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Abstract

Using extreme value theory to model environmental effects, specifically here rainfall
across England and Wales, this paper will introduce the Generalised Extreme Value
Theory which is then applied to 215 sites, split into six regions, to find likelihoods and
maximum likelihood estimates for the parameters. Originally we had seven regions but
due to the data undergoing quality control it has resulted in one region being discounted
and a different number of sites being used for each region. The data that has been used
is hourly rainfall counts but to take the investigation further, 24 hourly aggregations
have been made thus we have daily data as well.

Due to similar geographical landscapes within each region, we have chosen to fit a model
with a common shape parameter, ξ. However, this decision will be challenged with a
second model, with varying ξ, where a Likelihood ratio test will be used to compare
them.

After analysing the two models, the overall question that will be approached is:

“If we only have daily data available, can we say anything about what would happen
for the hourly data?”
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Chapter 1

Introduction

Exploring extreme weather is becoming increasingly more popular due to the practical
effects it has on infrastructure, individuals and making inferences for the future. Different
methods can be used to model these extremes in order to recognise trends and patterns
over time or over different geographical regions. This paper will focus on rainfall levels
in England and Wales split into six different regions. The data used will be introduced
in Chapter 2 where scatterplots are seen to get a general feel for the data.

In order to explore the data in more detail Extreme Value Theory will be presented in
Chapter 3, involving a brief history and the Extremal Types Theorem. From this the
Generalized Extreme Value (GEV) Distribution is developed which is a fundamental
result to this paper. Our chosen variable, rainfall, will then be modelled using the Block
Maxima Approach, detailed in Chapter 3. To then examine the results from fitting our
data, using the GEV distribution, MLE estimation and return level plots are introduced
in Chapter 4.

Although the data is hourly rainfall we will be creating more datasets by aggregating
these over 3, 6 12 and 24 hourly periods, thus creating 5 datasets for each site as opposed
to just one. These will then be used to calculate parameter estimates and return level
plots.

When fitting the data we will consider two cases: a common ξ for each region and a
varying ξ or each site in all the regions. These two models will then be compared using
the Generalised Likelihood Test to see which one is most appropriate for our data.

Suppose that we only have the 24 hourly totals for each site or region. The question
proposed is then can we then say anything about the hourly data for the site or region?
To answer this we will plot the parameter estimates, of the GEV distribution, that we
found using the hourly data against those found using the 24 hourly data. This will
hopefully result in a pattern which can then be modelled by a regression line overlaid
on the plot. The same procedure will then repeated but instead of using parameter
estimates we will plot the return levels using the hourly data against the return levels
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CHAPTER 1. INTRODUCTION 3

found using the 24 hourly data.

We can also study depth-duration-frequency (DDF) curves which, for a given return
period, describe the rainfall as a function of duration. It does this by plotting the return
levels agains the return period, on a log scale, for each of the hourly aggregations. For
one particular site we will plot these curves for each of the five time aggregations, giving
us an idea of how the DDF curves change as we increase the hourly aggregations. We
hope to see that the line plotted using the 24 hourly data will be highest and the line
plotted using the houlry data will be the lowest. This will then prove useful to answer
the question of can we say anything about the hourly data if we only have 24 hourly
data.



Chapter 2

The Data

The data that will be studied in this paper are the hourly rainfall totals for 215 sites
across England and Wales from 1949 to 2011. England and Wales have been split up
into seven regions namely North East, North West, Midlands, Wales, Anglian, South
West and South East, seen in Figure 2.1.

Figure 2.1: Regions of England and Wales

A quality control constraint has then been considered so that any site that has less than
85% of data for each year present and less than 85% of years present will be excluded
resulting in the whole of the South West region being excluded from the study. In
additon to this, within each region some sites have been discounted due to more than
15% of each site’s data being missing. Once we have found the sites that have more
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CHAPTER 2. THE DATA 5

than 85% of the data present we then need to look at the percentage of data present for
each year within that site. Again, if more than 15% of a year is missing then this year
will be excluded. This results in varying amounts of data used for each site.

Table 2.1 below shows how many sites we have used in each region.

Region Sites Used
Anglian 13

Midlands 34
North East 27
North West 25
South East 87

Wales 29

Table 2.1: The number of sites used in each region.

Although the data was collected hourly; 3, 6, 12, and 24 hourly aggregations can also be
explored leading to a greater understanding of the data. Looking at the general trends
and patterns over the regions is useful but as each region has a different number of sites
we will just pick one from each region to explore. The figures below show the annual
maximum for the five different aggregations explained above for the years there is data
present. One site for each region has been picked as a representative for that region.

Figure 2.2: Annual maximums for Ditchling, SE. Black represents hourly data, red
represents 3 hourly aggregations, green is 6 hour aggregations and blue and orange are
12 and 24 aggregations respetively

Looking in general at the plots we see the annual maximum of rainfall increases as we
aggregate over longer time periods (represented by the different colours), as must be the
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case. In addition, for each site the amount of rain falling in each year is similar with
some peaks in some of the regions. For example, looking at Ditchling in South East
England, in Figure 2.2 we a see a peak in 1999 and for Birchmoor in East Anglia, in
Figure 2.3 there is a peak in 1992.

Figure 2.3: Annual maximums for Birchmoor, Anglian. Black represents hourly data,
red represents 3 hourly aggregations, green is 6 hour aggregations and blue and orange
are 12 and 24 aggregations respetively

Figure 2.4: Annual maximums for Ashbourne, Midlands. Black represents hourly data,
red represents 3 hourly aggregations, green is 6 hour aggregations and blue and orange
are 12 and 24 aggregations respetively
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Taking a step back we can see that some sites, as a whole, have a greater amount
of rainfall year on year. Comparing Ashbourne in the Midlands, in Figure 2.4 above,
to Jesmond in North East England, in Figure 2.5, below, we can see that the annual
maximum rainfall, on average, is much greater in Jesmond.

