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Abstract

This report describes fundamental results of particle creation from the perspective of
quantum field theory, and then applies the mathematics to quantum entanglement. Chap-
ters 2 and 3 give necessary background into quantum field theory by introducing some
results that will be referred to throughout the report, including the quantization of the
simple and time dependent harmonic oscillators. In chapter 4, analytic solutions of the
time dependent oscillator are discussed and interpreted, and Bogoliubov transformations
are used to show the resultant particle creation. Some ideas of quantum field theory
in curved spacetime are introduced in chapter 5 which will be used in later chapters on
entanglement.

Chapters 6 and 7 shifts the focus to quantum entanglement. Chapter 6 introduces the
notion of entanglement, as well as some the mathematics used to quantify entanglement.
An example of this based on the time dependent oscillator introduced in chapter 4 is
given. An interesting consequence of entanglement is that it can be used to estimate
cosmological parameters, and the details of this in both the bosonic and fermionic cases
are discussed. The report is concluded with a description of entanglement when taking
relativity into account in chapter 7. Much of the research in this area has indicated
that entanglement is destroyed from the perspective of an accelerated observer, however
recent research has found that entanglement may not only be destroyed, but in some
cases amplified in this scenario.
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1 Introduction

The essence of quantum field theory is that each fundamental particle has its own asso-
ciated field, and what we think of as particles are, in this theory, energy in the respective
fields. This approach rejects the idea of localized particles and instead postulates that
each particle has an associated field and the observed properties of a particle is nothing
more than the excitation of its respective field. Although this approach is intuitively more
difficult, it has proven to explain the observed behaviour of fundamental particles as ef-
fectively as quantum mechanics. Furthermore it has explained some of the more unusual
results of quantum mechanics. For example, the uncertainty principle in field theory is
no longer a paradox but rather is expected. If a particle is seen as an excitation of a field,
we would expect its properties, for example, position or momentum to be uncertain/not
entirely localized.

Particle fields can interact with one another, and other fields such as the gravitational
or electromagnetic field. This causes fluctuations in the energy in the fields. If energy
increases it is said that new particles have been created, and conversely, if energy decreases
it is said that particles are annihilated. The mathematics of quantum field theory has
been used to predict phenomena such as the Casimir effect and the Unruh effect which
in part provide some evidence of particle creation. The Casimir effect, named after
Hendrick Casimir in 1948 [1], predicted that two uncharged parallel plates in a vacuum
would experience an attractive force. This was based on analysis of the quantization
of the electromagnetic field, where in these circumstances, the theory predicted small
fluctuations in the energy of the field. This could be interpreted as particle creation. In
1996, these predictions were experimentally verified by Steven Lamoreaux [1]. The Unruh
effect, which will be discussed further in chapter 5. makes predictions of particle creation
based on quantum field theory in curved spacetime. The Unruh effect is the phenomena
that an accelerated observer will detect particles in the vacuum of an inertial observer.

In all cases we are interested in how to describe how a quantum field changes with time,
and the consequences of the change. A mathematical tool which allows us to do this is a
Bogoliubov transformation. The consequences of using a Bogoliubov transformation to
describe the change in a field allows us to mathematically describe particle creation, and
explicit examples of this will be given in chapter 4.

An application of quantum field theory is that it can be used to describe quantum en-
tanglement. Quantum entanglement is the relationship that can exist between particles,
such that if a measurement is made on one, the other feels the effect immediately. In
other words if two particles are entangled there is a correlation between measurements
made on each particle. The fact that this is the case even if the particles are separated
over large distances is a paradox. Information cannot travel faster than light, so how the
particles appear to be communicating is a current research topic in itself. Here we will
focus on describing the mathematics of quantum entanglement which has many real word
applications from quantum computing [2] to quantum cryptography [3].
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2 Quantum Field Theory

In this section some fundamental principles of quantum field theory will be discussed
that will be referred to throughout the report. As a starting point, we will very briefly
look at some concepts of classical field theory, and then show how these ideas can be
extended to describe a field on a quantum scale. This will include the quantization of
the simple harmonic oscillator and a description of the notion that a infinite set of simple
harmonic oscillators can describe a quantum field. An introduction to the notation that
will be used throughout the report and various quantum operators will be given. Other
important ideas such as the the notion of a vacuum state and a mathematical description
of the mode expansion of a scalar field, which are essential background for later chapters,
will be described.

2.1 Classical Field Theory

In classical mechanics the motion of a particle is usually described using Newton’s second
law. This describes the motion of a particle using the forces acting upon the particle and
the mass of the particle. Another means of calculating the trajectory of a particle is via the
Lagrangian formulation, which is based on the least action principle. Here the dynamics
of a system are described using a Lagrangian. An example of a Lagrangian would be a
general form of the action of a particle depending upon its trajectory. Variational methods
are used to obtain Euler-Lagrange equations which, when applied to the Lagrangian
will give the equation of motion of the true trajectory, that is the one with minimum
action. These ideas can be extended to find the true equation of a classical field, which is
described using a function which depends on both space and time, ψ(t,x) . If we know the
Lagrangian (or Lagrangian density L) of a field, then we can apply the Euler-Lagrange
equations,

∂L
∂ψ
− ∂

∂t

∂L
∂ψ̇
− ∂i

∂L
∂(∂iψ)

= 0, (1)

to find the true equation which describes the field.

