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Abstract

Percolation theory provides the foundation for further understanding of random net-
works and complex systems, which are the basis of many applications. In this report,
the concept of percolation theory is introduced, exploring the fundamental ideas that are
needed to understand and create the system. The computational cost of such methods
will be discussed, highlighting the reason for the chosen characteristics used within the
simulations. The direction is then shifted to explore the conventional obstacle-free 2D
systems, verifying the results against known results for site percolation. Finally, obstacles
will be introduced into the system, outlining their applicability to real-life applications
and the implications observed on percolation behaviour. To our knowledge, these quan-
titative results have not been considered within a uniform 2D system before. It is shown
that the presence of obstacles suppresses network formation and significantly modifies the
percolation threshold across the system.
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Chapter 1

Introduction

Within mathematics, random networks are described as random graphs which are gen-
erated by a probability distribution or random process. Such random networks are used
all over the world in a variety of applications some of which include airline routes, the
Internet and power grids. These examples, along with many other applications, funda-
mentally rely on the relationships of the connections between each of the components of
the system. Some exemplars of random networks are displayed in Figure 1.1. By deleting
a single component from the system, it can be detrimental to it’s functionality. This can
be exhibited, in connection to the earlier examples, through Internet routers or power line
failures. These random networks can be modelling using percolation theory [1].
Percolation theory is commonly used to model disordered systems to provide a clearer
representation of the processes that are occurring. Historically, the first mention of per-
colation theory dates back to World War Il when Flory and Stockmayer (see [2] and [3]
for review) utilised it in order to describe how macromolecules are formed through chem-
ical bonds forming between smaller molecules. This process provides the foundation to
gelation which leads to chemical bonds forming that span across the whole system. A
common example of this is jelly, in which the gelatin protein fibres intertwine and coil to-
gether causing solidification to occur. Despite the earlier mention, the first application of
mathematics to percolation theory is associated with the 1957 publication, ‘Percolation
processes 1. Crystals and mazes’, written by Broadbent and Hammersley [4]. Broad-
bent and Hammersley developed this model for a specific example, namely liquid flowing
through porous rock with the percolating network corresponding to the open pores in the

(b)

Figure 1.1: Examples of applications of percolation theory. Figure (a) shows the network
of international airline routes [5], (b) shows the result of the solidification of jelly [6] and
(c) shows a porous rock in which non-porous strata may be present [7].

rock. Through this, the name percolation became attached to the theory. Nowadays,
percolation theory has proven to be theoretically important across areas such as physics,
biology and geophysics through the use and development of fractal and scaling properties.



CHAPTER 1. INTRODUCTION

This a popular area of research in which many results are still unknown [§].

In Chapter 2, the concept of percolation theory will be introduced, exploring the
fundamental ideas that are needed to understand and create the system. The discussion
will then move on to access the computational cost of creating the systems and how the
chosen parameters used in calculating the main results were decided.

This will then advance to explore some of the main results of percolation theory,
including the percolation threshold and the universal scaling properties. These will help
to develop an understanding of the behaviour of the system and confirm that the results
produced from this method of simulation are in-line with known results.

The standard results of percolation theory are developed on uniform and homo-
geneous grids. As such, these networks do not provide a realistic insight into naturally
occurring networks which are irregular and inhomogeneous. With this in mind, in Chapter
5, obstacles (that is, localised regions which do not contribute to the network of inter-
est) will be introduced into the uniform 2D percolation system. To our knowledge, this
scenario has not been previously considered. Such obstacles may represent, for example,
pieces of fruit in jelly, oceans in land-based communication networks or non-porous strata
enclosed in otherwise porous rock. The effect these obstacles have on the percolation
properties, mainly the percolation threshold, will then be discussed. This is done with
a view to develop the understanding of general defects in networks and provide a more
realistic approach to percolation theory within applications.

Emma Jones 3



Chapter 2

What is Percolation Theory?

In the introduction, the origins and ideas of percolation theory were discussed. With a
variety of physical and theoretical applications, percolation theory provides an important
and practical model of random networks. Considering the practical side of these models,
it is essential to address the questions what is percolation theory and how does it work?
In order to answer these questions, how the percolating system is set-up and its key
mathematical properties will be introduced.

2.1 Lattices and Occupation

To begin with, consider an empty lattice of grid points. This lattice can be of any shape
or size. For example, standard lattice shapes used within the field include triangular,
honeycomb, square (2D) and cubic (3D) lattices, all of which come in a variety of dis-
cretised sizes from two points in each dimension to an effectively infinite extent. It is a
notable feature of percolation theory that the qualitative behaviour exhibited by differ-
ently shaped and sized systems are the same, with only the quantitative results changing.
Once the shape and size of the lattice has been chosen, the next step is to randomly assign
a number to each of the sites, ensuring that each site is treated independently. After each
site has been assigned it’s own random number, an occupational (threshold) probability
p, with 0 < p <1, is set to identify which sites are occupied within the system. Through
this, it can be said that each site is occupied with probability p and unoccupied with
probability 1 — p. Therefore, the level of site occupancy depends on the value of p, with
more sites being occupied for increasing p and less for decreasing p. By introducing this
occupational probability, the system obtains a binary representation, where 1 represents
an occupied site and 0 represents an unoccupied site. This forms the basis of the system
from which various properties can be analysed.

2.2 Connectedness and Clusters

The first and foundational analysis that can be made is observing the connectivity be-
tween the occupied sites. A group of two or more connected sites is called a cluster. By
identifying the clusters within the system, a foundation is formed for an array of analysis
and properties which will be explored in Chapter 4. The idea of connectivity, as described
in the definition of a cluster, can vary from system to system. For 2D, which is the main
focus of this report, there are two different types of connectivity, namely 4-connectedness
and 8-connectedness. The former, otherwise known as nearest neighbour, implies that it
is only the adjacent sites that are connected to each other, whereas the latter, otherwise
known as next-nearest neighbour, includes diagonal sites in the analysis and implies that
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all adjacent and diagonal sites are connected to each other. The two types of connectiv-
ity generate different quantitative results but not different qualitative results. For this
purpose, it is key to highlight that 4-connectedness will be used throughout this report.

2.3 Site, Bond and Site-Bond Percolation

Another factor that should be taken into consideration when creating or modelling the sys-
tem is the type of percolation used. Within percolation theory, there are three varieties of
percolation that are commonly studied. These are site percolation, bond percolation and
site-bond percolation. Site percolation describes when sites are occupied with probability
p, and is the type of percolation used in the above discussion. Bond percolation describes
the formation of a bond between two sites with probability p. Once again, the states of
occupancy are occupied and unoccupied, where occupied signifies a bond between two
sites and unoccupied signifies no bond has formed. By using the definitions of site and
bond percolation, a relationship can be formed to create site-bond percolation. Site-bond
percolation relies on two occupational probabilities, p and ¢, where p is the probability
that a site is occupied and ¢ is the probability that a bond has formed between two sites.
It is said that two occupied sites inhabit the same cluster if there is a continuous path of
connected occupied sites that also have occupied bonds between each of them. Generally,
the state of the system is described using both of the parameters however, there are some
exceptions to this. When p = 1, site-bond percolation collapses down to bond percolation
and similarly, when ¢ = 1, site-bond percolation collapses down to site percolation [9].
Once again, like connectivity, the various different types of percolation produce different
quantitative result but don’t affect the qualitative results. Due to this, it is important to
highlight that site percolation will be used throughout.

2.4 An Example Percolating System

Now the foundations of the system have been established, a simple example will be con-
sidered to help visualise the process. Following the method, we start by taking a 10 x 10
square lattice. Assigning each site independently with a random number and setting
an occupational (threshold) probability, p, a binary representation of the system can be
formed. This can then be plotted using a black and white colour map to characterise the
state of occupancy, with black representing an occupied site and white representing an
unoccupied site. As mentioned earlier, changing the value of p impacts the number of
sites that are occupied and, hence, the connectivity between the sites. In order to help
visualise this, Figure 2.1 has been created and shows three different values of p, namely
p=0.3,0.5 and 0.7. Considering p = 0.3 first, Figure 2.1(a) shows that there are a small
number of sites occupied which typically exhibit two types of behaviour. The occupied
sites either stand alone, isolated by the surrounding unoccupied sites or they form small
clusters consisting of a small number of sites therefore highlighting that connectivity be-
tween sites is low at low values of p. Now as the probability starts to increase, more
and more sites become occupied with the number of isolated sites decreasing and bigger
clusters forming. This is demonstrated in Figure 2.1(b) which is a system at p = 0.5. In-
creasing the probability further to p = 0.7, Figure 2.1(c) shows that the system is mainly
dominated by one big cluster, that percolates across the system, with smaller clusters
surrounding it.

Emma Jones 5
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(a) (b) (c)

Figure 2.1: Black and white representation of a 2D percolating system for increasing
probabilities, p = 0.3 (a), 0.5 (b) and 0.7 (c), where black represents the occupied sites
and white represents the unoccupied site.

2.5 Visualising Individual Clusters

Considering a small system, like the 10x 10 system shown in Figure 2.1, identifying the dif-
ferent clusters from these black and white images isn’t too hard of a task. However as the
system size starts to increase, for example to 100 x 100, 1,000 x 1,000 or 10, 000 x 10, 000,
the ability to distinguish between the different clusters by eye diminishes, particularly for
larger values of p. In an effort to make these clearer, the method of plotting was adapted
to ensure that each of the clusters were plotted in a different colour. This not only aids
the eye when identifying the clusters but accentuates the transformation of the clusters.
Taking the example systems shown in Figure 2.1 and plotting them with the adapted
method, the images shown in Figure 2.2 were produced.

LG

(a) (b) (c)

Figure 2.2: Colour representation of the percolating system shown in Figure 2.1 for in-
creasing probabilities, p = 0.3 (a), p = 0.5 (b) and p = 0.7 (c), where each of the clusters
are represented by a different colour.

Through the ability to distinguish between the different clusters, this further supports
the characteristics of the clusters that were discussed earlier. Looking at the system for
p = 0.5 and p = 0.7, see Figure 2.2(b) and Figure 2.2(c) respectively, there is a drastic
change occurring from which some of the larger clusters, present at p = 0.5, connect
together and begin to percolate across the whole of the system. This is shown by the
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orange cluster in Figure 2.2(c) and is a key characteristic that will be explored in more
detail later.