Figure 2.5: Annual maximums for Jesmond, NE. Black represents hourly data, red
represents 3 hourly aggregations, green is 6 hour aggregations and blue and orange are
12 and 24 aggregations respetively

Figure 2.6: Annual maximums for St Clears, Wales. Black represents hourly data, red
represents 3 hourly aggregations, green is 6 hour aggregations and blue and orange are
12 and 24 aggregations respetively
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In Figure 2.6 above we can see that St Clears in Wales has annual maximums somewhere
between the Midlands and the North East, remaining steady with some high peaks in
2000 and 2007. Haighton, in the North West is similar with an obvious large amount of
rainfall in 1995, seen in Figure 2.7

Figure 2.7: Annual maximums for Haighton, NW. Black represents hourly data, red
represents 3 hourly aggregations, green is 6 hour aggregations and blue and orange are
12 and 24 aggregations respetively

Although these plots give us insight into some patterns and trends that we think might
be happening regionally we need to look at all the sites in each region to get the full
picture. Later in this report we will apply extreme value theory to analyse all the data
fully.



Chapter 3

Extreme Value Theory

3.1 A brief History

Although it was only first published in Gumbel (1958), who was applying the theory to
engineering, Extreme Value Theory (EVT) has been traced as far back as 1709 where
mathematicians were using it to find the longest survivor in a group of people. Further
investigation was then carried out by Leonard Tippett who, whilst he was working for
the British Cotton Industry Research Association, realised that the weakest fibres were
responsible for the overall strength of a peice of cotton. This idea was then developed,
and with the help of E.J. Gumbel and R. Fisher, he obtained three extreme value
distributions. In spite of the fact that these three men introduced these ideas it was
only proved later in Gnedenko (1943).

Throughout the 1970’s the theory was developed to form the basis of the statistical
models we are going to use, generalised by L. de Haan and J Picklands. The theory and
models are still being investigated to date causing Extreme Value Theory to be more
well known world-wide with an increase of practical applications.

3.2 The Extremal Types Theorem

In order to use the GEV distribution, mentioned in Chapter 1, it is useful to discuss the
central result in EVT in more detail. It is analogous to the Central Limit Theorem (CLT)
however here we will work with the maximum values as opposed to the mean values.
It enables us to estimate the probability of extreme events given a previously observed
ordered sample. For example, Extreme Value Theory might be used by engineers to
estimate the amount of rainfall we expect to see every one hundred years therefore
enabling them to decide what capacity is needed for a drainage system.
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CHAPTER 3. EXTREME VALUE THEORY 10

More formally, suppose X1, X2, ... is a sequence of random variables that are indepen-
dent and identically distributed and take Mn = max(x1, x2, . . . ). The EVT looks at
the limiting distribution of Mn as we increase n. The question then follows of what
distributions can be considerd for Mn as n→∞?

The limiting distribution of Mn will always converge to a single point, in other words
the distribution is degenerate. As stated above this is analogous to the Central Limit
Theorem where the sample mean X̄ converges to the population mean µ. In the CLT
this is prevented by normalising the random variable so that

X̄ − bn
an

D−→ N(0, 1)

where σ is the population standard deviation and n is the population sample size and
bn = µ and an = σ/

√
n.

Similarly, this can be applied to our maximums Mn giving rise to the Extremal Types
Theorem.

Theorem 1 (The Extreme Value Theory). Suppose we have a sequence of constants
an > 0 and bn such that

Pr{(Mn − bn)/an ≤ G(z)} → G(z) as n→∞.

Let G be a non-degenerate distribution function that belongs to one of the following
families:

1 : G(z) = exp
{
− exp

[
−
(z − β

γ

)]
}, −∞ < z <∞; (3.1)

2 : G(z) = exp
{
−
(z − β

γ

)−α}
, z > β; [G(z) = 0, z ≤ β]; (3.2)

3 : G(z) = exp
{
−
[
−
( (z − β

γ

)α]}
, z > β; [G(z) = 1, z ≤ β]; (3.3)

for parameters γ, α > 0, and β.

The three types of distribution, given above, are known as Type 1, the Gumbel Distribu-
tion; Type 2, the Frèchet distribution and Type 3, the Weibull distribution.

Unlike the Weibull distribution, both Gumbel and Frèchet’s upper-endpoints tend to∞
and so the distribution G is unbounded. It cannot always be guaranteed that there is
an existence of a limiting distribution however when there is we know that

Mn − bn
an

D−→ G

where G is one of the above distributions. The question is now, which distribution do
we use?
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3.3 The Generalised Extreme Value Distribution

Deciding which of the three distributions to use can be problematic and so we consider
a reparameterisation of all three, known as the Generalised Extreme Value Distribution.

The GEV has cumulative distribution function

G(z) = exp
{
−
[

1 + ξ
( (z − µ

σ

)−1/ξ}
, (3.4)

where z : [1 + ξ(z − µ)/σ] > 0 and µ, σ > 0 and ξ are the location, scale and shape
parameters of the distribution. This can be seen in Jenkinson (1955) and Von Mises
(1956).

For different values of ξ the heaviness of the tail changes. More specifically, for ξ > 0
the distribution has a lower end point but no finite upper end point and the c.d.f is only
valid for x > µ − σ/ξ. For ξ < 0 the distribution has an upper end point but no finite
lower end point and the c.d.f. is only valid for x < µ+ σ/ξ. However, if ξ = 0 the c.d.f.
above is formally undefined and so we take the limit of the c.d.f. as ξ → 0, giving

G(z) = exp
{
− exp

[
−
(z − µ

σ

)]}
, (3.5)

defined for all z. The location and scale parameters affect both the mean and variance
of the disribution.

