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ISABELLA HATFIELD

Abstract. In Randomised Clinical Trials, the initial variance estimate required to calculate a sample
size is often misspecified using fixed sample size methods. Sample size re-estimation trials make use
of emerging information to modify the sample size of a trial, with an aim to save the power of the
trial compared to conventional fixed-sample methods. The aim of the present dissertation was to
simulate and analyse sample size re-estimation trials, where the initial variance was smaller than the
true variance, comparing the results and conclusions with those of the original fixed sample trials. It
was found that sample size re-estimation is an effective method of achieving an appropriate sample
size. However, this method is not without limitations and these should be weighed up against the
possible benefits when designing a clinical trial.
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1. Introduction

1.1. Randomised Clinical Trials.

Clinical trials have become a central component in the assessment of new therapies. Hundreds of

new treatments are approved every year for development and manufacturing around the world, to

treat a variety of different diseases. Typically in Phase 2 and Phase 3 studies, Randomised Clinical

Trials (RCTs) are used to reduce bias and ensure the work is robust and of maximum benefit to the

patient.

1.2. History.

An RCT is an unbiased and scientific way of testing treatments, in which randomization is used

to allocate treatments to patients. One of the first published RCTs was in 1948 by Bradford Hill,

(Bradford Hill, 1948). It involved the use of streptomycin as a treatment for pulmonary tuberculosis.

RCTs became standard procedure in medical experiments using human subjects, and strict regula-

tions were created, such as the Declaration of Helsinki (1964) (Association, 2013), to make them an

ethical method for analysing prospective treatments. Many rules are now in place regarding RCT

design to ensure effective conduct, including rules for derivation of sample size.

1.3. Sample Size.

To put the aim of this report into context it is important to understand the function of sample

size, with particular reference to its interdependence with other factors, in determining the value of

RCTs.

1.3.1. Definition.

Sample size means the number of participants we should intend to participate in an RCT. Determining

sample size is one of the first and most important steps in designing a successful study. The ICH E9

(1998) (Phillips and Haudiquet, 2003) guideline states that: ‘The number of subjects in a clinical trial

should always be large enough to provide a reliable answer to the questions addressed. This number is

usually determined by the primary objective of the trial.’ For the purpose of this dissertation, sample

size, n, is defined as the number of patients in each group, where the groups are equally sized. It

is important to note that if the intended sample size is incorrect it can have serious consequences,

ultimately affecting the ‘power’ of the trial.

The power of a trial means its ability to reveal a difference between treatments when such a difference

exists. Power is a function of the difference in treatment means and it should be large enough when
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the true treatment difference is important. Without sufficient power, it is possible that the treatment

difference sought will not be identified in the trial. Power is determined by study design, of which

sample size is a critical part. In fact, the power of a trial and sample size used within it are

interdependent; we choose sample size to determine how powerful we want a trial to be, and for a

trial to have a reasonable chance of answering the research question it addresses, the sample size must

be large enough.So the power of a trial is maintained by choosing an appropriate sample size.

The determination of sample size is often referred to as ‘power analysis’ (Shein-Chung Chow, 2008). If

the number of patients recruited to the trial is too small, this leads to the trial being underpowered,

which means that it may be impossible to detect important differences between the treatments.

Conversely, if too many patients are recruited, the trial is overpowered, which may have ethical

implications if the study’s outcomes are met before the end of the trial and some participants must

still complete treatment for what might have been revealed as an inferior treatment.

1.3.2. Power Analysis.

Power, 1 − β, is a function of the Type II error, β. A Type II error occurs when, for example, a

treatment is claimed to be ineffective when it is, in fact effective. Conversely, a Type I error, α, occurs

when the treatment is claimed to be effective when it is not. One way to derive the power of a trial is

by the testing of hypothesis of new treatment difference. Where the null hypothesis is accepted when

no important difference between the means is identified and the alternative hypothesis is accepted

when an important difference between the means is identified. So the Type II error occurs under the

alternative hypothesis and the Type I error occurs under the null hypothesis.

Type II errors are a function of sample size and, consequently, we set sample size in RCT design

based on what we consider to be acceptable levels of such errors. It is important to set a sample size

which specifies the Type II error when the true difference is the minimal clinical difference.

Figure 1 illustrates this for a Normal distribution with variance σ2 = 1 and with 4 =the minimal

clinical difference = 0.1, it shows the effect different sample sizes will have on the power of a trial. So

a sample size of 1,600 patients was required to obtain 80% power. You can see that power decreases

with a decrease in sample size however, dropping to just 20% when the sample size is 250. This

demonstrates the importance of calculating an appropriate sample size. In common practice, the

choice of power is either 80% or 90%.

Normal Outcomes.

So far the methods explained are general and can be applied to all types of outcome- normal, binary,
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Figure 1. The effect of sample size on power, where 4 = 0.1 and σ2 = 1

continuous, etc. From this point forwards, the dissertation will only focus on normally distributed

outcomes.

1.3.3. Sample Size Equation.

In order to determine an adequate sample size, the following values must be specified:

• a two sided Type I error, α, that the investigator can tolerate. Generally this is set at 5%.

• a clinically important treatment difference, 4. This is the difference between treatment arms

that the trial seeks to identify in order to conclude that it is effective. It is seen as acceptable

to miss any difference which is less than 4.The larger the treatment difference sought, the

smaller the sample size required to identify it, and vice versa.

• a desired power, 1 − β. This reflects the chance of correctly detecting a difference, when a

difference of 4 does exist.

A sample size equation is used to provide an estimate for the required sample of a trial. Different

equations are used in different circumstances. This report will investigate the simplest case for

normal outcomes, using the assumption that the groups are equally sized. For these circumstances,

also requied is:

• an estimate of the standard deviation of the treatment difference, σ2. When this is small,

detection of a treatment difference will require a smaller sample size.
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This sample size equation is:

(1) n =
2σ2(zα

2
+ zβ)2

42

where n is the sample size for each group 4 is treatment difference, zα/2 is such that Pr(Z > zα/2) =

α/2, (1.96 for a two-sided α of 5%), and Pr(Z > zβ) = β ( 0.84 for 80% power) where Z ∼ N(0, 1)

and σ2 the common variance in both treatment groups.

1.3.4. Estimating σ2.

To use the sample size equation, information on some of the parameters of the trial is required.

We specify 4 when discussing the principal aim of the trial. However, we also need a value for

an estimate of the variance of the outcome, σ2. This can be difficult to determine, especially when

there is a lack of information regarding the outcome variable. Which is, in turn, problematic as

misspecification of variance can have a sizeable impact on the power of the trial.

Figure 2. Effect of overestimation of Variance, with 4 = 0.1, σ2 = 1 and initial
estimation of σ2 = 2. At 80% power; less than the minimum clincal difference between
treatment means is identified

If the variance is over estimated, the trial is over powered. In Figure 2, the target power of 0.8 is

reached prematurely, suggesting that the number of patients recruited would have been unnecessarily

large, which has ethical implications.

