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Abstract

In this project, we will investigate and model the environmental extremes of wind speed and
temperature in the area of the nuclear power station, Sellafield. In particular, we will look
at wind speeds predominantly from the angle of 118 degrees to north, as this is the wind
speed direction that Sellafield Ltd are most interested in with regards to the performance of
a cooling system. Also, we will look at prolonged conditions of these variables, these types
of conditions are of are most concern as extended periods have a more severe negative
impact on the cooling system. We will assess the univariate and bivariate extremes of
these two variables, from this we will find parameter estimates for Generalised Pareto
Distributions and the logistic model. From this, we will obtain return levels and provide
scenarios in which we predict may occur in various timeframes assuming that the variables
follow the same meteorological patterns of the time of the dataset.
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1 lntroduction

1.1 Background Information

At Sellafield Ltd, they are interested in the performance of one of their building’s cooling system,
the system is based on natural convection due to the heat generator within, the primary char-
acteristic to the cooling system is that possesses no fans. This buildings system performance(P )
depends on both temperature(T ) of the inlet air and its speed and direction. The impact of the
parameter, external temperature, to the internal temperature is directly proportional. So, an
increase in external temperature of 5 degrees celsius will increase the internal temperature by 5
degrees celsius.

P ∝ −T
The impact the external wind parameter(W ) has on the buildings system isn’t as clear cut as
temperature, certain wind directions namely, 118o to north inhibit the air flow the most, this is
understood to be due to the pressure differentials between the inlet and the outlet which results
from wind flowing over the outlet stacks. Thus, the internal environment heats up as the wind
prevents the escape of the air. It has been observed that wind speeds under 3m/s have very
little effect on the system at all, however, from this point there is an increasing effect on the
system, it is believed that there is a speed squared dependence.

P ∝ −W 2

1.2 The Aim

There have been studies that suggest that the heat capacities of the internal components take
up to 4 hours for the store internals to fully respond to a change in external conditions, however,
around 80-90% of the effect manifests after only one hour. So, what the Sellafield Ltd company
are most concerned with is weather conditions that persist for 1 hour or more. What I have
been asked, is to present a 1 in 100 and 1 in 10000 years probability of the extremes of worst
case temperature, wind direction and wind speed. Also, what Sellafield Ltd Company are
most interested in is the combination of these factors and their net impact on the system.
So what we will do in order to account for these conditions, we will perform our analysis on
the one hour and two hour moving averages of the data in order to find prolonged weather
conditions that may be of concern to the performance of the cooling system. We will model these
environmental extremes and supply the researchers at Sellafield Ltd with extreme scenarios with
their apprioriate probability of occurence.

1.3 Modelling Environmental Extremes

So, what we need to model this behaviour and evaluate these probabilities, we need a model
that is tailored to measuring extreme values, there are two types of model that do this, Classical
models and Threshold Models.

1.3.1 Classical Models[9][5]

Suppose you have X1, X2, ..., as an independent and identically distributed sequence of random
variables, then define

Mn = max{X1, ..., Xn},
From this you need the limiting distribution of Mn as n → ∞, however, this is degenerate and
we need to work with a normalised version.
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1.3.2 The Extremal Types Theorem [10]

If there exist sequence of constants {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} → G(z) as n→∞,

whereG is a non-degenerate distribution function, thenG belongs to one of the following families:

I : G(z) = ee
−(

z−β
γ )

, −∞ < z <∞;

II : G(z) = e−( z−β
γ

)−α , z > β; [G(z) = 0, z ≤ β]

III : G(z) = e−(− z−β
γ

)α , z < β; [G(z) = 1, z ≥ β]

for parameters γ > 0, β and α > 0. These families are referred to as Gumbel[1], Fréchet and
Weibull distributions respectively.

1.3.3 The Generalised Extreme Value Distribution (GEV)[9][5]

These families can be generalised into a single distribution known as the Generalised Extreme
Value Distribution (GEV). The GEV’s cumulative distribution function is as follows:

G(z) = e−[1+ξ( z−µ
σ

)]
− 1
ξ
, (1)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, and where µ, σ > 0 and ξ are location, scale and
shape parameters respectively.

1.3.4 The Block Maxima Approach

Say you have a sequence X1, X2, ... as defined in section 1.3.1, you specify a block size of n
where n is reasonably large. Break this sequence into blocks of size n and obtain the maximum
observation from each block. Now you have a sequence of maxima M(1),M(2), ...,M(N), you then
fit the GEV to the sequence of maxima and then this gives you a basis for statistical inference
using maximum likelihood estimation to find the optimum parameter values for the GEV models
cumulative distribution function shown by equation (1).

1.3.5 Threshold Models

The second type of model that can be used to model environmental extremes is known as a
threshold model, this model fits to all the data points above a certain specified threshold, this
approach uses a lot more of the data and is less wasteful of the data than the block maxima ap-
proach. In order to do this, we use a distribution known as the Generalised Pareto Distribution.

1.3.6 The Generalised Pareto Distribution (GPD)[9][5]

Under certain conditions, if it exists, the limiting distribution as u→∞ of (X − u|X > u) has
a Generalised Pareto Distribution of the form,

H(y) = 1−max

(
0, 1 +

(
ξy

σ

)−1/ξ
)
, (2)

where Y = X − u, σ(σ > 0) and ξ(−∞ < ξ <∞) . Σ and ξ are the scale and shape parameters
respectively. From the cumulative distribution, it would suggest that the GPD doesn’t exist as
ξ = 0. However, by taking the limit as ξ → 0, we obtain the cumulative distribution of the
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exponential distribution with the mean equal to the scale parameter σ, so the GPD at ξ = 0 is
like so,

H(y) = 1− exp

(
−y
σ

)
, (3)

defined for the values y > 0.

1.3.7 The Return Levels of the Threshold Model[7]

So, for the threshold models, we need to find return levels in order to calculate the apprioriate
probabilities of say an 1 in 10000 year occurence, so we need to find the Pr(X > x) where X is
the random variable in question. Say we have set a threshold u, then for we have the following
conditional distribution,

Pr(X > x|X > u) =

[
1 + ξ

(
x− u
σ

)]−1/ξ

,

So, by multiplying both sides by the Pr(X > u), we get the left hand side to become Pr(X > x)
by the using conditional probability, thus it follows that we get,

Pr(X > x) = λu

[
1 + ξ

(
x− u
σ

)]−1/ξ

, (4)

where λu = Pr(X > u). Now that we have an expression for Pr(X > x), we set Equation (4)
to equal 1/m where m will be the number of observations, giving us the probability of X > x
once every m observations. By doing this, we get,

λu

[
1 + ξ

(
xm − u
σ

)]−1/ξ

=
1

m
, (5)

where xm is the level that is exceeded once every m observations.