In section 3 we introduced the constants an and bn and we know that

Mn − bn
an

d−→ G(µ, σ, ξ), as n→∞,

where G is the c.d.f. given in Equation 3.5. This can be simplified to

Mn
d−→ G(µ∗, σ∗, ξ), as n→∞

where an and bn have been included into µ∗ and σ∗. We do not need to worry about
these normalisation constants as the GEV parameters are estimated anyway and we can
just fit the GEV to the set of maximums.

The GEV distribution can be applied for our data provided the conditions for it to apply
hold in our case. However, the conditions are rather weak. Provided the maxima are
selected from a continuous non-degenerate distribution with finite mean and variance,
then we reasonably expect the GEV to be the correct limit.



Chapter 4

Fitting the GEV distribution

To estimate the parameters in the GEV several different methods can be used. One
example is the method of moments which calculates the kth moments E(Xk) and then

equates them to sample values
n∑
i=1

xki
m

. The equations are then solved to give the param-

eter estimates. Another method is to use maximum likelihood estimation. The latter is
what this report will be focusing on.

4.1 Maximum Likelihood Estimation

The likelihood of the data with respect to µ, σ and ξ is

L(µ, σ, ξ|y) =
n∏
i=1

f(y|µ, σ, ξ),

and so the log likelihood is

l(µ, σ, ξ|y) = log{L(µ, σ, ξ|y)}.

After differentiating this function with respect to µ, σ and ξ and setting each of the
derivatives to zero, the equations can then be rearranged to give the maximum likelihood
estimates µ̂, σ̂ and ξ̂.

In this report we will investigate a simplification to the model that can be made by
fixing the shape parameters within each of the six regions studied. For example, under
this assummption, all the of the sites in the North West will have the same ξ value but
different location and scale parameters. This allows for local differences in mean and
variance, but imposes the same tail behaviour across the region, corresponding to similar
geographical conditions.
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CHAPTER 4. FITTING THE GEV DISTRIBUTION 13

4.2 Return Level Curves

Although it is useful to find the real values of µ, σ and ξ people are more likely to
be interested in predicting the probability of an event happening in a period of time,
promoting the need for return level curves.

The r-year return level, z(r), is defined as a value that is expected to be exceeded, on
average, once every r years. These are found by setting the GEV distribution function
(Equation 4) equal to 1− 1/r and solving for x = ẑr.

For example, after fitting the GEV to a set of annual maxima we obtain estimates for
µ̂, σ̂ and ξ̂. The 50-year return level can be calculated as follows. Firstly the following
probability statement can be made:

Pr(annual maximum ≤ z50) = 1− 1

50
= 0.98. (4.1)

As Pr(annual maximum ≤ z50) = G(z50; µ̂, σ̂, ξ̂) we can now express Equation 3.4 as

1− exp
{
−
[

1 + ξ̂
( ( ẑ50 − µ̂

σ̂

)−1/ξ̂}
=

1

50
.

By rearranging this equation an estimate of the 50th-year return level is found to be

ẑ50 = µ̂+
σ̂

ξ̂

[(
− log(0.98

))−ξ̂
− 1
]
.

This is then generalised to give an estimate of the r-year return level as

ẑr = µ̂+
σ̂

ξ̂

[(
− log(1− r−1

))−ξ̂
− 1
]
. (4.2)

Once the return levels have been found they are then plotted against the return period.
The return period is expressed on a log scale enabling the return levels to be visualised
easily for a range of return periods.



Chapter 5

Maximum Likelihoods fitting for the
Data

Fitting the GEV distribution to each site within each of the six regions yeilds an MLE
for the parameters, µ, σ andξ, at each time aggregation i.e using hourly data, 3, 6, 9 and
12 hourly aggregations and daily data (24 hourly aggregations). Here it is not possible
to look at the values for these MLEs as there are too many, instead it is more useful to
look at plots of them comparing each region.

To obtain these maximum likelihood estimates for µ, σ and ξ we use the statistical
package R [R Core Team, 2013] . A programme is written, seen in the Appendix, which
iterates the negative log likelihood with varying values of µ and σ and a common ξ until
it eventually obtains the minimum. The parameters are then displayed along with the
actual minimum point. Later we will consider the log likelihoods using varying values
of ξ and then compare them using the Generalised Likelihood Ratio Test to see if the
assumption of common ξ is reasonable.

To get an overall feel for the parameter estimates calculated we can plot them regionally.
Here we are not so much interested in the actual values but the patterns and trends that
are apparent. Following on from this we can then look at the relationship between the
parameter estimates calculated using the hourly aggregations and those calculated using
the 24 hourly aggregations. A regression line can then be fitted to clearly display this
relationship.

5.1 Regional Parameter Estimates

For each region there are three scatterplots showing the MLE’s for µ, σ and ξ against
each time aggregation where each site is represented by a point. Due to varying numbers
of sites measured for each region µ, and σ will have a different number of points. On
the other hand, the plots for ξ will only have 5 points on each plot, one for each time
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aggregation. This is because we have assumed a common shape parameter for each site
due to the similar geographical landscape of each region, the only variation here is the
time aggregations.

First looking at the north of England, Figure 5.1 shows the MLEs for the North West
on the top row and the North East on the bottom row. Both plots for µ̂ show a steady
increase as the time aggregations are increased. We can also see that the dispersion of
points is greater the more hours you aggregate.

Figure 5.1: MLEs for the GEV parameters of the North West and North East regions

Similarly the values for σ̂ are increasing as we move along the x-axis, again with increas-
ing dispersion. In contrast to µ̂, the σ̂ values are smaller but as the scales are different
for both µ̂ and σ̂ we cannot make a direct comparison from the plots. The scales have
been chosen in such a way that we can compare the µ̂ values for each region against
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each other, the σ̂ values against each other and the ξ̂ values against each other rather
than the σ̂ values against the σ̂ values regionally.

The shape parameter, on the other hand, is expected to decrease as the time aggregations
increase [Katz, 2011].Looking at the North East in particular, we can see a dip when
using the 6 hourly aggregations before increasing again at 12 and 24 hourly aggregations.
Although we see variation throughout the time aggregations we can confirm that in both
plots, generally, the values for ξ̂, the blue points, are decreasing.