These examples serve to demonstrate the role of the clusters in the system as p
is changed. This is the foundation of percolation theory. Formally, percolation theory
describes the numbers and properties of these clusters. These properties provide an insight
into a variety of applications including the prevention of forest fires and oil extraction.
There are a number of key properties that are studied in relation to percolation theory.
These include the percolation threshold, the average cluster size and correlation length, all
of which, along with others, will be addressed in more detail in Chapter 4. The concepts
will be introduced and the effect of changing p on the properties will be discussed.

2.6 Visualising the Biggest Cluster

In many instances, percolation theory is concerned with the biggest cluster as the cluster
tends to dominate network and exposes the largest connected network in the system.
A particularly important feature within percolation theory is when the biggest cluster
spans the system, which will be discussed shortly. With this in mind, it is insightful to
identify and highlight the biggest cluster. An example of this is shown in Figure 2.3(c)
for a 100 x 100 system at p = 0.5. The same network is presented in three different
visualisation methods, namely black and white (a), all the clusters coloured (b) and only
the biggest cluster coloured (c). Here, it can immediately be seen that, for p = 0.5, the
biggest cluster is relatively small in comparison to the system.

Figure 2.3: Progression through the different visualisation methods for a 100 x 100 system
at p = 0.5. Figure (a) shows the occupied sites in black and unoccupied sites in white, (b)
represents each of the clusters with a different colour and (c) highlights the all the sites
in the biggest cluster in red, the remaining occupied sites in black and the unoccupied
sites in white.

2.7 The Spanning Cluster

As described earlier, for small values of p the clusters are small and too isolated to perco-
late across the system. It is also true that for large values of p, the biggest cluster spans
across the whole of system. Therefore, for some intermediate value of p, a transformation
between isolated clusters to a cluster which spans the system is expected. Figure 2.3

Emma Jones 7
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shows that p = 0.5 is too small a value for the biggest cluster to span the whole system.
Increasing p from this point, the biggest cluster grows in size.

For p = 0.59 (Figure 2.4(a)), we can see that the biggest cluster is beginning to
stretch across the system adopting a sparse structure. Comparing this with p = 0.6
(Figure 2.4(b)), the biggest cluster has undergone a dramatic change, becoming much
more prevalent and spanning across the whole of the system with a tenuous structure.
From this point onwards as p increases, the density of the biggest cluster will increase with
the remaining occupied sites becoming part of it. Consequently the size of the remaining
finite clusters decreases [9]. This characteristic biggest cluster is called a spanning cluster,
which can formally be defined as a cluster that spans from one side of the system to the
other. Taking a 2D system as an example, a spanning cluster occurs when the cluster
spans from left to right, top to bottom or both. The spanning cluster, otherwise known as
the infinite cluster, is also said to be infinite due to it spanning the whole of the system.
This is particularly demonstrated when the size of the system tends towards infinity.

100 200 300 400 500 600 700 800 900 1000

(a) p=0.59 (b) p=10.60

Figure 2.4: The transition of the spanning cluster at the percolation threshold, p.. Figure
(a) shows the biggest cluster close to, but before, p. and (b) shows the transformation of
the biggest cluster into a spanning cluster just after p. has been reached.

Besides the extraction of information about the system, the spanning cluster has a
widely relevant importance throughout the applications of percolation theory. In physical
terms, the spanning cluster represents a phase transition, which are frequently observed
throughout nature. An example of this is shown in the solidification of jelly. The spanning
cluster would be the first point at which the jelly would start to show any solid-like
properties i.e. it is the first point at which the gelatin protein fibres begin to interlace and
recoil causing solidification to occur. Some other examples include the transition between
insulators and conductors, along with modelling the spread of forest fires to produce
prevention methods. The importance of the spanning cluster is further supported by the
fractal properties it exhibits close to it’s formation. The presence of ‘cracks’ and ‘holes’
within in the cluster demonstrates the characteristics of fractal behaviour, however it is
necessary to show the existence of these on all length scales. This will be explored, along
with the fractal dimension of the spanning cluster, in more detail in Section 4.2.4.

Emma Jones 8
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2.8 Percolation Threshold

Having established the importance of the spanning cluster, we now want to find when
it first occurs. For each type of system, there exists a critical occupation (threshold)
probability at which this transition takes place. The spanning cluster is said to first
appear at this critical occupation probability, which is more commonly known as the
percolation threshold and is denoted by p.. A formal definition of the percolation threshold
is as follows: the percolation threshold, p., is the occupational probability at which an
infinite cluster (i.e. spanning cluster) first appears in an infinite system. It is important
to note here that this describes a system of infinite size. Realistically, it is not possible
to simulate an infinite system however the same behaviour is still applicable with the
additional coupling of statistical uncertainty on each iteration.

The quantitative value of p. depends on two main factors, the shape and the di-
mension of the system. Recall that the underlying lattice can arise in variety of shapes,
including square (2D), cubic (3D), honeycomb and triangular lattices. The shape of the
system has a significant effect on the percolation threshold, as connectivity of occupied
sites heavily depends on the occupation probability p and the number of connections
available. Through altering the shape of the lattice, and consequently the system, the
connectivity changes. For example, using a 2D square lattice, there are 4 neighbours
available to make connections with. However, when you consider a triangular lattice,
there are 6 neighbours available to make connections with. By increasing the number of
connections that can be made, the connectivity has been altered, hence effecting the per-
colation threshold. The other contributing factor is the dimension of the system. Altering
the dimension of the system, once again, has an effect on the connectivity between sites,
mainly through the number of sites available to form a cluster with. The weighting of the
influence these two factors have on p,. is much higher for the dimension than the lattice
type. In order to demonstrate this, we will consider each in more detail. First, let the
dimension, d, be fixed. Considering the number of connections available, z, in each of the
lattices alone, the results for p. can be observed in Table 2.1. As z increases, the value
of p. decreases. Comparing this with a fixed z and varying dimension, d, we can see that
increasing the dimension of the lattice causes a significant decrease in p.., despite having
the same level of connectivity available. The decrease observed here is more significant
than any seen when changing the value of z. This supports the heavier dependence of p.
on the dimension. It is necessary to note that p. also depends on the type of percolation
being used (site, bond or site-bond). However, due to site percolation solely being used
throughout this report, this dependence will not be explored in detail here.

Type of Lattice | z | d | p.
Honeycomb 312 |0.6962
Square 4|21 0.592746
Triangular 6 | 2| 0.500000
Cubic 6|3 |0.3116

Table 2.1: The value of the percolation threshold, p., for various different lattices, high-
lighting their connectivity, z, and dimensions, d [8].

As demonstrated by the results shown in the above table, there are a variety of
known results for p.. These, however, are not all exact results. It took approximately two
decades for the first numerical estimation of square bond percolation to be found in 1960.

Emma Jones 9
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Since then, exact known results have been found for triangular site, triangular bond and
honeycomb bond percolation. This implies that the known results for honeycomb and
square site percolation, referred to in Figure 2.1, are not exact. However, they are correct
to a certain degree, mainly showing fluctuations in the final decimal places shown above.
This problem is also extended to percolation among higher dimension systems. With this
in mind, for the systems that we have been working with, namely finite 2D square lattices,
the reference value of p. that will be used is the close approximation of p. = 0.592746 [8].

The occurrence of the critical occupation probability, p., in percolation theory lends it
to be a mathematically challenging and extensive subject. As p. is approached from both
sides, the system exhibits inherently different behaviour. Through this, it provides a basis
for complex physical systems that undergo a phase transition through the alteration of a
particular parameter. An example of this is the critical concentration of gelatin required
for jelly to set (at a fixed temperature). Percolation allows a simple model to be produced,
making it more mathematically accessible whilst preserving features of the more complex
systems [10]. By modelling systems through the use of percolation theory, we will go on
to explore a variety of properties that are characteristic to any system in Chapter 4. The
foundational knowledge will then be used to evaluate the effect of introducing obstacles
into the system in Chapter 5.

Emma Jones 10



Chapter 3

Method for Generating the System

Chapter 2 introduced the concept of percolation theory and how the systems are created.
In this chapter, the generation of such systems will be explored, focusing on the method,
functions and algorithms used along with the computational cost of altering the system

size.

3.1 Numerical Method

Our main focus is site percolation on a two-dimensional square lattice. The percolating

systems were generated using Matlab and were based on the following protocol:

1. A matrix, representing the square lattice, is populated with random numbers. Gen-
erally, the systems used throughout this report are based on 1,000 x 1,000 lattices,
however systems as small as 10 x 10 and as large as 10,000 x 10,000 have also been

used.

2. An occupation threshold probability p is defined in the range 0 < p < 1.

3. Using p, the state of occupancy of the sites can be determined. Sites with values
up to p are said to be occupied and are re-assigned with a value of 1; otherwise the

sites are said to be unoccupied and are reassigned with a value of 0.

4. Based on 4-connectedness, the clusters are identified. This is the most challeng-
ing and time-consuming step of the procedure, and is performed using the in-built

Matlab function bwconncomp, which will be discussed below.

5. Various quantities of interest are extracted from the cluster data to gain an insight

into the properties of the system, e.g. size distribution and correlation length.

6. Steps 1 - 5 are repeated for different random realisations, as required, in order to
gain statistical information. Typically, throughout this report, 1,000 iterations have

been performed.

3.2 Labelling the Clusters

3.2.1 The bwconncomp Function

As discussed earlier, identifying the different clusters is a key part of the analysing the
systems’ behaviour, allowing further analysis of a variety of properties to take place.
In order to distinguish between different clusters, a cluster multiple labelling algorithm

11
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can be used. Within Matlab this has been encapsulated by the in-built bwconncomp
function. The functionality of bwconncomp requires two main pieces of information, the
object /image to be analysed and the type of connectivity used, which in this case is 4-
connectedness (discussed further in [11]). The object/image to be analysed needs to be in
the form of a binary matrix. This requirement is immediately fulfilled here through the
implementation of the occupation probability, p, which identifies which sites are occupied
and unoccupied. However this is not always the case. Through this, a binary matrix is
produced with the occupied sites being represented by a 1 and unoccupied represented by
a 0. Having established this, the cluster multiple labelling algorithm can be performed.