At this point it is also useful to recall the Hamiltonian, which is related to the Lagrangian
is given by

H =
n∑
i=1

q̇i
∂L
∂q̇i
− L =

n∑
i=1

q̇ipi − L, (2)

where pi is the momenta. Furthermore we can relate the Hamiltonian to the Lagrangian
through Hamilton’s equations given by

∂H

∂p
= q̇, (3)
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∂H

∂q
= −ṗ. (4)

2.2 The Klein Gordon Equation

The Lagrangian density for a real scalar field is defined to be

L =
1

2
ηµν∂µψ∂νψ −

1

2
m2ψ2 − U(ψ), (5)

where ηµν is the Minowski tensor given by the matrix
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and ∂µ = ∂/∂xµ ,where xµ = (x0, x1, x2, x3) is the usual notation for spacetime with three
spatial dimensions. Using the Minkowski tensor and noting that the presence of repeated
indices implies a summation, we can rewrite (5) as

L =
1

2
ψ̇2 − 1

2
|∇ψ|2 − 1

2
m2ψ2 − U(ψ). (6)

We can now apply (1) to obtain

−m2ψ − ∂U

∂ψ
− ∂

∂t
ψ̇ +

∂

∂x
ψx +

∂

∂y
ψy +

∂

∂z
ψz = −m2ψ − ∂U

∂ψ
− ηµν∂µ∂νψ = 0. (7)

In the case where U(ψ) = 0 we obtain the Klein-Gordon equation. We can express the
equation in a number of ways:

∂2ψ

∂t2
−

3∑
j=1

∂2ψ

∂xj2
+m2ψ = 0 (8)

or

(m2 + �)ψ = 0, (9)

where � = ηµν∂µ∂ν . The Klein-Gordon equation is the equation which a real scalar field
must satisfy.
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2.3 Quantization of the Classical Field

Any field ψ(x, t) can be expressed by its Fourier spatial decomposition

ψ(x, t) =

∫
d3k

(2π)3/2
eik·xψk(t), (10)

where the integral is over k, the set of all three dimensional vectors. Substituting (10)
into (8) results in

ψ̈k + ω2
kψk = 0, (11)

where ψ̇ = ∂ψ/∂t and ωk =
√
|k|2 +m2. Therefore any field can be expressed in terms

of a set of infinitely many harmonic oscillators, one for each k. For the remainder of this
section, we will discuss the process of the quantization of a simple harmonic oscillator.

Changing notation for simplicity, consider the case where we deal with a simple harmonic
oscillator with a constant frequency, ω, as described by the equation

q̈(t) + ω2q(t) = 0. (12)

To quantize an equation of motion we must consider the energy of the system. The energy
of a oscillator is given by

E = Ekinetic + Epotential =
1

2
mv2 +

1

2
mω2q2 =

p2

2m
+

1

2
mω2q2, (13)

where 1
2
mω2q2 is the potential for a simple harmonic oscillator, and p = mv is the magni-

tude of the momentum. Raising the energy to an operator gives the Hamiltonian operator
of the system. Next we postulate the Heisenberg commutator [q̂, p̂] = i~ which follows
from the uncertainty principle that both position and momentum cannot be simulta-
neously measured with exact accuracy. Finally we define the annihilation and creation
operators which increase or decrease the energy within the state, and the particle number
operator which tells us the number of particles in the state. Note that in quantum field
theory, an increase or decrease of energy is interpreted as the increase or decrease in
the number of particles present in the system. The annihilation and creation operators
respectively are given by

â− =

√
ω

2

(
q̂ +

i

ω
p̂

)
, (14)

â† =

√
ω

2

(
q̂ − i

ω
p̂

)
. (15)
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The annihilation and creation operators are defined as above so that the following rela-
tions hold

â−|n〉 =
√
n|n− 1〉, (16)

â†|n〉 =
√
n+ 1|n+ 1〉, (17)

â−|0〉 = 0. (18)

That is, the application of the creation or annihilation operators will raise or lower the
particle number (eigenvalue) of an arbitrary state (eigenvector) |n〉. (18) defines the
vacuum state, ie the state with minimum energy. Note that by using (14) and (15) we
can write the coordinate operator q̂ and momenta operator p̂ in terms of the annihilation
and creation operators.

q̂ =
1√
2ω

(â− + â†), (19)

p̂ =

√
ω

i
√

2
(â− − â†). (20)

It is often advantageous to write (19) and (20) in terms of time independent annihilation
and creation operators. To do this we begin with Hamilton’s equations. Setting m=~=1,
(3) and (4) applied to (13) gives p = q̇ and ω2q = −ṗ. Differentiating (14) with respect to
time, applying these results and comparing with (14) gives a simple first order ordinary
differential equation with solution

â−(t) = â−e−iωt. (21)

Similarly we can find

â†(t) = â†eiωt, (22)

where

[â−k , â
†
k′ ] = δkk′

[â−k , â
−
k′ ] = [â†k, â

†
k′ ] = 0.

(23)

Substituting (21) and (22) into (19) and (20) gives the following expressions for the
coordinate and momenta operators in terms of the time independent annihilation and
creation operators â− and â†
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q̂ =
1√
2ω

(â−e−iωt + â†eiωt), (24)

p̂ =

√
ω

i
√

2
(â−e−iωt − â†eiωt). (25)

Finally, it is worth noting for later use that it can be shown, using (14) and (15), that
the following commutation relation is true

[Ĥ, â†â−] = 0. (26)

This means that we can measure the value of both the Hamiltonian operator and â†â−

simultaneously and with exact precision, thus we can set up the following eigenvector
equations for an arbitrary state |n〉.

Ĥ|n〉 = En|n〉, (27)

â†â−|n〉 = n|n〉, (28)

where En is interpreted as the energy in the field, and the eigenvalue n is interpreted as
the particle number. As a consequence the operator â†â− is known as the particle number
operator. In this subsection we have seen that the process of quantization of a scalar field
is equivalent to the quantization of a infinite collection of simple harmonic oscillators. We
discussed the process of quantization of the simple harmonic oscillator, including defining
creation and annihilation operators, the ground state, and the particle number operator
which will be of importance later. Finally we note that for the quantization of a scalar
field we must have a set of these defined operators, one for each vector k. For example,
the ground state for the scalar field is defined as

â−k |0〉 = 0, (29)

for all k.

2.4 Mode Expansion

In 2.3 we saw how to express a scalar field in terms of its Fourier spatial decomposition (10)
and by substituting this into the Klein-Gordon equation we deduced that the quantization
of a scalar field was equivalent to quantization of a infinite set of harmonic oscillators
(11). From (24) we can write ψk as

ψ̂k =
1√
2ωk

(âk
−e−iωkt + â†ke

iωkt), (30)

where ωk =
√
|k|2 +m2.
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If we now substitute this into (10) we obtain

ψ(x, t) =

∫
d3k

(2π)3/2

1√
2ωk

(â−k e
i(k·x−ωkt) + â†ke

i(−k·x+ωkt)). (31)

Note the minus sign has appeared in the second exponential to ensure we have a Hermitian
expression. (31) is called the mode expansion of the field. Aside: ψk satisfies the simple
harmonic oscillator equation with constant frequency. By considering the solution of a
simple harmonic oscillator we find that ψ?k = ψ−k, where ψ?k is the complex conjugate of
ψk. This is a property that we will refer to later.

