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Abstract

Mathematically modelling animal behaviour in groups is becoming increas-
ingly common. This project explores a research paper by Couzin et al. (2005)
and the results given by them. An attempt is then made to recreate their
results using code created in Matlab, before going on to modify the governing
equations given by Couzin et al. (2005). Modifications are made by altering:
the accuracy measure, the distance measure, which is used in determining
how the individuals interact, from a metric distance model to a topological
model and by implementing a variable speed. Using the results produced by
these modifications, conclusions about how animals interact within a group
and on the methods used to construct the models are then drawn.
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Chapter 1

Introduction

How individual animals make collective decisions in a group is a phenomenon
that has proved highly complex and baffled scientists for years. Indeed,
moving animal groups provide some of the most intriguing and difficult to
characterise examples of collective behaviour [1]. Several different classes of
animals travel in large groups, for example many species of oceanic fish band
together in large shoals that can span tens of kilometres and involve hundreds
of millions of individuals [2] or anywhere from 25,000 to 40,000 honeybees
seeking a new dwelling in the event of a new queen being born [3].

Figure 1.1: Demonstration of collective behaviour in a large group of animals:
fish in a tightly grouped shoal [4].
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For animals in a group, the ability to make decisions about the direction
of travel depends on how interactions occur between neighbouring animals.
Studies have shown that guppies, Poecilia reticulata, can learn the route to a
food source by shoaling with knowledgeable conspecifics [5]. In many cases,
information is transferred by a physical signal, for example scout honeybees
use the full power of the waggle dance to inform their nest-mates about the
distance and direction of a potential nest-site [6]. In some cases, however,
information transfer via signalling is impractical, for example when migrating
groups of fish, ungulates, insects and birds are considered, where crowding
limits the range over which individuals can detect one another [7].

Figure 1.2: Demonstation of how a single bee will use the waggle dance to
influence the movement of a group[8].

When a group of animals wish to reach a specific destination, the number
of informed individuals (i.e. the number of individuals who know the location
of the destination) within the group has an effect on the ability of the group
to reach its desired location. Often the informed individual can be a single
scout, responding to the diverse information they have personally obtained
about the quality of a potential nest-site [6]. This raises the question of how,
when the proportion of informed individuals is low in comparison to group
size, a group is capable of travelling to its chosen destination. A mathe-
matical model used to model animal interactions can help draw conclusions
about collective animal behaviour. Mathematical modelling is becoming in-
creasingly recognized as an important research tool when studying collective
behaviour [9].

This project looks at a mathematical model devised by Couzin et al.
(2005) which aims to model the behaviour of animals in a group when a
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select number have information about a desired location. In Chapter 2 the
equations set out by Couzin et al. (2005) are discussed, describing the results
produced, before creating a code that attempts to replicate their results. In
Chapter 3 and 4 the code is altered to take into account some parameters
not looked at by Couzin et al. (2005).
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Chapter 2

The Reference Model

“Effective leadership and decision-making in animal groups on the move”,
by Iain D. Couzin, Jens Krause, Nigel R. Franks and Simon A. Levin is
the foundation of this report. Couzin et al. (2005) investigate the social
interactions between animals in a group, how this enables a group to move
and the effect leaders have on the direction of motion. They then apply
simple equations, using a self-propelled particle concept, to mathematically
model behaviour observed in animal groups.

Couzin et al. (2005) show that a larger group needs a smaller proportion
of informed individuals to move in the preferred direction. They also show
that information can be communicated between individual members of the
group without a need for signalling e.g. the waggle-dance of the honeybee
[3], for a group to reach a desired location.

This Chapter presents the equations used by Couzin et al. (2005), de-
scribing how this effects the interaction between two neighbouring animals
and how the equations work with each other to describe the movement of a
group. The Chapter will also describe the methods used to measure accuracy,
the parameters used and the results generated.
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2.1 Governing Equations

Individuals in the modelled group of size N update their position vector
c(x, y) according to two rules: collision avoidance and alignment with neigh-
bours. An individual’s first priority is to avoid collision with its neighbours.
If two individuals get within a distance A of each other they will seek to
move away, which is modelled using,

di(t+ ∆t) = −
∑
j 6=i

cj(t)− ci(t)

|(cj(t)− ci(t))|
. (2.1)

Each individual i has a 2-dimensional position vector ci(t). Neighbouring
animals within the collision distance A are represented by j, Figure 2.1, and
have position vector cj(t). The difference in positon between the individ-
ual in question i and its neighbour is cj(t) − ci(t) and then normalised by
|(cj(t) − ci(t))|. This creates a 2-dimensional direction vector for i which
points directly to j. Each direction vector of i to a j is then summed to give
a direction vector which would move i towards the average position of all
js within A. Then the negative of this vector is taken ensuring i is moving
away from each j. This gives us di(t+ ∆t), which is the direction vector at
the next time step.

Figure 2.1: Demonstration of the collision avoidance distance A for i and its
neighbours j.