The bwconncomp function performs the following steps to find the connected sites
within the binary matrix:

1. Search for the next unlabelled site, <.
2. Perform a flood-fill algortihm to label all the sites connected to site i.

3. Repeat steps 1 and 2 until all sites are labelled.

The algorithm then produces a structure which contains details on the type of con-
nectivity used, the size of the image that has been analysed, the number of clusters found
within the object (i.e. system) and the size of each cluster. Using this information, a
new matrix can be assigned to be the matrix containing labelled clusters and a new vari-
able can detail the cluster sizes. The output of this is a symbolic image showing each
cluster labelled with a unique integer number. Through this, all of the sites contained
within this cluster have the same unique integer label. By utilising this method, various
measurements can be performed on the labelled cluster information [11].

The algorithm is performed column by column and starts the sweep from the top left-
most column. There are two prelimanary variables that are created to store the number
of clusters in the system and the size of each cluster found. Both of these are displayed in
the structure that is outputted by bwconncomp. These variables are two one-dimensional
arrays, denoted here by C, and C; which represent the cluster sizes and the cluster num-
bers respectively. Using these two variables and the occupancy of sites, the methodology
of the algorithm is described in the flowchart shown in Figure 3.1.

C, and C; are an integral part of the labelling process but are used in fundamentally
different ways. C; is used to label each occupied site using the following method:

e If both sites to the north and west of the occupied site ¢ are unoccupied, i.e. it has
an entry of 0, then site ¢ is given the current index of C;. This index is set to 1 at
the beginning of the algorithm and is increased upon finding a new cluster.

e If the site to the north OR the west of the occupied site 7 are occupied, i.e. it doesn’t
have an entry of 0, the site ¢ is assigned the label of the occupied site.

e If both sites to the north and west of the occupied site ¢ are occupied, then site i
and the site to north of site ¢ are both assigned the label of the site to the west of

site 1.
Through the use of C;, the label j (j = 1,2,3,...) of each site can be found through
satisfying C;(j) = j. The label for each site i that will be stored in C; is identified

using the following argument. First, let the original entry of site (i — 1) be j; and the
label assigned to site (i — 1) be js. Then for site 4, the following values can be assigned:

Emma Jones 12
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Is the
entry of
site 7 07
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C,(C,(entry of site north
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of site north of site 7))+
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1.
Step 2: . .
m(si’ce i entry)) = site 7).

o Step 4: Cg(entry of site
\Cs(Cl(Slte ¢ entry)) + L north of site i) = 0.

= J

C;(entry of site north of

Figure 3.1: Flowchart describing the cluster labelling algorithm

C,(j1) = jo and C;(j2) = jo. Hence, resulting in js being stored as the label for site i.
Having established the uses of C;, the uses of C, will now be explored. C; is used to
store the different cluster sizes. In order to do this, whenever an occupied site is assigned
a label, the corresponding entry of C; is increased by one. In the case where both the
sites to the north and west of site ¢ are occupied but have different labels, it is necessary
to merge the two clusters together and ensure all sites have identical labels. To do this,
the size of the cluster that has the same label as the entry of the site to the north of i, is
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added to the size of the cluster that has the same label as the site to the west of 7. The
size of the cluster corresponding to the site north of ¢ is then zeroed out. Repeating this
method allows the algorithm to perform a complete sweep. This provides an accurate
labelling of all occupied sites and the size of all the clusters too. Due to this, only one
sweep of the algorithm is necessary [12].

0j(0f1/0|1]01]110 0/]0[3|10|5]01]810
110(1]0(1]0]110 1{0(3]0(5|0|8]0
1/11/0]1]0[0]010 111/0(4(0]0]010
0[0]O010[1[1]0]0 0/]0]010[6]6]0]0
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(a) Binary matrix (b) Labelled cluster matrix

Figure 3.2: The input and output of the cluster multiple labelling algorithm. Figure (a)
shows the binary matrix that is used for the input while (b) shows the output with all
the clusters distinguishably labelled.

Using the bwconncomp function creates an efficient way of labelling multiple clusters
relatively quickly. An example of the labelled cluster output for p = 0.5 is shown in Figure
3.2. The output of the algorithm produces easily distinguishable clusters whilst providing
data that can be analysed further in a variety of ways. This demonstrates the importance
of a cluster multiple labelling algorithm (or connected component labelling technique)
within many applications, be this in percolation theory or other areas of research. One of
the main complications of using this method is the computational cost that accompanies
it. We will now go on to explore how this has affected choosing the size of the system to
analyse.

3.2.2 The Computational Cost of Increasing the System Size

Cluster multiple labelling techniques are computationally expensive to operate. The com-
pletion time of this algorithm is commonly found to be critical in the feasibility of a given
algorithm. The algorithm, discussed in more detail in Section 3.2.1, works by assigning a
label to an occupied site and attempting to propagate the label to the site’s east and south
neighbours [11]. The time taken to perform a full sweep varies dependent on the size of
the system, denoted by L, number of clusters and the size of clusters found in the system.
Note that the latter two directly depend on the value of p. To demonstrate the effect of
changing these two factors (i.e. size and p), the time taken for the foundation code to run
has been measured and recorded in Table 3.1. These measurements were obtained using
the same machine, as the results are deterministic of the machine used. This provides a
realistic representation of how the time scales as the system size, L, is increased. The
foundation code consists of the following steps: assigning a matrix size, generating the
matrix, and applying the occupation probability p, running the bwconncomp function,
creating the labelled cluster matrix and extracting the cluster size information from the
output. This is performed using the following set of commands:
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mat = 10;
p = 0.5;
g = double(rand(mat,mat)>1-p);

connected_comp = bwconncomp(g, 4);

labelled_clusters = labelmatrix(connected_comp);

clusters = double(labelled_clusters);

cluster_size = cellfun(@numel, connected_comp.PixelIdxList);

These seven lines of code are the basis of all calculations performed and allow the
results discussed in Chapter 4 to be obtained. It runs on every iteration performed,
therefore if the completion time is lengthy then the whole calculation is destined to be
so as well. Evaluating the time taken for the foundation code to run, shown in Table
3.1, we can see that for fixed p, increasing the system size by a factor of 10 x 10, the
time taken increases. This increase starts off quite small at first, demonstrated by the
increase from 10 x 10 to 100 x 100, however grows substantially in size with a higher order
increases. This is shown from 100 x 100 to 1,000 x 1,000 to 10,000 x 10,000. With such
a significant increase from 1,000 x 1,000 to 10,000 x 10,000, the process becomes more
computationally expensive to operate.

System Time (s)

Size p=20.3 p=0.5 p=0.7
102 0.001533 0.001632 0.001526
100? 0.006344 0.004610 0.002494
1,000% | 0.769116 0.485236 0.146629
10,000% | 117.224844 | 105.540672 | 53.526654

Table 3.1: Time take for one iteration of the base code to completely run for a variety of
probabilities, namely p = 0.3, p = 0.5 and p = 0.7.

As all of the known results for percolation theory, for example p., are characteristic of
an infinite system, it follows that as L is increased, the results become more reliable and
in-line with the known values. As a result of this, one iteration of a 10, 000 x 10, 000 system
produces more reliable results than one iteration of a 100 x 100 system. It should be noted,
though, that averaging data over multiple iterations for a smaller system does provide data
that is comparable to one iteration of a 10,000 x 10, 000 system. Realistically, simulating
an infinite system is not possible therefore simulating a finitely large system is the next
best option. Due to the computational cost linked with performing multiple iterations of
a 10,000 x 10,000 system, it proves to be much more time effective to perform multiple
iterations of a 1,000 x 1,000 system instead. Through the use of multiple iterations,
the statistical uncertainty has been reduced leading to more reliable results that are
comparable to a 10,000 x 10,000 system. This shows that changing L produces different
quantitative results but not different qualitative results when several iterations are carried
out. As a result of this, many of the results discussed in Chapter 4 are calculated using
1,000 iterations on a 1,000 x 1,000 system giving an insight into the general trend with
low statistical uncertainty. However, when needed, iterations on a 10, 000 x 10, 000 system
are performed to ensure the behaviour is as expected.

Looking back at Table 3.1, the effect of changing p on the time taken can also be
observed. Fixing the size of the system, it can be seen that there is a general decreasing
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trend in time as p is increased. Therefore, for lower to middle values of p, the bwconncomp
function takes longer to run. The reason for this is the abundance of isolated clusters
during the progression through this region of probabilities. Comparing these results with
p = 0.7, there is a considerable decrease in the time taken. This can be explained by
the increase of p past the value of p., which results in more and more sites being added
to the biggest cluster hence leaving less clusters to be analysed. The observation of this
highlights that the time taken for one complete iteration is not uniformly spread across
all probabilities. This highlights that some take longer than others, all of which create
another factors into computation time.

Finding an optimum set of conditions for numerical work is desirable but presents
a variety of factors that need to be considered. The choices for the size of the system
have been explored with comments supporting the main choices that were implemented.
Alongside this an overall view of the effect that different factors have on the system has
been provided.
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Chapter 4

Percolation in the Absence of Obsta-
cles

In Chapter 2 and 3, the concept of percolation theory and the methods of simulation
were introduced. In this Chapter, the focus will shift towards some of the key properties
exhibited by the convention case of percolation in a uniform, obstacle-free system. Due
to percolation being a random process, each simulation of a system will produce a unique
set of clusters. Therefore, to explore the average properties of the system, it is necessary
to analyse the statistics of the clusters [8]. The properties will be explored with an
emphasis on understanding the behaviour as p is varied. First of all, the main result
of the percolation threshold will be explored, establishing a method of calculation and
ensuring that the known results are reproduced. Once this has been confirmed, the idea
of universal scaling properties will be introduced and several behavioural properties that
exhibit this will be considered. These include the average cluster size and fractal dimension
of the spanning cluster. It should be noted that all results discussed have been calculated
using a 1,000 x 1,000 square lattice based system.

4.1 Percolation Threshold

As mentioned in Chapter 2, the spanning cluster first appears at a value of p called the
percolation threshold, which is denoted by p.. Therefore for all p > p.., there is a spanning
cluster present in the system which increases in size as p increases. The system exhibits
a variety of singular behaviour at p. which is characterised through the use of critical
exponents. These critical exponents depend on the dimensionality of the system [16].
These singular properties will be discussed in more detail in Section 4.2. In order to
explore these properties, it is necessary to ensure that the value of p. produced from our
simulations are accurate and in line with the known results. This can be done through
the analysis of the first occurrence of the spanning cluster.