3 Quantization of the Time Dependent Oscillator

In quantum field theory, to quantize the classical field one finds that the process involves
the quantization of a infinite set of time independent harmonic oscillators 2.3. This is
a consequence of considering the spatial Fourier transform applied to the Klein-Gordon
equation for a free scalar field. In reality however, most fields which we need to con-
sider are more complex than the ones described using harmonic oscillators with constant
frequencies. This is because we need to allow the field to change in time to reflect its
interaction with other fields such as the gravitational field. To represent this change in
the field we must consider quantizing time dependent harmonic oscillators of the form

q̈(t) + w2(t)q(t) = 0. (32)

In general the time dependent frequency w(t) could take any form, but a useful and
common form for this function is one which is almost constant for some time interval
t < t0 (’in regime’), which then changes, and returns to a (different) constant t > t1
(’out regime’), see Figure 1. Note this could describe the situation when the field is
asymptotically flat in the past and future, but a change occurs in between, which will be
the focus of our analysis in later chapters.

Figure 1: Oscillator with varying frequency

In general the time dependent oscillator (32) cannot be solved analytically, however two
examples of when it can be will be calculated in 4 after the preliminary ideas of particle
creation are discussed. By considering the relationship between the solution to the time
dependent oscillator in the in region and out region, interesting consequences arise in
terms of the change in energy within the field, which can be interpreted as particle
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creation or annihilation. The mathematical tool which describes this change in the field
is called a Bogoliubov transformation.

In 2.3 we showed that for a time independent field, the coordinate and momenta operators
could be written in terms of the annihilation and creation operators, see (24) and (25). It
follows that as the frequency of the oscillator is time dependent, we consider the following
for the time dependent field.

q̂(t) =
1√

2w(t)
(â−e−iw(t)t + â†eiw(t)t), (33)

or more simply

q̂(t) =
1√
2

(â−v?(t) + â†v(t)), (34)

where v(t) is a unknown function (known as the mode function) to be determined. A
similar expression is found for p̂

p̂(t) =
1√
2

(â−v̇?(t) + â† ˙v(t)). (35)

To determine to form of the mode function v(t) we note that it must satisfy the following
conditions:

1. [q̂, p̂] = i

2. The mean energy at ground state given by 〈0|Ĥ|0〉 is minimised.

Using (34) and (35), and the definition of the commutation relation, it can be shown that

[q̂, p̂] =
1

2
([â−, â†](v?v̇ − v̇?v)). (36)

Hence [q̂, p̂] = i implies that

[â−, â†] =
2i

(v?v̇ − v̇?v)
. (37)

The term (v?v̇− v̇?v) is known as the Wronskian of v(t) and must be constant [4], hence
we choose

(v?v̇ − v̇?v) = 2i (38)

to recover the commutation relation [â−, â†] = 1 as before.

Using (34) and (35) we can also find expression for the creation and annihilation operators
in terms of the mode functions,
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â− =
v̇(t)q̂(t)− v(t)p̂(t)

i
√

2
, (39)

â† = − v̇
?(t)q̂(t)− v?(t)p̂(t)

i
√

2
. (40)

The choice of the mode function clearly will effect the creation and annihilation operators.
Next we will consider which mode function satisfies the physical condition that ground
state has minimal energy. Similar to that as shown in section 2.3, the Hamiltonian for a
time dependent system is given by

Ĥ(t) =
p̂2

2
+
w2(t)q̂2

2
. (41)

To ensure our ground state has minimal energy, we are required to minimize 〈0|Ĥ|0〉.
Using (34) and (35) in (41) we obtain

E(t) = 〈0|Ĥ|0〉 =
(|v̇|2 + w2(t)|v|2)

4
. (42)

At a fixed time t0, the instantaneous ground state which arises from minimizing E(t0)
results in the following conditions for the mode functions

v(t0) =
1√
w(t0)

, ˙v(t0) = i
√
w(t0) = iw(t0)v(t0). (43)

These conditions on the mode function result in a minimal energy at ground zero at the
instantaneous time t0. Note that if we substitute the conditions (43) into (42) the we get
that the minimum energy in the vacuum at an instant t0 is given by

E(t0) =
1

2
ω(t0). (44)

This result should be expected if we compare it with the allowed energy levels of a
harmonic oscillator

En =

(
n+

1

2

)
~ω, (45)

with n = 0 and ~ = 1.

3.1 Bogoliubov Transformation for the Time Dependent field

We have seen that in a time dependent field, it is often the case that the frequency of
the oscillators which describes the field at some time, say t < t0 is almost constant, and
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at t > t1 the frequency of the oscillators is almost a (different) constant. In this section
we will look at a simple case of a Bogoliubov transformation which relates the states of
the field at t < t0 and t > t1. From (34) we see that q̂ is a linear combination of v(t) and
its complex conjugate. (32) shows the oscillator equation which q(t) must satisfy, so it
follows that v(t) is also a solution to (32), thus

v̈(t) + w2(t)v(t) = 0. (46)

In the cases where t < t0 and t > t1, w(t) is approximately constants w0 and w1 respec-
tively. Hence in these cases, (46) is simply a second order ordinary differential equation
with constant coefficients which can be solved using the initial conditions (43). This gives
solutions

vin(t) ∝ eiw0t (47)

and
vout(t) ∝ eiw1t, (48)

where vin(t) is the solution for the in regime where t < t0 and vout(t) is the solution for
the out regime where t > t1. As any two solutions to (46) form a basis for all solutions
[4] we can write the relationship between the in and out states as

vin(t) = αvout(t) + βv?out(t), (49)

where α and β are known as Bogoliubov coefficients. This is an example of a Bogoliubov
transformation. From (39) and (40) we can see that a relationship between the in and
our regime for the creation and annihilation operators is possible:

â−in = αâ−out − βâ
†
out, (50)

â−out = α?â−in + βâ†in. (51)

If β is non-zero we observe from (50) that in this case, the annihilation operator in the in
regime is not equal to the annihilation operator in the out regime. This implies that there
are different ground states for t < t0 and t > t1. In section 2.3 we saw that the particle
number operator is given by â†â−. Using the particle number operator we can calculate
the mean number of particles in the in regime and out regime. For the in regime,

〈0in|â†inâ−in|0in〉 = 0. (52)

For the out regime we use (51) to obtain

〈0in|â†outâ−out|0in〉 = 〈0in|(αâ†in + β?â−in)(α?â−in + βâ†in)|0in〉 = |β|2. (53)

Therefore we see that if there is an average of zero particles in the in regime, and as β is
non-zero, there is a positive number of particles in the out regime.
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3.2 Relationship between in and out states

Now we will consider the relationship between states in the in regime and the states in
the out regime. The mathematics in this subsection will be expanded upon in section
6.2 when we consider entanglement. Let |nin〉 and |nout〉 form a basis for the in and
out regimes respectively. It is intuitively reasonable that if the in regime describes a
vacuum state and the out regime is in an excited state, then the out regime must be a
superposition of the original vacuum and the excited states |nin〉, n = 1, 2, ... However we
can also express |0in〉 as a superposition of the out states, as the out states form a basis
for the space, that is we can write

|0in〉 =
∞∑
n=0

cn|nout〉. (54)

To find an expression for the coefficients cn we use the definition of a vacuum and (50)
to write

0 = â−in|0in〉

= (αâ−out − βâ
†
out)

∞∑
n=0

cn|nout〉.
(55)

Expanding this and using (16) and (17) we can obtain

c2n = c0

(
β

α

)n √(2n− 1)!!√
(2n!!)

. (56)

Using the normalization condition that 〈0in|0in〉 = 1 and (54) we can deduce that c0

satisfies

|c0|2
∞∑
n=0

(
|β|
|α|

)2n(
(2n− 1)!!

2n!!

)
= 1. (57)

After a lot of algebra this equation can be solved to find

c0 =

(
1−

(
|β|
|α|

)2
) 1

4

. (58)

Therefore we have that

c2n =

(
1−

(
|β|
|α|

)2
) 1

4 (
β

α

)n √(2n− 1)!!√
(2n!!)

. (59)
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4 Quantum Field Theory for Curved Spacetime

4.1 Generalized coordinates and conformally flat spacetime

Up to now we have looked at quantum field theory in what is known as ’flat’ spacetime
and this is described using the Minkowski tensor, see (5) where the Minkowski tensor ηµν
was defined and used explicitly in the expression for the Lagrangian density, which was
then used as a basis for our entire analysis up to this point. The Minkowski tensor is
a special case of a more generalised tensor which is used to describe spacetime which is
not acted upon by external forces such as gravity. In order to analyse a quantum field in
the presence of gravity (curved spacetime), we will need to use a more generalized metric
denoted gµν and defined by

ds2 = gµνdx
µdxν , (60)

where the notation xµ is the usual notation used in relativity to denote coordinates. As
the metric gµν could be viewed as a matrix, we define gµν as it’s inverse and g as its
determinant. In curved spacetime the action for a free scalar field is given by [4]

S =

∫ √
−gd4x

[
1

2
gαβ(∂αψ)(∂βψ)− 1

2
m2ψ2

]
. (61)

Note the similarity between the integrand and the form of the Lagrangian for a flat
spacetime (5). Using the Euler-Lagrange equations, the equation of motion for ψ is given
by

gµν∂µ∂νψ +
1√
−g

(∂νψ)∂µ(gµν) +m2ψ = 0, (62)

which is analogous to the Klein-Gordon equation, but for curved spacetime. A special
case of the metric gµν which describes curved spacetime is given by

ds2 = dt2 − a2(t)[dx2 + dy2 + dz2]. (63)

This is almost analogous to the Minkowski tensor, except we now have a time dependent
factor a2(t) which makes the four dimensional spacetime curved. This form of spacetime
is called the Friedmann-Robertson-Walker (FRW) spacetime [4] and is consistent with
experimental results. In order to quantize the field like we did in sections 2 and 3, we need
to introduce a new parameter in order to make the spacetime conformally flat. The new
parameter will replace our time coordinate with a conformal time coordinate η defined
by

η =

∫ t

t0

dt

a(t)
. (64)
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Taking the differential of this and substituting our result into (63) we obtain a conformally
flat metric.

ds2 = a2(η)[dη2 − dx2]. (65)

This is the same as the Minkowski tensor multiplied by a factor of a2(η). In order to
rewrite the action (61) we need to introduce another substitution of the form χ = a(η)ψ.
Using this substitution and the equation for the conformal time metric, we can write the
conformal action as

S =
1

2

∫
[χ′2 − (∇χ)2 −m2

eff (η)χ2]d3xdη, (66)

where χ′ = ∂χ/∂η and m2
eff = m2a2 − (a′′/a). Noting that χ = a(η)ψ is a function of

both η and the spatial coordinates x, we can apply the Euler Lagrange equation to obtain
the equation of motion of χ. This results in

χ′′ +

(
m2a2 − a′′

a

)
χ−4χ = 0, (67)

where 4χ = χxx + χyy + χzz (in three spatial dimensions).

