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Abstract

The behaviour of superfluids is a fascinating topic in it’s own right. I shall be
discussing and analysing Bose-Einstein Condensates(BEC) which are macro-
scopic quantum objects that can be modelled as superfluids. I shall analysis
the governing equation of BEC’s the Gross Piteavskii Equation(GPE). I shall
model the GPE in a harmonic trap, to find the critical parameter for the sta-
bililty of the system. I shall then look at the dynamical properties of BEC to
see how perturbations can effect the system. Which then leads into the be-
haviour of two superfluids and how they interact with each other depending
on there different initial values of Phase and population difference in what
are known as the Josephson Effects.



Chapter 1

An Introduction to
Bose-Einstein Condensates

1.1 Introduction to Quantum Mechanics of

Bose-Einstein Condensates(BEC)

Quantum Mechanics which generally applies to particles on a very small scale.
The energy of the particles is a quantised amount. Quantum mechanics also
treats the particle to have both particle-like and wave-like properties.
Max Planck was one of the Father of quantum theory and won a Nobel Prize
in Physics in 1918. The Planck’s Relation tells us that the Energy of a
particle is quantised.

E = hv , (1.1)

It follows that the particles at very low energy states are in bands. In a
harmonic oscillator it is key feature in quantum mechanics. That where E
is the energy of the particle, h is Planck’s constant and v is the frequency of
the particle. [3]
Louis de Broglie was a French physicist who wrote a PhD thesis on the wave
properties of particles and won a Nobel Prize in Physics in 1929. The wave-
like properties of matter are such that they have a wavelength defined using
the de Broglie wavelength

λ =
h

p
(1.2)

where λ is the wavelength, p is the momentum and h is Planck’s constant. It
tells us the probability of finding a particle in a given area as a wavefunction.
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By then substituting momentum in terms of the kinetic energy EK = p2/2m
where EK is the kinetic energy and m is the mass, we get

λ =
h√

2mEK
. (1.3)

When we then take the system to be an ideal gas at a specific temperature,
we can set EK = πkT to give

λ =
h√

2πmkT
, (1.4)

where k is the Boltzmann constant and T is the temperature of the gas. This
infers λ ∝ 1/

√
T . [16] Another key principle in the formation of BEC is is

Heisenberg’s uncertainty principle.

∆x∆p ≥ h̄

2
, (1.5)

This equation is named after the German theoretical physicist Werner Heisen-
berg who is considered to be one of the fathers of quantum mechanics. [7]

This equation tells us it is impossible to tell the exact postion and mo-
mentum of a particle simultaneously no matter how precise the measurement.
This is known as ’quantum fuzziness’.

1.1.1 Schrödinger’s Equation

An Austrian Physicist named Erwin Schördinger published the famous Schrödinger
Equation in 1926. It in the fundamental equation of quantum mechanics. It
describes how a quantum state of a physical system changes with time.

ıh̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ VΨ (1.6)

It is derived by taking the conservation of energy E = Ekin +Epot = 1
2
mv2 +

V = p2/2m + V then using a wavefunction for the description of the par-
ticles Ψ(x, t) the using quantum operators the Schrödinger equation can be
deduced.
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1.2 Introduction to Bose-Einstein Condensates

The idea of Bose-Einstein condensates (BEC) came from an Indian Physicist
Satyendra Nath Bose who wrote an article called ’Planck’s Law and the hy-
potheses of Light Quanta’[4] which discussed how photons are indistinguish-
able from each other. He then told Albert Einstein about his discovered and
he agreed with him and subsequently generalized the theory.

1.2.1 Formation of BEC

The formation of BEC can be described using the previously mentioned prin-
ciples.
As previously shown λ ∝ 1/

√
T . Thus as the temperature is lowers the

wavelength gets very large. When they become sufficiently large such that
the distance between the particles and the wavelength are similar, the wave-
lengths overlap. The particles become indistinguishable from each other and
in the case of very colds bosons they are all in the same quantum state and
act as one. The particles becomes a macroscopic quantum fluid. The the-
ory of BEC was first published in 1924. Fritz London proposed in April
1938 however a pure BEC was not created experimentally until 1995 by Eric
Cornell, Carl Wieman and Wolfgang Ketterle who used rubidium atoms to
create the first BEC this was done at temperatures of 170 nanokelvin. [9]
Cornell, Wieman and Ketterle went on to win the Nobel Prize in Physics in
2001. [5] The way they reached these temperatures was through a system of
cooling which I shall describe later in the chapter.

Figure(1.1) shows the velocity-distribution of rubidium atoms when they
are released from the trap where white is the slowest and red is the fastest.
It tells us what energy state the particles were in which gives the required
information to see the formation of a BEC. The three stages from left to right
1) T > Tc the particles are in a thermal cloud with the particles spread over
several different energy levels. 2) The temperature is around 185 nanokelvin
T ≈ Tc and as we can see there is a large peak at the lowest energy level
which is the formation of a BEC, however there are still a lot of particles in
other energy states this is the beginning of the formation of the BEC. 3) This
is at a temperature of 168 nanokelvin T < Tc and as you can see almost all
the particles are in the same energy state this is the formation of the BEC
as all of the particles are acting collectively. [5]
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formation.jpg

Figure 1.1: Velocity distribution of three different stages in the formation of
a Bose-Einstein Condensates

[5]