Considering the biggest cluster for a variety of system sizes across 3 different proba-
bilities, Figure 4.1 displays the results. Focusing on when p = 0.3 briefly, it can be seen
that as the system size, L, is increased, the ability to identify the biggest cluster, becomes
much more of a difficult task. This is due to the increasing number of isolated clusters
present within the system. As L is increased the number of isolated clusters that can
form also increases. Considering the case where p = 0.5, a similar type of behaviour is
exhibited with the biggest cluster being less prominent as L is increased. Once again this
is due to the increasing abundance of sites and connections to be made. For p = 0.5, the
images present that the biggest cluster has not yet transitioned into a spanning cluster.
With this in mind, p = 0.7 is considered. Here, the images no longer express a reduction
in the prominence of the biggest cluster as L is increased. The biggest cluster, which has
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10 x 10

100 x 100

1,000 x 1,000

Figure 4.1: Comparison of the prominence of the spanning cluster for different system
sizes at several values of p. The spanning cluster is highlighted in red, with the remaining
occupied sites in black and unoccupied sites in white.

undergone a transition into a spanning cluster here, maintains the level of prominence
throughout the alterations. This further supports the idea that the behaviour of the
clusters is fundamentally different, dependent on which side of p. the value of p sits on.
Comparing the images for p = 0.5 and p = 0.7, the system undergoes a dramatic change
within this region, resulting in a spanning cluster being formed. Examining this range of
p in more detail, the value of p. can be found.

4.1.1 Determining p,

In order to determine p.., it was found to be beneficial to introduce a new variable called
Lynaz- This is defined as the maximum dimension (i.e. height or width) of the biggest
cluster present in the system at the chosen probability. In order to understand how L,
changes, it was calculated at each increasing increment of p. The results were recorded
for one iteration and for the averaged data of 1,000 iterations. The findings can be seen
in Figure 4.2.

Looking at Figure 4.2(a), the data for one iteration displays a small amount of noise
for p < p. with a general increasing trend. As p is increased, the gradual increasing trend
evolves into a sharp increase close to the known value of p.. It can then be seen that
as soon as p,. is reached, L4, plateaus at the maximum dimension of the system (which
in this case is 1,000). Plotting one iterations worth of data provides us with an insight
into the characteristics of the variable, and hence the system. However only simulating
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Figure 4.2: L4, vs p for one iteration (a) and averaged over 1,000 iterations (b). Figure
(a) shows L. vs p (red line) highlighting the value of p. (black dotted line). Figure (b)
shows the averaged data for 100 iterations for L., vs p (red line) along with the standard
deviation of L,,4; (blue line), the value of p.. (black dotted line) and the standard deviation
of p. over all iterations (magenta dotted lines).

over one iteration gives way to statistical uncertainty. Therefore, to decrease this, 1,000
iterations were performed and an average of the data was produced. The results of this
are displayed in Figure 4.2(b) and show a smoother curve that follows the same trend
as displayed in Figure 4.2(a). To gain an insight into how much the behaviour varies
from iteration to iteration, the standard deviation over the 1,000 iterations performed
was calculated. This is represented by the blue line in Figure 4.2(b). For small values of
p, far away from p., there is very little deviation in the data. However, as p — p_ (i.e.
p approaches p. from the left), there is a sudden increase in the deviation, reaching a
maximum just before p, is reached. This can be explained by the tenuous structure of the
spanning cluster and the random generation of the system on each iteration. Both of these
properties produce fluctuations in the data through changes in the number and size of the
clusters produced. As discussed earlier in this section, the system exhibits fundamentally
different characteristics on either side of p.. Combining this with variations of when the
spanning cluster will appear in each system, some deviation is inevitable. The deviation
then diminishes quickly to zero as L,,., plateaus. This is explained through the maximum
dimension being reached with more and more sites becoming part of the spanning cluster
from that point onwards. Figure 4.2 also displays the values of p. produced from the
simulations (see the black dotted line on both images). For both images, the value of
pe = 0.6, which is closest to the known value of p. possible (with increasing increments of
0.01 for p). This indicates that the single iteration in Figure 4.2(a) had a good estimation
of p., however the standard deviation of p. (shown by the magenta dotted lines in Figure
4.2(b) demonstrates that this is not always the case. The calculated value of p, varies
by approximately 1.2 across all iterations. Despite these fluctuations, the average value
is still consistent with the known result and therefore presents support towards a reliable
method of simulation.

Emma Jones 19



CHAPTER 4. PERCOLATION IN THE ABSENCE OF OBSTACLES

4.1.2 Effect of Changing the System Size on p.

In Section 4.1.1, the value of p. was determined for a 1,000 x 1,000 system through
multiple simulations. After finding this is within a small range of the known value of p.,
it would be interesting to compare the estimations for different system sizes over 1,000
iterations. Simulating these different systems and averaging the data to obtain a value of
pe produces the results shown in Figure 4.3. This displays each of the found values for p.
along with error bars to indicate the standard deviation of the data.

0.9r
0.81 {.
0.7p
06 - - - - — 1 x___ __
0.5¢
0.4r
0.3r
0.2r

0.1f

0 10 100 1000
L

Figure 4.3: p. vs different system sizes L. The results are shown with a red cross at the
value and display the standard deviation in the form of error bars. The known value of
Pe = 0.592746 is also shown (blue dotted line).

Comparing p. for each system size, L, the approximation becomes closer to the known
value of p. as L is increased. This is in-line with the idea that p. is, for an infinitely-
sized system, producing more accurate results as L tends towards infinity. It may seem
slightly contradictory to this though when observing the increase in standard deviation as
L increases. This is due to the sparse nature of the spanning cluster and the fluctuations
in behaviour from system to system (as it is a random process). With the tenuous and
sparse structure of the spanning cluster, the value of p. oscillates around the known value
on each iteration. As there is more scope for this to occur in a larger system, the standard
deviation of the data will increase, however the overall averaged data is more accurate.
For a 10 x 10 system, the value of p. is far away from the known value of p., however
as L is increased, the results gain more accuracy tending towards p., = 0.592746 quickly.
This is shown through L = 1,000. Each of these results were produced using averaged
data over 1,000 iterations. With this in mind, it is important to note that if the number
of iterations were increased for the 10 x 10 system then the approximation for p. would
tend towards the known value for p.. This further supports the ideas about changing the
system size discussed in Section 3.2.2 and the justification of using a 1, 000 x 1, 000 system
for the typical system.
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4.2 Universal Scaling Properties

There are several properties that can be determined about the system, many of which
exhibit singular behaviour at, or around, p.. Many of these properties exhibit critical
behaviour around p. and are expressed using critical exponents. A critical exponent is
expressed at a critical point or value, for which a quantity is found to be proportional
to the power of another quantity that is characteristic of the system [13]. An example
of a critical exponent is the power of the distance away from the percolation threshold,
i.e. |p— pe|?, where 3 is the critical exponent. These critical exponents behave the same
independent of which shape or size the system is. As a result of this, the critical exponents
are said to be universal over the system shape and size. However their values alter if the
Euclidean dimension, d, of the system is changed, e.g. shifting from 2D to 3D. From
this universal behaviour, general scaling laws can be deduced. The aim of this section
is to verify the universal behaviour for our model through looking at four key properties
that are characteristic of system throughout percolation theory. These properties are the
average cluster size, the fraction of sites in the spanning cluster, the correlation length
and the fractal dimension of the clusters. The first property to be discussed is the average
cluster size.

4.2.1 Average Cluster Size

Previously, the importance of the spanning cluster, and the information that can be
extracted from it, have been discussed. Despite this still being the case, to gain an insight
into the overall behaviour of the clusters, the average cluster size will be explored in this
section. To begin this analysis, the following question is presented:

“If a random occupied site in a system was chosen, on average, how big would the
cluster that it is a part of be?”

In order to answer this question, several variables and properties (or probabilities) need
to be introduced [8].

To begin with, we consider the clusters of size s, otherwise known as s-clusters,
and the number of s-clusters per site in the system, otherwise known as the normalised
cluster number, denoted ng(p). Through defining the cluster number in this way, instead
of considering the total number of s-clusters in the system, it provides an analysis that
is independent of the system size L. Alternatively, this can be expressed through the
probability that a given site in the system belongs to an s-cluster. This is given by ngs.
For the variable ng, an exact form or equation has not been obtained for d > 1. This is
due to the clusters being able to position themselves in a large variety of ways, unlike for
d = 1 where the clusters are all formed along a straight line. This problem is apparent for
all cluster sizes, with no alleviation for particularly small clusters [13]. To consider the
behaviour of n,, the results obtained for three probabilities, namely p = 0.4,0.6 and 0.8,
have been plotted in Figure 4.4(a). It is important to note here, that the biggest cluster
has not been included in these calculations and the image is focused on a small section of
the data to help gain understanding of the trend.

Looking at p = 0.8 (black line), there is a sharp and sudden decrease for small s with
the data coming to an abrupt ending at s ~ 30. As p = 0.8 > p. and the biggest cluster
having been excluded, i.e. the spanning cluster as p > p., the only remaining occupied
sites create an abundant collection of small isolated clusters. Hence justifying the large
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density of clusters at small s and presence of no large clusters. Considering p = 0.4 (blue
line), there is less of a rapid decline over small values of s however similar behaviour to
p = 0.8 is expressed. As p = 0.4 < p,, there are many small clusters within the system,
none of which dominate over the others in size. Although the clusters are slightly larger
than for p = 0.8, the same behaviour is displayed. Finally considering p = 0.6, there is a
much steadier decrease in n, as s increases, with ny, — 0 as s — oo. This is apparent due
to the sparse nature of the spanning cluster and the prevalence of the remaining clusters
around it. For large s at p = 0.6, there is a finite (but small) chance of finding a cluster.
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Figure 4.4: Linear plot (a) and loglog plot (b) of the number of s-clusters, ng vs s for
three probabilities, namely p = 0.4 (blue), 0.6 (red) and 0.8 (black). The loglog plot (b)
displays the small scale fluctuations in behaviour and provides a power law behaviour
comparison with s~1 which has also been plotted (black dashed line).