4.2 Quantization of conformally flat spacetime

Exactly analogous to (10), we write the field χ in terms of its spatial Fourier transform,

χ(x, η) =

∫
d3k

(2π)3/2
eik·xχk(η). (68)

Substituting this into (67) results in a infinite collection of (conformal) time dependent
harmonic oscillators given by

χ′′k + ω2
k(η)χk = 0, (69)

where ω2
k(η) = k2 + m2a2 − a′′

a
. We have already seen how to quantize time dependent

oscillators and here we will briefly extend this idea to fields. From equation (34) we know
that χk can be written in terms of mode functions as follows

χk =
1√
2

[a−k v
?
k(η) + a†kvk(η)]. (70)

Substituting this into (68) and raising everything to operators we obtain the mode ex-
pansion of the field
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χ̂(x, η) =

∫
d3k

(2π)3/2

1√
2

[â−k v
?
k(η)eik·x + â†kvk(η)e−ik·x]. (71)

As before, annihilation and creation operators can be defined to describe properties of the
quantum field. These will depend on mode functions like we saw in section 3. As before,
the mode function is chosen such that equation (38) holds. There are no unique set of
mode functions which satisfy this relation [4]. The selected mode functions must minimize
the ground state energy, and we will consider this in the next section. However we note
here that in a time dependent field the Hamiltonian is time dependent, so naturally the
ground state energy is also time dependent, and as such we will require mode functions
which describe the minimum vacuum energy at different instants in time. The same mode
function will not in general describe the ground state at a moment in time later, instead
there will be a new mode function which minimizes that ground state energy at that
time. Suppose there are two sets of mode functions uk(η) and vk(η) which satisfy the
Wronskian, then we can write down the Bogoliubov transformation of the mode functions
by using uk(η) and its complex conjugate as a basis for vk(η),

v?k(η) = αku
?
k(η) + βkuk(η). (72)

Under the assumption that v?k = v−k (see section 2.4) we could also write this as

vk(η) = αkuk(η) + β?ku−k(η). (73)

Note that the two sets of mode functions vk(η) and uk(η) define two sets of annihilation
operators â−k and b̂−k , which therefore define two different vacuum states |0(a)〉 and |0(b)〉
respectively. Hence we can also rewrite (71) in terms of the uk(η) mode functions and
their annihilation and creation operators,

χ̂(x, η) =

∫
d3k

(2π)3/2

1√
2

[b̂−ku
?
k(η)eik·x + b̂†kuk(η)e−ik·x]. (74)

As (71) and (74) are equivelent, we can equate the right hand sides and using (72) we
can deduce

b̂−k = αkâ
−
k + β?k â

†
−k, (75)

b̂†k = α?kâ
†
k + βkâ

−
−k. (76)

These represent the Bogoliubov transformations between the annihilation and creation
operators that relate to the two different sets of mode functions.
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4.3 Interpretation and Mean Particle Number

We have defined two sets of mode functions which describe two sets of vacuum states
|0(a)〉 and |0(b)〉. As the mode functions at any moment in time must ensure minimum
ground state energy, we can derive exactly as in section 3 the conditions which the mode
functions must satisfy

vk(η0) =
1√
ωk(η0)

, v′k(η0) = i
√
ωk(η0) = iωk(η0)vk(η0). (77)

For a time dependent field it is clear that the mode function which satisfies (77) may
not satisfy these conditions at a later time. Therefore we have considered two different
sets of mode functions by introducing uk(η). Now each of these mode functions will
define a different set of annihilation and creation operators and as such different vacuum
states. Vacuum states |0(a)〉 and |0(b)〉 will have different ground state energy. What we
are interested in is how much energy has been created in the transition of the field from
the vacuum state |0(a)〉 to the vacuum state |0(b)〉 (or vice versa) as this will indicate
particle creation. As the vacuum |0(b)〉 already contains a minimum amount of energy
which may be higher or lower that that in |0(a)〉 we want to quantify on average how
much new energy has been created. For this reason it is sometimes easier to think of two
sets of particles relating the the two vacuum, ie |0(a)〉 relates the lack of a particles, and
|0(b)〉 relates the lack of b particles. What we aim to deduce is given a vacuum state of
a particles, how many b particles are present, that is if the field changes due to gravity
how many new particles are created, taking into account that the new ground state will
have a different amount of energy to the previous one.

Mathematically we can define the b particle number operator N̂
(b)
k = b̂†kb̂

−
k and calculate

the expected number of b particles present in the a vacuum,

〈0(a)|N̂ (b)
k |0(a)〉 = 〈0(a)|b̂†kb̂

−
k |0(a)〉 = |βk|2. (78)

This result has been calculated using (75) and (76) to express everything in terms of the
operators â−k and â†k and the basic results (16) and (17) have been used to simplify the
resultant expression. Note that |βk|2 represents the mean density of particles present in
the mode χk and so the total number of particles can be found by integrating over all
modes.

Up to this point we have shown how the time dependent oscillator is used to describe a
quantum field under the influence of gravity. Various Bogoliubov transformations between
operators at different points in time have been derived, and we have seen the conditions
required for particle creation. We will now apply these ideas to two explicit examples
which lead to analytic solutions of the time dependent oscillator. Using the solutions we
will calculate the Bogoliubov transformations and deduce the particles are created.
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4.4 Calculation of Bogoliubov Coefficients - Simple Case

Consider equation (72). Suppose vk(η) and uk(η) describe the vacuum state at times η0

and η1. In order to calculate the Bogoliubov coefficients we need the exact solution of
vk(η) and uk(η) subject the conditions (77) at only one instant in time, say at η0. The
following example will illustrate this principle in its simplest form.

Consider the simple case where a time dependent oscillator has frequency given by

ω2(t) =

{
ω2

1 if x < 0

ω2
2 if x > 0,

(79)

where ω2
1 and ω2

2 are constants. Given that the time dependent oscillator is of the form
v̈ + ω2(t)v = 0 we can solve this equation exactly in both x < 0 and x > 0 where the
frequency is constant. Let vin(t) and vout(t) describe this solution in the regions x < 0
and x > 0 respectively. Using (43) we deduce the conditions which the mode function
which describes the vacuum state at some time t0 in the in regime and at time t1 in the
out regime to be

vin(t0) =
1
√
ω1

, (80)

v̇in(t0) = i
√
ω1, (81)

with similar expressions for vout(t1) and v̇out(t1) in terms of ω2. Hence applying these
conditions gives the following ground state energy solutions

vin(t) =
1
√
ω1

eiω1(t−t0), (82)

vout(t) =
1
√
ω2

eiω2(t−t1). (83)

Note that in each of the regimes we can recover the ground state energy as in (44), and we
could also deduce the annihilation and creation operators in each regime by substituting
(80) and (81) into (39) and (40) to obtain (14) and (15) as we would expect for an
oscillator with constant frequencies.