Conversely, in Figure 3, the target power is not reached because of the underestimation of vari-

ance, so not enough patients would be recruited to determine the treatment effect with adequate

variance.
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Figure 3. Effect of underestimation of Variance, , when 4 = 0.1, σ2 = 1 and ini-
tial estimation of σ2 = 0.5. At 80% power; the minimum clinical difference between
treatment means is not identified

These are hurdles that most investigators face when planning trials. Variance specification has a

sizeable influence on trial integrity and it is vital that values are as accurate as possible

1.3.5. Example.

There have been a number of instances of trials failing due to variance estimates being too low. When

this happens, trials fail to identify a meaningful difference between treatments. A trial run by Julious

(2004) found a misspecification of variance led to a potentially significant treatment being deemed

ineffective. One of the key problems identified was the unexpectedly high variance of 47% observed,

which hugely exceeded the estimated 30%. If the variance had been estimated more accurately a

larger sample size would have been specified, increasing the power of the study and the likelihood of

an important trial result being identified.
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1.4. Aim of the Report.

Misestimation of variance is one of the major pitfalls of fixed sample size design. So, in a fixed sample

size design, an estimate of sample size is derived using the sample size equation and data is collected

until this is achieved. The sample is labeled ‘fixed’ because once the initial estimate is made, this

does not change. Alternative methods, including sample size re-estimation, have been created as a

solution to these pitfalls.

This paper aims to compare some of the relative merits and limitations of fixed sample size and

sample size re-estimation methods.

It will achieve this by:

• Performing an audit of fixed sample size trials

• Exploring the statistical properties of the fixed sample size design

• Conducting a literature review, to provide an overview of the various methods of sample size

re-estimation

• Conducting simulations of both sample size re-estimation and fixed sample designs, to provide

a direct comparison.
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2. Investigation into estimation of Variance: An Audit

2.1. Aims of Investigation.

This Audit set out to examine the characteristics of sample size calculation of completed and pub-

lished trials which used fixed, sample size design.

More specifically, the aims of the audit were as follows:

• To identify the methods used in such trials for producing an initial estimate of variance for

the sample size calculation

• To determine how successfully these methods worked

• To examine characteristics of studies which used different ways to obtain the initial variances

• To discuss the transparency of the different methods

2.2. Methods.

2.2.1. Data Collection.

The archives of four separate journals were used to identify trials that had been completed and

published, and which had normally distributed outcomes. The journals used were:

(1) Heart http://heart.bmj.com/

(2) Thorax, http://thorax.bmj.com/

(3) Emergency Medicine, http://emj.bmj.com/

(4) Journal of emergency medicine, ttp://www.journals.elsevier.com/the-journal-of-emergency-

medicine/

The data was last accessed, 23 November, 2014. These journals were chosen because they were likely

to contain a large number of trials which had normally distributed outcomes. Journals focusing

on cancer trials were omitted, because their focus on reporting ‘time to’ survival outcomes was

considered less helpful to the present study. The search was conducted on 17th November 2014,

using key words ‘CLINICAL TRIALS’ in the title or research summary.

The search results were then sorted by their eligibility for further analysis, according to the criteria

set out below:

• They were randomised controlled trials
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• They were completed and published

• They had normally distributed primary outcomes

• They were of parallel design; as other designs used different sample size equations

• They were classified as interventional; no bioequivalence trials

• The participants were patients not healthy volunteers

• The trial was of classic design; no adaptive designs

Only trials that had been completed and published were included in the analysis, in order to get

the most valid impression of the sample sizes being used in informative trials, presented for scientific

readership. Trials conducted on healthy volunteers were not included, as these are not usually efficacy

studies.

Adaptive designs were not included, as these might include sample size re-estimation, which was not

the focus of the audit.

Data from trials in the preliminary literature search were exported to Excel, where relevant data was

captured. After the trials had been assessed against the inclusion criteria, the eligible examples were

imported to RStudio for analysis.

2.2.2. Data Extraction.

Data on the target sample size and any trial components that might influence it - such as funding

body, number of treatment arms and disease area - were collected. Information was extracted from

research articles on the journals’ databases, when this was available. To complement the published

articles search, an Internet search was also undertaken to locate any wider reporting of the trials and

to seek information which appeared to be missing from the published articles.

2.3. Results.

Applying the search term ‘CLINICAL TRIALS’ to the archives of the four selected journals yielded

4,579 studies over the time since the archives were created. The feasibility of filtering so many trials

was unrealistic, so it was decided that a subset of 40 trials from each archive would be collected.

These subsets were identified by sorting the trials according to citation -high to low - and the first

40 trials from each re-sorted archive were selected. After eliminating duplicates, removing studies

that did not meet the inclusion criteria and removing studies with no available data, a total of 47
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Figure 4. Flow diagram; the extraction and eligibility of data from each source

trials progressed to be analysed. ‘No available data’ refers to trials published with no information

regarding trial sample size, and neither was this available from other sources. Figure 4 illustrates

the flow of trials through the subset review.

2.3.1. Trial Characteristics.

Table 1 summarises the characteristics of the trials that met the inclusion criteria. The majority

of trials (n=41, 87.2%) consisted of two arms, one control treatment and one experimental treat-

ment.

Most of the trials (n =38 , 80.9%) were publicly funded, with the remaining trials being funded by

industry (n = 9, 19.1%).
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Journal
Heart Thorax E M J E M All
n % n % n % n % n %

Standard deviation, σ2 Provided 8 88.9 10 62.5 12 75.0 4 66.7 34 72.3
Not provided 1 11.1 6 37.5 4 25.0 2 33.3 13 27.7

Treatment difference, δ Provided 9 100.0 15 93.8 16 100.0 6 100.0 46 97.9
Not Provided 0 0.0 1 6.7 0 0.0 0 0.0 1 2.1

How estimate was made Provided 7 77.8 10 62.5 12 75.0 3 50.0 32 68.1
Not Provided 2 22.2 6 37.5 4 25.0 3 50.0 15 31.9

Funder Public 9 100.0 10 62.5 14 87.5 5 83.3 38 80.9
Private 0 0.0 6 37.5 2 12.5 1 16.7 9 19.1

Arms 2 9 100.0 15 93.8 12 75.0 5 83.3 41 87.2
3 0 0.0 0 0.0 4 25.0 1 16.7 5 10.6
4 0 0.0 1 6.3 0 0.0 0 0.0 1 2.1

Table 1. Trial characteristics of the 47 studies included in the final analysis

The majority of trials (n=34, 72.3%) stated the initial standard deviation and nearly all (n=46,

97.9%) stated the important treatment difference, 4. How the sample size was calulated was stated

less frequently (n=32, 68.1%).

Figure 5. The number of trials that produced the same sample size as the equation
used in this dissertation

2.3.2. Assessing the Sample Size Equation.

In the case of trials stating the necessary details, a standard sample size equation was calculated,

using a function in R, to see if this verified the actual sample size used in each case. The majority of

actual sample sizes (n=29, 61.7%) were not verified by the sample size equation, as shown in Figure

5.
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Figure 6. Designed power of the 47 trials included in the analysis

Figure 7. Comparison of sample size equation to derived sample size of the 47 trial
in the final analysis

Sample sizes calculated specifically using Sample Size Equation 1 (see Section 1.3.3) were then

compared to the sample sizes derived by the trials. We can see from data presented in Figure 7,

that results were similar in the majority of trials. The sample size equation derived a, roughly, 75%

smaller sample size than that estimated in two of the papers and a 30% bigger sample size in another.

Although not extreme, these discrepencies could have an important effect on the power.
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2.3.3. Power used in Studies.

The power of the equation was stated in every trial analysed. Most trials (n=32, 68.1%) used 80%

power. However, a range from 80% to 99% was observed all the trials. Figure 6 shows the power

used in the trials.