Avoiding a collision is the first priority of any individual. If i does not find
any individuals within A, it checks for any individuals within the alignment
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distance B, and aligns its direction vector with these neighbours. Individuals
in a group want to stay together and move in the same direction, whether
it is for protection from a predator [10] or for foraging purposes [7]. This
interaction is governed by,

di(t+ ∆t) =
∑
j 6=i

cj(t)− ci(t)

|(cj(t)− ci(t))|
+

∑
j=1

vj(t)

|vj(t)|
. (2.2)

As before, i is the individual that is searching for others within the attraction
distance. Now j represents all of the individuals within B, Figure 2.2. Again,
the difference between the position vectors of i and each j are calculated and
summed. Unlike in Equation 2.1, this value remains positive ensuring the
individual moves towards the average positions of its neighbours. The second
term in Equation 2.2 uses a 2-dimensional direction vector vj(t),

vj(t)

|vj(t)| , This

term sums the direction vectors of all neighbours within B and calculates
the average. This allows the individual i to align itself with the average
direction of the interacting neighbours. Summing the two terms together
gives di(t+∆t). This direction vector moves i towards its neighbours as well
as travelling in the same direction as them.

Figure 2.2: Demonstration of collision avoidance distance A and the align-
ment distance B around i and the interaction with neighbours j.

For both Equation 2.1 and Equation 2.2, the 2-dimensional direction vec-
tor, di(t + ∆t), needs to be converted to a unit vector if it is to be used to
calculate an individual’s new position vector,

d̂i(t+ ∆t) =
di(t+ ∆t)

|di(t+ ∆t)|
. (2.3)
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Equation 2.1 and Equation 2.2 control how the animals interact with
each other. To allow for informed individuals, who know about the preferred
direction of travel, another equation is used,

d′
i(t+ ∆t) =

d̂i(t+ ∆t) + ωgi

|d̂i(t+ ∆t) + ωgi|
. (2.4)

Figure 2.3: Demonstration of Equation 2.4. gi is the preferred direction, d̂i

is the direction of travel towards the neighbours of i and d′
i is the direction

of travel taken.

Within any group there will be a proportion of informed individuals, p,
who are aware of the preferred direction of travel for the group. For these
individuals, gi is the preferred direction as a unit vector, for uninformed
members of the group gi is zero. ω is a weighting term, which controls the
influence that the preferred direction has on the direction of travel taken. If
ω = 0 then gi has no influence over direction. When ω = 1 the preferred
direction has an effect equal to that of the interaction Equations 2.1 and
2.2. For values of ω greater than 1 the preferred direction dominates travel
direction, Figure 2.3.

Finally, a new position vector must be calculated. This is done simply by
taking the new direction vector d′

i(t + ∆t), multiplying it by speed si and
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adding the result to the current position vector ci(t), shown in Equation 2.5.

ci(t+ ∆t) = ci(t) + si∆td
′
i(t+ ∆t). (2.5)

2.2 Methods and Initial Parameters

To allow for uncertainty in the motion of the animals, the direction vector
d′
i(t + ∆t) is altered by rotating it by an angle generated from a circular-

wrapped Gaussian distribution, with mean = 0 and standard deviation =
0.01 radians.

Uncertainty = N(0, 0.01). (2.6)

To prevent individuals turning through an angle that would be too great for
any animal to manage, a maximum turn angle is set. This is given by θ∆t.

Maximum = θ∆t. (2.7)

If the change in the angle between the old direction vector vi to d′
i(t+ ∆t) is

less than θ∆t then the new direction vector remains unchanged. If, however,
the angle between the two is greater than θ∆t then it moves θ∆t from the
old direction vector towards the new vector.

Each individual begins at a random positon and with a random orientation
generated from a uniform distribution from -π to π. The parameters of the
standard model are: A = 1, B = 6, ω = 0.5,∆t = 0.2, θ = 2 and si = 1.

Using Equations 2.1 to 2.7, together with the given parameters, setting
group size to N = 2, proportion of informed individuals to p = 0.5 and
preferred direction to gi = (0, 1) for informed individuals results in Figure
2.4.
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Figure 2.4: Demonstration of governing equations and methods. Each sym-
bol is one time step apart, with red being the informed individual and blue
uninformed.

The individuals initially start a distance apart that is greater than A but
less than B. They will therefore be both subject to Equation 2.2 and will
attempt to align. They both begin to move towards each other whilst also
attempting to travel in the same direction. The informed individual is subject
to Equation 2.4 and therefore attempts to maintain the preferred direction
gi, which in this case is directly up. This results in the informed individual
traversing less towards the uninformed individual and more towards the top
of the graph.

After around 10 time steps, the two individuals get within A of each other.
At this point they attempt to move apart. If there is no limit to their change
in angle, θ∆t, they would move directly apart. For this model however, with
a limit imposed they gradually move away from each other. A handful of
time steps later, both individuals have moved out of A but remain within B,
resulting in them once again being drawn together.