1.3 Cooling Methods

The particles must be in a vacuum for the BEC to form. As previously stated
the particles have to be extremely cold in order to get to this stage it takes
three different processses.
1) Laser Cooling
This technique was developed in 1985 with the work of Steven Chu and
others. It works by firing photons at the particles so that the particles absorb
the photons and re-emit them in a random direction. The way it cools down
the atoms using the doppler effect: if the atom is stationary then the photon
passes through the atom and has not effect. If the atoms are travelling in
the same direction as the photons then the atom sees the photon as red-
shifted, the photon is not absorbed when this happens and will not effect
particle. However when the photon is blue-shift and the particle is travelling
towards the photon it will absorb it and re-emit it in a random direction,
meaning that the net force of the absorbtion is in the opposite direction of
the velocity of the particle thus slowing it down and cooling it down. This
gets the particles to a temperature of 10−9 Kelvin. It can not get any lower
than this as the re-imitation of the photon will cause the atom to move a
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certain amount. [8]
2) TOP Trap
After the particles cooled by the laser. The next stage is to trap them in a
TOP (time-averaged orbiting potential) trap. The trap has a pointy bottom
which is rotated giving a rounded confining potential, which is parabolic.
This creates a harmonic trap for the atoms. [6]
3) Evaporative Cooling
This cooling method is often described using the analogy of a cooling cup of
coffee because when a cup of coffee cools it is mostly done by the particles
will the most energy evaporating off the liquid then the coffee inside the
cup rethermalizes, and has less energy in the cup and becomes colder. How
this is done with the particles; the height of the harmonic trap is lowered
and the particles will more energy are jumping out. The particles inside
rethermalize and the average energy of the particles in the trap is less. This
cools the atoms sufficiently to get to temperture that will create a BEC. [6]
Figure(1.2) shows how the particles are in a harmonic trap and the how it

Cooling.jpg

Figure 1.2: Process of Evaporative Coolilng

is made shallower so the more energetic particles jump out, then the atoms
re-thermalize with a lower average energy cooling the system.

1.4 Summary Of Report

In this report I shall discuss several different aspects of BEC:
1) Modelling the Behaviour of the BECs
Analysis of the Gross Pitaevskii Equation (GPE) and behaviour of BEC with
variable interaction strength.
2) Static Properties and Stability of BECs
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Using an Gaussian approximation to model the shape of the BEC and the
analysis of equilibrium properties by using a variational method of modelling
BECs.
3) Dynamics of BECs
Analysis of fluid properties of BECs. Analysis of perturbations within BEC
in linearized systems.
4) Josephson Effects Looking into the interactions between two wealkly cou-
pled BECs. Modelling the Josephson effects with variable phase and popu-
lation.
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Chapter 2

Static Properties of
Bose-Einstein Condensates and
Introduction to
Gross-Pitaevskii Equation

2.1 Introduction to Time-Independent Gross-

Pitaevskii Equation

The Gross-Pitaevskii equation(GPE) is the governing equation in the be-
haviour of Bose-Einstein Condensates(BEC). It was discovered by Eugene P.
Gross and Lev Petrovick Pitaevskii. It describes bosons in a fully condensed
state in their lowest state assuming the wave functions is a symmetrical prod-
uct of the single-particle wave functions. As all the particles are in the same
state and be treated as single a wavefunction [13];

Ψ(r1, r2, ..., rN) =
∏

φ(ri) , (2.1)

where φ(ri)is normalized by ∫
dr|φ(r)|2 = 1 . (2.2)

This wavefunction can be modelled using by the time-independent GPE
which is the same as the previouly mentioned Schrödinger Equation (1.6)
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but with a interaction strength term g|Ψ(r)|2Ψ(r),

µΨ(r) =

(
− h̄2

2m
∇2 + V (r) + g|Ψ(r)|2

)
Ψ(r) . (2.3)

where µ is the chemical potenial, h̄ is Plank’s constant (6.626x10−34Jṡ), m
is the mass of the boson, V is the external potential, |Ψ(r)|2 is the density
of the particles and g = 4πh̄2as/m where as is the scattering length. The
scattering length tells us the effective interaction parameter. [11]

2.1.1 Time-Dependent Gross-Pitaevskii Equation

The time-dependent GPE it very useful is the development of the wavefunc-
tion with time. This is useful in analysing perturbations in the system seeing
the behaviors and developments of the BEC.

ıh̄
∂Ψ(r, t)

∂t
=

(
− h̄2

2m
∇2 + V (r, t) + g|Ψ(r, t)|2

)
Ψ(r, t) . (2.4)

2.1.2 Meaning of the Terms in the GPE

The −h̄2/2m∇2Ψ(r is the kinetic energy term of the equation and can be
worked out by

KE = mv2/2 =
p2

2m
(2.5)

and the using the momentum operator p̂ = −ıh̄ ∂
∂x

and substiting in gives

− h̄2

2m
∇2Ψ(r) (2.6)

The V (r)Ψ(r) is the potenial energy term. The first two terms give an
equation is the Schrodinger equation however this does not account for the
interaction actions between atoms which is the third term g|Ψ(r)|2Ψ(r) when
g > 0 the particles have repulsive interactions and if g < 0 the particles have
attractive interactions [?]

2.1.3 Dimensionless GPE

The GPE can be made dimensionless and this make the equation easy to
work with when adding a perturbation. By setting x = x′ξ, t = h̄

µ
t′, ψ =
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ψ∞(g|ψ2
∞| = µ), V = µV ′ and substuting these into the time-dependent

GPE gives

ıµΨ∞
∂Ψ∞Ψ′

∂t′
=

(
− h̄2

2m

1

ξ2

∂2

∂x′2
+
V ′

µ
+ g|Ψ∞|2|Ψ|2

)
Ψ∞Ψ′ . (2.7)