2.3.4. Use of Sample size.

Figure 8. Ratio of sample size estimated over used sample size for the 50 trials used
in the final analysis

Frequently, trials were seen to estimate a sample size, but not go on to recruit the sample size stated.

Conversely, some studies over recruit to compensate for dropout. It is common practice in RCTs

to recruit up to 10% more subjects than required (Watson and Torgerson, 2006), because of the

probability that not all subjects will follow the trial through to analysis.

Other studies were found to have a smaller sample size than estimated. On further inspection, the

principal reason for this was problems with recruitment. In studies where there is a small population

to select from, such as rare diseases or when consent is difficult to obtain, it can often be difficult

to recruit the full sample size required, leading to loss of power in the trial. In Figure 8 we can see

that more studies were overpowered than underpowered in the audit, however, with one study using

nearly twice the estimated sample size. Some of the underpowered trials had a very small sample
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size, in comparison to the estimated size, causing these studies to lose validity. It was discovered

that the study with the least power in Figure 8 terminated early, due to poor recruitment.

2.3.5. Methods of Variance estimation.

Table 2 displays the source of information for initial variance of the trials observed in the audit. Out

of the 32 trials that gave information on how their initial values were obtained, the majority (n=20,

62.5%) cited previous trials, with the remaining estimates coming from pilot studies (n=5, 15.6%),

literature (n=5, 15.6%) and audits (n=2, 6.3%). To see how effective these methods were, the final

variance of each trial was compared to the estimated variance.

Figure 9. The source of information of initial variance

Journal
Heart Thorax EM JEM All

Missing 2 6 4 3 15
Audit 0 0 2 0 2
Previous trial 5 7 6 2 20
Literature 1 1 2 1 5
Pilot trial 1 2 2 0 5

Table 2. Where the parameters for sample size equation were derived from

In Figure 10 the estimated variances are mostly less than the real variances at the end of the

trials. It is hard to determine which source of variance estimation works best, as there were only a

limited number of trials in the audit. The ‘previous trial’ method produced a spread, where some

were accurate and others not, whilst all trials that used ‘literature’ to determine estimated variance

performed well. ‘Pilot studies’ had scattered results, with two performing satisfactorily and two not.

Thus pilot studies were not as accurate as expected. Rather than give a best source of information

our audit has given an idea of how these estimates are derived.
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Figure 10. Comparison of estimated variance and real variance

2.4. Discussion.

2.4.1. Under reporting.

Under reporting of the parameters used to derive sample size was an issue identified while reviewing

the trials. The standard deviation is frequently not reported, and so it is impossible to know how

the estimated sample size was derived. The power and Type I error were reported in every trial, and

treatment difference in all but one. However, why specific treatment differences were chosen is not

always stated. The sample size calculation used is not often stated, as most journal editors do not

make it a mandatory criterion for publication.

Many of the trials did not state what method of sample size derivation was used. There is an

important issue concerning the under reporting of statistical details in medical journals. It is often

not clear what statistics have been applied in published trials, and the missing information on sample

size calculation identified in this review is just one of numerous examples (Chan, 2008).

2.4.2. Sources of Information for initial parameters.

Literature and medical knowledge were some of the methods used to gain preliminary information

for design of the audited trials, with sources being medical journals and articles. Audits were also

conducted to estimate the treatment differences used in trials, particularly with reference to pain

scores.
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Information from previous trials was the most common method used to derive the parameters required

for sample size estimation and, where the trial was novel, pilot studies were often included to aid the

estimation.

In some cases, multiple previous trials were available, and so an average of the treatment difference

and standard deviation could be used as estimators. Alternatively, parameters from the largest trial

available were used. The number of participants in pilot trials was small (ranging from 5-15 people)

in comparison to the number participating in full trials. It has been stated by Billingham et al

(2013) , from a previous audit review, that the median sample size for pilot and feasibility studies is

36 participants, which is relatively high compared to the numbers observed in this audit.

2.4.3. Insufficient pilot sample sizes.

On observation, the pilot trials did not perform as well as expected, seen in Figure 10. A pilot study

should, in theory, perform well as its design is the same as the trial being conducted, just with a

smaller sample size. However it can be proved that if the number of the patients in the pilot trial is

small, then the pilot trial will not provide a good estimator for the variance of the main trial. The

number of subjects in the pilot trials were 6,10,12 and 26.

The effect of using such small sample sizes can be assessed as follows.

We first note that the sample variance, s2 is distributed as,

s2 = σ2χ
2
ν

ν

where ν is the degrees of freedom and σ2 is the true unknown variance.

We can determine a 95% confidence interval from noting

(2) 0.95 = Pr(
χ2
ν:L

ν
<
s2

σ2
<
χ2
ν:U

ν
)

where χ2
ν:L and χ2

ν:U are the lower and upper limits of the interval respectively.

If we aim to have s2

σ2 in the interval
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[
1

1.1
, 1.1]

then the degrees of freedom required is ≈ 40 using the χ2 tables, so at least 40 patients are required

to make a pilot trial adequate. This is much bigger than the sample size of the studies observed in

the audit.

2.5. Limitations.

The limitations of this study include the fact that only 47 trials were analysed, which is a small

sample of data and may reduce the validity of the results. The search was carried out by just one

reviewer and was not repeated to check for accuracy, owing to time constraints.

2.6. Conclusion.

Most trials examined within the audit have stated treatment difference, power and Type I error.

However, standard deviation needs to be included more regularly. Derivation of these estimators

should also be explicitly stated, for clarity and for justification of sample size.

In this study it was found that most trials obtain these estimators from previous trials. The accuracy

of the sample size estimation is often not as good as statisticians would like, and it is suggested that

new methodology could be used, when inference around the variance is uncertain.
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3. Methods of Sample Size Re estimation

3.1. Internal or External Pilot?

It is clear from the results of the Audit in Section 2, that the external pilots in these studies did

not provide an accurate estimate of variance. George Cochran once said that ‘pilot studies would

often lead to regret’ (Wittes and Brittain, 1990). You could argue that, if an external pilot study

is significant, what is the point of a larger study? And if not significant, a larger study is a wasted

investment anyway. To follow this line of thinking, however, is to risk losing the wider insights that

might emerge from full size studies. Either way, many are of the opinion that external pilots are a

questionable use of time and resources.

Sample size re-estimation methods, however, use an internal pilot. By incorporating the pilot study

within a two stage trial design, data collected from it is not wasted. Instead, it informs the second

stage of the trial and allows for correction of inaccurate initial values.

3.2. Motivation for Sample Size Re estimation.

The Audit in Section 2 highlighted the need for sample size re-estimation methods, in trials where

the parameters are uncertain. Classical designs however, with fixed sample sizes, are still the most

common method used in clinical trials. These were designed by pioneering statisticians, including

Sir Ronald Fisher. His methods were based on agricultural research, where a large amount of time

is needed to see the outcome of experiments. Armitage (1993, as cited in (Jennison and Turnbull,

1999)) argued that statistical theory has evolved to require different methodology, for use in fields

like medical and industrial research, where outcomes are observed more quickly. Adaptive designs,

such as sample size re-estimation, have been developed to achieve more efficient methods, leading to

clinical gain. The need to improve the efficacy and effectiveness of the clinical development process

has also been recognized by regulatory bodies such as the Food and Drug Administration (FDA)

in America, and the European Medicines Agency (EMEA). They believe the design, conduct and

analysis of clinical trials is a key area for improvement. Note that the motive for investigating sample

size re-estimation in this report is to explore a way of avoiding the hazards of inaccurate estimation

of parameters; it is not about feasibility (where an external pilot might be more useful).