The Bogoliubov transformation is given by (49). Substituting (83) into (49) gives

vin(t) =
α
√
ω2

eiω2(t−t1) +
β
√
ω2

e−iω2(t−t1), (84)

from which we can calculate its derivative
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v̇in(t) =
iαω2√
ω2

eiω2(t−t1) − iβω2√
ω2

e−iω2(t−t1). (85)

Evaluating (84) and (85) at t0 and equating to (80) and (81) allows us to compute α and
β to be

α =
1

2

√
ω2

ω1

(
ω1 + ω2

ω2

)
eiω2(t1−t0), (86)

β =
1

2

√
ω2

ω1

(
ω2 − ω1

ω2

)
eiω2(t0−t1). (87)

Recall from (53) we found that if β is non zero then we have particle creation. The
expressions for α and β show that β = 0 only if ω1 = ω2 (assuming non-zero frequencies).
Hence if ω1 = ω2 there is no particle creation. This is equivalent to a quantum field which
has a time independent frequency. In cases where ω1 6= ω2 we have particle creation.

4.5 Analytic Solution of the Time Dependent Oscillator

The time dependent oscillator, (46) is most often solved numerically, as the presence of the
time dependent frequency leads to very complicated, and often non-analytic solutions. In
section 4.4 we looked at the most simple case where the frequency was (different) constant
in the in and out regimes. In this section we look at a more complex form of the time
dependent frequency which gives rise to an analytic solution. Once we have calculated
this solution we will find the Bogoliubov transformation. We start with (46) and

ω2(t) = A+Btanh(λt), (88)

where A, B and λ are constants (in section 6.4 we will interpret the meaning of these
constants). Note that by considering how ω behaves as t tends to positive (out region)
or negative (in region) infinity we can define

ωin =
√
A−B, (89)

ωout =
√
A+B. (90)

In order to make progress we must use some transformations to rewrite our equation in
a form which can be solved. Let z = 1/(1 + e−2λt). Using the chain rule we can find an
expression for v̈(z) and we can write
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ω2(t) = A+B

(
eλt − e−λt

eλt + eλt

)
= A+B

(
2

1 + e−2λt
− 1

)
= A+B(2z − 1) = A−B + 2Z.

(91)

Using these substitutions our original equation becomes

z(1− z)v′′ + (1− 2z)v′ +

(
A−B + 2BZ

4λ2z(1− z)

)
v = 0, (92)

where v′ = dv/dz. A further substitution is required. Let v = zα(1 − z)βf(z). Then
taking the necessary derivatives and substituting into (92) we obtain

z(1− z)f ′′ + [2α + 1− (2α + 2β + 2)z]f ′

+

(
−(α + β)(α + β + 1) +

α2

z
+

β2

(1− z)
+
A−B
4λ2z

+
A+B

4λ2(1− z)

)
f = 0.

(93)

We note that this is almost of the form of a hypergeometric differential equation [5]. To
obtain the correct form we now define the values of α and β to be

α =
−i
√
A−B
2λ

=
−iωin

2λ
, (94)

β =
i
√
A+B

2λ
=
iωout
2λ

, (95)

where the positive or negative roots have been taken for later convenience. With these
choices of α and β (93) reduces to

z(1− z)f ′′ + [2α + 1− (2α + 2β + 2)z]f ′ − (α + β)(α + β + 1)f = 0, (96)

which is the exact form of the hypergeometric differential equation where the parameters
a, b, c in the general form [5] are related to our parameters α, β by

a = α + β + 1,

b = α + β,

c = 2α + 1.

(97)

We now aim to solve the hypergeometric differential equation in the in and out regions.
Earlier we defined

z =
1

1 + e−2λt
. (98)
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Hence as t → ∞, z → 1 and as t → −∞, z → 0. Therefore to find solutions of the
hypergeometric differential equation in the in and out regimes we are required to find
solutions about z = 0 and z = 1 respectively. These solutions are given by [5]

fin(z) = F (α + β + 1, α + β, 2α + 1, z), (99)

fout(z) = F (α + β + 1, α + β, 2β + 1, 1− z), (100)

where F (a, b, c, z) is the hypergeometric function defined by

F (a, b, c, z) =
∞∑
n=0

(an)(bn)

(c)n

zn

n!
, (101)

where

(q)n =

{
1 if n = 0

q(q + 1) · · · (q + n− 1) if n > 0.
(102)

The Bogoliubov transformation which gives the relation between the in and out regions
will be of the form

fin = δfout + γf ?out, (103)

where δ and γ are Bogoliubov coefficients. Given the form of (99) and (100) there exist
defined linear transformation formula which relates (99) and (100) whilst completely
specifying the Bogoliubov coefficients δ and γ. This transformation is given by [6]

fin(z) =
Γ(2α + 1)Γ(−2β)

Γ(α− β)Γ(α− β + 1)
fout(z) +

Γ(2α + 1)Γ(2β)

Γ(α + β + 1)Γ(α + β)
f ?out(z). (104)

Noting that v = zα(1 − z)βf(z) we can obtain the required solutions for v(z) in the in
and out regions:

vin(z) = zα(1− z)βfin(z) = zα(1− z)βF (α + β + 1, α + β, 2α + 1, z), (105)

vout(z) = zα(1− z)βfout(z) = zα(1− z)βF (α + β + 1, α + β, 2β + 1, 1− z). (106)

Finally to obtain v(t) first let us introduce the following to simplify the resultant expres-
sion:
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ω+ =
ωin + ωout

2
= −iλ(β − α), (107)

ω− =
ωin − ωout

2
= −iλ(β + α), (108)

where (94) and (95) have been used to express ωin and ωout in terms of α and β. Also
note that given (98) we can easily deduce the form of 1− z. Using these expressions we
can write

zα(1− z)β =

(
1

1 + e−2λt

)α(
e−2λt

1 + e−2λt

)β
=

(
eλt

eλt + e−λt

)α(
e−λt

eλt + e−λt

)β
= eλαte−λβt

(
1

eλt + e−λt

)α+β

= e−it[−iλ(β−α)](2cosh(λt))−(α+β)

= e−itω+e−(α+β)ln(2cosh(λt))

= ei(−ω+t−
ω−
λ
ln(2cosh(λt))).