This process repeats itself, with the informed individual attempting to
maintain its preferred direction. Despite the fact that neither individual is
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able to signal whether it has knowledge of the preferred direction, or what
the preferred direction might be, both individuals travel in roughly the same
direction. This reveals that direct information transfer between individuals
is not necessary to achieve the preferred direction of travel.

To understand how the number of informed individuals and group size
affects the ability of the group to achieve its preferred direction, Couzin et
al. (2005) introduce a measure for accuracy. This determines how well the
group is orientated towards their preferred direction given by gi. A vector
is taken from the group’s centroid 50 time steps before the end, extending
to the groups centroid at the final time step. The angle between this vector
and the preferred direction is then determined.

For each N and each p the angle is calculated 400 times. The 400 runs are
then normalized so that the minimum value of the runs is 0, corresponding
to no information transfer (groups move in random directions), and the max-
imum value of the runs is 1, corresponding to the motion of the simulated
groups always being exactly aligned with gi. A mean of the 400 normalised
runs is then calculated giving the accuracy for that N and p [7].

Figure 2.5: Demonstration of accuracy measure, X the individuals at the final
time step, O the individuals 50 times step before the end and red representing
average position. The blue line represents the preferred direction of travel and
the red line the actual direction of travel.
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Figure 2.5 demonstrates the accuracy measure. Here, N = 10, p = 0.7
and the previous methods and parameters remain in place. One line is drawn
between the two average positions (red) and another drawn from the average
position of the group in the direction of gi (blue). For this case, an angle
deviation of 0.06 radians is obtained. The code would be ran 400 times and
an overall average of the angle deviations would be taken.

2.3 Reference model results

Using all the equations set out in Section 2.1 and the methods and parameters
in Section 2.2, Couzin et al. (2005) obtained Figure 2.6.

Figure 2.6: Group accuracy as a function of the proportion of informed indi-
viduals p, for different group sizes N [7].

Group sizes here are comparable to the size of schools, flocks or herds of
many species, but smaller than large aggregates such as honeybee colonies [7].
This owes to the nonlinear increase in computer processing time required asN
increases [7]. Immediately apparent for all group sizes is that an increase in p
results in an increase in accuracy. This is expected, as if there is an increase
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in the number of individuals who know the preferred direction, more will
reach the chosen destination regardless of where the uninformed individuals
travel.

With a larger group, a smaller proportion of informed individuals are
required to achieve a specific level of accuracy. This appears counterintuitive
at first, but for a larger group it is harder for any individual to move out
of the range of B and therefore leave the group and travel randomly. Any
informed individual is also likely to have a greater number of individuals
surrounding it, and they in turn will have a greater number of individuals
around them. This allows for information to be transferred among the group
with greater ease and therefore an informed individual has a greater effect
on the group.

2.4 A new measure of accuracy

This section deals with replicating the results from the information provided
by Couzin et al. (2005). This is done to assess whether the code described
in Appendix A is performing correctly. Matlab is the software package used.
The equations and parameters set out previously are used, however a change
to the accuracy measure is implemented. This is done to preserve the infor-
mation about the range of values that the runs give for accuracy and therefore
give us more information about the variability at each N and p. A centroid
is still drawn from 50 time steps before the end to the final time step. The
angle between the two is still calculated. Now however, a score from 0 to 1
is assigned to this angle: 1 if it is perfectly aligned to the preferred direction
and 0 if it is π away from the preferred direction. A mean is then taken of
all runs for a given group size and proportion.

Due to the limitations of the technology available, only models containing
group sizes of N = 10, 30, 50 were possible. It took approximately 18 hours
for 50 runs with N = 10 and approximately 132 hours for 6 runs with N = 50.
Therefore, due to time constraints, there are 200 runs for each value of p with
N = 10, 11 runs for each value of p with N = 30 and 6 runs for each value
of p with N = 50. This resulted in random variation having a large effect
when N = 50 and to a lesser extent when N = 30. Therefore the decision is
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taken for polynomial regression to be implemented on all 3 group sizes, in an
attempt to produce a smooth curve. This is done using the software package
R.

2.4.1 The effect changing the proportion of individuals
has on accuracy, for different group sizes

Group size N = 10

When N = 10, 200 results were produced for each proportion of informed
individuals p. At each p the mean is taken and plotted on the raw data, with
a line drawn between each mean shown in Figure 3.1.

Figure 2.7: Accuracy against the proportion of informed individuals with a
polynomial regression line (blue) and a line between the means (red) when
N = 10.

As discovered by Couzin et al. (2005), as the proportion of informed in-
dividuals p is increases there is also an increase in accuracy. There are a few
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examples where the accuracy is higher in a lower proportion of informed in-
dividuals p. This is probably caused by the limited number of runs. Looking
at a box plot of the data will reveal outliers that may be having an adverse
effect.

Figure 2.8: Box plot of accuracy against the proportion of informed individ-
uals when N = 10.