Examining the decaying behaviour over the three probabilities, a loglog plot of the
data was considered to identify if any power law behaviour was apparent. Figure 4.4(b)
shows that the p = 0.4 (blue) and p = 0.8 (black) tail off quickly indicating that there is
no significant change of finding a cluster at large s and hence no power law distribution.
Focusing on p = 0.6, taking the noise (which is accentuated through using the logarithm
function on the data) out of the consideration, the data looks to approach a straight
line with a clear decreasing trend. Using this analysis, a power law distribution can be
obtained. Fitting this to the graph, power law behaviour of s~ 10 was found giving another
insight into the behaviour of the clusters.

Having studied the characteristics of n, for several probabilities, the variable can be
used to introduce other variables. In furtherance to n,, the probability that a particular
site belongs to any finite cluster is given by the summation ) n,s, where it is a summation

over all cluster sizes s. Combining the above findings together, the probability that a
NS

Zs NS

i.e. the probability that a given site belongs to an s-cluster divided by the probability
that a given site belongs to any finite cluster. Using these results, the average cluster size,
denoted by S, can be measured using the following formula [8],

S = Zwss = Z Zns;is'
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Calculating the values of S for all p, allows the behaviour of S to be observed. The
findings calculated for one iteration and averaged data over 1,000 iterations are shown in
Figure 4.5(a) as the red dashed line and the black line respectively. From these values, it
can be seen that the findings for one iteration are similar to the averaged data and gives
a pretense that this may always be the case. However, this is not the case. The general
behaviour shown in Figure 4.5(a), by the single iteration data, is consistent from iteration
to iteration, however there are large fluctuations in S close to p.. This implies that the
smaller clusters will be averaged much more as a result of their frequent and consistent
appearance. Evidence to support this further is demonstrated through the behaviour of
ns, which was discussed earlier. The dramatic fluctuations close to p. are due to the
sparse structure of the spanning cluster, which causes a greater effect on the averaging.
To demonstrate the extremity in the fluctuations of S, the maximum value of S has been
recorded over several iterations and the results are presented in Table 4.1. Using only five
iterations, the variation can already be observed, showing the vast differences in values
that can obtained and justifying the averaged maximum value of approximately 5.8 x 10%.

Iteration | Maximum value
number | of S

56736

37539

77086

51616

94028

Ol > W N~

Table 4.1: The maximum value of S for five different iterations, to display the large
fluctuations in the the data on each iteration

Focusing more on the behaviour of S, Figure 4.5(a) highlights how the average cluster
size diverges as p — p.. This is reasonable behaviour which is supported by the presence
of the infinite cluster, as p surpasses p., and large finite clusters, as p — p_. Therefore,
an average over these two cases produces a very large finite cluster size just below p..
The data shown in Figure 4.5(a) shows a distinguished sharp finite peak close to p.. As
the system size, L, is increased and tends towards infinity, this peak disappears, with the
values of S tending towards infinity at p.. Despite this, all other behaviour exhibited by
the data shown, would be present as L — oo.

Having considered the characteristic behaviour of S over p, we want to determine the
universal scaling properties for the divergence of S close to p.. This can be characterised
by the following proportionality [14],

S(p) o< [p—pe|™"  for p — p., (4.1)

where « is the critical exponent and the known value for v = {2 for d = 2 [8].

In order to confirm that S exhibits this behaviour as p — p., it is beneficial to use a
loglog plot on the initial data. In accordance to Equation (4.1), the data corresponding
to the absolute values of p — p. has been used. Figure 4.5(b) shows the applicable data
from S vs p (red line) and the |p—p.| =1 (black line). It is useful to note that the first two
data points for S (red line) can be disregarded due to their proximity to p.. Due to the
average that has been calculated when obtaining the data, and the fluctuations that occur
around p., these are not true representations of the system’s behaviour. Considering the
data outside the 0.02 range of p., the critical exponent behaviour is apparent. The data
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Figure 4.5: Linear plot (a) and loglog plot (b) of the average cluster size S vs p. Figure
(a) shows S vs p calculated for one iteration (red dashed line) and averaged data over
1,000 iterations (black solid line) and (b) displays the loglog plot of S vs p with the
1,000 iteration averaged average cluster size data (red line) and the critical exponent line
lp — pe| 1% (black line) to show the similiarity.

S shows a close relationship with |p — pc|%3 from the outset with only small fluctuations,

causing deviation away from this. These are made more apparent by the logarithmic

function exaggerating the small scale noise. Through the relationship shown between S
43 . . . . .

and |p — p.| 18, the proportionality shown in Equation (4.1) is supported for the method

of simulation used.

4.2.2 Fraction of Sites in the Spanning Cluster

In Section 4.2.1, the average cluster size was addressed. In this section, the focus will
shift from all the clusters to the spanning cluster once again. The fraction of sites in the
spanning cluster will be studied for increasing p, which will provide useful information
about how the spanning cluster evolves after it first occurs. The fraction of sites in the
spanning cluster, which is denoted by F', is defined by the following equation,

0, for p < pe,
F(p) = (4.2)
{(p_pc)ﬁ7 forp—>p2',

where [ is the critical exponent and characterises the abrupt changes of the fraction of
sites in the spanning cluster as p, is approached. It is useful to note that the known value
for §is § = & for d = 2 [15].

By plotting the result for ' vs p in Figure 4.6(a), for one iteration (red dashed line)
and averaged over 1,000 iterations (black solid line), we can see that as p — p,, F' =0
until p. is reached. As soon as p = p., F' increases rapidly within 0.02 of p. and then the
rate of increase slows, evolving into a linear increase which then tends towards 1 as p — 1.
These characteristics are exhibited by both the averaged and single data which tells us
that close to p., there can be a spanning cluster which contains a very small fraction of
the total sites of the system. This implies that it has a tenuous structure and is incredibly
sparse.
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Figure 4.6: Fraction of sites in the spanning cluster, F', vs p. Figure (a) shows the F' for
one iteration (red dashed line), F" averaged over 1,000 iterations (black solid line), F' = p
(blue dashed line) to highlight the linear behaviour as p — 1 and (p — p.)? (green solid
line) to show the similiarity with the critical exponent behaviour. Figure (b) shows one
iteration of F' for a small region of p. This region is focused around p. with increasing
increments of 0.001 (black solid line). (p — p.)? (green dashed line) is also plotted to gain
more of an insight into the similiarity of F' with the critical exponent behaviour.

In order to help visualise the linear relationship mentionned above, the line F' = p
has been included and can be seen in Figure 4.6(a) (blue dashed line). By displaying
this, it can be seen that after approximately p = 0.8, there is a purely linear increase
in the fraction of sites in the spanning cluster. This is due to the remaining occupied
sites slowly becoming part of the spanning cluster. After the dramatic transformation
that the spanning cluster undergoes close to p., the remaining occupied sites use the
spanning cluster’s tenuous structure in their favour. This is done through maximising
the exposed surface area and slowly becoming connected and part of the spanning cluster
as p is increased. This linear behaviour is not an artifact created through the use of a
finitely sized system. If an infinite system was used, the same linear behaviour would be
observed due to the spanning cluster’s characteristics.

Comparing the averaged data and the single iteration data in Figure 4.6(a), i.e. the
black solid and red dashed lines respectively, the averaged data has a small but noticeable
tail close to p. = 0.59. The tail is due to the fluctuations in the value of p. on each iteration,
all of which arise because of the random nature of each system that is generated. Hence
producing a purely statistical increase. When comparing this to the single iteration data,
there is a much more sudden and rapid increase as the percolation threshold is reached.
This behaviour is much more representative of the nature of the system. Considering
the tail once more, it is important to note that its presence in the averaged data would
slowly diminish if the system size was increased. This would culminate with it completely
vanishing as the system size, L. — oo. This would produce a much sharper increase at p..
Despite the misrepresentation with the tail, it is necessary to compare both averaged and
single sets of data to ensure that there are no artifacts effecting it. Through performing
this check here, we can see that there are none present. This allows the use of a single
iterations worth of data to access the critical exponent behaviour in more detail.

Figure 4.6(a) shows a plot of the data versus the power law fit. The critical exponent
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behaviour is shown in Figure 4.6(a) as a comparison with the both sets of data for F'.
Looking at the critical exponent displayed in relation to the data, the relationship between
the two is not distinctively strong, especially during the rapid change at p.. In order to
obtain a clearer view of the relationship between the simulated data and the critical
exponent, smaller increments of 0.001 were used for increasing p. These were focusing
on the region 0.55 - 0.65 to capture the behaviour at p. in more depth. Through this
method, a better estimation of p. can also be obtained.

Bringing our attention to Figure 4.6(b), by reducing the size of the increments within
this region, the behaviour becomes more precise. When comparing this to (p — pc)%
(green dashed line), the relationship is much stronger than previously seen in Figure
4.6(a). Highlighting the immediate area at p., the single iteration data (black solid line)
agrees with the critical exponent data. Despite fluctuations, due to noise produced from
one iteration, the single iteration data continually returns to the critical exponent line
retaining the relationship. It is only between 0.64 and 0.65 that the behaviour is seen to
tail off, which is similar to that displayed in Figure 4.6(a). The strength of this relationship
justifies the use of (p — p.)? for our method of simulation.

The fraction of sites in the spanning cluster exhibits a drastic change at p. forming a
sparse structure. At this point, the spanning cluster contains a quickly increasing fraction
of the system’s occupied sites [16]. As a result of this, the spanning cluster has fractal
properties, which we will now go on to explore. Before the fractal properties can be
explored in full, it is necessary to consider the correlation length and radius of gyration
first.

4.2.3 Correlation Length and Radius of Gyration

In the previous sections, the main focus has been the distribution of clusters, their size
and the spanning cluster. In this section, the geometry of the clusters will be discussed
in more detail. New variables will be introduced which will then allow us to go on and
explore the fractal geometry of the clusters in Section 4.2.4. This will then provide us
with information about the clusters and their densities on all length scales.

In order to explore the geometry of the cluster, the cluster’s linear size will be in-
troduced through the use of the radius of the cluster. Through defining several variables
based on radii, the correlation length, &, can be defined and explored. To begin, the
position of the i occupied site in a s-cluster, denoted by r;, is noted. From this, the
centre of mass of the cluster of size s, denoted by r.,,, is calculated using the following
equation,

1 s
em — T i+ 4.