We want to make xm the subject of the equation, rearranging Equation (5) gives,

xm = u+
σ

ξ
[(mλu)

ξ − 1] (6)

This gives us a return level for the values you expect the random variable X to exceed once every
m observations. So, to produce an N-year return level, we set m = Nxny, thus by substituting
this into Equation (6) the N-year return level is as follows,

zN = u+
σ

ξ
[(Nnyλu)

ξ − 1] (7)

where N is the number of years and ny is the number of observations per year.

1.3.8 Exceedances over the Threshold Method

In order to model data using threshold models, you will choose an apprioriate threshold value
such that a GPD explained in Section 1.3.6 is a good model for the exceedances, then fit the
GPD to the exceedances using maximum likelihood estimation to find the inferred values for the
parameters of the GPD. Once you have this model, you can use the model to produce return
levels from equation (7) in Section 1.3.7.
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1.3.9 The bivariate logistic model[5][1]

For a bivariate analysis for environmental extremes, there is a bivariate model namely, the
logistic model, this model allows for dependence between the two variables y1 and y2 with a
dependence parameter α. The CDF is as follows:

F (y1, y2) = e−(y
−1/α
1 +y

−1/α
2 )α (8)

where y1 and y2 are the appropriately transformed Fréchet margins. The α parameter ranges
from 0 to 1, going from dependent to independent.

Theorem: limiting distributions for bivariate extremes[5][9]

It can be shown that:
Pr(xi, yi)→ G(x, y)

where (Xi, Yi) are independent and identically distributed with standard Fréchet marginal dis-
tributions, and G is non-degenerate. If this is the case, G has the form:

G(x, y) = e−V (x,y); x > 0, y > 0 (9)

where:

V (x, y) = 2

∫ 1

0

max

(
ω

x
,
1− ω
y

)
dH(ω)

where H is a distribution function defined on the range [0,1] which satisfy the mean constraint:∫ 1

0

ω dH(ω)

By using Equation (4) in section 1.3.7, we get our H(x) to be:

H(x) = 1− λu

[
1 + ξ

(
xm − u
σ

)]−1/ξ

(10)

In order to obtain a standard Fréchet margin for our logistic model, modelling threshold ex-
ceedances, we need to perform the following transformation:

x̃ = −

(
log

(
1− λux

(
1 +

ξx(x− ux)
σx

)))−1

So we apply this transformation to both margins, we achieve the form described by Equation
(9), where V (x, y) = (x−1/α + y−1/α)α for the logistic model.

1.3.10 Joint return period estimation for the logistic model[6]

The return period of the occurrence Xi > xi, i = 1, 2.. is expressed as follows:

Txi =
1

1− F (xi)

where F (xi) = Pr(Xi < xi). So, by introducing a new variable x2, the joint return period
T (x1, x2) of X1 and X2 can be condensed down to three possible events of interest. Given any
pair of points, we have the following possibilities:
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1. X1 > x1 and X2 < x2

2. X2 > x2 and X1 < x1

3. X1 > x1 and X2 > x2

These possibilities can be represented by: [4]

T(x1,x2) =
1

1− F (x1, x2)
(11)

This form does not account for there being more than one extreme occurrence in one year. To
account for this, we can rewrite Equation (11) in the form:

R =
1

kF ∗(Hs, T )

in which k is the mean number of extreme events per year and F ∗(Hs, T ) is the bivariate
exceedance probability function of Hs and T.

1.4 The return level standard error[8]

The Delta method can be used to derive the following formula to calculate the standard errors
for our return levels defined in section 1.3.7:

V ar(ẑr) ≈ ∇zTNV∇zN (12)

Furthermore, we can create expressions for our return levels as follows using the following oper-
ator:

∇ =

[
∂

∂σ
,
∂

∂ξ

]
(13)

So, by partially differentiating Equation (7) with respect to σ and ξ using the operator described
by Equation (13), we get:

∇zTN = [ξ−1((Nnyλu)
ξ − 1),−σξ−2((Nnyλu)− 1) + σξ−1(Nnyλu)

ξlog(Nnyλu)] (14)

These will be evaluated at the point estimates for the parameters of a given model (σ̂, ξ̂).

2 The Data

The company Sellafield Ltd has supplied us with 7 years and 5 months of data points that
were measurements taken of the wind speed/direction and temperature at several mast heights,
these measurements were taken at the frequency of one in every ten minutes. These data points
range from the start of 2007 all the way to 2014 up to and including May. The plot of all the
variables in Appendix 1 shows the missing blocks points to be discussed in Section 2.1, it shows
the seasonal variation of temperature throughout the years that you would expect, the wind
speeds seem to be fairly random, with plenty of spikes corresponding to large storms which will
be the data of most interest to us.
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2.1 Issues with the data

We have a large portion of missing data points in 2008 at the beginning of the year whilst the site
was under refurbishment. After this, throughout the year, they had a regular check up resulting
in a few missing points from thereafter. Further points were missing from wind speeds at the
16m mast height. However, in terms of our analysis, this will not affect it substantially as the
missing values were not caused by say extreme conditions, if this was the case and each missing
value corresponded to extreme conditions, then the analysis would suffer dramatically as the
data would be biased. These data points can be treated as random and completely independent
of the variables in question, wind speed and temperature. Also, in the data recording process,
due to the nature of the recordings, there were inconsistencies in the mast heights frequency
of data, for temperature and wind speed/direction, some mast heights had too many missing
values, or weren’t recorded for time periods as long as a year. The differing levels of data over
the mast heights resulted in us having to only use three mast heights, 2m, 10m and 16m as we
plan to use a bivariate model, we needed the points to be at the same height to be compared
fairly.