This shows simplifies to give

ı
∂Ψ′

∂t′
=

(
−1

2

∂2

∂x′2
+ V ′ + |Ψ′|2

)
Ψ′ , (2.8)

which is the Dimensionless GPE. [11]
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2.1.4 Graphical Representation of Cloud Radius with
variable Interaction Strength

radius.jpg

Figure 2.1: Radius of the Cloud with variable Interaction Strength

FIG. 2.1 (color online). ’Typical plot of the probability distribution for
two-component bosons for a fixed interaction strength g 5 106 and different
condensate fractions (from bottom to top) x red 0.04, x orange 0.28, x
yellow 0.40, x green 0.45, and x blue 0.58.’ Ref:Interaction Effects on
Number Fluctuations in a Bose-Einstein Condensate of Light In all of the
cases a BEC is formed meaning all of the particles are in the lowest energy
state. Diagram(2.1) shows how the cloud radius decreases as the interaction
strength increases. This is because when there is a repulsive interaction
the particles are pushing away from each other making the cloud wider and
shallower. As the interaction strength becomes more and more attractive the
particles become closer and the distribution becomes taller and narrower. Ψ
is normalised so the area under the curve is always the same as the number
of particles in the BEC does not change based on the interaction strength.
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Chapter 3

Variational Study of
Gross-Pitaevskii
Equation(GPE) and Modelling
Stability

In this section I shall discuss the study of the equilibrium properties by the
means of a variational method based the interaction strength of the cloud
using a Gaussian approximation for the BEC.

3.1 Variational Method

As previously mentioned almost all of the atoms are in the ground state. The
Thomas-Fermi approximation is an accurate representation for a sufficiently
large cloud that is in the ground-state of a harmonic oscillator it neglects
the kinetic energy term . I am using a Gaussian approximation with an
effective width (as the variational parameter). So the motion of the particle
in a harmonic potential and the wavefunction in 1D is

ψ(x) =
(mωx
πh̄

)1/4

e−mωxx2/2h̄ . (3.1)

[11] This Gaussian function is a good approximation of the ground state
wavefunction. As the probability is greatest in the middle and decreases as
it moves away as shown.
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model.jpg

Figure 3.1: Radius of the Cloud with variable Interaction Strength

Where the arrow indicates the harmonic oscillator length ax =
√
h̄/mωx.

Diagram(3.1) shows how it has a very similar shape to what is expected from
a BEC in the lowest state in a harmonic oscillator with a variable harmonic
oscillator length.

3.2 3D GPE

I am now going to futher this approximation to a 3D variational approach
to modelling a BEC in a trapped harmonic oscillator, in order to do this I
have changed the system in the following ways µ = g|ψ(r)|2 = gn where is
the density of the atoms (|ψ(r)|2 = n). The potential becomes

V (x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (3.2)

where ωi is the oscillation frequency.
The wave function in 3D can be approximated using

ψ(r) =
N1/2

π3/4(bxbybz)1/2
e−x

2/2b2xe−y
2/2b2ye−z

2/2b2z . (3.3)
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In order to get an energy of the state a energy functional can be found by
using the effective Hamiltonian. The energy functional of the system is

E(ψ) =

∫
dr

[
h̄2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

1

2
g|ψ(r)|4

]
. (3.4)

[11]

3.3 Stability of BEC

In this section I shall use the variational approximation of a BEC in 3D to
find the critical value for the interaction strength between the particles in
the system for a stable BEC to exist.
As previously mentioned when g > 0 the interatomic interactions are repul-
sive and the BEC will be stable and when g < 0 the interatomic interactions
are attractive. However there must be a value for g < 0 when a BEC does
not form as the interatomic interactions are too strong and the cloud is no
longer stable. When the wavefunction approximation(3.3) is substituted into
the energy functional (3.4) it can be shown to give

E(b1, b2, b3) = N
∑
i=0

h̄ωi
2

(
a2
i

4b2
i

+
b2
i

4a2
i

)
+

N2g

2(2π)3/2a1a2a3

, (3.5)

where a2
i = h̄/mωi. By setting xi = bi/ai and then minimizing E with respect

to each of the terms (1, 2, 3) = (x, y, z)

∂E

∂x1

= Nh̄ω1

(
− 1

4x2
1

+
x2

1

4

)
+

N2g

2(2π)3/2a1a2a3x1x2x3

= 0 . (3.6)

By simplifying and setting

a1a2a3 = ā3 =

(
h̄

m

)3/2√
1

ω1ω2ω3

=

(
h̄

m

)3/2
√

1

ω̄
=

(
h̄

mω̄

)3/2

. (3.7)

This gives
h̄ω1

2

(
x2

1 −
1

x2
1

)
− N2g

2(2π)3/2āx1x2x3

= 0 , (3.8)

this is true for all ı, we write more generally

h̄ωi
2

(
x2
i −

1

x2
i

)
− N2g

2(2π)3/2āx1x2x3

= 0 . (3.9)
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Taking the system to be isotropic b/a(= b1/a1 = b2/a2 = b3/a3) if you then
expand (3.5) and then scaling to σ = b/a gives

E(σ) = Nh̄ω

(
3

4σ2
+

3σ2

4

)
+

N24πh̄2as
2(2π)1/2a3σ3m

. (3.10)

aosc =
√
h̄/mω this is the characteristic quantum-mechanical length scale for

the harmonic oscillator. Subsituting these into the previous expression gives

E(σ) = Nh̄ω

(
3

4σ2
+

3σ2

4

)
+

1√
2π

(
Nas
aosc

)
1

σ3
. (3.11)

To find the critical value for the interaction strength for a single particle we
take the energy of given particle then take the first and second derivatives of
the following expression

E

N
= h̄ω

(
3

4σ2
+

3σ2

4

)
+

1√
2π

(
Nas
aosc

)
1

σ3
. (3.12)

The first derivative is the following,

∂

∂σ

(
E

N

)
= h̄ω

(
−6

4
σ3 +

6σ

4
− 3√

2π

(
Nas
aosc

))
= 0 , (3.13)

which simplifies to give

−σ
2

+
σ5

2
− 1√

2π

(
Nas
aosc

)
= 0 . (3.14)