Figure 2.8 shows how the variation in the values of accuracy produced by
the runs decreases, as the proportion of individuals increases. The median
increases at every proportion with the exception of 0.9. This may be due to
an insufficient number of runs to suppress the effects of an outlier. On the
other hand, this may be due to a group of informed individuals leaving the
one uninformed individual to travel randomly. The uninformed individual
can therefore have a large effect on the accuracy measure, especially if the
uninformed individual were to travel in a direction at an angle of π/2 from
the informed group.

For p = 0.8, if a group of informed individuals is to break away and leave
two uninformed individuals behind, they could potentially travel in the same
direction or in different or even opposite directions cancelling out the effect
they would have on the accuracy measure. This is likely why for p = 0.9 a
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lower accuracy is observed than for p = 0.8. There are a couple of unusual
points at p = 0.7, which may be the result of an error. Again this shows, as
with Figure 2.7, that for N = 10 a general increase in the accuracy for an
increase in the proportion of informed individuals p is seen. This is consistent
with the results found by Couzin et al. (2005). Although when N = 10 it is
possible to have a large amount of runs, variability is still a factor. In Figure
2.7 a polynomial regression line is fitted to the data.

Using polynomial regression, the best fitting line is a cubic polynomial
given by Ac = 0.53 − 0.27p + 2.2p2 − 1.45p3, with accuracy Ac and the
proportion of informed individuals p. A cubic polynomial is chosen over
other polynomials as a cubic term is the highest power which is significant
at the 5% level of a t-test. The polynomial regression line is a close fit to
the mean line but smoother. It does dip at p = 1, but this is caused by the
unusual result at p = 0.9. Before it can be decided if an increase in proportion
results in an increase in accuracy, N = 30 N = 50 must be looked at.

Group size N = 30

Figure 2.9: Accuracy against the proportion of informed individuals with a
polynomial regression line (blue) and a line between the means (red) for N =
30.
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Due to time constraints, there are only 11 runs for each p. As before,
for each value of p the mean is taken and plotted along with a polynomial
regression line.

As before, an increase in the proportion of informed individuals results in
an increase in accuracy. Due to the vastly reduced number of runs erratic
changes in mean between neighbouring values of p is observed, however, this
doesn’t affect the overall trend.

Figure 2.10: Box plot of accuracy against the proportion of informed individ-
uals for N = 30.

With a smaller number of runs, it is harder to make conclusions on any
outliers. It is possible however, to say that variation decreases for larger
values of p and the median increases for larger values of p. It appears that
the variation decreases faster when N = 30 than when N = 10, although
it is hard to guarantee this is the case due to the reduced runs for N = 30
compared with N = 10. To help accommodate for the now considerably
large random variation between different values of p, a polynomial regression
line is again fitted.

The polynomial line removes a lot of the random variability whilst clearly
maintaining the general trend. Again with a cubic polynomial as the best
fit, Ac = 0.48 + 1.7p − 2.1p2 + 0.973p3. It is again clear that this replicates
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Couzin et al.’s (2005) findings, increasing p increases accuracy, for N = 30.

Group size N = 50

Plotting the raw data with a mean line over the top results in Figure 2.11.

Figure 2.11: Accuracy against the proportion of informed individuals with
a polynomial regression line (blue) and a line between the means (red) for
N = 50.

Now that simulations for 3 different values of N have been completed, it
can be concluded that for any N an increase in the proportion of individuals
will result in increased accuracy. As before, for the lower values of p the
random variation between each value of p is dramatic. The variation between
different values of p does decrease for higher values, which is due to the
decreased variability in the values of accuracy at higher values of p, shown
in Figure 2.11.
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Figure 2.12: Box plot of accuracy against the proportion of informed individ-
uals for N = 50.

Due to the limited number of runs, it is impossible to make any conclusions
about outliers or individual levels of variation. It is possible, however, to
comment on the general trend of the variation. As previously noted there is
a decrease in variation as p increases. It can therefore be concluded that for
any N , as p increases variation decreases. Variation also appears to decrease
faster when N = 50 than N = 30. The same affect is visible when N = 30
to N = 10. It can be concluded that variation decreases faster for larger
values of N . Using the accuracy measure, set out by Couzin et al. (2005), it
would have been impossible to draw any conclusions about the variability of
results for accuracy at a specific N and p. It would therefore be impossible
to conclude how variation changes across N and p. Changing the accuracy
measure has not lost information about the level of accuracy relative to p, as
the same conclusions have been drawn.

As before, fitting a polynomial regression line removes a large amount
of the random variability. Again, a cubic polynomial provides the best fit
with equation Ac = 0.55 + 1.94p− 2.96p2 + 1.5p3. Due to marginally higher
than expected accuracy for lower values of p, the polynomial regression line
decreases slightly for values of p between 0.6 and 0.8, with an increased
number of runs this problem would be reduced or even disappear.
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In conclusion, changing the accuracy measure results in the same first
conclusion given by Couzin et al. (2005), this being that an increase in p
results in an increase in accuracy. In addition, changing the accuracy measure
has resulted in new information being presented about the variability in
accuracy for a particular N and p and the median values of N and p.