Figure 5.2: MLEs for the GEV parameters of Wales and the Midlands

Moving further south geographically, Figure 5.2 shows the MLEs of the parameters for
Wales and the Midlands. Looking at the plots for Wales, although one site’s µ estimates
are staying steady as we increase the time aggregations the others are increasing as seen
in both the North West and East. On the other hand, the majority of the values for σ̂
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are invariant with the aggregations apart from two of the sites represented by the two
higher points seen at each time point. In further work, we may choose to investigate
these two sites and see if we could explain the large values for σ̂. Again, as with the two
most northern sites, the values for ξ̂ are fluctuating between 0 and 0.4 with what seems
like a decrease as the time aggregations are increased.

The Midlands show a uniform increase in µ̂ values however, in comparison to the other
three regions we have already looked at, the highest value is only 394.29. This low value
of parameter estimate continues into the plot for σ̂ as although the values are increasing
they are increasing at a relatively low rate. Again, the MLEs for ξ are between 0 and
0.4 with a decreasing pattern.

Figure 5.3: MLEs for the GEV parameters of the South East and Anglian regions.

In Figure 5.3, above, the increase in the values for µ̂ and σ̂ as we increase the time
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aggregations for the South East region are similar to those seen in the two northern
regions but with less dispersion of points. This may be due to the South East having
the highest number of sites used in this data and so the points just appear closer together
because there is more. The values for ξ̂ are following the same pattern that those for
the Midlands did with a slight decrease but maintaining between 0 and 0.4.

The Anglian region, seen on the bottom row, has increasing µ̂ and σ̂ parameters however
they are increasing at the lowest rate in comparison with the other five sites. The values
for ξ̂ are oscillating between 0.2 and 0.4 but in comparison to the other sites we don’t
see as much of a decrease from the hourly to the 24 hourly aggregations. This may be
due to the Anglian region have significantly less sites than the others, thus the expected
pattern is not so obvious.

In conclusion we have seen that for µ̂ and σ̂ the values increase as we increase the time
aggregations along with a greater dispersion of points. Both the Anglian region and the
Midlands are increasing at the lowest rate and Wales and the North West are increasing
with the highest rate.

For all regions the parameter estimates for ξ appear to decrease as we increase the time
aggregations. To investigate further, the MLEs for each region have been plotted on the
same graph which can be seen in Figure 5.4. From time aggregations 1 to 6 the MLEs
look steady with no sudden change however, at time aggregation 12 the Anglian region
seems to increase and the other 5 regions seem to decrease. The opposite seems to occur
when we use the 24 hourly aggregations i.e. daily data. Although we have an increase
from the 12 hourly aggregations to the 24 hourly aggregations, overall the values for ξ̂
are thus confirming what was expected.

Figure 5.4: MLEs for the GEV parameter ξ for all regions.
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Just taking the hourly and 24 hourly aggregations, i.e. daily, the values for these MLEs,
along with the standard errors, can be seen in Table 5.1 below. If we look at each region
seperately we can see that the MLE for ξ is always lower when using the daily data
rather than the hourly data therefore supporting our conclusion that the ξ̂ values do
depend on the time aggregation.

Looking at the raw values for the estimates is fine but we do not know anything about
the variability of these values and so it is useful to find the standard errors (s.e’s) for
each MLE. Using the nlm function in R we obtain the negative second order partial
derivatives of the function we are minimising, thus giving us the observed information
matrix needed to calculate the standard errors.

This matrix, evaluated at µ̂, σ̂ and ξ̂ is then inverted to give the Variance-Covariance
matrix where the variances are the diagonal elements. Finally, to obtain the standard
errors these values are square rooted. This can then be repeated for each region with
the values seen below in Table 5.1.

Region ξ̂ (Hourly) s.e.(ξ̂) ξ̂ (Daily) s.e.(ξ̂)
Anglian 0.3321 0.0784 0.2528 0.0745

Midlands 0.2396 0.0349 0.1133 0.0293
North East 0.2069 0.0409 0.0853 0.0394
North West 0.2406 0.0544 0.0713 0.0380
South East 0.2121 0.0233 0.0505 0.0200

Wales 0.3288 0.0476 0.0697 0.0435

Table 5.1: The MLEs for ξ using the hourly data and the 24 hourly aggregations along
with the standard errors.

The standard errors are important here to see if our estimates of ξ are significant or not.
To test this we need to calculate the 95% confidence intervals for each ξ̂ by using,(

ξ̂ − 1.96 × s.e.(ξ̂), ξ̂ + 1.96 × s.e.(ξ̂)

)
.

The confidence intervals can be seen in Table 5.2. The general rule is to check to see
whether the ξ̂ using the hourly data comes within the confidence interval for ξ̂ using the
daily data and vice versa. Here we can see that for the Anglian region both ξ̂ values
are contained within the opposite confidence interval, hence it is not significant. On the
other hand, the other 5 regions are all significant with none of the ξ̂ values coming in
the confidence region for the opposing time aggregation.
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Region ξ̂ CI (Hourly) ξ̂ CI (Daily)
Anglian (0.1784, 0.4858) (0.1068, 0.3988)

Midlands (0.1712, 0.3080) (0.0553, 0.1713)
North East (0.1267, 0.2871) (0.0081, 0.1625)
North West (0.1340. 0.3472) (-0.0032, 0.1458)
South East (0.1664. 0.2578) (0.0113, 0.0897)

Wales (0.2355, 0.4221) (-0.0156, 0.1550)

Table 5.2: The 95% confidence intervals for ξ̂ using hourly and daily data

5.2 Regression of Parameter Estimates

After looking at the general pattern for the parameter estimates we can now focus on
the relationship between the hourly and the 24 hourly aggregations. The following plots
are the parameter estimates for µ and σ based on the hourly data against the estimates
using the 24 hourly data, where each point represents a site in that given region. As
we have assumed a common ξ for each region we will not be looking at plots for this
parameter.