2.2 The Wind Speed Component

For the aims of this project, we have an interest in the wind speeds relative to the angle 118o to
north. So we need to work out the wind speed component relative to this angle. In Appendix
2, we can see that from 190 to 320 degrees has the highest wind speeds predominantly, this is
very reassuring for Sellafield Ltd as the most extreme behaviour seems to lie in the angle range
that does not have any effect on the cooling system. However, we appear to have a spike in
high wind speeds within the range 100-140 degrees circled in the box plots, this range contains
the most influential angle of concern. In order to calculate this wind speed contribution we will
multiply all the wind speeds by the cosine of the difference in angle from 118o.
We use,

yadj,i = yicos(118− di)

where yadj,i is the ith wind speed component, di is the ith wind direction and yi is the ith wind
speed.

This applies the following cosine curve to each point in the dataset.
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Figure 1: Cosine curve centered at 118o

From Figure 1, it can be seen that the angle 118o the cosine is equal to one as this angle has
the most influence over the cooling system, with a decay in contribution as you veer away from
this angle.

By doing this we have evaluated all the wind speed contributions, by setting on the negative
values to zero, in Appendix 3, we produced the same boxplots as before to get a clearer picture
of the data points we have to start our analysis on. From these boxplots we have a better picture
of the behaviour of the wind speeds of concern.

3 Univariate Analysis

For our univariate analysis we will use the exceedances over threshold method using a generalised
pareto distribution(GPD) in Section 1.3.6. In order to do this we must first choose an appriorate
threshold value such that the GPD is a suitable model for the exceedances (X − u0|X > u0).
We shall then fit the GPD to the observed excesses using maximum likelihood estimation to find
our model for the variable, from this we can supply return levels.

3.1 Wind Speed

In this section we will find some univarate models for the wind speed, we will assume indepen-
dence between the exceedances that we model. This may be an issue, as extreme wind behavour
usually comes as storms which are sequences of dependent values. So, what may be the case is
that one storm could mimic a region of points to be giving us the same amount of information
as that number of independent points. The problem with this, is that the dependent points will
be only giving us the same amount information as few independent points.

3.1.1 Threshold Choice

We must first decide upon a threshold value for wind speed, we will do this with the aid of
parameter stability plots and mean residual life plots being produced by R packages ’evd’[12]
and ’ismev’[11] respectively. These plots will give us a good indication of our choice of threshold
for the variable wind speed.
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3.1.2 Mean residual life plots

Firstly, we will look at the mean residual life plots, by using [3] we know that the if all the
exceedances xi above a certain threshold say u0 then the mean value of (xi − u) plotted against
u > uo should give a linear plot if the GPD is the correct model for the exceedances. So, by
looking at the mean residual life plots found in Appendix 4, we can chose suitable thresholds
for each mast heights. From observation, 13.5 for 2m, 18.3 for 10m and 19.9 for 16m.

However, an issue with these choices is that we have very little data above the threshold
chosen, we have a dataset of length 389952 and are using only 24,21 and 36 data points for mast
heights 2m,10m and 16m respectvely, we have a lot of data wastage this suggests that the high
end values are extremely dependent on each other as these collection of points of a large storm,
so the original assumption that the exceedances are independent may be wrong. What we are
observing is most likely a small collection of storms. We shall look at parameter stability plots
to confirm our choice of threshold.

3.1.3 Parameter Stability Plots

In these plots, if we chose a particular threshold, we need to ensure that all further threshold
choices greater than the chosen threshold has 95% confidence intervals that contain the chosen
threshold. So, this assesses the stability of our estmates for ξ and σ. So, from looking at
appendix 5, we confirm these are our threshold choices, as the parameters only seem stable
after our choice of thresholds for the wind speed, this is a problem because we cannot model
the extremal behaviour of the wind speed over approximately 7 years using such a small subset
of the data. We need to be at least using approximately using 1-5% of the data to model the
extremal behaviour reliably. We need to account for this dependence.

3.1.4 Declustering[9]

In order to account for the dependence we encountered with our wind speed data in section 3.1
will use a method called declustering. As our assumption of independence failed, we must con-
dense these dependent regions, ’clusters ’. Say one storm goes on for a long period of time, these
points are telling us and mimicking the same information of the same amount of independent
observatons. So to get around this, we need to condense these regions down to one point which
will be approximately independent to the other cluster peaks. We will take the most extreme
value in each cluster throughout the entire series of points. This enables us to still be able to
model the most extreme behaviour and fit a GPD to these ’cluster peaks ’.

To decluster a data set we need to decide the following:

1. The declustering threshold u

2. The declustering cooldown interval κ

The declustering threshold u is the value that triggers the start of the cluster, once this has been
exceeded you initiate the start of a cluster. The declusterng cooldown interval is the number of
consecutive values that fall below the threshold in order for us to classify that the cluster has
ended and all the dependence has passed from the current cluster. This approach is referred to
as the peaks over threshold approach [3]
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Figure 2: Declustering Example, threshold represented by the dotted line

From Figure 2, you can clearly see the first clusters beginning and end illustrated by the
blue box, with the cluster peak being the most extreme value in that region. In this example,we
assume that the cooldown interval has been satisfied thus the cluster has ended. However, look-
ing at the second cluster, you can see that the cooldown interval may have not been satisfied,
illustrated by the red box, this is an occurence where the cluster is not deemed to have finished,
so the cluster continues and the cooldown period is resets and restarts when the current data
string falls below the declustering threshold again.

The declustering threshold choice

The choice of the declustering threshold for the wind speeds were based on the percentage
of data above the declustering threshold, we used trial and error to find a compromise between
this and the consequential very large clusters caused by very low choices of the declustering
threshold. With the declustering threshold being too low we get very little data and long clus-
ters, this was caused by long periods of time being considered a single cluster and very rarely
was the cooldown period satisfied. With a very high declustering threshold choice we got a sim-
ilar problem as very little values exceeded the threshold so we ended up with very little cluster
peaks. We went for roughly 15% of the data to be above the declustering threshold, this gave
us a reasonable amount of data to fit the GPD to, and no substantially long clusters, clusters
that extended for longer than a month were a benchmark.

The declustering cooldown interval choice

The choice of the declustering cooldown interval needed to be sufficiently long such that the
long storms that may dip below the threshold for a while during certain times of the day were
still considered the same storm and not considered two separate storms as this would go against
why we are declustering. But needed to be sufficiently short to ensure that we don’t merge two
storms together and lose a storm in the process of declustering. We used a cooldown period of
5 days, this seemed to be a reasonable cooldown period for a storm to be said as finished, we
assumed extreme storms wouldn’t prolong for this amount of time.