For the second dervative

∂2

∂σ2

(
E

N

)
= h̄ω

(
18

4σ4
+

6

4
+

12√
2π

(
Nas
aosc

)
1

σ5

)
= 0 , (3.15)

which simplifies to give

3

2σ4
+

1

2
+

4√
2π

(
Nas
aosc

)
1

σ5
= 0 . (3.16)

If you then subsitute in for Nas/aosc and solve (3.16) and (3.14) simultane-
ously we get

σ = ± 4
√

1/5 . (3.17)

As we are looking g < 0 which the gives the critical value;

Nas
aosc

=
2
√

2π

5
5
4

≈ −0.67 . (3.18)

[11]
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Figure 3.2: Graph of Energy Functional against variable σ

The key in this graph (3.2) gives different values Nas/aosc. It shows that
when Nas/aosc at -0.67 there was a point of inflection there making this
the critical value for the system. When Nas/aosc > −0.67 there is a clear
minimum value which the BEC will be stable at. When Nas/aosc < −0.67
there is not a minimum value so the BEC will be unstable. It is intuitive that
a system that has a repulsive interaction will have a stable solution as the
particles are repelling each other and are unlikely to form molecules that will
destroy the system. The system will be flatter and broader as the particles
are repelling each other. When the particles are weakly attractive they can
still be in a stable system as the ’quantum fuzziness’ of the system at the
ground state and will form a taller and narrower cloud. This continues to
get narrower and thinner until the particles attraction is too great and the
system collapses.
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3.4 Experimental Evidence

An experiment was done on the controlled collaspe of a Bose-Einstein Con-
densate. It was studied using a stable Rubidium-85 condensate which can
have the atom-atom interactions changed by using Feshbach resonance to
vary the scattering length this is a magnetic field. It was predicted in this
experiment that the BEC would be unstable for certain strength of attractive
interaction. They found that the critical value for the system should be

Nas
aosc

= 0.574 . (3.19)

They then ran the experiment with several different experiments with each
dot representing a different experiment. Figure (3.3) shows a graph showing

value experiment.jpg

Figure 3.3: Graph Indicating the Point of collaspe for Interaction Strengths
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many different interaction strength close to the critical values and the black
dots show a stable BEC with no collaspe and the white dots show a collaspe
of the BEC. It tell us the the critical values. From this experiment it observed
that there are stable solutions with sufficiently small attractive interactions.
The exact point of collaspe was measured to be Nas/aosc = 0.459± 0.012±
0.054 which is 25% less than predicted. [12]
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Chapter 4

Superfluidity

Now we have looked at the static stability of the BEC I shall now look at the
dynamic properties of the system and see what happens when a perturbation
put into the system.

4.1 GPE vs Hydrodynamic Equations

To study link between the GPE and the widely known fluid equations, we
can make use of the Madelung transformation.

Ψ(r, t) =
√
n(r, t)eıθ(r,t) , (4.1)

as the particles have wave-like properties so they have an amplitude |Ψ(r, t)| =√
n(r, t) and a phase of θ(r, t). [15] Substiting this in to the time-dependent

GPE

ıh̄
∂Ψ

∂t
=

(
− h̄

2m

∂2

∂x2
+ V + g|Ψ(r, t)|2

)
Ψ(r, t) (4.2)

and splitting the Real and Imaginary parts gives
Imaginary

√
nt = − 1

2m

(√
nθxx + 2

√
nxθx

)
, (4.3)

∂
√
n

∂t
=

1

2
√
n

∂n

∂t
, (4.4)

m
∂n

∂t
+

∂

∂x
(nθx) = 0 , (4.5)
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and as the mass density ρ = mn

∂ρ

∂t
+

∂

∂x
(nθx) = 0 . (4.6)

This is the continuity equation which describes the movement of a conserved
quantity of fluid.
Real

θt =
1

2m

1√
n

√
nxx −

1

2m
(θx)

2 − V + gn , (4.7)

and setting
∂

∂x

(
∂θ

∂t

)
=
∂v

∂t
, (4.8)

which gives

m
∂v

∂t
= −∇

(
1

2
mv2 + V + ng − h̄2

2m
√
n
∇2
√
n

)
. (4.9)

Then setting the quantum pressure as P = gn2 − h̄2

2m
√
n
∇2
√
n .

These equations are the Euler equation and the continuity equation. [15]

4.2 Excitation Spectrum

If we take the dimensionless time-dependent GPE

ı
∂Ψ(r, t)

∂t
=

[
−∇

2

2
+ V + g|Ψ(r, t)|2

]
Ψ(r, t) , (4.10)

then add a perturbation to the system at rest the wavefunction becomes
Ψ0 + δΨ where Ψ0 is the wave function at equilibrium and δΨ is the pertur-
bation to the system. It can be shown

|Ψ|2Ψ ≈ |Ψ0|2Ψ0 + 2|Ψ0|2δΨ + Ψ2
0δΨ

∗ . (4.11)

If this is substituted in the time dependent GPE and linearizing gives

ı
∂(δΨ)

∂t
= −1

2

∂2(δΨ)

∂x2
+ V δΨ + 2g|Ψ0|2δΨ + gΨ2

0δΨ
∗ (4.12)

There is a similar expression for δΨ∗ ,
then by setting
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δΨ(x, t) = e−ıµt
[
u(x)e−ıωt + v∗(x)eıωt

]
, (4.13)

δΨ∗(x, t) = e−ıµt
[
u∗(x)eıωt + v(x)e−ıωt

]
(4.14)

and
Ψ0(x, t) = e−ıµt

√
n0 (4.15)

where n0 is the density of the system at equilibrium.
When this is then substituted into the previous equation we get