This provides the position of the centre point of the s-cluster. Using Equation (4.3),
the average of the squares radii can be calculated. This is denoted by R and can be
found using the following equation,

R:={(|ri—rem |*) = %Z i — reoml®. (4.4)
=1

By defining R?, the average square distance to r., within an s-cluster can be found.
Considering this in the two-dimensional plane being used, if the cluster was rotated around
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the axis perpendicular to, and originating from, the r.,, of the cluster, this would result
in the angular momentum and kinetic energy of rotation being the same, similar to if all
the sites were situated on a ring with radius R about the axis. Through this, R? will be
known here after as the radius of gyration [8].

The use of the radius of gyration is commonly used throughout many applications
of percolation theory. This is due to it providing a more useful and easily obtainable
quantity, in comparison to other methods. An example of such a method is to calculate
the summation of the average number of sites an occupied site is connected to. This can
be obtained using the summation of the average cluster size .S, discussed in Section 4.2.1,
for a particular site ¢ [13]. Due to this being of less use in general, it will not be explored
in more detail here.

Using Equation (4.4), s (the size of a cluster) and n, (the number of s-clusters),
the correlation length can be defined. The correlation length, denoted &, is the aver-
age distance between two sites that are part of the same finite cluster, representing the
characteristic length scale of the clusters. Therefore, the correlation length tells us the
characteristic linear size of the finite clusters present in the system, for values of p above
and below of p, [9]. With this in mind, the correlation length is defined using the following
equation,

52 o 2 Zs Rgszns
o Yosn,

This equation follows from the fact that 2R? is the average square distance between two
different clusters and that a site belongs to an s-cluster with probability n,s within which
it is then connected with s sites [8].

In order to observe how ¢ is effected when the value of p is changed, the values have
been calculated for increased p and are displayed in Figure 4.7(a). To ensure there are
no artifacts arising in the data, a single iterations worth of data (red dashed line) and
averaged data over 1,000 iterations (black solid line) have been plotted. The standard
deviation of the data over these 1,000 iterations has also been plotted to help gain an
insight into how much the data varies from run to run.

Comparing the single iteration data and the averaged data, the same general be-
haviour is displayed across the two. For small p, £ is small due to the system consisting
of only small isolated clusters. As p starts to increase, £ increases displaying exponential
growth as p — p_. This exponential growth implies that ¢ should diverge at p.. Here,
we can see that the data does not diverge, but peaks a finite point. This is solely due to
the finite nature of system. If the system size was increased and tended towards infinity,
the value of & would diverge off to infinity as well. This is a direct consequence of the
correlation length being highly influenced by the sparse structure of the spanning cluster
at p. and a higher probability of two occupied sites belonging to the same cluster. After
pe is reached, the spanning cluster is then no longer considered when calculating & due
to its influence in the divergence of £&. As a result of this, the correlation length rapidly
decreases after p surpasses p., with a slowly decreasing trend towards 0 as p tends towards
1. Here £ is also said to describe the typical radii of the largest hole in the spanning clus-
ter, as these are the remaining occupied sites. Considering the standard deviation of the
averaged data (blue solid line), there is little deviation for most p values. The deviation
then suddenly peaks as p. is reached, which is a result of the value of p. fluctuating as
each system is randomly generated. The standard deviation then diminishes once again
as & — 0. The peak in standard deviation supports the less severe and smoother peak of

(4.5)
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Figure 4.7: Linear plot (a) and loglog plot (b) of the correlation length, £ vs p. Figure
(a) shows & vs p for one iteration (red dashed line), averaged over 1,000 iterations (black
solid line) and the standard deviation over the 1,000 iterations (blue solid line). Figure
(b) shows the loglog plot of the averaged data of £ corresponding to the values for p — p,

shown (black solid line) and the critical exponent behaviour given by [p — p.|™3 (red
dashed line).

the averaged data. This is caused by the fluctuations in cluster sizes, in comparison to
the sharp peak of the single iteration.

Having explored the behaviour of ¢ over varying values of p, we wanted to determine
the universal scaling properties of £ as p — p.. This can be characterised by the following
proportionality,

o |p—pe|™ forp—pe, (4.6)

where v is the critical exponent and the known value for v = % for d = 2. This behaviour
indicates that there is exactly one length & which determines the critical behaviour ex-
hibited in an infinite system [13].

To confirm that £ exhibits this behaviour as p — p., a loglog plot has been generated
to compare the averaged data with the power law, characterised by the critical exponent
v for p — p.. This is shown in Figure 4.7(b). Looking at the averaged data (black solid
line), we can see there is a strong relationship with [p — p.|=3 (red dashed line). Even
when the misrepresentations of data, that are due to the averaging of fluctuations close to
Pe, are taken out of the consideration, the relationship is still strong. It is only when the
averaged data starts to tail off (due to the original data tending towards zero at a slower
rate than close to p.), that the relationship breaks down between the two. The clear
relationship displayed with the lower values of p — p., support the power law behaviour
characterised by v, and hence justifying the results obtained through the model.

Having established that & = oo for p = p., we are able to proceed and explore that
fractal properties of the spanning cluster.
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4.2.4 Fractal Dimension

In Section 4.2.3, the radius of gyration and correlation length were introduced. It is with
the use of these characteristics that the fractal dimension of the spanning cluster can be
addressed.

Aforementioned throughout the report, the spanning cluster has a very sparse and
tenuous structure when it first appears. Recalling the random network description in
the introduction, we know that the removal of a single site can be detrimental to it’s
connectivity. At this point, i.e. p = p., the spanning cluster is an example of a fractal
and presents ‘holes’ and ‘cracks’ in its structure not only at first glance but on all length
scales. To explore this in more detail, the idea of self-similarity will be discussed.

The initial spanning cluster displays an internal fractal geometry which is demon-
strated through the density of the spanning cluster’s dependence on the length scale [8].
In order to highlight this dependence, the mean mass of the cluster calculated within a
circle of radius r is considered. This is denoted by M (r). Through the use of M(r), a
formal definition of the fractal geometry of the clusters is given through the following
equation,

dy

f
My~ {7t <S (4.7)
rd, forr > €&

Here r is the radius of the circle that M(r) is measured in, d; is the fractal dimension
and d is the Euclidean dimension. The known result for dy = % for d = 2 [13].

Equation (4.7) tells us that close to p. for r < ¢, the finite clusters and spanning
cluster are self-similar and are expressed by the power law behaviour of the fractal dimen-
sion rq4,. Here ¢ is the characteristic length that, when crossed, determines critical and
non-critical behaviour [13]. This self-similarity can be observed in Figure 4.8.

Figure 4.8(a) displays the spanning cluster present in a 10,000 x 10,000 system at
p = 0.5932 (close to p. due to the random nature of the system). The spanning cluster at
this length scale is seen to be full of ‘holes” and ‘cracks’, which is a base characteristic of
fractal behaviour. Taking a smaller section of this image and magnifying it to the original
cluster size (shown in Figure 4.8(b)), the ‘holes’ and ‘cracks’ are still as prevalent across
the image. Repeating this method twice more, shown in Figure 4.8(c) and 4.8(d), the
characteristic is not lost and when comparing them with the original spanning cluster,
especially if the scales were removed, it is difficult to distinguish between them. Here,
exploring a range in which the images are still within an acceptable resolution, has resulted
in the same characteristic behaviour being exhibited in each case. Unfortunately, it has
not been possible to create further magnified images, due to loss of resolution. However
as the size of the system is increased, particularly tending towards infinity, the number of
images that are able to be produced increases, all of which would display the discussed
behaviour.

The self-similarity demonstrated in Figure 4.8, results in the clusters being charac-
terised by the fractal dimension for r < £. This identifies that, particularly at p = p.,
nearly all the occupied sites belong to the spanning cluster’s infinite network and nearly
all of the unoccupied sites are part of an infinite network of ‘connected’ unoccupied sites
[8]. This presents the distribution of a large cluster along with a large hole/s that are
connected by the linear size of the finite clusters, with regards to the correlation length
&, When p > p. the remaining small isolated clusters appear quite homogeneous as
the ‘holes’ of the spanning cluster. Overall, this concludes that the clusters are typically
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Figure 4.8: Original (a) and rescaled ((b), (c) and (d)) images of the spanning cluster in
a 10,000 x 10,000 system to demonstrate the spanning cluster’s fractal properties.

homogeneous on length scales r > ¢ and are proliferate with holes for length scales r < £.

After reviewing the behaviour of the fractal dimension of the system above, it is
necessary to consider the fractal properties for our model. In order to do this, the variable
described as the number of occupied sites within a circle of radius r, denoted by N,, is
introduced. Monitoring the effect of increasing the radius r for several probabilities is
displayed in Figure 4.9.

Focusing attention on the five probabilities shown in Figure 4.9, namely p =0.2,
0.4, 0.6, 0.8 and 1, it can be see that NNV, increases as p is increased. For low p values,
displayed here by p = 0.2 and p = 0.4 (the green and maroon lines respectively), N, is
very small and never surpasses over 200 for any particular value of r. Comparing this
to the higher values of p, i.e. p > p., N, displays more parabolic behaviour, with p = 1
showing similarity to 72 at first glance.

Examining the power law behaviour of the probabilities, a loglog plot of the data
was considered. Figure 4.10(a) shows the loglog plot for all the probabilities. From this
plot, the behaviour of p = 0.2 (green line) and p = 0.4 (purple line) can be determined,
concluding that no power law behaviour is displayed. This is due to the large number
of small isolated clusters within the system which causes no two occupied sites to ever
be too far apart. Even for p = 0.4, where the average cluster sizes has increased, no
characteristic power law behaviour is displayed. In contrast to this, there is p = 0.6 (blue

Emma Jones 30



CHAPTER 4. PERCOLATION IN THE ABSENCE OF OBSTACLES

x 10
8
7t ———p=02
——p=04
6f p=0.6
p=0.8
5t p=1
N
r 4t
3 L
2 L
1 L
0 . . .
0 1000 2000 3000 4000 5000

Figure 4.9: Number of occupied sites with radius r, N, vs r for several probabilities,
namely p = 0.2,0.4,0.6,0.8 and 1, which are represented by the green, maroon, blue, red
and black lines respectively.

line), p = 0.8 (red line) and p = 1 (black line). All three of these probabilities show linear
increasing behaviour on the loglog plot which implies power law behaviour within the
original data (exhibited in Figure 4.9). Isolating these three probabilities, allows further
analysis of the behaviour to take place.