3.3. Basic Framework.

Sample size re-estimation is based on the following four steps:
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Figure 11. Illustration of internal pilot method

(1) The first step echoes the classical design described in Chapter 1. Estimates for the important

treatment difference and standard deviation are required, and Type I error and power need

to be set to get an initial estimate of the sample size. These parameters are then put into

the sample size equation:

n0 =
2S2

0(zα
2

+ zβ)2

42

where S2
0 is the initial variance.

(2) A proportion π is chosen and πn0 patients are recruited to each arm of the trial. This

constitutes the ‘internal pilot study’.

(3) Once there are πn0 patients in each arm, the trial is paused for sample size re-estimation. The

internal pilot data is analysed (in various different ways depending on method) to produce

a new estimate for the variance of the outcome, called S2
1 . This estimate is informed by the

internal pilot data, and so should be more accurate than the estimate used initially. The new

variance estimate is then put into the sample size equation:

n̂1 =
2S2

1(zα
2

+ zβ)2

42

to get a new estimate n̂1 of the sample size in each treatment group.

(4) This estimate is not necessarily the number of patients recruited as this depends on what

restrictions, if any, are used:

• the ‘restricted’: n1 = max(n0, n̂1); proposed by Wittes and Brittain, 1990. The study

will always recruit at least n0 patients in each treatment arm. This was imposed to

safeguard the method further against Type I error inflation. See later in the Chapter.

• the ‘unrestricted’: n1 = max(πn0, n̂1); proposed by Birkett and Day, 1994. This allows

the study to terminate, if the internal pilot, πn0 is the same or larger than the new
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sample size estimate, n̂1. However this design is not popular, as a minimum number

of patients are often required in a trial, in order to meet the treatment’s safety profile.

Throughout this dissertation, the ‘restricted’ approach will be used.

(5) The trial continues until n1 patients outcomes are collected in each treatment arm. The full

data will consist of the internal pilot data, collected in the first stage, combined with the

additional data recruited from the new sample size estimate using S2
1 .

(6) At the end of the trial, the data is then assessed by a t test statistic applied to the full data.

3.4. Implications of the Sample size reestimation method.

Two potentially problematic implications of using the sample size re-estimation method are the

unblinding of the treatment groups at the end of the first stage in the trial and inflation of the Type

I error. The ICH (1999) E9 (Phillips and Haudiquet, 2003) guideline states that: ‘The steps taken

to preserve blindness and consequences, if any, for the type I error [. . .] should be explained’. Many

authors have proposed different methods to overcome these two problems.

3.5. Unblinded Methods.

Stein (1945) and Wittes and Brittain (1999) proposed methods of sample size re-estimation using

the internal pilot, where the estimate of variance uses pooled variance of the data. These methods

estimate pooled variance of each treatment group and so require that the patients allocation to

treatment is revealed and hence unblinded. To ensure this unblinding is performed in an unbiased

manner, the estimate of variance could be made through a third party, which would require DMEC

approval. Alternative technical solutions have also been proposed. The Wittes and Brittain method

follows the basic framework using the ‘restricted’ design. It shall be called the unblinded method

throughout this dissertation.

3.6. Blinded Methods.

To avoid having to unblind the data to determine a revised value of S2
1 for the variance estimate at

the end of the internal pilot, several methods have been proposed.

3.6.1. The ‘lumped variance’ method.

A method where the total variance of all the treatments is used as an estimator for standard deviation,

S2
1 , can be used to avoid unblinding the treatment allocations of the data. This is coined by Zucker
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et al (1999) as the ‘lumped variance’, and is defined as:

S2
1,total =

1

πn0 − 1

2∑
j=1

πn0∑
k=1

(X1jk − X̄1)
2

where X̄1 is the mean of the total data for both treatment groups, 2πn0, j denotes that we sum over

two treatment arms and k is the number of patients in each treatment group; which, in all cases

throughout this dissertation, are equal.

The lumped variance is most desirable when the true treatment effect is not too large, as the total

variance will be similar to the ‘within group’ variance.

3.6.2. The ‘Adjusted variance’ method.

Zucker et al (1999) modified the ‘lumped variance’ method. The authors proposed the estima-

tor:

S2
1,adj = S2

1,total −
πn0

4(πn0 − 1)
42

Their method adjusts the total variance by subtracting a value that is a function of the clinically

important treatment difference 4 and the size of the internal pilot πn0. This estimator is most

desirable when the true effect of the treatment is close to the value we designed the trial to detect,

i.e µT − µC = 4.

Gould and Shih (1992) proposed an EM algorithm based procedure for sample size recalculation which

produces a maximum likelihood estimate of the within-group variance while preserving the blind.

However, others have claimed that the method can produce non-unique and/or severe underestimates

of the true within-group standard deviation. Friede and Kieser (2002) noted that this approach was

flawed and it was not suggested for practical use. The authors recommended that the ‘adjusted

variance’ method, seen above, is instead used to maintain blinding of treatment allocations.

Throughout this dissertation the lumped variance approach shall be referred to as the blinded method

and the adjusted total variance approach as the adjusted blinded method.

3.7. Inflation of the Type I error; use of the t statistic.

It was seen in Figure 1, with the fixed sample design, use of an incorrect initial variance, S2
0 did not

effect the Type I error. This is because when conducting a independent two sample t test, we make
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certain assumptions such as sample size is unaffected by statistics that are informative about the

treatment outcome means and variance.

In the literature review on methods of sample size re-estimation, an inflation of the Type I error has

been recognized as one of the main drawbacks of its use. Using the internal pilot data, πn0 to inform

the new sample size, n1, has infringed the assumption of independence regarding sample size, which

is made when using a t test.

3.7.1. The ‘näive’ t statistic.

Wittes and Brittain advocate use of the following test statistic, coined the ‘naive t statistic’ by Kieser

and Friede (2004): ∣∣X̄T − X̄C

∣∣√
(S2/n1)

where S2 = 1
2
(S2

T + S2
C), the pooled variance of both treatment arms, T and C.

This method uses information from Stage 1 and Stage 2 in the final test statistic. It has the advantage

of not sacrificing any data.

E(N) α Power S2

86.0 0.050 0.996 1.0
86.5 0.050 0.97 1.5
93.2 0.050 0.93 2.0
128.4 0.051 0.89 3.0
170.0 0.052 0.90 4.0

Table 3. Adapted from Wittes and Brittain, 1990, where the S2 is the initial variance
value and true σ2 = 1 and 4 =

√
2

The issue of Type I error inflation seen in the literature is illustrated in Table 3. Using simulation,

Wittes and Brittain were able to prove that the α exceeds the Type I error. Stein (1945) suggested

use of a t test that only uses the internal pilot variance, S2
0 . However, this is often regarded as a

waste of information; as the inflation obtained when using all the data is minimal. So, Wittes and

Brittain (1999) recommend the use of the ‘naive’ t statistic, nonetheless. Their paper states that the

gain in power (by using all the data’s variance) is preferable at the expense of a small bias in the

Type I error. Similar levels of Type I inflation have been identified in other papers, such as Friede

and Kieser (1992), where there was a slight inflation of Type I error using the blinded methods,

which is to be expected as the independence assumption is broken.
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4. Statistical Properties of Normal Random Variables

It has been stated that the sample size re-estimation method leads to problems such as inflated Type

I error. To grasp why this occurs we first must fully understand some properties of the t statistic.