12



3.1.5 The declustered wind speed data

For the declustered data set, we decided upon the declustering thresholds of 4, 5 and 7 for mast
heights 2m, 10m and 16m respectively. Now we need to return to deciding upon a threshold
choice for our GPD model for the exceedances of the declustered peaks. So, we need to produce
mean life residual plots explained in Section 3.1.2 for the new data set.

From looking at the mean residual life plots from Appendix 6, we can see that there is a clearly
a linear relationship that can be achieved for all mast heights. This suggests that we have suc-
ceeded in removing most of the dependence caused by the clusters and we can now model the
extreme behaviour of the wind speed cluster peaks. From the mean residual life plots we decided
to chose the following thresholds for each wind speed mast height.

Mast Height(metres) 2 10 16
Threshold(m/s) 7.8 11.1 12.6

Num. of Exceedances 182 168 161

Table 1: Threshold Choices for declustered wind speeds

3.1.6 The fitted wind speed models

2m wind speed model

For our first model at mast height 2m, the GPD fits really well for our choice of threshold
7.8(κ = 4), this gives us 182 cluster peak exceedances out of 1469 exceedances, xi; i = 1, ..., 182,
by using maximum likelihood estimation we get:

σ̂ = 2.006(0.190) ξ̂ = −0.118(0.0592).

Diagnostics for the 2m wind speed model

By looking at the diagnostics plots in Appendix 7, we can see from the probability and quantile
plots that the model is fitting very well. We have a few stray values on the end of the quantile
plot but this is not anything to be concerned about. We can see the shape of the density and the
return level plot giving our predictions about the probabilty of an exceedance in years graphically.

10m wind speed model

For our second model at mast height 10m, the GPD fits really well for our choice of threshold
11.1(κ = 6), this gives us 168 cluster peak exceedances out of 1259 exceedances, xi; i = 1, ..., 168,
by using maximum likelihood estimation we get

σ̂ = 2.321(0.251) ξ̂ = −0.0679(0.0763).

Diagnostics for the 10m wind speed model

By looking at the diagnostics plots in Appendix 8, we can see from the probability and quantile
plots that the model is fitting very well. We have one outlier in the quantile plot but this is
nothing to be too concerned about, this is may due to the variation in the data. The return level
plot giving our predictions about the probabilty of an exceedance in years. The density looks
very similar to an exponential distribution, but this is because the parameter ξ is very close to
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zero, as discussed in section 1.3.6 and by Equation (3).

16m wind speed model

For our third model at mast height 16m, the GPD fits really well for our choice of threshold
12.6(κ = 7), this gives us 161 cluster peak exceedances out of 1131 exceedances, xi; i = 1, ..., 161,
by using maximum likelihood estimation we get

σ̂ = 2.624(0.288) ξ̂ = −0.0897(0.0767).

Diagnostics for the 16m wind speed model

By looking at the diagnostics plots in Appendix 9, we can see from the probability and quantile
plots that the model is fitting very well. We have a few stray values on the end of the quantile
plot, but this is of no concern. We can see the shape of the density and the return level plot
giving our predictions about the probabilty of an exceedance in years graphically.

Stability of the parameters
We must check the stabilty of the parameters for our choice of threshold for all models, we need
to do this to confirm and investigate that our choice of threshold makes the GPD the correct
model for the excesses.

Figure 3: Parameter Stability plots of 2m and 10m wind speed respectively
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Figure 4: Parameter Stabilty Plots of 16m wind speed

From the Figures 3,4 above, the points with no error bar are representations of the an error
bar that extends beyond the range of the y-axis. By observing these plots, we can be reassured
of our choices of threshold for all mast heights as the parameters seem to be stable throughout.
However, the plots seem to suggest parameter stability for lower thresholds than we have chosen.
This needs further investigation, if we can push the threshold lower and still maintain a good
fit to the GPD model, then we will have more data to use for our analysis and we will be able
to better predict the extreme behaviour of the wind speed.

3.1.7 The final wind speed models

So, we will fit the models to a GPD, but slowly decrease the threshold towards the declustering
threshold looking for any deterioration in fit as we lower the threshold. By performing this
task, we see very little deterioraton of fit, for all mast heights we manage to get back to the
declustering threshold and the data still fits really well. You can see this by the diagnostic plots
in Appendices 10-12 of all the models with there new thresholds of 4,6,7 for the mast heights
2m,10m and 16m respectively. So, by doing this, we are using all our cluster peaks for our
analysis of the extreme behaviour and have independent observations. We can see that by using
all the observations that ξ parameters have all become closer to zero as the densities seemed to
approach the Exponential distribution from their previous density.

Finally, our new models for the univariate wind speed are GPD with the following scale and
shape parameters:

Mast Height(metres) 2 10 16
Threshold(m/s) 4 6 7

κ 4 6 7
σ̂ 1.860(0.0696) 2.409(0.100) 2.746(0.122)

ξ̂ -0.0215(0.0268) -0.00606(0.0307) -0.0134(0.0332)
Num. of Exceedances 1469 1259 1131

Table 2: Threshold Choices for declustered wind speeds(lower threshold), standard errors in
parentheses to 3 s.f.
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3.2 Temperature

In this section, we will fit univarate models to the temperatures extreme behaviour, we will
assume independence between the exceedances that we model. This may be an issue, as extreme
temperatures usually come for prolonged periods(e.g. heatwaves) which are sequences of depen-
dent values. So, what may be the case is that one heatwave could be interpretated as several
independent extremes. Also, what we will have to also consider, is that temperature has a daily
cycle, which is good for Sellafield Ltd, as prolonged heated conditions are naturally rare due to
the cooling at night.

3.2.1 Mean residual life plots

By looking at the mean residual life plots of the temperatures at all all mast heights in Appendix
13, as we need to guarantee a linear relationship between the mean excess and all thresholds above
a certain chosen threshold explained in section 3.1.2, we decide to go for the thresholds 23.5,
23.8 and 23.2 for the mast heights 2m, 10m and 16m respectively as this gives an approximate
linear relationship from these threshold onwards. These thresholds have a respective 483, 324
and 411 exceedances above there corresponding thresholds, this is quite small. We must check
parameter stability plots to check our choice of thresholds.

Mast Height(metres) 2 10 16
Threshold(Celsius) 23.5 23.8 23.2

Table 3: Threshold Choices for Temperatures

3.2.2 Parameter stability plots

By looking at the parameter stability plots of the temperatures at all mast heights given in
Appendix 14, our choice of threshold seems to be reassured, however, the last few thresholds
seem disconcerting, suggesting that our choice of threshold may be incorrect. We shall fit the
model and assess its fit to investigate our choice of threshold further.