(µ+ ω)u = −1

2

∂2u

∂x2
+ V u+ 2gn0u+ gn0v = 0 (4.16)

and

(µ− ω)v∗ = −1

2

∂2v∗

∂x2
+ V v∗ + 2gn0v

∗ + gn0u
∗ = 0 . (4.17)

If we set the superfluid into a homogeneous system we then have µ = gn0

and V = 0. Which means you can set the excitation are u(x) = u0e
ıkx and

v(x) = v0e
ıkx by substituting these into the previous equation gives(

k2

2
+ gn0 − ω

)
u0 + (gn0)v0 = 0 (4.18)

and (
k2

2
+ gn0 + ω

)
v0 + (gn0)u0 = 0 . (4.19)

These equations are known as the Bogoliubov Equations and when solved
simultaneously give(

k2

2
+ gn0 − ω

)(
k2

2
+ gn0 + ω

)
− (gn0)2 = 0 , (4.20)

ω2 =
k2

2

(
k2

2
+ 2gn0

)
. (4.21)

Where k2/2 = εk which gives the kinetic energy term of the equation. Sub-
stituting this in and simplify

ω =
√
ε2k + 2gn0εk , (4.22)

this is the Bogoliubov Excitation Spectrum. [11]
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graph.jpg

Figure 4.1:

4.2.1 Results of Bogoliubov Equations

This graph shows that as εk increases the graph becomes more and more lin-
ear as the kinetic energy term k2/2 = εk dominates the oscillation frequency.
When εk → 0: Then, ω ∝ √εk with this limit, the interaction term domi-
nates the superfluid and acts more collectively when the energy is low. When
εk → ∞: Then, ω ∝ εk with this limit, the kinetic energy term dominates
the superfluid and acts more like free particles.

4.3 Wave Propagation

To find the speed of a perturbation to a system in equilibrium, I firstly set
n = nEQ + δn where nEQ is the density of the system in equilibrium and
the δn is the excitation on top of the equilibrium density. By linearizing the
continuity equation we get

∂δn

∂t
≈ − ∂

∂x
(nEQv) , (4.23)

and when the Euler Equation is simplified to

∂v

∂t
=

∂

∂x

(
−µ− 1

2
v2

)
, (4.24)
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where µ is the generalised chemical potential.

µ =
1

2
gn2 + V − 1

2
√
n

∂2
√
n

∂x2
(4.25)

when there is a perturbation to the chemical potential and the Euler equation
is then linearized it gives

∂v

∂t
≈ − ∂

∂x
(δµ) (4.26)

it can then be shown that

∂2

∂t2
(δn) =

∂

∂x

[
nEQ

(
∂

∂x
(δµ)

)]
(4.27)

if we then take
δµ = g(δn) (4.28)

where the density is very slowly varying locally. I have ignored the gradient
and the kinetic energy term as it negliable at point where it is measured.
This gives

∂2

∂t2
(δn) =

∂

∂x

[
gnEQ

(
∂

∂x
(δn)

)]
=

∂

∂x

[
c2(x)

(
∂

∂x
(δn)

)]
= c2(x)

∂2

∂x2
(δn) , .

(4.29)
This is the wave equation with speed c(x) =

√
gn(x) meaning the speed

of sound in the BEC. An experiment was done to measure the speed of
propagation in a BEC. This was done by using laser beams to induce a
propagation within the system. The BEC is created by cooling 5x106 sodium
in similar fashion as described in Chapter 1.
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of sound image.jpg

Figure 4.2: Pertubation in a BEC measured a 1.3ms time intervals
[2]

This image is the propagation of sound in the BEC. Each image was
taken every 1.3ms starting 1ms after the lase was turned on. The top image
has a higher peak density meaing the speed of sound is higher in this image.
This is clear from the image as the distance the wave propagates in the lower
image is significantly less.[2]

of sound.jpg

Figure 4.3: Prediction of Speed of Sound vs. Expermental Data
[2]

This graph shows the speed of sound versus the BEC peak density. Where
the solid line shows c(x) =

√
gn0 and the dots show the measure from the
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experiment will the statisical error bars. It shows that the analytics does
match with the experimental data well. [2]
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Chapter 5

Josephson Effects

In this chapter I shall discuss the history, analytics and then demonstate
experiments to backup the analytics for Josephson effects. I also model the
different Jospehson effects based on there initial conditions.

5.1 Introduction to Josephson Effect

In 1962 British physicist Brian David Josephson first predicted the Joseph-
son Effects. It is a macroscopic quantum phenomenon which explores the
oscillations between two weakly coupled Bose-Einstein Condensates (BEC).
This system uses two perfect superfluids which are in harmonic osillators,
which are weakly coupled, the separation is such that quantum tunnelling
can take place between the two superfluids. I shall discuss how the system
of two superfluids changes the oscillitary behaviour when there is change in
phase and chemical potenial. I shall also simulate the initial conditions of a
two weakly coupled BEC, to find what the limits for the variables satisfy the
different Josephson Effects; these will be discussed later. [11]

The two Josephson effects we are looking at are Josephson Oscillations
and Self-Trapping. Josephson Oscillations is when there the population os-
cillates from one side to the other when each of the superfluids are in two
harmonic oscillators seperated by a weak coupling. Self-Trapping is when the
population does not change from either side of the weak coupling and there is
just a small amount of quantum tunneling that doesn’t effect he population
difference.