From the data, linear regression can then be used to model the dependent variable,
which here is the parameter estimate using the hourly aggregations, and the explanatory
variable, here the parameter estimates found using the 24 hourly aggregations. We have
that the 24 hourly aggregations are a function of the hourly data but we are trying to
make inferences on the inverse problem i.e. if we only have the 24 hourly data what can
we say about the 1 hour aggregations. This line is found by fitting a linear model to
the data using the statistical programme R with the commands and output seen in the
Appendix.

Firstly we can see the MLEs for µ and σ for the North West region on the top row of
Figure 5.5 below. For µ the estimates from the hourly and 24 hourly aggregations have
high positive correlation, illustrated by the red linear regression line. The estimates for
σ, on the other hand, are only slightly positively correlated with no real trend. This
will make it difficult if we only had the 24 hourly totals but wanted to predict what the
parameter estimates would be if we had the hourly totals.

Similarly, µ̂ and σ̂ for the North East region are both positively correlated but with the
estimates for µ having greater correlation than the estimates for σ. Again making it
difficult to make inferences from just the estimates found by using the 24 hourly totals.
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Figure 5.5: MLEs for the GEV parameters using the hourly aggregations plotted against
those using the 24 hourly aggregations for the North West and North East region.

Similar plots can be seen for Wales and the Midlands in Figure 5.6 below. Firstly, the
µ̂ values found using the hourly aggreations are positively correlated with those using
the 24 hourly aggregations with the majority of the sites clustered in the centre of the
plot. For σ̂ the main cluster of points is in the bottom left corner with seemingly no
correlation, contrasted with the regression line showing high positive correlation. Care
needs to be taken when using this regression line as it is only drawn like this due to the
two outliers in the top right corner.

The Midlands, on the other hand, have no obvious pattern to either plot with no major
clustering of points. There is slight positive correlation in both plots with the estimates
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for µ having marginally higher correlation than the estimates for σ. This again would
make it difficult to estimate the parameters using hourly data if we only have 24 hourly
data.

Figure 5.6: MLEs for the GEV parameters using the hourly aggregations plotted against
those using the 24 hourly aggregations for Wales and the Midlands.

In contrast to the plots above the MLE estimates for µ and σ in the south East region
have high positive correlation, seen in Figure 5.7. There is some clustering in the plot
for µ̂ towards the top right of the regression line and clustering in the plot for σ̂ towards
the bottom left of the regression line. It would therefore be feasible to estimate µ and σ
using the hourly data data from µ and σ using the 24 hourly aggregations.

The plots for the Anglian region are a little more sparse as this is the region with the



CHAPTER 5. MAXIMUM LIKELIHOODS FITTING FOR THE DATA 23

least number of sites used. However, we can still pick out a trend with the plot for µ̂
having fairly high positive correlation. Although this is not so obvious in the plot for σ̂
we can still see slight positive correlation between the estimates using the hourly data
and the 24 hourly aggregations.

Figure 5.7: MLEs for the GEV parameters using the hourly aggregations plotted against
those using the 24 hourly aggregations for the South East and Anglian regions.

Overall, the σ estimates for each region, except the South East, have little or no positive
correlation illustrated by a straight line or a line with low gradient. Conversely, the
parameter estimates for µ all have high positive correlation except the Midlands where
there is only slight positive correlation. This correlation is illustrated by a steep regresion
line running throught the majority of the points or the main clusters of points.
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Suppose we only had the estimates for each site for µ and σ using the 24 hourly aggre-
gated data. The question we are asking is would we be able to calculate the parameter
estimates that would have been found using the hourly data. To do this we would use
linear regression and so the red lines that have been drawn on each plot.

Taking the plots for µ̂, the high positive correlation shows a trend in the data and so
will make it easier to make inferences about the parameter estimates for the 24 hourly
data. However the little or no correlation for σ̂ would make it difficult to calculate what
we think might have happened if we had the hourly data available.



Chapter 6

Return Level Analysis

After fitting each site to the GEV distirbution we can then calculate the return level for
each site by the method explained in Chapter 4. Here the 50-year return levels have been
calculated as this is a realistic amount that statisticians are interested in. In addition to
these, the 1000-year return levels have been calculated. This means we are calculating
the chance that a certain amount of rainfall, chosen by the statistician, will happen once
every 1000 years.

6.1 The Return Levels

After plotting both the 50-year and 1000-year return levels using the hourly data against
the 50-year and 1000-year return levels using the 24 hourly data, for all six regions, it
became apparent that for most of them there was little or no pattern. There was an
increase in actual values but the stucture of points stayed the same.

Instead of looking at all the plots, explained above, Figure 6.1 shows the two most
extreme cases found, the Midlands and the South East region. Firstly looking at the
Midlands, we can see a central clustering of points with a regression line fitted to the
data cutting nearly horizontally through these points. This suggests that we have little
correlation between the return levels calculated with the hourly data and the return
levels calculated with the 24 hourly data. This same structure is seen in the 1000-year
return levels with a similar central cluster, the only difference being the values at which
this cluster is plotted.

The South East region, on the other hand, still has a main cluster of points yet some
sites are straying away from this causing the regression line to have a greater gradient.
It suggests that a high return level value from the hourly data will result in a higher
return level value from the 24 hourly data illustrating a relationship between the two
sets of return levels. Analogous to the Midlands region, when we increase the return
levels from 50 to 1000 we see a similar structure just with increased values.

25
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Figure 6.1: 50 and 1000 year Return levels found using hourly data against those found
using 24 hourly data for the Midlands and South East regions.