2.4.2 What effect does group size have on accuracy?

The second conclusion Couzin et al. (2005) drew from their results is that an
increase in the group size results in an increase in accuracy for p. Plotting all
3 mean lines on the same graph results in Figure 2.13 and all 3 polynomial
regression lines in Figure 2.14.

Figure 2.13: Mean lines for N = 10, 30, 50.

20



Figure 2.14: Polynomial regression lines for N = 10, 30, 50

It is immediately apparent in both figures that a larger N results in a
greater degree of accuracy. This is the same result as produced by Couzin et
al. (2005). It is reasonable to assume that for larger N than has been mod-
elled here an increase in accuracy would again be seen. It is therefore possible
to conclude that the results of the research paper have been replicated.
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Chapter 3

An updated model
incorporating topological
distances

Couzin et al. (2005) assume that animals within a group use metric distance
(i.e. the neighbours within a fixed distance of an individual) to determine
who to follow. In Chapter 2, an arbitrary distance B is used as the metric
distance. A study published by Ballerini et al. (2008) came to the conclusion
that interaction does not depend upon the metric distance for starling flocks,
but rather on the topological distance (i.e. interactions between a fixed
number of individuals) [11]. In order to investigate the effects of a topological
distance, the model is altered to account for this.

To implement a topological model, it needed to be decided how many
individuals an animal would interact with. In the case of starlings, it was
discovered that each bird interacts on average with six or seven neighbours
[11]. Therefore, six shall be the number of animals an individual will interact
with within a group (Figure 3.1). It is decided that avoidance of collision
would still be an individuals highest priority, therefore A will remain metric
and an individual will first check to see if any neighbours are within A. If
they are, then, as previously, the individual will seek to move away from them
using Equation 2.1. If they are not, then an individual will seek to align itself
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with its six nearest neighbours using a modified version of Equation 2.2,

di(t+ ∆t) =
6∑

j=1

cj(t)− ci(t)

|(cj(t)− ci(t))|
+

6∑
j=1

vj(t)

|vj(t)|
. (3.1)

Figure 3.1: Graphical representation of a topological distance model.

The group size is fixed as N = 10 and there will be 200 runs for each
p. Ballerini et al. (2008) found that a topological interaction grants signifi-
cantly higher cohesion of the aggregation compared with a standard metric
interaction [11]. Therefore, it would be expected that there would be a
higher accuracy for each value of p in a topological model than found in met-
ric model. Using a Matlab function to identify each individual’s nearest 6
neighbours [12], a simulation is run to produce Figure 3.2 and a polynomial
regression line is fitted to create Figure 3.3.
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Figure 3.2: Differences between a metric model (blue) and a topological model
(red).

Figure 3.3: A polynomial regression line fit for the differences between a
metric model (blue) and a topological model (red).

For p values of 0.1 to 0.6, a topological model has a higher accuracy than
a metric distance. For values of p greater than 0.7 however, the accuracy
is lower. This may be because in a metric distance model, it is possible
for informed individuals to form a breakaway group, with the uninformed
individuals allowed to drift randomly. The informed individuals traverse
directly north, unaffected by the uninformed individuals. In the case of a
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topological model, informed individuals will still have an effect on uninformed
individuals, even over large distances. This will have a negative effect upon
the group direction, as the informed individuals will be influenced by the
uninformed individuals random movements. Another possible explanation
for the lower accuracy at high values of p is a result of the group remaining
together longer. Individuals have to re-adjust more to ensure they do not
collide, which results in the group drifting slightly off from the preferred
direction.

Figure 3.4: A box plot showing the variability for a topological model.

Figure 3.4 compared with Figure 2.2 shows the median value of accuracy
increase quickly for a topological model but are lower after p = 0.7 compared
to the metric model. The variance also decreases quicker in the topological
model, although after p = 0.7 variability is higher in the topological model.
The same explanation for the lower mean for p > 0.6 can be applied to a
lower median and higher variance.

For Figures 3.2, 3.3 and 3.4, an individual interacts with its 6 nearest
neighbours. This raises the question of how the accuracy measure would be
affected if it only interacted with 4 or 8 individuals.

25



Figure 3.5: A polynomial regression line fit for the differences between a
metric model (blue), a topological model with 4 nearest neighbours (red) and
a topological model with 6 nearest neighbours (black).

When only interacting with four nearest neighbours, the group achieves
a consistently lower accuracy than with six nearest neighbours. It achieves
a higher accuracy for p values from 0.1 to 0.4 than a metric distance model,
but lower thereafter. Curiously, for both topological models, the last p value
that produces a higher accuracy than the metric model is the number of
interacting individuals divided by ten. This is probably due to the fact that
the group stays together longer, resulting in more uninformed individuals
remaining in the group. This means more re-adjustments being made to
avoid collisions. Also, for p = 0.5, it is possible for two groups to form, one
with informed individuals travelling north and one comprised of uninformed
individuals travelling in a random direction. In a metric distance model for
p = 0.5, one group of informed individuals would still form but a group of
uninformed individuals may not form. Instead, the uninformed individuals
travel randomly, independent of each other and therefore their mean positions
could cancel in the final accuracy measure.
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Figure 3.6: A polynomial regression line fit for the differences between a
metric model (blue), a topological model with 8 nearest neighbours (red) and
a topological model with 6 nearest neighbours (black).