Observing the initial behaviour of all three probabilities, a tail in the data is notice-
able. These uncharacteristic tails are due to the discretised nature of the system. The
use of radii on a square grid produces oscillations in the number of sites included in each
circle. This is further accentuated by the binning method used to quantify the data. The
number of sites in the bins with small radii is much smaller than the catchment for larger
radii, hence resulting in less data being averaged and causing more deviation at low r.
The calculations for NNV, were repeated for 10, 000 x 10, 000 to confirm the tail is not a lack
of data or accuracy. The presence of the tail in a 10,000 x 10,000 system and at p = 1
confirms that it is not due to statistic uncertainty. For p = 1, all the sites in the system
are occupied and belong to the spanning cluster, with no number of iterations changing
this behaviour.

Taking the tail out of the consideration, the general linear increasing trend can be
observed. Considering p = 1 (black solid line) first, we know that all the sites in the
system are occupied at this point and hence are part of the spanning cluster. Examining
the 2D system that we are in, taking circles of radii r produces an area of 27r. With
all the sites occupied, this will result in a parabola curve which is displayed in Figure
4.9. Looking at the loglog plot for this, a gradient of 2 is expected. In order to deduce
if this behaviour is present here, r? has been plotted in Figure 4.10(b) (blue dotted line).
Comparing the behaviour of N, vs r for p = 1 and r?, it apparent that there is a close
relationship between the two as r increases. Once again, due to the discretised nature
of the system, the relationship is not extended across all the data, however it is still
apparent. Having confirmed the expected behaviour for p = 1, demonstrated through the
above reasoning and Equation (4.7) with d = 2, p = 0.6 will now be considered.

Looking at the loglog plot N, vs r for p = 0.6, we can gain an insight into the
behaviour of the occupied site at the closest value to p. the increments used will allow. At
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Figure 4.10: Loglog plots of N, vs r in order to deduce the fractal dimension. Figure (a)
shows the loglog plots of N, vs r for five probabilities, namely p = 0.2,0.4,0.6,0.8 and 1,
which are represented by the green, maroon, blue, red and black lines respectively. Figure
(b) displays the loglog plots of N, vs r for p = 0.6,0.8 and 1 (once again represented by
the blue, red and black lines respectively) along with r* (blue dotted line) to exhibit the
expected behaviour at p =1 and ris (black dotted line) to exhibit the fractal dimension
present at p = 0.6.

this value of p, the spanning cluster will have a sparse structure implying it is most likely
to exhibit fractal characteristics. Recalling the known value of v, the fractal dimension is
shown by . Therefore, in addition to p = 0.6, r# has also been plotted in Figure 4.10(b)
(black dotted line). Comparing the two lines, there is a strong relationship between them
in an intermediary range between the end of the tail and the slight increase in the data
at the end. The strong relationship within this range signifies the spanning cluster at
p = 0.6, and more importantly at p = p., boasts a fractal dimension of %. Recalling the
spanning cluster shown in Figure 4.8, this conclusion is demonstrated visually.

Having established the fractal dimension for model, the use of this may be being ques-
tioned. Why is the fractal dimension or having fractal properties useful? As mentionned
in the previous sections, there are a variety of real-life applications for percolation theory,
from networks such as airline routes to modelling the spread of forest fires. By quantifying
the fractal dimension of the clusters on all length scales, described in Equation (4.7), the
behaviour of the system can be further understood and applied. An example of this is
used when calculating the average concentration of oil in rocks, which is frequently used
in oil extraction. Through the use of the fractal dimension, the size and sparsity of the
clusters (i.e. holes and pockets of oil in the rock) can be deduced and the concentration
of oil can be estimated. This facilitates the decisions made on which route of extraction
is to be used [8].
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Chapter 5

Percolation in the Presence of Obsta-
cles

In Chapters 2 and 4, systems of regular shapes and sizes were considered and results
regarding them have been discussed. Using these types of systems is useful in gaining
understanding into the critical behaviour displayed, however these types of systems are
not typically found throughout nature.

Considering percolation theory throughout nature gives rise to continuum percolation
which is said to be the most natural example of percolation theory. Unlike site, bond and
site-bond percolation, all of which arise in systems formed from different types of lattices,
continuum percolation describes the percolation of points that are randomly positioned
throughout some continuous space [1]. An example of the use of continuum percolation
is typically used in the description of porous materials.

In order to find a middle ground between the two considerably different types of sys-
tems, and make the systems more applicable to real life, obstacles will now be introduced
into the system. Although this seems like an obscure idea, it provides a useful insight into
modelling disrupted systems which widely occur throughout nature. Considering this in
terms of an application of percolation theory, the spread of forest fires can be reduced
through the strategic cutting down of trees within the forest. Through cutting down care-
fully selected trees, obstacles are being introduced into the system, i.e. the forest. This
causes disruptions in its ability to percolate which could then reduce the fire’s ability to
spread.

In this Chapter, the focus will be shifted to evaluate how introducing these obstacles
into the system affects the system’s ability to percolate. Through this, any changes in the
percolation threshold will be discussed. As before, a 1,000 x 1,000 square system will be
used to simulate and generate results.

5.1 Introducing Obstacles into the System

Obstacles arise throughout nature in a large array of shapes, sizes and numbers. In the
interest of generating clear results from the influence of the obstacles, identical square
obstacles have been introduced at regular intervals throughout the system. This provides
a basis of analysis upon which the idea can be built upon. For example, by randomly
generating the position of the obstacles along with changing the shape and sizes of them.
Although this does not provide a direct insight into obstacles that occur throughout
nature, it builds a foundation of understanding.

Before the obstacles are introduced into the system, two variables need to be in-
troduced so the characteristics of the obstacles can be determined. To characterise the
obstacles in terms of a more generally applicable variable, the width of the square obsta-
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Figure 5.1: System with obstacles displaying the parameters that are used. Here 2r,,
is the width of the obstacle and D is the distance between each of the obstacles or the
obstacle and the boundary.

cles is denoted by 2r,, where r,, denotes the half-width of the obstacle. In addition to
this, the distance between the obstacles is denoted by D. Although this will not be used
in much detail here, apart from to ensure that the obstacles are regularly positioned, D
would play a larger role when the obstacles were randomly positioned. To demonstrate
both of these variables visually, a system with obstacles included has been generated in
Figure 5.2. Here, sixteen obstacles have been placed into the system. As a result of each
of the obstacles characteristics (i.e. shape, size, position and number) being liable to vary
in large amounts, the number, shape and positioning will be fixed from here on in. This is
to allow the effect of changing the size of the obstacles to be observed without any other
influence.

Having established the characteristics of the obstacles used in the model, the effect
of changing r,, can now be observed. Starting at r,, = 20 and increasing the value in
3 increments of 40, the systems behaviour has been monitored for a given probability,
namely p = 0.6. Highlighting the biggest cluster in red, the remaining occupied sites in
black and the unoccupied sites in white (as introduced in Chapter 2), the effect of the

(a) (b)

Figure 5.2: Introduction of obstacles of different radii into a 1,000 x 1,000 system. FEx-
ample radii are rp, = 20 (a), ro,, = 60 (b) and r,, = 100 (c). All examples are shown for
p = 0.6.
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obstacles on the system can be observed. The results of this are shown in Figure 5.3. For
rop = 20, the ability of the biggest cluster to percolate across the system does not seem
to be hindered. However, as r,, is increased to 60, the presence of the obstacles starts to
take effect. By highlighting the biggest cluster in red, we can see that the biggest cluster
is no longer a spanning cluster at p = 0.6, which would normally be expected. Increasing
rop further, to r,, = 100, results in the biggest cluster reducing even more in size. This
concludes that a spanning cluster is much less probable at p = 0.6.

With an increase in r,, causing a decrease in the size of the biggest cluster across a
given p, it would now be beneficial to determine how changing p effects the behaviour of
the system and the influence the obstacles have on the value of p..

5.2 The Influence of Obstacles on p.

Before determining the effect of introducing obstacles on the value of p., we will consider
how increasing p effects the size of the biggest cluster for a given obstacle size.

Using our knowledge of p. (see Section 4.1), the probabilities used here are aimed
to be more directly around the known value of p.. Considering the effect of changing p
on a system with larger sized obstacles to demonstrate a more extreme case, r,, = 100,
has been used. With this in mind, the system has been plotted for three probabilities,
p=0.5, p=0.6 and p = 0.7, and is displayed in Figure 5.3.

Looking at p = 0.5 (Figure 5.3(a)), we can see that it displays similar behaviour
to the standard system, although the biggest cluster is slightly smaller. Increasing the
probability to p = 0.6 (Figure 5.3(b)), the biggest cluster has increased in size however
does not span across the system. This is a contrast to the expected behaviour of the
standard system at p = 0.6. Comparing this to p = 0.7 (Figure 5.3(c)), the biggest
cluster has transformed into a spanning cluster, exhibiting the same behaviour as the
standard system at this value of p. This highlights that the transition between finite
clusters and the spanning cluster has shifted, with the percolation threshold now sitting
somewhere between p = 0.6 and p = 0.7.

(a)

Figure 5.3: The effect of changing p on a 1,000 x 1,000 system containing obstacles with
a radius r,, = 100. Three probabilities are used to show the effect, namely p = 0.5 (a),
p=0.6 (b) and p = 0.7 (¢).