These properties include why a t statistic has a t distribution and what the components of this

procedure require. We therefore begin with a careful derivation of the t test.

4.1. Independence of the sample mean and sample variance.

One important property of random normal variables, is that the sample mean is independent of the

sample variance. When the unpaired t test is performed, it is required that the difference in means

is independent to the pooled variance. To see this we state the following:

Suppose y ∈ RN and y = (y1, ..., yn)T is an iid sample from a N(µ, σ2)

Now, define a matrix O which is orthogonal, i.e. OOT = OTO = I.

Choose Õ such that x = Oy and the first row of Õ is constant,i.e. i.e x =

 1√
n
· · · 1√

n

Õ



y1
...

yn

.

var(y) = σ2I and

var(x) = var(Oy) = Ovar(y)OT = σ2I

So, var(y) = var(x), the xs are constant too and so are independent. Also the ys are Normal, so

x1 =
y1 + · · ·+ yn√

n
= ȳ
√
n

where ȳ is the mean of the ys

Also,

xTx = (Oy)TOy = yTOTOy = yTOTOy = yTy

Therefore,

y21 + y22 + · · ·+ y2n = x21 + x22 + · · ·+ x2n

which allows us to write,

y21 + y22 + · · ·+ y2n − nȳ2 = x22 + · · ·+ x2n
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Now, the sample variance of the ys is S2 where,

(n− 1)S2 =
∑

(yi − ȳ)2 =
∑

yi
2 − nȳ2

The sample mean, ȳ = x1√
n

= f(x1) and (n − 1)S2 is g(x22 + · · · + x2n), so is independent of x1 and

hence of ȳ

4.2. The sample distribution of S2 is proportional to a χ2 distribution.

The result that the sample distribution is proportional to a χ2 distribution can also be seen from the

following calculations. Note that

E(y) = µ1n

where 1n is an n-dimensional vector of ones and

E(xk) = E(OT
k y) = µOT

k 1n = 0, k > 1

when Ok is the kth row of O and hence is orthogonal to the first row of O.

(n− 1)S2 =
n∑
i=2

x2i

has the same distribution as

σ2

n∑
i=2

Z2
i

where zi ∼ N(0, 1) so S2 ∼ σ2χ2
ν/ν where ν = n− 1

It follows that the variance also has a distribution proportional to χ2
ν . For the two sample case, the

pooled variance is χ2
ν1+ν2−2.

One way to check that the sample variance is proportional to a χ2 is to check the skewness of the

distribution.

4.3. The skewness of a χ2 distribution.

Skewness is defined as the measure of asymmetry of a distribution around its mean. Positive

skewness indicates a distribution with an asymmetric tail extending towards more positive values

and negative skewness indicates a distribution with an asymmetric tail extending towards more

negative ones. It is often used as measure of the departure from the normal distribution, which

is about symmetrical, so is not skewed, but small variation of the skewness can occur by chance

alone. The χ2 is asymmetrical, but as n→∞ it becomes more symmetric, as it tends to the Normal
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distribution because of the Central Limit Theorem. The χ2 distribution is always positively skewed,

shown by the following proof.

Skewness is mathematically defined as

(3)
E(X − µ)3

σ3

where X is χ2 and its mean is µ = E[χ2
ν ] = ν and var(χ2) = 2ν. This is now scale free and so is also

the skewness of S2.

E(X − ν)3 == E[(
∑

Yi)
3]

where Yi = Z2
i − 1 and E[Yi] = 0. Now

E[
∑

(Yi)
3] = nE[Z2 − 1]3 = nE[Y 3

i ]

because (Y1 + Y2 + · · · + Yn)3 =
∑

i,j,k YiYjYk = 0 and E(YiYjYk) = 0 unless all the subscripts

coincide.

Therefore, we need to evaluate E[Y 3
1 ] = E[(Z2

1 − 1)3]

Skewness =
nE(Z2 − 1)3

(2n)
3
2

=
1√
n

E(Z2 − 1)3

2
3
2

So,

E(Z2 − 1)3 = E(Z6 − 2Z4 + 3Z2 − 1) = E(Z6)− 3E(Z4) + 3E(Z2)

To determine these expectations we use the moment generating functions,

E(etZ) = exp(1/2t2)

E(1 + tZ +
t2Z2

2!
+
t3Z3

3!
+
t4Z4

4!
· · · ) = 1 +

t2

2
+
t4

8
+
t6

48

Equating coefficients,

E(Z2) = 1

E(Z4) =
4!

8
= 3

E(Z6) =
6!

48
= 15
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Putting this back into the equation for skewness,

E(Z6 − 3Z4 + 3Z2 − 1) = E(Z6)− 3E(Z4) + 3E(Z2)− 1 = 15− (3× 3) + (3× 1)− 1 = 8

Therefore,

(4) Skewness =
8n

(2n)
3
2

=

√
8

n

Note that the skewness must be a positive value. A sample skewness, seen in Joanes and Gill (1998),

can be defined as

g1 =
m3

m
3/2
2

where

mr =

∑
i(xi − x̄)r

N

is the sample moments of order r where N is the sample size.

4.4. The error of the skewness.

It can be proven that the standard error of the skewness is

(5)

√
6

N

where N is the sample size, seen also in Joanes and Gill (1998).

These theoretical properties of random normal variables will be used as a comparison to the results

of a simulation study, which will be discussed later in this paper.
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5. The Two Stage Design: A simulation study

5.1. Setting and Notation.

Consider a study comparing two groups, treatment (T) and control (C), assumed for simplicity to

be equally sized. Let the outcome, X be normally distributed with µT as the mean of group T and

µC the mean of group C, both of which have common unknown variance σ2. The hypothesis tested

is:

H0 : µT − µC = 0 versus. H1 : µT − µC 6= 0

The aim of the trial is to detect a clinically important difference of 4 = 0.175, with a two sided

Type I error rate of 0.05 and a power of 80%. This will require n0 = 513 per group, if the variance

is σ2 = 1, the value used for the true variance in the study simulations.

To test the implications of the variance σ2 being underestimated, as this is a common problem which

can lead to trials that are too small, a range of initial estimates, S2
0 , were proposed as follows:

• S2
0 = 1.0; the initial estimate is correct

• S2
0 = 0.7; the initial estimate is slightly underestimated

• S2
0 = 0.3; the initial estimate is severely underestimated

5.1.1. The original fixed-sample trial.

For direct comparison with the results of the sample size re-estimation trials, results from the orig-

inal study were generated using traditional fixed sample size methods. Information was collected

regarding the sample size, skewness of pooled variance, resulting Type I error and power.

S2
0 n0 α Power

1.0 513 0.0489 0.800
0.7 252 0.0492 0.497
0.3 47 0.0496 0.131

Table 4. Results of the fixed sample size method: Estimated sample size, Type I
error and power for varying S2

0 = 1.0, 0.7, 1.0, where α collected when µT −µC = 0 and
power collected when µT = µC = 4. The trials were simulated 100,000 times.

Table 4 presents results of the fixed sample trial, including calculated final sample size, the Type I

error (how many trials out of 100,000 were significant when there was no treatment difference) and
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power (how many trials were significant when there was a treatment difference) for each estimate of

the variance at 0.3, 0.7 and 1.0.