[13]
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5.2 Obtaining of Josephson Equations

To model the two weakly coupled BECs on each side of the barrier we can
treat each BEC as a separate wavefunctions. The quantum-mechanical wave-
function Ψ(r, t) is the sum of two individual wavefunctions on either side of
the barrier, Ψ1(r, t) and Ψ2(r, t). [13]

Ψ(r, t) = Ψ1(r, t) + Ψ2(r, t). (5.1)

In the region of overlap of the two superfluid the wavefunctions can be shown
to be

i
∂Ψ1(r, t)

∂t
= EcNΨ1(r, t)− EJΨ2(r, t) , (5.2)

i
∂Ψ2(r, t)

∂t
= EcNΨ2(r, t)− EJΨ1(r, t) , (5.3)

where EcN is the chemical potential in each BEC, where N = N1 − N2 is
the population difference between the two BECs and the EJ represents the
Josephson coupling energy. We then use the Madelung transformation on
these equations by setting

Ψ1(2)(r, t) =
√
N1(2)e

iθ1(2) , (5.4)

eiθ1(2) = cos θ1(2) + i sin θ1(2) , (5.5)

Then by substitution of (5.4) and (5.5) into (5.2) and equating real and
imaginary parts gives
Real

− d

dt
(
√
N1 sin θ1) =

1

2
(ECN

√
N1 cos θ1 − EJ

√
N2 cos θ2) , (5.6)

which simplifies to give(
dN1

dt

)
= −2N1

(
dθ1

dt

)
cos θ1

sin θ1

− ECNN1
cos θ1

sin θ1

+ EJ
√
N1N2

cos θ2

sin θ1

. (5.7)

Imaginary

d

dt
(
√
N1 cos θ1) =

1

2
(ECN

√
N1 sin θ1 − EJ

√
N2 sin θ2) , (5.8)

which simplifies to give(
dN1

dt

)
= −2N1

(
dθ1

dt

)
tan θ1 + ECNN1 tan θ1 − EJ

√
N1N2

sin θ2

cos θ1

, (5.9)
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and (
dθ1

dt

)
=

1

2N1

cos θ1

sin θ1

(
dN1

dt

)
− 1

2
ECN +

1

2
EJ

√
N2

N1

sin θ2

sin θ1

. (5.10)

Substituting (5.10) into (5.7) gives

(sin2 θ1 + cos2 θ1)

(
dN1

dt

)
= ECNN1 cos θ1 sin θ1

−EJ
√
N1N2 cos θ1 sin θ2

−ECNN1 cos θ1 sin θ1 + EJ
√
N1N2 cos θ2 sin θ1,

this simplifies to give
dN1

dt
= EJ

√
N1N2 sin θ. (5.11)

It can then be shown
dN2

dt
= −dN1

dt
, (5.12)

this gives
dN

dt
= 2EJ

√
N1N2 sin θ, (5.13)

where
θ = θ1 − θ2 . (5.14)

To then find an equation for dθ1/dt substitute (1.12) into (1.10). Therefore

dθ1

dt
= −1

2
ECN +

1

2
EJ

√
N2

N1

cos θ , (5.15)

Similarily for dθ2/dt gives

dθ2

dt
=

1

2
ECN +

1

2
EJ

√
N1

N2

cos θ , (5.16)

which gives

dθ

dt
= −ECN +

1

2
EJ

(√
N2

N1

−
√
N1

N2

)
cos θ . (5.17)

[13]
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5.2.1 Predictions for Results

With these expression(5.17) and with setting n1 ≈ n2 ≈ n it can be shown

∂

∂t
(θ1 − θ2) = −(µ1 − µ2) , (5.18)

∂

∂t
(n1 − n2) = −4κ

√
n1n2 sin(θ1 − θ2) . (5.19)

If we then set there to be no chemical difference (µ1 − µ2) = 0 ,

(θ1 − θ2) = constant , (5.20)

so
∂

∂t
(n1 − n2) = −4κ

√
n1n2 sin(constant) = constant . (5.21)

This shows that there is not a oscillation between the two BECs and it is a
constant flow( DC Josephson) . However if a chemical difference is then put
into the system

∂

∂t
(θ1 − θ2) = −∆µ , (5.22)

so
(θ1 − θ2) = −∆µt+ φ0 , (5.23)

∂

∂t
(n1 − n2) = −4κ

√
n1n2 sin(−∆µt+ φ0) , (5.24)

this shows that when there is a chemical potential difference there will be an
oscillation between the two BEC this is an AC current. This next experiment
uses Helium-3 and Helium-4 particles. They are seperated by a silicon nitride
(SiN) membrane will 4225 holes. The variable is the pressure difference
between the two sides of the superfluid to see how the oscillation frequency
varies. Based on the analytics it can be shown:

∂

∂t
∆θ = −∆µ

h̄
, (5.25)

which then gives

∆θ = −∆µ

h̄
+ φ (5.26)

The chemical potenial ∆µ on the right side of the equation becomes

∆θ =
∆Pm

ρ
. (5.27)
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Where ∆P is the pressure difference across the weak link, ρ is the liquid
density, and m is the mass of the Helium atoms. This then gives

∆θ = ∆P
m

ρh̄
t, (5.28)

where the frequency of the oscillation is

f = ∆P
m

ρh̄
. (5.29)

Therefore the expected result is to see the frequency of the oscillation to
be directly proportional to that of the pressure difference. [10] Figure(5.1)

PvF.jpg

Figure 5.1: Graph of the Frequency of the Quantum Oscillation
[10]

shows the how the pressure of the system is directly proportional to the
oscillation frequency which is what was expected from analytics as there is a
linear increase in oscillation as the pressure increases.
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5.2.2 Hamiltonian

Assume the normalization to be 1 to simpify these equations further

|Ψ1|2 + |Ψ2|2 = 1, (5.30)

which means

N1N2 =
1−N2

4
. (5.31)

Substituting into (5.13) gives

dN

dt
= EJ

√
1−N2 sin θ , (5.32)

and substituting into (5.16)

dθ

dt
= −ECN −

EJN√
1−N2

cos θ. (5.33)

By then taking
dN

dt
= −∂H

∂θ
, (5.34)

and
dθ

dt
=
∂H

∂N
. (5.35)