There is almost no difference between a model with eight interacting neigh-
bours than with six. Eight interacting individuals do not produce any dif-
ferent characteristics than six. For six and eight individuals there will still
be an interaction between the informed and uninformed for any value of p,
unlike with four individuals.

In a realistic example, the number of informed individuals is likely to
be low. The higher accuracy increase seen for lower p values in a topo-
logical model therefore reflects the findings by Ballerini et al. (2008) that a
topological interaction grants significantly higher cohesion of the aggregation
compared with a standard metric one [11]. If time allowed, it would be fasci-
nating to see the effects that a topological model would have on larger values
of N , especially given that Ballerini et al. (2008) modelled large aggregations
of animals [11].

A higher accuracy is seen for values of p equal to or less than 0.6 in a
topological model compared with a metric distance model. A lower accuracy
however, is seen for values of greater than 0.6. This is not a contradiction
with the results obtained by Ballerini et al. (2008). It is in fact highlighting
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a flaw with the measure of accuracy. In a topological model, the individu-
als constantly interact with each other, giving the uninformed individuals a
greater influence over the direction of the informed individuals. In a metric
model, the informed individuals can leave the uninformed individuals behind.
Without the influence of the uninformed individuals, the informed individuals
can travel along the preferred direction easier and the uninformed individuals
can travel randomly. Often, the average positions of the uninformed individ-
uals will cancel in the accuracy measure, having so having little effect. For
this reason, it is difficult to draw any conclusions on the effectiveness of a
topological model.
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Chapter 4

An updated model
incorporating variable speeds

Another factor that may have an effect on the abilities for animals to group
is speed. Couzin et al. (2005) assume all individuals have a fixed speed of
s = 1, however individuals in a group will have a range of speeds. The model
is altered to take into account this factor.

Each individual is given a speed from a normal distribution with mean=1
and a standard deviation=0.2. These are arbitrary values which do not reflect
any real species. At each time step, a new speed is generated from a normal
distribution to allow an animal to change speed. If the new speed is 0.05
greater or lower than its current speed, it can only increase or decrease its
current speed by 0.05 respectively. To account for uncertainty in the speed
change of an animal, the speed is altered by a random normal distribution
with mean=0 and a standard deviation=0.001. Using the same accuracy
measure as previously, and the metric distance model described in Chapter
2, Figure 4.1 is produced.
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Figure 4.1: A polynomial regression line fit for the differences between a fixed
speed model (blue) and a variable speed model (red).

A variable speed results in an increased accuracy throughout. This is
largely due to the informed individuals having a greater speed and therefore
breaking away from the group at a faster rate. They are therefore unaffected
by the uninformed individuals and can travel in the preferred direction, whilst
the average direction of travel of the uninformed individuals cancels to zero.
Alternatively, the informed individuals have a smaller speed than the un-
informed individuals, therefore being left behind by the group. This leaves
them to travel in the preferred direction without hindrance. This model is
probably unrealistic, however, as animals in a group would likely align speeds
with each other. This speed adjustment can be modelled using,

si(t+ ∆t) =

∑
j 6=i

sj(t)∑
j 6=i

1
. (4.1)

Equation 4.1 sums the speeds of all neighbours within B using
∑
j 6=i

sj(t) before

dividing by the number of neighbours
∑
j 6=i

1 to give the speed at the next time

step si(t + ∆t). Using Equation 4.1 to allign speeds whilst capping any
speed change at 0.05 and having a random variation in speed of mean=0 and
standard deviation=0.001 produces Figure 4.2.
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Figure 4.2: A polynomial regression line fit for the differences between a fixed
speed model (blue) and a variable speed model with alignment(red).

When individuals align speeds, there is very little difference between ac-
curacy levels. Therefore, it can be concluded that variable speed, in this
case with mean=1 and standard deviation=0.2, makes no difference to the
accuracy measure. It is therefore unnecessary in a model predicting animal
behaviour in groups to have a variable speed( with mean=1 and standard de-
viation=0.2) and so it is perfectly acceptable to have a fixed arbitrary speed
of 1.

Changing the speed has once again exposed issues in the accuracy mea-
sure, particularly when it comes to group coherence. For a variable speed
that does not align, the group breaks up very quickly, but, because this al-
lows the informed individuals to travel without influence from the uninformed
individuals longer, a higher accuracy is obtained. It would be useful there-
fore to develop a new accuracy model that takes into account whether the
uninformed individuals remain in the group or are travelling independently.
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Chapter 5

Conclusions

The reference model shows that an increased number of individuals N results
in a desirable accuracy for a smaller proportion of informed individuals p.
For a fixed number of individuals, an increase in the proportion of informed
individuals p also results in a higher accuracy. Increasing p resulting in
an increase in the accuracy is intuitive, given that if more individuals are
aware of the preferred direction, there will be an increase in the number
of individuals travelling in the preferred direction. A larger N requiring
a smaller p is counter-intuitive. It could be expected that a larger group
would need the same proportion of informed individuals, or perhaps even a
greater proportion. With a larger group however there are a greater number
of interactions between individuals, resulting in information being shared
between neighbours more quickly. This results in more individuals travelling
in the preferred direction.