5.1.2. Sample size re-estimation.

Next, the simulations ran trials using sample size re-estimation where:

• πn0 patients are collected, where π named the ‘information fraction’ is:

– π = 0.25 or

– π = 0.5

• the new sample size estimate has a downward restriction such that:

– n1 =max(n0, n̂1); proposed by Wittes and Brittain

A study was then implemented to assess and compare the properties of different sample size re-

estimation methods. Three types of method were used, with further details on each presented in

Section 3). These are:

(1) The unblinded method: proposed by Wittes and Brittain (1990)

(2) The unadjusted blinded method;

(3) The adjusted blinded method; proposed by Zucker et al. (1999)

As for the fixed sample size trial, the parameters collated were final sample size, power, Type I error

and bias and skewness of the pooled variance.

The sample size re-estimation study was performed using the software package R, and the simulations

were performed 100,000 times.

5.2. Results.

5.2.1. Mean and standard deviation of final sample size.

The means and standard deviations of the final sample size were computed for each sample size

re-estimation method, on each estimate of variance, S2
0 .

As shown in Tables 5 and 4, had the hypothesized standard deviation been correct all methods, fixed

and sample size re-estimation, on average, returned similar results. However, when the standard

deviation estimate is underestimated, the sample size re-estimation methods , on average, maintain

the same sample size, but the sample size of the fixed sample method decreases relative to the
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S2
0 π

E[N ](SD(N))
Unblinded Blinded Adjusted Blinded

1.0
0.25 512.1(45.3) 512.1 (45.3) 508.1 (45.3)
0.5 512.0 (31.9) 512.0 (31.9) 508.1 (31.9)

0.7
0.25 511.9 (65.2) 511.9 (64.8) 507.9 (64.9)
0.5 512.0 (45.8) 512.0 (45.7) 508.1 (45.7)

0.3
0.25 512.1 (154.7) 512.1 (151.2) 508.0 (151.2)
0.5 512.1 (106.4) 512.1 (105.2) 508.1 (105.3)

Table 5. Mean final sample size of 100,000 studies with their standard deviations;
seen in brackets, for each S2

0 ; 1.0, 0.7, 0.3 and π; 0.25 or 0.5.

proportion of underestimation of the standard deviation. However, the variable nature of the sample

size returned by sample size re-estimation methods, show that this mean sample size returned, which

is suitable, is not guaranteed. This is shown by the standard deviations in Table 5.

Figure 12 shows the difference in certainty about sample size, as the information fraction is lowered

and as the underestimation of standard deviation becomes more severe. When the information

fraction π = 0.25 and the initial standard deviation estimate S2
0 = 0.3, as shown in Figure 12, there

is a very large standard deviation, with the implication that the sample size could be half or double

that required.

5.2.2. Power.

The power of the trials was collected from simulations conducted when µT−µC = 4. This probability

was found by dividing the number of significant trials by the number of times the simulation was

run.

S2
0 Fixed Sample Est. Power

Sample Size Re-estimation Est. Power
π Unblinded Blinded Adjusted Blinded

1.0 0.800
0.25 0.800 0.800 0.797
0.5 0.799 0.799 0.797

0.7 0.497
0.25 0.794 0.795 0.792
0.5 0.798 0.799 0.796

0.3 0.132
0.25 0.772 0.774 0.770
0.5 0.786 0.786 0.783

Table 6. Estimated power of fixed sample method when S2
0=1.0, 0.7, 0.3 and es-

timated power for sample size re-estimation methods when S2
0=1.0, 0.3, 0.7 and π=

0.25, 0.5

To provide a clear comparison, Table 6 provides the power of the fixed design and the sample size

re-estimation methods. Figure 13 displays the comparison between the fixed and sample size re-

estimation methods and also shows a clearer comparison of the different versions of the sample size
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Figure 12.a: π = 0.5 and S2
0=1

Figure 12.b: π = 0.5 and S2
0=0.7

Figure 12.c: π = 0.25 and S2
0=1

Figure 12.d: π = 0.25 and S2
0=0.7

Figure 12.e: π = 0.5 and S2
0=0.3

Figure 12.f: π = 0.25 and S2
0=0.3

Figure 12. Histograms of the Sample Size for each sample size re-estimation method
where S2

0=1.0, 0.7, 0.3 and π=0.25, 0.5

re-estimation methods for varying variance estimates. On both plots on Figure 13 there is a line

when the power is 0.8, the power the trial was designed initially to achieve.

According to the simulations performed in this dissertation, the average power achieved did not fall

below 77% under the alternative hypothesis for the sample size re-estimation methods. If the fixed
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Figure 13. Left:Estimated power against S2
0 for fixed sample design and sample

size re-estimation methods; Right: Magnified graph to distinguish difference between
sample size re-estimation methods

sample design was used, the power of the trial decreased to as little as 13%, when the trial was

severely underestimated, when S2
0=0.3.

S2
0 π 10% 25% 50% 75% 90%

1.0
0.25 0.75 0.77 0.80 0.82 0.84
0.5 0.77 0.79 0.80 0.82 0.84

0.7
0.25 0.73 0.77 0.80 0.83 0.86
0.5 0.75 0.78 0.80 0.82 0.84

0.3
0.25 0.62 0.70 0.79 0.86 0.91
0.5 0.68 0.70 0.80 0.85 0.89

Table 7. Quantiles of estimated power using the unblinded sample size re-estimation
method where S2

0=1.0, 0.7, 0.3 and π=0.25, 0.5

These powers were found by replicating a trial 100,000 times and taking an average. So, looking

at the whole picture, the sample size re-estimation methods work well. However, how about on an

individual basis? This is of most concern to practicing statisticians- how well will this method work

in any specific trial? The power of each trial was captured, using a re-arranged version of the initial

sample size equation.

zβ =
4
σλ
− zα

2

where λ =
√

(2/πn0); as there are equal number of patients in each treatment group, β is found and

hence 1− β =power.

Figure 14 represents the power of each individual trial. It is seen that when π and S2
0 are small, there

is much more variability in power, with some trials being extremely underpowered. The quantiles

seen in Table 7 shows that 10% of trials achieve only 62% power when the initial value for variance,
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Figure 14.a: π = 0.5 and S2
0=1.0

Figure 14.b: π = 0.5 andS2
0=0.7

Figure 14.c: π = 0.25 and S2
0=1.0

Figure 14.d: π = 0.25 andS2
0=0.7

Figure 14.e: π = 0.5 and S2
0=0.3

Figure 14.f: π = 0.25 and S2
0=0.3

Figure 14. Histograms of the power for the sample size re-estimation methods where
S2
0=1.0, 0.7, 0.3 and π=0.25, 0.5, red line displays fixed power of the fixed sample design

S2
0 , is small; however, this is still a much larger power than the fixed sample design which only

obtained 13.2%.