This then goes to show

H(N, θ) = −1

2
ECN

2 + EJ
√

1−N2 cos θ. (5.36)

This is the hamiltonian for the Josephson system. Using equation (5.17)
The next step is to find an equation for θ this is done by first taking

d2θ/dt2

d2θ

dt2
= −EC

dN

dt
− EJ

d

dt
(

N√
1−N2

cos θ) , (5.37)

which then gives

d2θ

dt2
= − EJEC√

1−N2
sin θ − E2

J

2
(
1 +N2

1−N2
) sin 2θ . (5.38)

Then take EC = 0 and N � 1 and take θ too be small.

d2θ

dt2
= −E

2
J

2
sin 2θ (5.39)
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Set φ = 2θ
d2φ

dt2
= −E2

Jφ , (5.40)

which is a second order differential equation that can be solved to give

φ = A cos(EJt+ φ0) . (5.41)

With the present of interactions in the superfluid gives

φ = A cos((
√
EJEC + E2

J)t+ φ0) . (5.42)

This expression gives tells us about the frequency oscillation when there a
chemical potenial within each superfluid. However a similar equation can-
not be given for the difference in the number of atoms N as this gives an
expression with real and imaginary parts that only give a trivial solution.

5.2.3 Experimental Evidence

Several Experiments using the Josephson Junction which shows the Joseph-
son Effects using a supercurrent between two superconductors. This oc-
curs when there are two superconductors are separated by a thin insulator
layer(which can be an oxide barrier). When the oxide barriers significantly
overlap the Josephson Effects occurs. If there is no voltage between the su-
perfluids then there is a DC current between the superfluid. However when
there is a voltage across the junction then an AC Josephson effect occurs.

There have been several experiments showing these results to be true and
also how changing different parameters have vary effects. This Experiment
used Rubidium-87 atoms to create the BEC. The variable is the distance
between the two BECs to change the EJ so Λ is above and below the critical
value. [1] As we can see from this diagram of two weakly coupled BEC in
a symmetric double-well potenial there are two different effects. Diagram A
shows the distance between the two wave packets is 4.4 µm and there is an
oscillation of the population between the two sides of the BEC this is the
Josephson oscillation that is expected. In Diagram B the distance between
the two wave packets has been increased to 6.7 µm and there is almost no
change in population between the two BECs which his the self-trapping effect.
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ST paper.jpg

Figure 5.2: Observation of tunneling dynamics of two weakly Linked BECs
[1]

5.3 Josephson Oscillations vs Self-Trapping

The Hamiltonian for the Josephson effect is equivalent to that of a non-
rigid pendulum. The length is dependent on the angular momentum. The
pendulum oscillations describe the rate of change of the populations from
one side to the other. However when the pendulum has enough energy to
swing at a value greater than π it changes the system. This is analogous
to the Josephson effects in a BEC as it goes from the Josephson oscillation
where there is a population oscillation between each side of the barrier. Then
when the system passes the critical value it changes to a self-trapping system
which does not have an oscillation in population between each side. The
hamiltonian for the system with a symmetric trap is [13]

H(N, θ) = −1

2
ECN

2 + EJ
√

1−N2 cos θ , (5.43)
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as shown previously. By then setting ratio of the interactions within each of
the superfluids separately, with the energy between the two superfluids as

EC
EJ

= Λ, (5.44)

this gives a expression for the hamiltonian as

H(N, θ) =
Λ

2
N2 −

√
1−N2cos(θ) . (5.45)

By then setting H(N, θ) = 1 [14] we then get the critical value for when the
system changes from Self-trapping to Josephson oscillations. This can then
be rearranged to give

Λc =
1 +
√

1−N2cos(φ)

N2/2
, (5.46)

where Λc is the critical value. This can then be rearranged to give give a
expression for N2;

N2 =
2

Λ2
(Λ− cos2(θ))± 2

Λ

√
1

Λ2
(Λ− cos2(θ))2 − (1− cos2(θ) . (5.47)

[14]

5.4 Graphically Representation and Analysis

of the Critical Values of the Josephson

Effects

In the models of the initial values I am taking values 0 ≤ N2 ≤ 1 this is
the case as −1 ≤ N ≤ 1 this covers also population differences. I am taking
values 0 ≤ θ ≤ 2π as this takes all values for cos(θ). I shall take a 3D
representation of the system will both variables θ and N2 against the value
of Λ in order to see the overall pattern. Then in order to get the effect of
each of the variables I will take fixed N2 and variable θ and vice versa. Then
taking the special cases of the systems in order see the other behaviours of
the superfluid.
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JE.jpg

Figure 5.3: 3D Graph Indicating Region of Josephson Effect

JE.jpg

Figure 5.4: 2D Graph Indicating Region of Josephson Effect

5.4.1 3D Representation

This graph is showing 0.5 ≤ N2 ≤ 1 and 0 ≤ θ ≤ 2π with the Josephson
regime shown in white and Self Trapping in blue. As white is where the
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H ≤ 1. This 2D plot shows a band of Josephson regime that broadens as N2

is getting closer to 0 meaning that the smaller the population difference the
more values the phase difference can be and still achieve a Josephson effect.
This is for the initial value of the system.