Redefining the accuracy measure resulted in the same conclusions given
by Couzin et al. (2005) but presented new information about the variation
and median values at each p. The median values behaved in the same way as
the mean values, increasing for higher values of p and being higher in larger
values of N . The variation, however, decreases as p increases for a fixed N
and for a fixed p, the variation decreases for larger N . These conclusions
would have been impossible to draw from the accuracy measure given by
Couzin et al. (2005).
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Due to time constraints and computer limitations it is not possible to
produce results for large values of N and not possible to run each value of
p for when N = 50 more than six times. This produced significant random
variation in the results, therefore it is useful to apply polynomial regression to
produce a smooth curve, from which conclusions can be drawn with greater
ease. Given more time and computing power, it would have been possible to
draw more conclusions, particularly when N = 50.

Chapter 3 implements the recommendation given by Ballerini et al. (2008),
suggesting a topological model over a metric distance model. Ballerini et al.
(2008) state that a topological interaction grants significantly higher cohesion
of the aggregation compared with a standard metric one [11]. While this is
seen for values of p less than or equal to 0.6, the topological model actually
results in a lower accuracy for values greater than 0.6. Rather than this being
due to a flaw in the conclusions drawn by Ballerini et al. (2008), it is due to
the accuracy measure used here. In a metric model the informed individuals
can break away while the uninformed individuals drift in different directions,
which cancel on averaging. In a topological model however, individuals are
always interacting with each other, resulting in uninformed individuals hav-
ing an effect on the informed individuals, especially for large values of p. It is
therefore difficult to draw any conclusions about a topological model whilst
using the current measure of accuracy.

The final change to the reference model is to implement a variable speed
instead of using a fixed speed. When an individual is given a random speed
at each time step, accuracy is higher at each value of p. This exposed an-
other flaw in the accuracy measure; individuals were able to break away from
the group and travel uninterrupted. For the leaders, this resulted in them
travelling in the preferred direction while the uninformed individuals trav-
elled randomly. This results in a higher accuracy but they were no longer
travelling as a coherent group. When individuals were allowed to align their
speeds, any change in the accuracy measure is minimal and could almost
certainly be put down to random variability. Therefore, for the conditions
outlined in Chapter 4 and with the accuracy measure used, variable speed
produced no change in the results.

In conclusion, improving the accuracy measure had benefits when dealing
with the reference model, but ultimately is shown to have weaknesses when
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changes to the model were introduced. It may be sensible to implement an-
other measure of accuracy, which gives weight to those individuals travelling
along the preferred direction over those travelling randomly. Alternatively, a
measure of group size could be used to determine whether the group remains
cohesive or breaks up. For a group that breaks up, an accuracy measure
would be irrelevant as the group has failed to travel as one and therefore
discounted.
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Appendix A

The Matlab code devised to repliacte the results of Couzin et al.(2005) and
produce the figures in Chapter 2. Changes were made to this code to produce
the results in Chapter 3 and 4.
N=50; number of individuals
A=1; Alpha-Minimum collision distance
B=6; Beta-Maximum attraction distance
F=zeros(N,2); Initial sizing of 2-Dimensional direction vector
S=1; Speed vector, randomly generated form a uniform distribution
T0=0; Initial time step
n=12500; Number of time steps
H=0.2; Size of time step
W=0.5; How inclined to follow the preferred direction of travel the object is
G=[0,1]; Preferred direction of travel
Z=2; Theta

for i=1:6

for p=1:N
P=(p)/N; Proportion of informed individuals
C=unifrnd(-5,5,N,2); 2-Dimenisional position vector, randomly generated

from a uniform distribution
v=unifrnd(-pi,pi,N,1); Direction angle, randomly generated from a

uniform distribution

for J=1:round(P*N)
v(J)=pi/2;
end
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F=zeros(N,2); Inital sizing of 2-Dimensional direction vector

for I=1:N Calculation of direction vector
F(I,:)=[cos(v(I)),sin(v(I))]; 2-Dimensional direction vector, calculated

from the direction angle
end End I

fold=v; Initial sizing of angle vector

for I=1:n Calculating movement over time

for J=1:N Each individual object
Fnew=zeros(N,2); Initial sizing of 2-Dimensional new direction

vector

for K=[1:J-1,J+1:N] Every object but the one we are
measuring from

D = sqrt(bsxfun(@plus, sum(C(K, :).2, 2), sum(C(J, :).2, 2)′)−
2 ∗ (C(K, :) ∗ C(J, :)′)); distance calcualtor

if D<=A Is object K within alpha of object J
Fnew(J,:)=Fnew(J,:)-((C(K,:)-C(J,:))/D);Summation of

directional inputs
Fnew(J,:)=Fnew(J,:)/norm(Fnew(J,:));
end End if D<=A

end End K

if Fnew(J,:)==0 Assessing if any objects did end up in Alpha

for K=[1:J-1,J+1:N] Every object but the one we are
measuring from

if D<=B Is object K within beta of object J
Fnew(J,:)=Fnew(J,:)+((C(K,:)-C(J,:))/D)+F(K,:);

