.18) respectively,
can be substituted into the above to give

r =
2

π2

H2

M2
p

(

1

4π2

H4

φ̇2

)

−1

.

Cancelling down terms in the above equation results in

r =
8φ̇2

H2M2
p

.

Using equation (2.11) in the expression above yields

r =
8V 2

φ

H2 (9H2)M2
p

.

The denominator can be simplified, resulting in

r =
8V 2

φ

(3H2)2 M2
p

.

Inserting equation (2.10) into the above returns

r =
8V 2

φ

(8πGV )2 M2
p

.

After cancelling through the M2
p , the above equation and equation (2.12) can

be compared to show that
r = 16ǫ ,

as required.
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A.3 Derivation of Spectral Index

Starting with the equation for the power spectrum for the scalar including
nS, the spectral index, given earlier as

PS ≈ AknS−1 .

By taking logs and rearranging, the above equation transforms into

ns = 1 +
d lnPS

d ln k
.

At the horizon crossing
k = a (tk)H (tk) ,

therefore it is correct to state that

ln (k) = ln (a) + ln (H) .

It is also valid to say that

d lnPS

d ln k
=

d lnPS

dtk

(

d ln k

dtk

)

−1

.

Therefore the numerator and denominator can be evaluated independently as
two different derivative expressions. Both of these expressions can be divided
by H, as it makes evaluating the two statements simpler, and when put back
into the fraction, get cancelled out anyway. Therefore the expression for the
numerator gives

1

H

d lnPS

dtk
=

4Ḣ

H2
−

2φ̈

Hφ̇
.

Using equations (2.14) and (2.15) in the above expression gives the value for
the numerator in terms of slow roll parameters as

1

H

d lnPS

dtk
= −4ǫ− 2 (ǫ− η) .

By expanding out brackets and cancelling out in the above equation, the
value of the numerator is expressed as

1

H

d lnPS

dtk
= 2η − 6ǫ .

Using the same method, the expression for the denominator gives

1

H

d ln k

dtk
=

1

H

(

ȧ

a
+

Ḣ

H

)

.
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Multiplying out the bracket results in

1

H

d ln k

dtk
= 1 +

Ḣ

H2
.

Using equation (2.15) in the above expression gives the value for the denom-
inator in terms of slow roll parameters as

1

H

d ln k

dtk
= 1− ǫ .

Substituting these values into the fraction obtained in the equation for spec-
tral index gives

ns = 1 +
2η − 6ǫ

1− ǫ
.

This can be simplified to give

ns = 1 + 2η − 6ǫ+O (ǫ) ,

as required.
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Appendix B

MATLAB Code

This section provides the MATLAB code created to produce the graphs
seen in the text, and the numerical values necessary of calculating solutions
for complicated potentials.

B.1 Worked Example Graph Code

x=[0.942,0.951];

y=[0.314,0.262];

plot(x,y,’k’,’linewidth’,2)

xlim([0.9 1]);

ylim([0 0.5]);

xlabel(’Spectral Index’)

ylabel(’Tensor-Scalar Ratio’)

B.2 Potential Involving φ4 Code

%defining parameters and equations

xp = 10.0;

v = @(x) 1 - (x.^4)/(xp.^4);

dv = @(x) -4*(x.^3)/(xp.^4);

d2v = @(x) -12*(x.^2)/(xp.^4);

eps = @(x) 0.5*((dv(x)).^2)./((v(x)).^2);

eta = @(x) d2v(x)./v(x);

%plot

x = 1.0e-6:0.01:xp-1.0e-6;

y = v(x);
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figure

plot(x,y,’k’,’linewidth’,2)

xlabel(’\phi’)

ylabel(’V(\phi)’)

%epsilon = 1

eps1 = @(x) eps(x)-1.0;

xr = [1.0e-6,xp-1.0e-6];

xf = fzero(eps1,xr);

%integral

xstar = 4.136;

efolds = @(x) (v(x)./dv(x));

N = -integral(efolds,xstar,xf)

%N is roughly 50 when xstar = 4.136 to 4 s.f.

%N is roughly 60 when xstar = 3.873 to 4 s.f.

%to create plots

for i = 3.8728:0.0010516:4.1357

xstar = i;

r = 16.*eps(xstar);

n = 1 + 2*eta(xstar) - 6*eps(xstar);

plot(n,r,’k’)

xlim([0.94 1])

ylim([0 0.1])

xlabel(’Spectral Index’)

ylabel(’Tensor-Scalar Ratio’)

hold on

end

B.3 Soft SUSY Code

%defining parameters and equations

x0 = 10.0;

v = @(x) 0.5*x.*x.*(log(x.*x)-1.0) + 0.5;

dv = @(x) x.*log(x.*x);

d2v = @(x) 2 + log(x.*x);

eps = @(x) (0.5*((dv(x)).^2)./((v(x)).^2))/(x0.*x0);

eta = @(x) ((d2v(x))./v(x))/(x0.*x0);
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%plot

x = 1.0e-6:0.01:1-1.0e-6;

y = v(x);

figure

plot(x,y,’k’,’linewidth’,2)

xlabel(’\phi’)

ylabel(’V(\phi)’)

%epsilon = 1

eps1 = @(x) eps(x)-1.0;

xr = [1.0e-6,1.0-1.0e-6];

xf = fzero(eps1,xr);

%integral

xstar = 0.0001886;

efolds = @(x) (x0.*x0).*(v(x)./dv(x));

N = -integral(efolds,xstar,xf)

%N is roughly 50 when xstar = 0.003188 to 4 s.f.

%N is roughly 60 when xstar = 0.0001886 to 4 s.f.

%to create plots

for i = 0.0001886:0.000029994:0.003188

xstar = i;

r = 16.*eps(xstar);

n = 1 + 2*eta(xstar) - 6*eps(xstar);

plot(n,r,’k’,)

xlim([0 1]);

ylim([0 0.0005]);

xlabel(’Spectral Index’)

ylabel(’Tensor-Scalar Ratio’)

hold on

end
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