5.2.3. The Type I error.

The Type I error was collected from simulations under the null hypothesis. It was derived similarly

to the power. Table 8 displays the errors for both types of design, fixed sample and sample size

re-estimation.
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σest
σreal

Fixed Sample, α π
Type I Error, α

n0 Unblinded Blinded Adjusted Blinded

1.0 0.049
0.25 513 0.050 0.050 0.050
0.5 513 0.050 0.050 0.050

0.7 0.049
0.25 252 0.051 0.051 0.051
0.5 252 0.051 0.050 0.051

0.3 0.050
0.25 47 0.051 0.050 0.051
0.5 47 0.050 0.049 0.049

Table 8. The Type I error of the fixed sample method where S2
0=1.0, 0.7, 0.3 and

the sample size re-estimation methods where S2
0= 1.0, 0.7, 0.3 and π = 0.25, 0.5

5.2.4. Bias of σ2.

Table 9 displays the mean pooled variance of the sample size re-estimation trials compared to the

pooled variance of the fixed sample design. The pooled variance for the sample size re-estimation

methods is always smaller than the true variance of 1. The fixed sample design, however, is correct

to 3 decimal places for all S2
0 . Wittes, et al (1999) discussed how the unblinded method could lead

to a downward bias, and the results of the simulations in Table 9 verify this theory.

E[σ2]
S2
0 Fixed Design E[σ2] π Unblinded Blinded Adjusted Blinded

1.0 1.0000
0.25 0.9983 0.9983 0.9982
0.5 0.9981 0.9981 0.9981

0.7 1.0000
0.25 0.9980 0.9980 0.9980
0.5 0.9981 0.9980 0.9980

0.3 1.0000
0.25 0.9977 0.9978 0.9977
0.5 0.9979 0.9980 0.9979

Table 9. The bias of σ2 for the fixed sample method where S2
0=0.3, 0.7, 1.0 and

sample size re-estimation methods where S2
0=0.3, 0.7, 1.0 and π=0.25, 0.5

Figure 15. π =
0.5 and S2

0=1
Figure 16. π =
0.5 andS2

0=0.7
Figure 17. π =
0.5 andS2

0=0.3

Figure 18. Histograms of the σ2 for the sample size re-estimation methods where
S2
0=1.0, 0.7, 0.3 and π=0.5 using the unblinded method
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This bias and the distribution of σ2 are related. It is seen in Figure 18 that the distribution is not

quite the bell shaped curve we would expect of the Normal distribution. There is evidence of a slight

negative skewness.

5.2.5. Skewness.

To see the implications the interim look at the data can have on the statistical properties of the

t test, the skewness of the pooled variance used in the final analysis for each of the sample size

re-estimations methods was derived from the simulations.

S2
0 Fixed Sample Design Skew Theoretical Skew π Unblinded Skew Blinded Skew Adjusted Blinded Skew Theoretical Skew

1.0 0.08, [0.07, 0.10] 0.09
0.25 -0.07, [-0.08, -0.05] -0.07, [-0.08, -0.05] -0.07, [-0.08, -0.05] 0.09
0.5 -0.05, [-0.06, -0.03] -0.05, [-0.06, -0.03] -0.05, [-0.06, -0.03] 0.09

0.7 0.12, [0.11, 0.14] 0.13
0.25 -0.05, [-0.07, -0.04] -0.05, [-0.07, -0.04] -0.05, [-0.07, -0.04] 0.09
0.5 -0.05, [-0.06, -0.03] -0.05, [-0.06, -0.03] -0.05, [-0.06, -0.03] 0.09

0.3 0.29, [0.28, 0.31] 0.30
0.25 -0.07, [-0.09, -0.06] -0.07, [-0.09, -0.06] -0.07, [-0.09, -0.06] 0.09
0.5 -0.05, [-0.07, -0.04] -0.05, [-0.07, -0.04] -0.05, [-0.07, -0.04] 0.09

Table 10. Table comparing the skewness of fixed sample method with 95% confidence
intervals with theoretical skewness for S2

0=1.0, 0.7, 0.3 and comparing the skewness of
the sample size re-estimation methods with 95% confidence intervels and their theo-
retical skewness for S2

0=1.0, 0.7, 0.3 and π=0.25, 0.5

Figure 19. S2
0=1 Figure 20. S2

0=0.7

Figure 21. S2
0=0.3

Figure 22. Skewness of the fixed sample size method and the sample size re-
estimation methods with 95% confidence intervals. Line 0.09 represents the theoretical
skew when σ2=1.
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Figure 23. Correlation graphs between the estimated treatment difference the esti-
mated pooled variance, S2, for the unblinded sample size re-estimation method

Figure 22 shows the skewness for each estimation of initial standard deviation S2
0 for the sample

size re-estimation methods. The standard error for each were calculated using Equation 5 which are

compared to the theoretical value derived from Equation 4. It is clear, that the pooled variance of

the internal pilots have different properties to the fixed design which correspond to their theoretical

values.

S2
0 Correlation

1.0 -0.01
0.7 -0.06
0.3 -0.07

Table 11. Correlation between estimated treatment difference and pooled variance
estimate for unblinded method

One of the theoretical assumptions made is the independence between X̄T − X̄C , the estimated

treatment difference, and the pooled variance estimate of the final sample. Figure 23 shows the

relationship between these two variables for each estimation of the standard deviation, S2
0 . At

inspection, it can be concluded that there is no distinguishable pattern to identify any specific

relationship between these two variables, for the unblinded method (seen in Figure 23) or the blinded

methods (results not shown). All correlations are slightly negative, seen in Table 11, but these are

not large enough values to prove dependence.
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6. Discussion

6.1. Comparison of original and internal pilot methods.

6.1.1. Results and Conclusions.

The sample size re-estimation method was successful in providing a mean estimate of sample size close

to the required number of patients. When the original estimation of standard deviation matched the

true values, the fixed sample size and sample size re-estimation methods, on average, returned similar

results. That is, for each method and information fraction of the sample size re-estimation, the mean

sample sizes returned were similar and sufficient. When the initial variance was underestimated,

with the sample size re-estimation method the final mean sample size remained the same as when

the initial variance was correctly estimated. This was not the case with the classic, fixed sample size

method however, where the sample size generated was much smaller following underestimation of the

initial variance. This was most severe when the standard deviation was believed to be only 30% of the

true value. Therefore the sample size re-estimation method was much more efficient in generating an

appropriate sample size when substantial initial misspecification of the variance occurred. Perhaps

the biggest advantage of the sample size re-estimation method is the saving in power. When initial

estimates of variance used in the fixed sample size trial were too small, the predicted power was

reduced significantly. As a result, many of the fixed sample size trials were would fail to detect

important treatment differences. However, the sample size re-estimation approach enabled the study

to achieve power at a level close to the one desired (80%) by readjusting the estimate for variance

at the interim review. The integrity of the trial was saved and the clinically important difference

between the means of the two treatments was identified.

6.2. Limitations of Sample Size Recalculation.

6.2.1. Why does the Type I error change?

The use of sample size re-estimation is not without controversy. One of the main criticisms is the

potential for Type I error inflation, but this has been proved to be very small in most cases (see

Methods, Section 3.5 for qualification). In the sample size re-estimation simulations presented in

this paper, the Type I error found was only marginally bigger than the 0.05 value required, and

so would not disturb the integrity of the trial. In the literature review, Wittes and Brittain (1999)

discussed high Type I error inflation in small internal pilots, πn0 with sample sizes of 10 or less. In the
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current simulations however, much smaller inflation was observed, although it is worth noting that

the smallest sample size, containing 12 subjects, was slightly larger than Wittes and Brittain’s.

n0π N Type I Error, α

10 30 0.03394
20 40 0.0294
30 52 0.02794
50 76 0.02678

Table 12. Adapted from Kieser and Friede (2004), Type I error rates, α for the
nominal level α = 0.025 and various internal pilot sizes, n0π, where N is the true but
unknown sample size required

Kieser and Friede (2004) conducted a review of unblinded and blinded sample size re-estimation

methods. The authors found some levels of high inflation, again particularly when the size of the

pilot was small. Their results are shown in Table 12. Results from the current simulations, however,

do not reflect such extreme values of inflation. It should be noted that Kieser and Friede designed

their trial using a one-sided t-test, as opposed to the two sided t-test used in this dissertation.