3.2.3 Fitting the GPD to the exceedances

We fitted a GPD model to the exceedances of temperatures for all mast heights with our chosen
thresholds shown in Table 3, by fitting these exceedances we get the diagnostic plots shown in
Appendices 15-17. It is very clear in all cases that the probability plot shows that the models
aren’t fitting well. The quantile plots also suggest a lack of fit with the data. The return level
plots are very bad also, as the alot of the data is falling out of the range of the 95% confidence
intervals and is not very helpful to predicting the extreme behaviour. We need to consider the
daily cycle of temperature into our analysis of the data and we need to account for some of the
dependence that temperature will have when measured as close as 10 minute periods.

3.2.4 Block maxima

In this section, we will take block maxima of the temperature, in particular we will look at the
daily maxima of temperatures in order to remove some of the dependence in the data and this
method also accounts for the daily cycle that temperature possesses. As explained in section
1.3.4, we will simply take the maximum temperature value for each day in the whole data set, we
will then perform our analysis on this new dataset using a threshold model, this new sequence
of observations will hopefully fit the GPD model better than the raw data.
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3.2.5 Fitting to the Daily Maxima

In this section, we will fit the GPD models to the exceedances of the daily maxima, again, using
maximum likelihood estimation.

Choosing a Threshold value

By using Appendix 18, we chose the illustrated thresholds which are 16.2, 16.1 and 16.1 for
mast heights 2m,10m and 16m respectively. From these thresholds seem to give a linear rela-
tionship afterwards.

Mast Height(metres) 2 10 16
Threshold(Celsius) 16.2 16.1 16.1

Num. of Exceedances 604 487 506

Table 4: Threshold Choices for Daily Temperatures

Parameter Stability
We must check for parameter stability to reinforce or to find any problem our choice of threshold
for the daily temperatures.

Figure 5: Parameter Stability plots of 2m and 10m daily temperatures respectively
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Figure 6: Parameter Stabilty Plots of 16m daily temperatures

From figures 5 and 6, we can see that our parameters are stable for our choice of threshold,
the threshold choice of 15 may be a possibility in order to be a good fit to the GPD. We will in-
vestigate this possibility further as we assess the deterioration of fit as we decrease the threshold.

Deterioration of fit

By steadily decreasing the threshold from the chosen thresholds, we get slight changes, our
new thresholds are 16, 15 and 15 for the mast heights 2m , 10m and 16m respectively. These
are our final choices for the threshold for our univariate model of the daily temeratures.

3.2.6 The final temperature models

So, our final models for the univariate daily temperatures are GPD with the following scale and
shape parameters:

Mast Height(metres) 2 10 16
Threshold(Celsius) 16 15 15

σ̂ 2.225(0.120) 2.374(0.116) 2.612(0.125)

ξ̂ -0.0568(0.0372) -0.0766(0.0330) -0.120(0.0321)
Num. of Exceedances 761 776 776

Table 5: Models for the daily temperatures, standard errors in parentheses to 3 s.f.

We can see by the diagnostic plots of the models in Appendices 19-21, that the daily temper-
ature exceedances are fitting very well, by looking at the probability and quantile plots, the fit
exceedances seem to fit well, each mast height has a few stray endpoints on the quantile plot but
that’s of no concern. We have graphical return levels for our prediction of how likely such high
temperatures are to occur. All the densities look very similiar to the Exponential distribution
as the ξ value is quite close to zero.

3.3 Moving average wind speed model

The company Sellafield Ltd are also interested in prolonged weather conditions, stated in Section
1.2, a way of transforming the data to make it more descriptive of this behaviour we will use
moving averages. We will use the periods of most concern which are one and two hour intervals,
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this will give us a dataset of prolonged weather conditions so we can then do our ordinary
analysis on this new dataset to model the prolonged weather conditions for both one and two
hour periods. This will give us a very good idea on the type of conditions that Sellafield Ltd
should be aware of the possibility of.

3.3.1 Simple moving average

A moving average is a chain of averages calculated by successive overlapping segments of equal
size of a series of values. So, given we have a dataset (x1, x2, ..., xn) and we have segment size k.
Then the moving average will be as follows:

MA1 =
1

k

k∑
i=1

(xi)

MA2 =
1

k

k+1∑
i=2

(xi)

...
...

...
...

MAm =
1

k

n∑
i=n−k

(xi)

We will use the moving averages of the wind speed component relative to 118o so that we get
a model for the prolonged conditions of the wind speed direction. This is of particular interest
researchers at Sellafield Ltd company. Firstly, we will fit the data assuming that the data points
have no dependence structure.

3.3.2 Mean life residual plots

By looking at Appendix 22, we can see that we have a similar situation to the previous analysis
in Section 3.1 of the wind speed, this was expected as we have moving averages of the original
dataset which also possessed this dependence structure, by taking moving averages, we would
have introduced more dependence between observations. By attempting to fit these exceedances
using the threshold choices depicted in Appendix 22 to a GPD, we get very poor fits as expected,
so let us go straight to declustering our data of moving averages.

3.3.3 The declustered moving averages

Whilst declustering a dataset of moving averages, we must also consider that we have introduced
some dependence in the data, so we will have to consider this when deciding upon a declustering
cooldown interval. We went for the following declustering thresholds 4, 6 and 7 for the mast
heights 2m,10m and 16m respectively. Our choices for a cooldown interval were our original
cooldown interval from section 3.1.7 plus the moving average period. By looking at appendix
23, we can see that the declustering has succeeded in removing the majority of the dependence
of the moving averages and will be good fits to the GPD as all mean life residual plots show a
linear relationship.

3.3.4 The declustered moving average models

We fit these exceedances to the GPD, as in Section 3.1, the parameter stability plots seem to
suggest we can push the threshold choice for the GPD back to the declustering thresholds. By
doing this and checking the deterioration of fit, we can push the threshold choice back. By
looking at the diagnostics in Appendix 24, we can see that the probability plots and the quantile
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plots don’t detect anything alarmingly wrong with the fit suggesting the GPD is a good fit to
the data. A few outliers near the tail of the quantiles appear, but are of no concern.