Despite the characteristic behaviour of the clusters and system as a whole being
similar, shown here by the occurrence of a spanning cluster, the obstacles have effected
the quantitative value of one of the fundamental results, p.. To confirm this alteration,
the percolation threshold will be re-evaluated. To calculate this, we recall the variable
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Lnaz, which is defined as the maximum dimension (i.e. height or width) of the biggest
cluster present in the system at the chosen probability. In order to understand how L,
changes for the obstacle ridden system, it was calculated at each value of p. The results
were recorded for one iteration and for the averaged data over 1,000 iterations. These
results can be seen in Figure 5.4.
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Figure 5.4: L4, vs p for one iteration (a) and averaged over 1,000 iterations (b) for a
system with obstacles with rp,, = 100. Figure (a) shows L4, vs p (red line) highlighting
the value of p. (black dotted line). Figure (b) shows the averaged data for 100 iterations
for Lye. vs p (red line) along with the standard deviation of L,,,, (blue line), the value of
pe (black dotted line) and the standard deviation of p. over all iterations (magenta dotted
lines)

Considering the results for one iteration, shown in Figure 5.4(a), the data displays a
larger amount of noise than the standard system data (Figure 4.2) for p < p.. However a
general increasing trend can still be seen. Due to the value of p. increasing, the gradual
increasing trend is stretched to higher values of p before the characteristic sharp increase,
within close proximity of p., occurs. After p. has been reached, L,,,, plateaus as the
maximum dimension of the system has been reached (in this case 1,000). For this single
iteration, p. has been found to be 0.64. In order to reduce the statistical uncertainty of
this data, 1,000 iterations were performed and the averaged data is displayed in Figure
5.4(b).

The figure shows a much smoother curve that follows a similar trend as Figure 5.4(a).
However, the averaged data does exhibit some different behaviour. Considering the typical
sharp increase in Ly, close to p. and comparing this to the increase seen in Figure 5.4(b),
we can see the sharp increase has been surpressed. The sharp increase now occurs over a
large range just below p., with L,,., tending towards the maximum dimension as p — p.,
instead of the typical abrupt transition. To gain more of an insight into this, the standard
deviation over the 1,000 iterations was also calculated. This is represented by the blue
solid line. Concentrating on the standard deviation close to p., as elsewhere the standard
deviation is very small, we can see the peak in the standard deviation occurs approximately
0.04 away from p,, instead of immediately before p. as would be expected. This expected
behaviour is related to the behaviour shown for the standard system in Figure 4.2. To
explain this behaviour, the spanning cluster must be considered. The removal of a single
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site of the spanning cluster at p. can be detrimental to it’s connectivity. Consequently, by
introducing multiple obstacles in the system, such sites are being removed which causes
larger deviations in the connectivity and hence fluctuations in the values that have been
obtained for p.. As the value of p,. is varying more, the standard deviation is higher but is
spread over a larger range. From this point onwards, the deviation then quickly decreases
back down to zero as L,,., plateaus, due to the maximum dimension being reached.

Figure 5.4 also displays the values of p, found from the simulations (see the black
dotted lines on both images). In Figure 5.4(a), p. was found to be 0.64. Comparing this
with the value of p. found for the averaged data in Figure 5.4(b), the deviation discussed
above is brought into context. This is further supported by the standard deviation of p.
over the 1,000 iterations, shown by the magenta dotted lines in Figure 5.4(b). After the
deviations were accounted for and averaged, it was found that p. = 0.66 for obstacles with
rop = 100. This varies significantly from the standard system p. result of p. = 0.592746,
when taking into consideraton the critical behaviour shown either side of this value.

Having explored the effect of obstacles of radius r,, = 100 on p., it follows to consider
the effect changing r,, has. With a view of reviewing p. for each r,, chosen, the values
of ro that were used were 0 - 100 (increasing in increments of 20), 100 - 120 (increasing
in increments of 5) and 124 (as this is the maximum radii possible for a system with
size L = 1,000). Averaging each system over multiple iterations, to reduce statistical
uncertainty and artifacts, the results are shown in Figure 5.5.

Using p. = 0.6 for ry,, = 0 (obtained in Section 4.1.1) as a comparison the influence
of increasing r,, can be determined. Examining lower values of r., i.e. 20, 40 and 60,
there is very little deviation away from the known p. result. However at r,, = 80, the
behaviour seems to change causing an increase in p. and showing a tendency to behave
as r,, = 100 did above. Subsequently, from this point onwards, p. begins to increase.
This occurs gradually at first but grows rapidly in speed tending towards 1 as r,, — 124.
The percolation threshold finally reaches 1 when 7, = 124, which due to the size of the
system, leaves a one site thick border around the edge. This reduces down to simulating
percolation theory in 1D. The known result for this is p = 1, which therefore supports the
simulation.
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Figure 5.5: Comparing p. for increasing r,;, to determine the effect the obstacles have on
the behaviour of the system.
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CHAPTER 5. PERCOLATION IN THE PRESENCE OF OBSTACLES

Through this comparison, the effect of introducing obstacles into the system and
increasing their size can be observed. It has been found that the same fundamental
behaviour is exhibited by the system for low values of r, however there is a point, that
could be thought of as a ‘critical value’ of r.,, at which p. begins to change and increase,
deviating away from the standard system results. This presents a useful insight into a
slightly more natural approach to percolation theory and provides a basis of further study
into the area.

Emma Jones 38



Chapter 6

Conclusion

The purpose of this report can be summarised into three main areas. Firstly, to introduce
the reader into percolation theory, covering the key concepts that are needed to create
the system. This is proceeded by the exploration of the fundamental characteristics
and universal scaling behaviour of the conventional, obstacle-free, percolating system.
Finally moving onto the introduction of obstacles into the system and their effect on the
percolation properties.

Chapter 2 began by introducing the concepts of percolation theory. The tools used
to create the system were introduced and the key features were explored, highlighting the
importance of the spanning cluster. This was followed by the consideration of the compu-
tational cost of simulating each system in Chapter 3. The algorithm of the bwconncomp
function was explained, as this is the basis of the Matlab code, and the variable choices
were clarified. The chapter drew to a close through considering the computational cost
of varying the system size.

The concepts introduced in Chapter 2 were built upon in Chapter 4 obtaining an
understanding about the behaviour of the system. The calculation of the percolation
threshold introduced the idea of critical behaviour and confirmed the first generated result
of the simulated systems. Providing this basis of knowledge, the attention was then shifted
to the universal scaling behaviour. Critical exponents were explained and the power law
behaviour of properties, such as the average cluster size, were formalised.

The intention of Chapter 5 was to recognise a more naturally occurring percolation
theory and explore an aspect of percolation theory which, to our knowledge, has not been
considered before. The introduction of obstacles into the system was considered in a
variety of ways, however one route was chosen to focus on. Utilising the ideas explored
in Section 4.1.1, the percolation threshold was recalculated and the effects the obstacles
caused were evaluated, determining an increase in p.. Through this initial evaluation, a
foundation has been formed for further work. The first aim is to explore the effect of the
obstacles on the universal scaling properties discussed in Chapter 4, such as the average
cluster size and fractal dimension. This will then develop into the gradual inclusion of
changes in the numbers, shapes, sizes and position of the obstacles, into the model, which
provides an amplitude of possibilities into the understanding of networks used across the
world. Percolation theory is a vast subject within which the possibilities are endless.
From oil extraction to the spread of disease, these models aim to provide a realistic
representation of real-life systems, in the hope of producing more accurate results.

39



Bibliography

[1]

[10]

[11]

[12]

[13]

Callaway, D. S., Newman, M.E.J, Strogatz, S. H., Watts, D.J. Network, Robustness
and Fragility: Percolation on Random Graphs, Physical Review Letters, Vol.85(25),
American Physical Society, Dec 2000.

Flory, P. J., Molecular Size Distribution in Three Dimensional Polymers I. Gelation,
Journal of American Chemical Society, Vol. 63, pg. 3083-3090, 1941.

Stockmayer, W. H, Theory of Molecular Size Distribution and Gel Formation in
Branched Polymers II. General Cross Linking, Journal of Chemical Physics, Vol.
12(4), pg.125-131, 1944.

Broadbent, S., Hammersley, J., Percolation processes I. Crystals and mazes, Proceedings
of the Cambridge Philosophical Society, Vol. 53, pg. 629-641, 1957.

OpenFlights, Airport, airline and route data, OpenFlights.org, Online Resource, Web-
page. http://openflights.org/data.html

Dobson, R., Injection of jelly that can ease back pain - and fix a slipped disc, Mail on
Sunday, Mail Online, Online Resource, Webpage, Aug 2013.
http://www.dailymail.co.uk/health/article-2402671 /Injection-jelly-ease-pain—fix-
slipped-disk.html

Smart, V., Mearns and Gill - Offshore Achievement Awards 2012, Smart Design, Blog
entry, Online Resource, Webpage, Nov 2011.
http://imgkid.com/porosity-of-rocks.shtml

Stauffer, D., Aharony, A., Introduction to Percolation Theory, Second Edition, Taylor
& Francis Ltd, London, 1991.

Bunde, A., Kantelhardt, J. W., Introduction to Percolation Theory (Part A), Diffusion
in Condensed Matter, edited by J. Karger and R. Haberlandt, pg. 340-352, Vieweg
Verlag, Wiesbaden, 1998.

Austin, D., Percolation: Slipping through the Cracks, American Mathematical Society
Feature Column, Online Resource, Webpage.
http:\\www.ams.org/samplings/feature-column/fcarc-percolation

Haralick, R. M., Shapiro, L.G., Computer and Robot Vision, Vol. 1, Addison-Wesley,
USA, 1992.

Hoshen, J., Kopleman, R., Percolation and cluster distribution. I. Cluster multiple la-
beling technique and critical concentration algorithm*, Physcial Review B, Vol. 14(8),
pg.3438-3445, American Physical Society, Oct 1976.

Christensen, K., Percolation Theory, Lecture Notes, Imperial College London, Online
Resource, Webpage, Oct 2002.
http:\ \www.mit.edu/~levitov/8.334 /notes/percol_notes.pdf

40



[14] Christensen, K., Critical Phenomena and Percolation Theory III, Lecture Slides, Joint
CRM-Imperial College School and Workshop, Complexity & Networks Group Impe-
rial College London, Barcelona, Online Resource, Webpage, April 2013.
http:\\www.crm.cat/en/Activities/Documents/Lecture03-web.pdf

[15] Christensen, K., Moloney, N. R., Complexity and Criticality, Imperial College Press
Advanced Physics Texts Vol. 1, Imperial College Press, London, 2005.

[16] Giordano, N., Introduction to Percolation, Lecture Slides, Random Media Summer
School, Purdue University, Online Resource, Webpage, July 2006.
http:\ \www.physics.purdue.edu/flow /percolation.pdf

41