From the 12 return level plots, the 50-year and 1000-year plots for each region, we can
conclude that there is no obvious difference in shape between the 50-year and 1000-year
plots within a given region; the differences are mainly between the regions themselves.
The Midlands are at one end of the scale with zero correlation between the return levels
calculated using the hourly data and the return levels calculated using the 24 aggregated
data whereas the South East is at the other end of the scale with the highest correlations.
The other four regions, are all similar with slight positive correlation with a large amount
of clustering within that, hence not all the plots have been shown here.

Using linear regression is only useful when a significant relationship is found between
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the variables. Here, when we have zero correlation i.e a horizontal regression line we
cannot say anything about what the return levels calculated using hourly data would be
if we only had 24 hourly data thus we cannot make inferences about the Midlands.

Looking at the return levels for each region on the same graph we can then see how each
region relates to each other. Figure 6.2 below shows both the 50 and 1000-year return
levels with each region represented as a different colour. The main difference that stands
out is that the 1000-year return levels have a greater spread ranging from approximately
300 to 1200 whereas the 50-year return levels only range from approximately 200 to 600.
This is seen with both the hourly and daily data.

Figure 6.2: 50 and 1000 year Return levels found using hourly data against those found
using 24 hourly data for all regions.

In further work we may choose to draw a regression line on both of these plots in Figure
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6.2 to show the trend of the points plotted. However, it does not seem sensible at this
stage in the analysis due to the large amount of scatter seen on both of the plots, within
each region and overall.

6.2 The Standard Errors

Similarly to the MLEs, the return levels are more informative when a standard error is
associated with it. However, as ẑr is now a function of µ, σ and ξ, seen in equation 4.2,
we need to use the Delta Method.

This method finds
V ar(ẑr) ≈ 5zrTV 5 zr, (6.1)

where V is the variance-covariance matrix of the parameter estimates and
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where yr = −log(1− 1
r
), evaluated at (µ̂, σ̂, ξ̂). Equation 6.2 then becomes
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ξ

(
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)]
(6.3)

Equation 6.1 is calculated using R to give the standard errors for both the 50 and 1000-
year return levels for each site. As we have a total of 215 sites, an example of each
region has been given below in Table 6.1 for the 50-year return levels and in Table 6.2
for the 1000-year return levels. These would be used in further work to find confidence
intervals
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Site & Region RL (Hourly) s.e.(RL) RL (Daily) s.e.(RL)
Ely Common, Anglian 259.7071 127.1495 663.0843 337.2785

Finham, Midlands 319.0088 44.1135 643.7306 69.5375
Harpington, North East 288.7979 35.0306 944.7985 66.4705

Common Bank, North West 254.4373 98.7796 785.6494 161.5276
Princes Marsh, South East 312.9203 26.8405 548.1819 55.0757

Tafalog, Wales 420.8420 67.0502 764.0297 57.1324

Table 6.1: The 50-year Return Levels using the hourly data and the 24 hourly aggrega-
tions along with the standard errors for one site in each region.

In the same way that the 95% confidence intervals were calculated in Section 5.1, they
can be found here for both the 50-year and 1000-year return levels. However, here we
can see that most of the standard errors are too large and so will make the value, in
effect, useless.

An example of this is Ely Common in Table 6.2 where the confidence interval will be
(−247.3889, 1484.5063). We can see that the range of values is just too big and thus
is essentially useless. One explanation for this may be that the number of years used
for this region is too small and so we have a higher level of uncertainty reflected in the
standard errors.

On the other hand, Harpington, in Table 6.1 has a smaller s.e. for the 50-year return
level using the hourly data and so the 95% confidence interval is (220.1379, 357.4579).
This seems a more plausible CI to work with which may be caused by a this site having
a relatively large amount of data.

Site & Region RL (Hourly) s.e.(RL) RL (Daily) s.e.(RL)
Ely Common, Anglian 618.5587 441.8100 1369.7660 944.6575

Finham, Midlands 699.7478 139.6341 1067.1867 162.8554
Harpington, North East 679.7511 116.3131 1478.5416 181.2851

Common Bank, North West 515.6715 276.9549 1144.7740 312.3342
Princes Marsh, South East 644.1190 82.4928 829.5273 110.2217

Tafalog, Wales 1135.1511 305.3405 1105.9008 147.2666

Table 6.2: The 1000-year Return Levels using the hourly data and the 24 hourly aggre-
gations along with the standard errors for one site in each region.

6.3 Depth-duration-frequency curve

As mentioned in Chapter 1, we can plot several return levels for each time aggregations,
namely a depth-duration-frequency curve. An example of these can be seen below in
Figure 6.3 where we have taken Jesmond from the North East.
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The structure of the plot is as expected with the return levels for the daily data consis-
tently higher than the return levels for the six hourly and hourly data. We can see a
slow increase for the daily data which if we increased the return period we would expect
it to continue. The hourly and six hourly return levels on the other hand are slowly
increasing but it looks like they will both eventually dip as the gradient if we were to
increase the return period anymore.

Figure 6.3: A depth-duration-frequenct curve for Jesmond, NE.
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Generalised Likelihood Ratio Test

The calculations in the above Chapters, including the return levels and the regression
lines, have all been found by assuming a common ξ throughout each region. This is
thought to be appropriate due to the sites in each region having a similar geographical
structure.

However, we will now investigate if this was a correct assumption my comparing the
log-likelihoods obtained by each method. Let the model with varying ξ be Model A
with p covariates, and the model with common ξ be Model B with q covariates and so
Model B is nested within Model A i.e. q < p. We are then testing these against each
other i.e.

H0 : ModelB

H1 : Model A

A standard generalised Likelihood Ratio test is then performed, that is we take twice
the difference between the maximised log-likelihood under each model and test this
value against the Chi-squared distribution where the degrees of freedom is equal to the
difference between the number of parameters in each model. Let LA be the likelihood
from Model A and LB be the likelihood from Model B.

Table’s 7.1 and 7.2 below show the test statistics we have calculated for each region for
both Model 1 and Model 2 when using the hourly data and the daily data. Here, all the
values are negative as the R programme used, finds the negative log-likelihood. This
not a probem as both LA and LB are the negative log-likelihoods.