So, our final models for the moving average wind component model are GPDs with the fol-
lowing parameters:

Mast Height(metres) 2 10 16 2 10 16
Threshold(m/s) 4 6 7 4 6 7

σ̂ 1.388(0.0906) 1.570(0.129) 1.885(0.147) 1.357(0.0942) 1.442(0.133) 1.730(0.149)

ξ̂ -0.131(0.0405) -0.0971(0.0500) -0.113(0.0434) -0.134(0.0404) -0.0727(0.0574) -0.090(0.0496)
Num. of Exceedances 755 732 689 644 627 572

Table 6: Moving average wind speed component models, standard errors in parentheses to 3 s.f.

3.4 Univariate Return Levels

In this section, we will calculate various return levels for our pre-existing models from Sections
3.1.7, 3.2.6 and 3.3.4 to work out the types of temperatures and wind speeds you will expect
over certain periods of time and how likely these extremes are to occur. We will be using the
return level formula derived in Section 1.3.7. All standard errors will be calculated using the
delta method in Section 1.4 using Equations (12) - (14).

3.4.1 Wind speed models

In this section, we will look at the types of extremes of wind speed we expect assuming there
is no severe changes in behaviour throughout the future years caused by global warming as an
example.

Return Level(years) 10 100 1000 10000 100000
Wind speed extreme(m/s) 17.08595 20.63455 24.01213 27.22693 30.28678

Standard error 1.002018 1.735527 2.643892 3.707875 4.910085

Table 7: Return levels for the declustered wind speeds(mast height 2m)

Return Level(years) 10 100 1000 10000 100000
Wind speed extreme(m/s) 23.60025 28.86458 34.05599 39.17549 44.22407

Standard error 1.54139 2.766577 4.344059 6.262696 8.512264

Table 8: Return levels for the declustered wind speeds(mast height 10m)

Return Level(years) 10 100 1000 10000 100000
Wind speed extreme(m/s) 21.51129 27.2962 32.90483 38.34257 43.61462

Standard error 0.9206395 1.984886 3.450757 5.289414 7.475657

Table 9: Return levels for the declustered wind speeds(mast height 16m)

From Tables 7 to 9 above, we can see the types of wind speed we would expect if the wind
speeds behave in the same meteorological manner as the past ≈ 7.4 years. We have the once
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every ten years to the once in every hundred thousand years probability, the standard errors
were calculated using the delta method explained in Section 1.4 . The tables clearly show that
the higher the mast height the more extreme wind speeds you should expect, this is as expected
as you increase height, wind conditions get more severe.

3.4.2 Daily Temperatures

In this section, we will look at the types of extremes in temperature we predict to see assuming
there is no dramatic changes in behaviour throughout the future years.

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Temperature extreme(Celsius) 28.52947 31.79626 34.66251 37.17734 39.38382

Standard error 1.175846 2.061709 3.104662 4.251589 5.460847

Table 10: Return levels for the daily temperatures(mast height 2m)

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Temperature extreme(Celsius) 27.76595 30.71077 33.17914 35.24817 36.98244

Standard error 1.663737 2.787769 4.033241 5.330795 6.63075

Table 11: Return levels for the daily temperatures(mast height 10m)

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Temperature extreme(Celsius) 27.32278 29.60709 31.34051 32.6559 33.65407

Standard error 1.275873 2.028923 2.789123 3.508604 4.162581

Table 12: Return levels for the daily temperatures(mast height 16m)

From Tables 10 to 12, we can see that the daily temperatures extreme values decrease as
you increase the height, this would be as expected as it tends to be colder on average at higher
altitudes. Also, it can be noticed that as the temperatures rise, then the wind decreases, there
seems to be a negative correlation between the two variables.

3.4.3 Moving average models

We will find the return level values for the prolonged conditions of one and two hour periods of
the wind speed relative to the direction 118o which are of most interest for Sellafield Ltd. We
will firstly look at the one hour period moving averages.

3.4.4 One hour period

These will be the expected extreme values of wind speed that will prolong for a one hour period.

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Wind speed extreme(m/s) 9.905473 11.12056 12.01835 12.68171 13.17184

Standard error 0.4458034 0.7343665 1.033134 1.316255 1.57124

Table 13: Return levels for the moving average wind speeds(mast height 2m, one hour)
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Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Wind speed extreme(m/s) 12.90784 14.76444 16.249099 17.4363 18.38568

Standard error 0.6458221 1.152773 1.733454 2.336138 2.928027

Table 14: Return levels for the moving average wind speeds(mast height 10m, one hour)

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Wind speed extreme(m/s) 14.98515 16.97438 18.50734 19.68869 20.59908

Standard error 0.651473 1.110859 1.622311 2.136116 2.623587

Table 15: Return levels for the moving average wind speeds(mast height 16m,one hour)

From Tables 13 to 15, we have our prolonged conditions of concern for one hour periods,
these are all above the wind speeds that will effect the cooling system. These extremes are going
to have a high negative impact on the cooling system.

3.4.5 Two hour period

These will be the expected extreme values of wind speed that will prolong for a two hour period.

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Wind speed extreme(m/s) 9.62822 10.82966 11.71304 12.362691 12.84041

Standard error 0.4170993 0.6870849 0.9699182 1.23896 1.481357

Table 16: Return levels for the moving average wind speeds(mast height 2m, two hour)

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Wind speed extreme(m/s) 12.58022 14.60791 16.31917 17.76339 18.98224

Standard error 0.7104049 1.336769 2.096703 2.93089 3.796772

Table 17: Return levels for the moving average wind speeds(mast height 10m, two hour)

Return Level(years) 1 in 10 1 in 100 1 in 1000 1 in 10000 1 in 100000
Wind speed extreme(m/s) 14.60015 16.76729 18.52686 19.955519 21.11548

Standard error 0.7157696 1.283911 1.951398 2.658649 3.366217

Table 18: Return levels for the moving average wind speeds(mast height 16m,two hour)

From Tables 16 to 18, we have our prolonged conditions of concern for two hours, a similar
picture to the one hour period return levels, we have very high prolonged wind speeds that will
have a negative impact on the cooling system.

4 Bivariate Analysis

In this section, we will fit a bivariate model to both temperature and wind speed to model the
combinations of both factors to assess the types of conditions the researchers at Sellafield Ltd
company can expect. We will supply some extreme scenarios of combinations of wind speed
and temperature and how likely these are to occur. We will use a software package in R called
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’evd’[12] to fit these models to the exceedances. So, by using the logistic model in Section 1.3.9,
we will use maximum likelihood estimates to infer our parameters for our bivariate peaks over
the thresholds, the method is described in [2], we need to assume independence between the
bivariate pairs.