(109)

Substituting this into (105) and (106) we obtain

vin(t) = ei(−ω+t−
ω−
λ
ln(2cosh(λt)))F

(
α + β + 1, α + β, 2α + 1,

1 + tanh(λt)

2

)
, (110)

vout(t) = ei(−ω+t−
ω−
λ
ln(2cosh(λt)))F

(
α + β + 1, α + β, 2β + 1,

1− tanh(λt)

2

)
, (111)

noting that z and 1 − z can be wrtten in terms of tanh(λt). Therefore the Bogoliubov
transformation relating vin(t) and vout(t) is given by

vin(t) =
Γ(2α + 1)Γ(−2β)

Γ(α− β)Γ(α− β + 1)
vout(t) +

Γ(2α + 1)Γ(2β)

Γ(α + β + 1)Γ(α + β)
v?out(t), (112)

where vin(t) and vout(t) are defined by (110) and (111). Note that this can also be written
as

vin(t) =
Γ(1− (i/λ)ωin)Γ(−(i/λ)ωout)

Γ(−(i/λ)ω+)Γ(1− (i/λ)ω+)
vout(t) +

Γ(1− (i/λ)ωin)Γ((i/λ)ωout)

Γ((i/λ)ω−)Γ(1 + (i/λ)ω−)
v?out(t),

(113)
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using (107), (108), (94) and (95). This particular form will be referred to later in the
report when we contrast these Bogoliubov coefficients with the Dirac field analog.

As noted in section 115, particle creation occurs if |β|2 is non-zero. Using properties of
the gamma function [11] we can deduce that

|α|2 =
ωin
ωout

sinh2(πω+/λ)

sinh(πωin/λ)sinh(πωout/λ)
, (114)

|β|2 =
ωin
ωout

sinh2(πω−/λ)

sinh(πωin/λ)sinh(πωout/λ)
. (115)

Note here that we have labeled the Bogoliubov coefficients by α and β to be consistent
with notation used in previous sections; these should not be confused with (94) and (95).

We observe that |β|2 = 0 only if ω− = 0. From (108) this only happens when ωin = ωout.
This corresponds to the case where there is no change in the frequency from the in region
to the out region, in other words flat spacetime. In the case where ωin 6= ωout we have
that |β|2 6= 0 and so we have particle creation.

We have found an analytic solution of the oscillator equation with a time dependent
frequency, and the Bogoliubov transformation which describes the transformation in the
field from the asymptotically flat in and out regions at times in the distant past and future
respectively. The Bogoliubov coefficients show that as we have a non-zero β coefficient,
we have particle creation. As the quantization process of a field leads to an infinite set
of harmonic oscillators, one for each vector k, when considering the quantization of the
field we note that the above calculations will include a dependence on k, i.e

vkin(t) =
Γ(2α + 1)Γ(−2β)

Γ(α− β)Γ(α− β + 1)
vkout(t) +

Γ(2α + 1)Γ(2β)

Γ(α + β + 1)Γ(α + β)
v?−kout(t), (116)

where the k dependence arises from [7]

ωin =
√
k2 +m2(A−B), (117)

ωout =
√
k2 +m2(A+B), (118)

where m is the mass of the field.
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5 Quantum Field Theory and Relativity

5.1 Notation and Preliminary Ideas

In this section we will consider how accelerated observers perceive a quantum field and
the implications of this on particle creation. We will consider two frames of reference; the
inertial frame of one observer, and the frame of an observer who is moving with constant
acceleration (proper frame) a = (a, 0, 0) with respect to the inertial observer. Each
observer has their own set of coordinates. Here we will limit the case to the one spatial
dimension case, so that the inertial frame has coordinate (t, x) and the proper frame uses
coordinates (τ, ζ). The relationship between such coordinate systems are given by

t(τ, ζ) =

(
1 + aζ

a

)
sinh(aτ), (119)

x(τ, ζ) =

(
1 + aζ

a

)
cosh(aτ), (120)

τ(t, x) =
1

2a
ln

(
x+ t

x− t

)
, (121)

ζ(t, x) = −1

a
+
√
x2 − t2. (122)

The spacetime diagram 2 shows the relationship between these two sets of coordinates.
The hyperbolic lines are the coordinate system of the accelerated observer from the
perspective of the inertial observer. The hyperbolic worldline with directional arrows
indicates the worldline of the accelerated observer, and events P,Q and R are not covered
by the proper coordinates [4]. As such this type of coordinate system is known as incom-
plete. We will see later an alternative to this is section 7 where a different relationship
between the coordinate systems is required to analyze entanglement between particles in
Minkowski spacetime, from the perspective of Rindler spacetime.

As we are working in two dimensional spacetime the Minkowski metric is given by ds2 =
dt2−dx2 and so using the relationship between the coordinate systems we can derive the
analogous expression for the proper frame

ds2 = dt2 − dx2 = (1 + aζ)2dτ 2 − dζ2. (123)

The spacetime with this metric is called Rindler spacetime. In order to proceed with
the quantization process, we must first use a change of variable to simplify things. Let
ζ̂ = 1

a
ln(1 + aζ) then dζ = (1 + aζ)dζ̂ hence

ds2 = (1 + aζ)2dτ 2 − (1 + aζ)2dζ̂2. (124)
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Figure 2: The accelerated observer frame from the Minkowski perspective

If ζ̂ = 1
a
ln(1 + aζ) then rearranging gives (1 + aζ)2 = e2aζ̂ and so

ds2 = e2aζ̂(dτ 2 − dζ̂2). (125)

Note here that the invariant line element is simply the Minkowski line element multiplied
by a factor of e2aζ̂ . We can now also rewrite (119) and (120) in terms of this new variable

t(τ, ζ̂) =
1

a
eaζ̂sinh(aτ), (126)

x(τ, ζ̂) =
1

a
eaζ̂cosh(aτ). (127)

5.2 Quantum Field in Rindler Spacetime

Consider a massless scalar field in a two dimensional spacetime denoted by φ(t, x). The
action is given by

s[φ] =
1

2

∫
gαβφ,α φ,β

√
−gd2x. (128)