Summation of directional input
Fnew(J,:)=Fnew(J,:)/norm(Fnew(J,:));
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end End if (D<=B)

end End K

end End if F(J,:)==0

if Fnew(J,:)==0
Fnew(J,:)=F(J,:);
end End if F(J,:)==0

Fnewnew(J,:)=Fnew(J,:)/norm(Fnew(J,:)); Vector normalization
end End J

for J=1:N
F(J,:)=Fnewnew(J,:);Vector normalization
end

for J=1:round(P*N) Calculating new position of leaders
f=zeros(N,1); Initial sizing of angle vector
F(J,:)=F(J,:)+W*G; Update direction vector
F(J,:)=F(J,:)/norm(F(J,:))+normrnd(0,0.01); Vector normalization

f(J)=atan2(F(J,2),F(J,1));

if abs(f(J)-fold(J))>H*Z Calculating if angle is more than theta*time
step away from current trajectory

if f(J)<fold(J) If no, this calculates where the two
trajectories are relative to each other

if abs(f(J)-fold(J))<pi Calculating which way the old
trajectory should be shiffted

f(J)=fold(J)-(H*Z); Calculating the new angle
else The Else to f(J)-fold(J)<pi
f(J)=fold(J)+(H*Z); Calculating the new angle
end End if f(J)-fold(J)<p

else The else to f(J)<fold(J)

39



if abs(f(J)-fold(J))<pi Calculating which way the old
trajectory should be shiffted

f(J)=fold(J)+(H*Z); Calculating the new angle
else The else to f(J)-fold(J)<pi
f(J)=fold(J)-(H*Z); Calculating the new angle
end End if f(J)-fold(J)<pi

end End if f(J)<fold(J)

end End if abs(f(J)-fold(J))<H*Z

if f(J)>pi Calculating if the angle of trajectory has excided the
limits

f(J)=f(J)-2*pi; Repositioning the angle of trajectory
end End if f(J)>pi

if f(J)<-pi Calculating if the angle of trajectory has excided the
limits

f(J)=f(J)+2*pi; Repositioning the angle of trajectory
end End if f(J)>pi

F(J,:)=[cos(f(J)),sin(f(J))]; conversion back to a vector
fold(J)=f(J); saves f(J) for comparison at next pass
C(J,:)=C(J,:)+S*H*F(J,:); Update position vector
end End J

for J=round(P*N)+1:N Calculating the position of the uninformed
f(J)=atan2(F(J,2),F(J,1))+normrnd(0,0.01); Conversion back to an

angle + Simulation of random behaviour

if abs(f(J)-fold(J))>H*Z Calculating if angle is more than theta*time
step away from current trajectory

if f(J)<fold(J) If no, this calculates where the two
trajectories are relative to each other

if abs(f(J)-fold(J))<pi Calculating which way the old
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trajectory should be shiffted
f(J)=fold(J)-(H*Z); Calculating the new angle
else The Else to f(J)-fold(J)<pi
f(J)=fold(J)+(H*Z); Calculating the new angle
end End if f(J)-fold(J)<p

else The else to f(J)<fold(J)

if abs(f(J)-fold(J))<pi Calculating which way the old
trajectory should be shiffted

f(J)=fold(J)+(H*Z); Calculating the new angle
else The else to f(J)-fold(J)<pi
f(J)=fold(J)-(H*Z); Calculating the new angle
end End if f(J)-fold(J)<pi

end End if f(J)<fold(J)

end End if abs(f(J)-fold(J))<H*Z

if f(J)¿pi Calculating if the angle of trajectory has excided the
limits

f(J)=f(J)-2*pi; Repositioning the angle of trajectory
end End if f(J)>pi

if f(J)<-pi Calculating if the angle of trajectory has excided the
limits

f(J)=f(J)+2*pi; Repositioning the angle of trajectory
end End if f(J)>pi

F(J,:)=[cos(f(J)),sin(f(J))]; conversion back to a vector
fold(J)=f(J); saves f(J) for comparison at next pass
C(J,:)=C(J,:)+S*H*F(J,:); Update position vector
end End J

T=T0+I*H; Calculate new time step
if T==2490 50 time steps beofe the end

x=mean(C); mean of all positions 50 times steps before the end
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end end if T==2490

end End I

y=mean(C); mean of all positions at the end
O=y-x; difference in positions at 50 time steps apart
O=O/norm(O); normalisation
X=atan2(O(1,2),O(1,1)); conversion into angle
Y=abs(pi/2-X); difference from g
M(i,p)=abs(1-(Y/pi)); linear scale 0 to 1
end

end
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