It can also be noticed that for Model A the South East has not converged when using
the daily data and using the hourly data both the South East and Wales have not
converged. In further work, this would be investigated but in this report we will treat
it as miss-calculations in R due to values oscillating rather than converging.
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Region LA LB 2(LA-LB)
Anglian -1124.249 -1130.899 13.3

Midlands -3987.016 -3998.162 22.929
North East -2706.075 -2731.640 49.131
North West -2101.879 2116.706 29.654
South East Not converged -8756.441 -

Wales Not converged -2751.22 -

Table 7.1: The maximised log-likelihood for each region for both Models, using the
hourly data.

If we were to just look at Table 7.1 we can compare each test statsitic against the
corresponding value from the Chi-squared distribution, that is,

2(LA − LB) ∼ χ2
p−q.

This gives that the only significant region is the North East, thus we reject H0 in favour
of H1 and so for this region Model A is more appropriate suggesting we should let ξ vary
over the region. For the other three regions we have values for, our assumption to keep
a common ξ within each region holds.

However, when we look at Table 7.2 our findings above are contrasted and for the North
East we would accept H0 suggesting that a common ξ over the region is appropriate.
The North West and Wales on the other hand are significant and so for these regions we
would reject H0 assuming that letting ξ vary over the region is suitable for this data.

Region LA LB 2(LA-LB)
Anglian -1129.109 -1141.459 24.698

Midlands -4451.496 -4473.012 43.032
North East -3248.206 -3259.464 22.516
North West -2499.100 -2521.854 45.508
South East Not converged -9675.941 -

Wales -3104.534 -3187.243 165.418

Table 7.2: The minima for each region for both Models, using the daily data.
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Conclusion

The aim of this paper was to build a model for the annual maximum rainfall at 215
locations across England and Wales split into six regions. We were given the hourly
data but it was then aggregated by 3, 6, 12 and 24 hours to given four new data sets
for each site. The problem was approached by fitting the data regionally to a GEV
distribution and thus obtaining location, scale and shape parameter estimates, µ, σ and
ξ respectively. The question then asked was if we only had the daily data could we
predict what would happen for the hourly data? This question was considered later in
the paper.

Due to within region, geographical similarities we started with fixing ξ for each region
and then fitting the model. However, we then checked if this asumption was correct
by letting ξ vary from site to site and then comparing these models using a Likelihood
Ratio Test.

The annual maxima were extracted using the statistical programme R which were then
fed through a function that would find the log likehood and parameter estimates for
each region. Also in R the 50-year and 1000-year return levels were calculated, along
with their standard errors, and plotted to compare each region.

Over the six regions the MLEs for µ, σ and ξ were found and plotted to look for any
patterns. For each region we found that as we increase the time aggregations both µ̂
and σ̂ increase whereas ξ̂ appears to decrease. Looking further into the values for ξ̂ in
Table 5.1 we saw that indeed they do decrease as the time aggregations are increased.

Further analysis of the parameter estimates led to linear regression performed for each
region. We saw that for most of the regions there was slight positive correlation when
the MLEs based on the 24 hourly aggregations were plotted against the hourly data.
However, for Wales, the South East and Anglian regions we saw high positive correlation.
The regression lines then enable us to attempt to answer the question that was asked
at the beginning. We would indeed be able to say something about the MLEs found by
using the hourly data even if we only had the daily data.
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The 50-year and 1000-year return levels were then compared for each region with the
two extremes being the Midlands and the South East. The Midlands has a central
cluster of points with little correlation whereas the South East has positive correlation
i.e. as the return levels for the hourly aggregations increase so do the return levels for
the 24 hourly aggregations. The return levels for each region were then plotted on a
single graph to show how the spread of points increases from 50-year return levels to
the 1000-year return levels. Similar to the MLEs, the standard errors were calculated
for each site using the Delta Method with an example from each region given in Table
6.1 for the 50-year return levels and in Table 6.2 for the 1000-year return levels.

As mentioned previously, we assumed a common ξ throughout each region when proceed-
ing with the above methods, however how do we know if this assumption was correct?
To test this we fitted the same model to the data but this time letting ξ vary from site
to site giving the likelihoods in Table 7.1 those found using the hourly data and the
likelihoods in Table 7.2 found using the daily data. A likelihood ratio test was then
performed, on all the regions possible, concluding that when we use the hourly data it
is correct to assume a common ξ for Anglian, the Midlands and the North West. How-
ever, our assumption was challenged for the North East as we found that letting ξ vary
throughout each region was more appropriate here.

When using the daily data, we found that our assumption of a common ξ was correct for
Anglian, the Midlands and the North East but for the North West and Wales a seperate
ξ for each site is more appropriate.

One of the problems encountered when carrying out the analysis was the varying number
of observations for each region due to the quality control constraint. This may mean that
some regions have a higher uncertainty attributed to them which would be addressed in
further work.

Possible extensions to this analysis would be to investigate the assumption of a common ξ
further with a deeper explanantion of why some regions were not converging. In addition
depth-duration-frequency curves could be explored for a greater number of regions with
some predictions of what might happen if the hourly data was unavailable.
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Appendix

Listing 8.1: Selecting the maxima for each region
#the following function takes each region , then within that site , and selects

#the annual maximum for the hourly , 3 horly , 6 hourly , 12 hourly and daily

#aggregations and stores them in a list with a name for each region

selectmax=function(region ,list){

sites=list()

for (k in 1: length(list))

{

name=list[k]