5.4.2 Special Cases

I am now taking special cases for the θ with variable N2.
The two special cases I am choosing are θ = 0/π/2, which is when the
superfluids are completely inphase (θ = 0) and completely out of phase by
π/2.
When a phase difference of φ = π/2 it gives

2

Λ
= N2 (5.48)

which means Josephson Effect is achieved when

2

Λ
> N2 (5.49)

The other special case θ = π/2 gives the expression

4

Λ2
(Λ− 1) = N2. (5.50)

This gives a Josephson Effect when

4

Λ2
(Λ− 1) > N2. (5.51)

I have then plotted this graph showing both special cases. It shows that the
Josephson oscillation occurs inside the curves and Self-trapping outside. As
we can see from this graph as N → 0 then Λ → ∞ , this infers that if the
population on either side of the barrier is the same as the critical value tends
to infinity this infers it always will achieve Josephson oscillations however
weak the coupling is. This is expected when there is no population difference
then an interaction between each side is expected. However a very very large
Λ is not a very interesting regime as the coupling energy is far too weak
in relation to the chemical potenial energy within each superfluid to have
meaningful tunnelling between each superfluid.
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Figure 5.5: Graph of the Frequency of the Quantum Oscillation

This change of scale is to only include values of Λ that will have a mean-
ingful interaction between the two BECs. With this change of scale of the
axis in the graph we see that both special cases converge to 2 therefore the
system will initially have a Josephson effect for the special cases when Λ ≤ 2.
This is due to the ratio of the coupling energy being so great that the super-
fluid have basically amalgomated into one and the system has changed into
to one superfluid system.
It is also clear from this graph that the critical value rapidly increases as the
population difference decreases, which is what is expected from the analyt-
ics. As the rate of change is given by dN/dt = EJ

√
1−N2 sin θ therefore

the smaller the population difference the greater rate of change of population
which infers the presence of the Josephson Effect.
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Figure 5.6: Graph of the Frequency of the Quantum Oscillation

5.4.3 Variable Phase Difference

I am now going to see how the critical value varies when the intial phase
difference is varied. I am choosing a range of 0 ≤ θ ≤ 2π as this covers all
possible values Λ. I have then chosen values of N2 = 0.2, 0.4, 0.6, 0.8.

JE variable y.jpg

Figure 5.7: Graph of the Different Values of N and variable φ
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JE variable N.jpg

Figure 5.8: Graph of the Different Values of N and variable φ

In these graphs values under the curve signify Jospheson oscillations.
From these graphs we see that the critical value follows a cosine curve, this
infers the Josephson Effect is achieved will a higher values of Λ when closer
to being in-phase. When the superfluids are completely out of phase θ = π/2
Λ is at it’s minimum. This is expected from the analytics as the only θ term
is cosθ. Thererfore when the two superfluids are more in phase the system
require a lesser coupling energy in relation to the interaction within each
superfluid.

We can also see from these graphs that the frequency of change for intial Λ
does not change when N is varied because of the previously mentioned cosθ
term. However the ampilitude of Λ increases as the population difference
decreases. This is consistent will the results in the special cases.

5.4.4 Variable Population Difference

In this graph values of Λ under the curve are Josephson oscillations and those
above are self trapping. We can see that for all values of θ there is a similar
shape that tells us that the smaller the population difference the greater the
value of Λ can be for a Jospheson oscillation to occur. Therefore a more even
population will tunnel between the superfluids more easily. This is expected
from the analytics for the same reason as descibed in the special cases. The
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Figure 5.9: Graph of the Different Values of N and variable φ

other key feature of this graph is as the phase difference becomes larger the
range of values of Λ become larger and a Josephson effect is achieved will a
weaker coupling between the two superfluids.

5.4.5 Conclusion on Josephson Effect

It is clear from the graphs that the Josephson oscillation occurs more eas-
ily when the coupling energy is higher which is expected as it will have a
greater interaction between the two superfluids. When the coupling energy
is stronger than the chemical potenial within each superfluid then the each
side of the barrier would just mix and become one superfluid and thus destroy
the system. It is also clear from these results that the initial phase difference
between the two superfluids is a significant factor in that it oscillates the
critical value in a cosine curve. Which is expected as when the two sides
are out of phase by π the coupling energy must be very high to achieve a
Josephson oscillation. However when the phase different is very small then
it requires a much lower coupling energy in order for the two superfluid on
either side to interact with Josephson oscillations. The final variable was the
population difference which also had a large effect, when the population dif-
ference was very small then the critical value would become very large and

39



the Jospheson oscillation would happened far more easily. However when
there is a complete imbalance then there are no criteria for Josephson effect
as there are no atoms on one side of the barrier and therefore no interaction.
If there are the same amount on either side then the superfluid will interact
with each other very easily.
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Chapter 6

Conclusion

This report shows dynamic and static behaviours of Bose-Einstein conden-
sates(BEC).
Firstly I have taken an approximation of Gross-Pitaevskii Equation (GPE)
to find the stability of the system depending on the strength of the intera-
tion between the atoms in the BEC and found the critical parameter for this
approximation. I found that the shape of the BEC in a harmonic oscilla-
tor becomes taller and narrower as interactions between atoms become more
attractive until the system becomes unstable and collaspes. I then wanted
to look at a dynamic solution of the BEC. I first showed the relation with
the GPE and the fluid equations. Then showed how a pertubation can show
different properties of the superfluid: showing the different behaviour of the
BEC to see at what energies the system acts as free particles or collectively
and the speed of a propagation within the BEC.
The next stage was to see the behaviour of two BECs with each other and I
modelled and simulated the Josephson Effects between two superfluids that
where weakly coupled to see how they would interact with either a Josephson
oscillation or Self-Trapping Effect. I did this by first obtaining the hamilto-
nian for the Josephson Effects and ploting when the system follows a self-
trapping effect and when it has Josephson oscillations. I showed how the
population effects the Josephson Effects, which showed that the the greater
the population difference the less lower the critical parameter for Josephson
oscillations became. I then showed how the phase difference changes the
critical parameter for the Josephson Effects. In order to further my study
of BECs I would like to see how BEC behave at a finite temperature and
model how the thermal cloud changes will the presence of another thermal
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cloud damps out a BEC and looking into modelling and the analytics this
situation.
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