4.1 Bivariate Datasets

For our moving average datasets, we will still have dependence within the points in their raw
state, we have a problem that the wind speeds in the univariate case needed to be declustered
and the temperatures we fit to the daily maxima. This makes it hard to model the bivariate
case as we don’t have independent bivariate pairs to fit the logistic model to. As a solution, we
will look at all the declustered wind speed peaks, then take the associated temperature value for
the given interval of time this extreme occured. However, this will only give us the wind speeds
extreme behaviour, we then do the same for the temperature. We decluster the temperatures
and take the associated wind speed from these peaks. This is where we need to be careful as our
bivariate pairs need to be approximately independent to fit the logistic model, we need to check
if we have any cases that we have extracted the same peak from both datasets. We need to also
find any potentially dependent observations (e.g two points lying in the same cluster lying too
close to one another to be considered approximately independent). By doing this we find a few
identical points in both datasets, we then removed one of the repeated points, we find a few
overlaps in the dataset cluster intervals, however, none were substantially close to question that
we have enough dependence to severely effect our model. Our assumptions seem to hold. All
wind speeds considered in the bivariate analysis will be the wind speed component discussed in
Section 2.2.

4.2 Bivariate one hour moving average models

In this section, we will look at the bivariate pairs for the prolonged conditions of one hour,
we will find some scenarios in which we expect to see as a combination of the two variables.
Throughout the analysis in this section, the wind speed component will be the symbolised as y1
and temperature y2.

Mast Height(metres) 2 10 16
λuy1 0.444 0.360 0.359
σ̂y1 1.198(0.0677) 1.435(0.0847) 1.128(0.0729)

ξ̂y1 -0.134(0.0212) -0.147(0.0133) 0.000606(0.0384)
λuy2 0.429 0.704 0.703
σ̂y2 1.604(0.0955) 1.342(0.0796) 1.511(0.827)

ξ̂y2 -0.0200(0.0334) 0.1044(0.0419) 0.0200(0.327)
α̂ 0.999(0.000) 1.000(0.000) 0.999(0.000)

Table 19: Parameter estimates of the bivariate models for the one hour moving average dataset,
standard errors in parentheses to 3 s.f.

From Table 19, we can see that in all models, there is a striking inference that both the
variables are independent at the extremes. A lot of the ξ parameter values are close to zero.

4.3 Bivariate two hour moving average models

In this section, we will look at the two hour prolonged conditions bivariate pairs to find some
scenarios in which we expect to see as a combination of the two variables. Throughout the
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analysis in this section, the wind speed component will be the referred to as x1 and temperature
x2.

Mast Height(metres) 2 10 16
λux1 0.399 0.324 0.3244
σ̂x1 1.109(0.0654) 1.301(0.0908) 1.126(0.0925)

ξ̂x1 -0.0999(0.0319) -0.113(0.0239) -0.0282(0.0435)
λux2 0.736 0.706 0.736
σ̂x2 1.632(0.0106) 1.344(0.0792) 1.647(0.0947)

ξ̂x2 0.00398(0.0419) 0.0914(0.0401) 0.000518(0.0345)
α̂ 0.999(0.000) 0.999(0.000) 0.999(0.000)

Table 20: Parameter estimates of the bivariate models for the two hour moving average dataset,
standard errors in parentheses to 3 s.f.

From Table 20, We have a similar picture to the one hour moving average in Section 4.2, we
can see that in all models, there is a huge inference that both the variables are independent at
the extremes. many ξ values are close to zero.

4.4 Bivariate joint return levels

In the bivariate form, we have the return levels as curves instead of exact points like in Section
3.4. So, we will use a graphical representation of the return levels for each model to describe the
extreme combinations of the two variables. These lines will describe the types of extreme combi-
nations we expect assuming that wind and temperatures behaviour doesn’t change dramatically
in the given periods of time.

4.4.1 One hour moving average bivariate model

Figure 7: Return level plots for one hour moving average model(mast heights 2m and 10m
respectively)
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Figure 8: Return level plot for one hour moving average model(mast height 16m)

From observation of the extreme scenarios that can occur for the bivariate model depicted in
Figures 7 and 8, comparing it to the univariate models we can see that the extreme pairs are
much less extreme, so combinations of the two variables are much less extreme when you account
for the interaction between both wind speed and temperature, this will be more comforting for
Sellafield Ltd company.

4.4.2 Two hour moving average bivariate model

Figure 9: Return level plots for two hour moving average model(mast heights 2m and 10m
respectively)
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Figure 10: Return Level Plot for two hour moving average model(Mast height 16m)

From Figures 9 and 10, we have a very similar picture to that of in Section 4.4.1, the bivariate
extremes seem much less severe to there univariate models, again, very comforting for Sellafield
Ltd company.

5 Conclusion

5.1 Overview, discussions and limitations

Overall, we have modelled the environmental extremes of the wind speeds and temperature in
the area of Sellafield, the nuclear power station. We have done this both by looking at the
univariate and bivariate cases, we have looked at prolonged conditions of these factors and also
the most extreme ten minute spike at three mast heights 2m, 10m and 16m. From this, we
have found estimates of the most extreme cases we expect to see in the form of return levels.
These are described in tabular form for the univariate case in Section 3.4, and in graphical
form for the bivariate case in Section 4.4, from these, just by inspection it is very clear that
scenarios are all of interest for Sellafield Ltd company as these conditions predicted are well
above the temperatures and wind speeds of concern. Sellafield Ltd company may decide to use
these univariate values and bivariate lines in order to simulate possible scenarios that may occur
at the provided probabilities, thus they can continue there research in the performance of there
cooling system. As the building itself will only be in operational for less than hundred years,
the first two return levels of the moving average will be the most useful, however, the research
being performed by Sellafield Ltd is to ensure safety, thus, the return levels that will outlive
the building are necessary to be absolutely sure that there’s no chance of anything drastically
will go wrong with the cooling system even at the most unlikely prolonged conditions. However,
the results we have found are all within the range of concern, importantly, including the one in
ten year return level. By first observation of the univariate cases, the extremes seem very high,
however, when we look at the bivariate model, the conclusions change, the combination of the
two variables lead to less extreme pairs of values. This is as expected, intuitively, as the wind
speed increases, conditions generally are cooler due to the nature of diffusion of heat energy in the
atmosphere. Clearly, accounting for the interaction and possible combinations of temperatures
and wind speeds at there extremes gives us a much more comforting and less extreme picture
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of the behaviour of both variables. A few limitations to the analysis are that we have created
return levels based on the assumption that the following years follow the same meteorological
patterns as the past 7.4 years, this ignores any potential enironmental change over the furture
years which may occur due to global warming. Furthermore, the method of declustering is very
subjective and the personal opinion of what the ideal cooldown and declustering threshold can
influence your statistical influence.