#target=paste ("E:\\ sites\\",region ,"\\" ,name ,". txt",sep ="")

target=paste("F:\\ sites \\",region ,"\\" ,name ,".txt",sep ="")

print(target)

data=read.table(target)

newdata=data.frame(data)

colnames(newdata )=c("A","B","Year","Month","Day","Hour","Rainfall ")

t=vector ()

t=c(1,3,6,12,24)

n=63*8760+15*24

rep=list()

sum=list()

yrs=list()

max=list()

ind=list()

missvals=list()

allvals=list()

maxima=list()

for(i in 1:5){

rep[[i]]=rep (1:(n/t[i]),each=t[i])

sum[[i]]= tapply(newdata$Rainfall ,rep[[i]],sum)

yrs[[i]]= newdata$Year [(1: nrow(newdata) %% t[i])==0]

max[[i]]= tapply(sum[[i]],yrs[[i]],max)

ind[[i]]=sum[[i]]<(-1)

missvals [[i]]= tapply(ind[[i]],yrs[[i]],sum)

allvals [[i]]= tapply(ind[[i]],yrs[[i]],length)

maxima [[i]]= tapply(sum[[i]],yrs[[i]],max)[ missvals [[i]]/ allvals [[i]] <0.15]

# sites[[k]][[i]]= maxima [[i]]

}

sites[[k]]= maxima

}

return(sites)

}
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Listing 8.2: The log-likelihood and MLEs keeping a common ξ
#The following take the list of annual maximums for each region and runs them

#through an iterative function to calculate the -loglikelihood. The parameter

#estimates are also found with this function keeping a common xi throughout

#each region.

k=5

theta=vector ()

s=27

for(i in 1:s){

theta[i]=mean(dataset1 [[i]][[k]])

theta[s+i]=sd(dataset1 [[i]][[k]])

}

theta [2*s+1]=0.1

gev.loglike=function(theta ){

mu=vector ()

sigma=vector ()

for(i in 1:s){

mu[i]=theta[i]

sigma[i]=theta[s+i]

xi=theta [2*s+1]

}

loglike=vector ()

a=vector ()

for(i in 1:s){

a[i]=min ((1+( xi*( dataset1 [[i]][[k]]-mu[i])/ sigma[i])))

}

if(min(a) <0.00001) return (1000000)

if(min(sigma ) <0.00001) return (1000000)

for(j in 1:s){

loglike[j]=-length(dataset1 [[j]][[k]])* log(sigma[j])-(1/xi+1)

*sum(log (1+(xi*( dataset1 [[j]][[k]]-mu[j])/ sigma[j])))-

sum ((1+(xi*( dataset1 [[j]][[k]]-mu[j])/ sigma[j]))^( -1/xi))

}

logliketot=sum(loglike)

return(-logliketot)

}
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Listing 8.3: The log-likelihood and MLEs with varying ξ
#The following take the list of annual maximums for each region and runs them

#through an iterative function to calculate the -loglikelihood. The parameter

#estimates are also found with this function varying xi throughout each region.

k=1

theta=vector ()

s=29

for(i in 1:s){

theta[i]=mean(dataset1 [[i]][[k]])

theta[s+i]=sd(dataset1 [[i]][[k]])

theta [2*s+i]=0.1

}

gev.loglike.xi=function(theta){

mu=vector ()

sigma=vector ()

xi=vector ()

for(i in 1:s){

mu[i]=theta[i]

sigma[i]=theta[s+i]

xi[i]=theta [2*s+i]

}

loglike=vector ()

a=vector ()

for(i in 1:s){

a[i]=min ((1+( xi[i]*( dataset1 [[i]][[k]]-mu[i])/ sigma[i])))

}

if(min(a) <0.00001) return (1000000)

if(min(sigma ) <0.00001) return (1000000)

for(j in 1:s){

loglike[j]=-length(dataset1 [[j]][[k]])* log(sigma[j])-(1/xi[j]+1)*

sum(log (1+(xi[j]*( dataset1 [[j]][[k]]-mu[j])/ sigma[j])))

-sum ((1+(xi[j]*( dataset1 [[j]][[k]]-mu[j])/ sigma[j]))^( -1/xi[j]))

}

logliketot=sum(loglike)

return(-logliketot)

}
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Listing 8.4: Using the delta method to find the standard errors of a return level
#the following code is an example for the Anglian region using the delta method to

#find the 50-year return level standard errors using hourly and daily data

y50=-log (1 -(1/50))

####### anglian

### hourly se

angdel1.xi=vector ()

for(i in 1:13){

angdel1.xi[i]=(( angmle1[i+13])*(( angmle1 [27])^( -2))*(1 -(( y50)^(- angmle1 [27]))))

-((angmle1[i+13])*(( angmle1 [27])^( -1))*(( y50)^(-( angmle1 [27])))* log(y50))

}

angdel1.mu=1

angdel1.sigma =-(( angmle1 [27])^( -1))*(1 -( y50^(-angmle1 [27])))

angdel1.s=matrix(ncol=26,nrow =13 ,0)

for(i in 1:13){

angdel1.s[i,2*i-1]= angdel1.mu

angdel1.s[i,2*i]= angdel1.sigma

}

angdel .1= cbind(angdel1.s,angdel1.xi)

ang.rl.se.1= diag(sqrt(angdel .1%*% angv1 %*%t(angdel .1)))

###24 hourly se

angdel24.xi=vector ()

for(i in 1:13){

angdel24.xi[i]=(( angmle24[i+13])*(( angmle24 [27])^( -2))*(1 -(( y50)^(- angmle24 [27]))))

-((angmle24[i+13])*(( angmle24 [27])^( -1))*(( y50)^(-( angmle24 [27])))* log(y50))

}

angdel24.mu=1

angdel24.sigma=-(( angmle24 [27])^( -1))*(1 -( y50^(-angmle24 [27])))

angdel24.s=matrix(ncol=26,nrow =13,0)

for(i in 1:13){

angdel24.s[i,2*i-1]= angdel24.mu

angdel24.s[i,2*i]= angdel24.sigma

}

angdel .24= cbind(angdel24.s,angdel24.xi)

ang.rl.se.24= diag(sqrt(angdel .24%*% angv24 %*%t(angdel .24)))
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