However, with sample size re-estimation, the dependence of the second stage data collected on

the parameters of estimation complicates the distribution. The negative skewness of the pooled

variance, an output of the simulations presented in the Results section in this dissertation, proves

this statement. This is because Equation 4, seen in Section 4.3 proved that the skewness of a χ2

must be positive and so the pooled variance is therefore cannot follow a χ2 distribution. So the final

test statistic does not follow a t distribution, due to its dependence on the pooled variance. This

complicates the sample size re-estimation process further still, as the final test statistic distribution

is now not known. Ignoring this discrepancy may inflate the Type I error, which is observed in the

simulations in Table 8. However, the χ2 is nearly symmetrical for trials of any reasonable size. The

skewness of S2 is also very close to zero, which implies that the usual test statistic will be close to a

t distribution and so inflation of the Type I error will be small.

The bias of σ2.

It was seen from the present simulations that, in comparison to the fixed design, there was a downward

bias of the estimated standard deviation, when using the sample size re-estimation methods. This

bias was first identified by Wittes and Brittain (1999) and further explored by Coffey and Muller

(2000).
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This bias holds importance, as the test size inflation varies directly with it. This bias can also help

explain the skew of the pooled distribution. The negative bias means that more trials fall below the

expected value and so a negative skewness follows, due to the heavy negative tails.

Some Type I error inflation can be explained by this downward bias of the variance estimate used

(Kairalla, 2007). Coffey and Muller (2000) stated that this bias is minimized in the final t test when

the stage I data collected in the internal pilot is much smaller than the stage II data.

6.2.2. Implications of using a small internal pilot.

Sample size re-estimations have the potential to save trials from the potentially negative impact

of variance misspecification which, as we have seen, is a drawback of conventional, fixed-sample

trials.

This is seen in the results of the present study, while the mean sample size was sufficient, the

variability of sample size was high. This is because using sample size re-estimation causes the final

sample size to be a random variable, due to its dependence on characteristics of the internal pilot data.

Variability is greater with lower estimates of standard deviation, as this leads to a smaller internal

pilot on which new estimates are made, decreasing the certainty of the new standard deviation

estimate.

When it comes to deciding what proportion of the sample size should be used to form the internal

pilot, it is a question of achieving the right balance between power and efficacy. It would be preferable

to have a small internal pilot to avoid over recruiting to give an early indication when the trial size

has to change. However, if the internal pilot is too small, the new estimate for the standard deviation,

S2
1 , varies more widely around the actual value. Wittes and Brittain (1990) chose to use 50% of the

initial sample size calculated in their simulations, which may reflect this thinking.

The results of the study in this dissertation showed that the mean sample size was the same for both

information fractions, π=0.25 and π=0.5. However, the standard deviation of the final sample size

when π=0.25 was twice as variable as when π=0.5.

The present findings reflect the work of Galli and Mariani (2014), who also evaluated two stage

re-estimation data using simulations. The authors simulated a two-arm trial aimed at comparing

two means of normally distributed data, finding an unwanted increase in sample size due to the

variability of the re-evaluated standard deviation, the result of a small internal pilot. The authors

declared that a sufficiently high information fraction, π, of 50% − 70% is required for sample size
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re-estimation to have good estimated properties. However, in large trials such a high proportion

would be hugely inefficient.

One suggestion might be to propose a fixed sample size for the internal pilot, rather than using the

information fraction, π, to extract a proportion from the original estimated sample size. It was seen

in Section 2.4.3 that a minimum of 40 patients to prove a 95% confidence interval within 10% of

the true value. The fixed internal pilot method may be preferable for large studies, where use of an

information fraction might result in unnecessarily large internal pilots.

6.2.3. Comparison of blinded and Unblinded methods.

Some critics of sample size re-estimation have argued that information gained throughout the course

of a study introduces the potential for bias in blinded studies. Gould and Shih (1992) highlighted

several potential causes of such bias.

Although many statisticians see this as an issue, in practice today there are many ways of avoiding

bias without the need to keep the studies blinded. A third party could be enlisted, for example, to

unblind the treatment allocations at the interim stage, so that those assessing the trial are not aware

of such allocations.

Concerns over the consequences of bias lead researchers to establish blinded methods, to avoid

information about a treatment difference being revealed at the interim stage. The simulations in

this dissertation showed that blinding the allocation of treatments did not change the outcome of

the sample size re-estimation compared to unblinded allocations.

The adjusted blinded method used in the present study produced results comparable to the other

sample size re-estimation methods used. However, the mean final sample size observed was marginally

less than that observed with the unadjusted blinded and unblinded methods, and so was consequently

less powerful than the other methods. The power achieved was still of a satisfactory level, however,

especially in comparison to fixed sample size trial design.

6.3. Potential barriers to the adoption of Sample size recalculation.

Bauer and Einfalt (2006) conducted a review of the use of sample size re-estimation between 1989

and 2004, concluding that there has been an increase in use of these methods. However, this novel

process is still not commonplace in medical research. Although very effective, there are still a number

of issues that investigators need to consider before using sample size re-estimation:
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• The ability to re-scope or extend a clinical trial earlier than would happen conventionally

could lead to funding issues. If a request to extend is based on a small internal pilot, or

the standard deviation is much larger than originally estimated, then funding agencies may

recommend termination of the trial.

• There are many possible methods for re-estimating the sample size of an ongoing trial which,

whilst providing potential for more efficient trials, may discourage researchers who are con-

fused by the multitude of options available and their own lack of familiarity with required

technique. A study conducted by Scott and Baker (2007) found that regulatory uncertainty,

the lack of popularity of a novel approach and logistical problems all contribute to the lack

of implementation of sample size re-estimation in clinical trials.

6.4. Recommendations for future work.

6.4.1. Overestimation of σ2.

In this dissertation the focus has been on trials where the variance is initially underestimated. This

is because, in practice, this is a common issue. Statisticians will hope for a small variance to make

the trial feasible in terms of recruitment. However, there will be cases when the standard deviation

is overestimated, leading to an overpowered trial. Along with subjecting patients to an inferior

treatment, this could also lead to an issue recruiting sufficient numbers. This difficulty would be

eased if fewer patients were needed.

When a trial is struggling in recruitment, it is common practice for a trial steering committee (TSC)

to be put together, to see if any modifications could be made to the recruiting process or the trial

itself. Often, if a trial is very lacking in the required patients, the trial is terminated as it is seen

as no longer feasible. One solution, to avoid the trial being shut down, might be to construct an

internal pilot based on the data already collected. Provided the number of data collected already is

a realistic number (i.e. at least 10), the variance could be recalculated. If this value is found to be

less than the estimate used in the initial sample calculation, the new final sample size required will

be much smaller than the original, saving the trial. An extension of the current work would be to

perform simulations based on S2
0 > 1, when σ2=1. However, due to project constraints, it was not

possible to review both underestimation and overestimation of the variance.
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