5.2 Areas for improvement and future work

With the univariate analysis, we could have chose not to decluster the data, we could have fit
the GPD to all exceedances, thus ignoring the dependence. From this you could adjust the
inference by inflation of standard errors to take into account for the reduced information. This
also models the temporal dependence. For both univariate and bivariate analysis, we could
have performed a bayesian analysis to further improve our model, given an apprioriate prior
supplied by an expert. The dataset we had was large, however, 7.4 years is a very small dataset
when calculating the highly unlikely return levels(e.g thousand years) that we were calculated
in this project. I we had more measurements dating back further, we will have improved our
model and give ourselves a better idea of the behaviour of the weather as we would have had
a better idea of the behaviour of the two variables in the Sellafield area. Also, we could have
tested several types of models in the bivariate case, such as bilogistic model which allows for
asymmetry. From this point, having seen that the dependence parameter infers independence,
we could have further investigated this matter, and perhaps try a model that doesn’t allow for
dependence thus reducing the parameters in the model.
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7 Appendices

7.1 Appendix 1 - Plots of Raw Data

Figure 11: Raw data versus time
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7.2 Appendix 2 -Wind speeds relative to direction

Figure 12: Boxplot of wind speed and direction at mast height 2m

Figure 13: Boxplot of wind speed and direction at mast height 10m

Figure 14: Boxplot of wind speed and direction at mast height 16m
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7.3 Appendix 3 -Wind speed component relative to 118 degrees

Figure 15: Boxplot of wind speed component and direction at mast height 2m

Figure 16: Boxplot of wind speed component and direction at mast height 10m

Figure 17: Boxplot of wind speed component and direction at mast height 16m
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7.4 Appendix 4 - Mean residual life plots for wind speeds

Figure 18: MRL plots of 2m and 10m wind speed respectively

Figure 19: MRL Plot of 16m wind speed
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7.5 Appendix 5 - Parameter Stability Plots for wind speeds

Figure 20: Parameter Stability plots of 2m and 10m wind speed respectively

Figure 21: Parameter Stability Plots of 16m wind speed
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7.6 Appendix 6 - Mean residual life plots for declustered wind speeds

Figure 22: MRL plots of 2m and 10m declustered wind speeds respectively

Figure 23: MRL plot of 16m declustered wind speed
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7.7 Appendix 7 - Diagnostic plots for declustered 2m wind speed
model

Figure 24: Diagnostic plots for declustered 2m wind speed model

7.8 Appendix 8 - Diagnostic plots for declustered 10m wind speed
model

Figure 25: Diagnostic plots for declustered 10m wind speed model
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7.9 Appendix 9 - Diagnostic plots for declustered 16m wind speed
model

Figure 26: Diagnostic plots for declustered 16m wind speed model

7.10 Appendix 10 - Diagnostic plots for declustered 2m wind speed
model(lower threshold)

Figure 27: Diagnostic plots for declustered 2m wind speed model(lower threshold)
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7.11 Appendix 11 - Diagnostic plots for declustered 2m wind speed
model(lower threshold)

Figure 28: Diagnostic plots for declustered 10m wind speed model(lower threshold)

7.12 Appendix 12 - Diagnostic plots for declustered 16m wind speed
model(lower threshold)

Figure 29: Diagnostic plots for declustered 16m wind speed model(lower threshold)
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7.13 Appendix 13 - Mean residual life plots for temperature

Figure 30: MRL plots of 2m and 10m temperature respectively

Figure 31: MRL Plot of 16m temperature
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7.14 Appendix 14 -Parameter stability plots for temperature

Figure 32: Parameter stability plots of 2m and 10m temperature respectively

Figure 33: Parameter stability plot of 16m temperature
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7.15 Appendix 15 - Fitted model of 2m temperature

Figure 34: Diagnostics of 2m temperature model

7.16 Appendix 16 - Fitted model of 10m temperature

Figure 35: Diagnostics of 10m temperature model
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7.17 Appendix 17 - Fitted model of 16m temperature

Figure 36: Diagnostics of 16m temperature model

7.18 Appendix 18 - Mean residual life plots of daily temperatures

Figure 37: Parameter stability plots of 2m and 10m daily temperatures respectively
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Figure 38: Mean residual life plot of 16m daily temperature

7.19 Appendix 19 - Diagnostic Plots of 2m daily temperatures

Figure 39: Diagnostic Plots of 2m daily temperatures
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7.20 Appendix 20 - Diagnostic Plots of 10m daily temperatures

Figure 40: Diagnostic Plots of 10m daily temperatures

7.21 Appendix 21 - Diagnostic Plots of 16m daily temperatures

Figure 41: Diagnostic Plots of 16m daily temperatures
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7.22 Appendix 22 - Mean residual life plots of wind speed component
moving averages

Figure 42: MRL plots of 2m and 10m moving average(one hour) wind speeds respectively

Figure 43: 16m Moving Average(one hour)

Figure 44: MRL plots of 2m and 10m moving average(two hour) wind speeds respectively
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Figure 45: 16m Moving Average(two hour)

7.23 Appendix 23 - Mean residual life plots of wind speed component
moving averages after declustering

Figure 46: MRL plots of 2m and 10m moving average(one hour) wind speeds respectively after
declustering

Figure 47: 16m Moving Average(one hour)
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Figure 48: MRL plots of 2m and 10m moving average(two hour) wind speeds respectively after
declustering

Figure 49: 16m Moving Average(two hour)

7.24 Appendix 24 - Diagnostics for the wind component moving av-
erage models

Figure 50: 2m Moving Average(one hour)
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Figure 51: 10m Moving Average(one hour)

Figure 52: 16m Moving Average(one hour)
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Figure 53: 2m Moving Average(two hour)

Figure 54: 10m Moving Average(two hour)
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Figure 55: 16m Moving Average(two hour)
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