As we are only considering two dimensional spacetime, it can be shown that the action
is invariant to transformations. To show this consider a transformation such that
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gαβ → ĝαβ = Ω2(t, x)gαβ, (129)

and

√
−g → Ω−2

√
−g. (130)

Using these transformations we can see that

gαβ → Ω−2(t, x)gαβ. (131)

Hence substituting (130) and (131) into (128) shows that the action is invariant to trans-
formations of these types. In the laboratory coordinates of the inertial observer we know
that we are in Minkowski spacetime so ds2 = dt2−dx2. Hence the metric can be explicitly
calculated and (128) reduces to

s[φ] =
1

2

∫
(∂tφ)2 − (∂xφ)2dtdx. (132)

As we have shown in (125), the metric for the proper frame is the same as the Minkowski

frame multiplied by a factor of e2aζ̂ . We have shown that a transformation of this type
leaves the action functional invariant hence the action in the proper frame is given by

s[φ] =
1

2

∫
(∂τφ)2 − (∂ζ̂φ)2dτdζ̂. (133)

Applying the Euler Lagrange equations (1) to the action functionals we can find the
equation of motions are given by

∂2φ

∂t2
− ∂2φ

∂x2
= 0, (134)

with an analogous expression for the field φ(τ, ζ̂). These equations of motion are the
Klein-Gordon equation in the case where we have one spatial variable and a massless
field. Therefore we can refer back to 2.4 and immediately write the mode expansions of
the fields (with ωk = |k|),

φ̂(t, x) =

∫ ∞
−∞

dk

(2π)1/2

1√
2|k|

(â−k e
i(kx−|k|t) + â†ke

i(−kx+|k|t))

=

∫ 0

−∞

dk

(2π)1/2

1√
2|k|

(â−k e
i(kx+kt) + â†ke

i(−kx−kt))

+

∫ ∞
0

dk

(2π)1/2

1√
2k

(â−k e
i(kx−kt) + â†ke

i(−kx+kt)).

(135)
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Similarly

φ̂(τ, ζ̂) =

∫
dk

(2π)1/2

1√
2|k|

(b̂−k e
i(kx−|k|t) + b̂†ke

i(−kx+|k|t))

=

∫ 0

−∞

dk

(2π)1/2

1√
2|k|

(b̂−k e
i(kx+kt) + b̂†ke

i(−kx−kt))

=

∫ ∞
0

dk

(2π)1/2

1√
2k

(b̂−k e
i(kx−kt) + b̂†ke

i(−kx+kt)),

(136)

where the operators â±k and b̂±k define the vacuum and excited states of the field in the
inertial (laboratory) and proper frame respectively. The vacuum in each frame are

â−k |0M〉 = 0, (137)

b̂−k |0R〉 = 0, (138)

for all k where |0M〉 and |0R〉 denote the Minkowski vacuum in the inertial frame and
the Rindler vacuum in the proper frame respectively. Note that from the perspective
of the proper frame in vacuum state, the energy in the inertial frame is higher, and so
an accelerating observer may observe particles in the inertial frame. This phenomena is
called the Unruh effect. We will now look at a Bogoliubov transformation which links the
two fields, and aim to find an expression for the number of particles created. To further
simplify things we will introduce another transformation of the form

ū = t− x,
v̄ = t+ x,

u = τ − ζ̂ ,
v = τ + ζ̂ .

(139)

Note that based on these transformations, the coordinates (ū, v̄) are coordinates in the in-
ertial laboratory frame, ie Minkowski spacetime, and (u, v) are coordinates in the Rindler
spacetime. Using these transformations and (126) and (127) we can deduce that

ū = t− x = −1

a
e−au,

v̄ = t+ x =
1

a
eav.

(140)

Using these change of coordinates we can use the chain rule and rewrite (134) as
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∂2φ

∂ū∂v̄
= 0,

∂2φ

∂u∂v
= 0.

(141)

Now we can obtain the mode expansions in the new variables by letting ω = |k| and using
(139) and (135) to get

φ̂(ū, v̄) =

∫ ∞
0

dω√
2π

1

2ω
(â−ω e

−iωū + â†ωe
iωū + â−−ωe

−iωv̄ + â†−ωe
iωv̄). (142)

Similarly we obtain

φ̂(u, v) =

∫ ∞
0

dΩ√
2π

1

2Ω
(b̂−Ωe

−iΩu + b̂†Ωe
iΩu + b̂−−Ωe

−iΩv + b̂†−Ωe
iΩv), (143)

where Ω has been used instead of ω to differentiate between the different coordinate
frames. Note that we could write

φ̂(ū, v̄) = Â(ū) + B̂(v̄),

φ̂(u, v) = P̂ (u) + Q̂(v),
(144)

where

Â(ū) =

∫ ∞
0

dω√
2π

1

2ω
(â−ω e

−iωū + â†ωe
iωū), (145)

with corresponding expressions for B̂, P̂ , Q̂. (140) shows that ū = ū(u), hence we must
have that

Â(ū) = P̂ (u),

B̂(v̄) = Q̂(v).
(146)

Note from these expressions we can see that the fields in both coordinate frames can be
decomposed into parts with positive and parts with negative momentum. Furthermore,
there is no mixing between operators of positive and negative momentum, ie (146) shows
that the Bogoliubov transformations can only involve relations between operators with
positive momentum or operators with negative momentum.
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5.3 Bogoliubov Transformations

In this subsection we will derive the Bogoliubov transformations between the annihilation
and creation operators in the two frames. Using (146) we can explicitly write

∫ ∞
0

dω√
2π

1

2ω
(â−ω e

−iωū + â†ωe
iωū) =

∫ ∞
0

dΩ√
2π

1

2Ω
(b̂−Ωe

−iΩu + b̂†Ωe
iΩu). (147)

Applying a Fourier transform to both sides of this equation, then after some algebra and
the use of the Dirac delta distribution we obtain Bogoliubov transformations of the form

b̂−Ω =

∫ ∞
0

αωΩâ
−
ω + βωΩâ

†
ωdω, (148)

where

αωΩ =

√
Ω

ω
F (ω,Ω),

βωΩ =

√
Ω

ω
F (−ω,Ω),

(149)

and

F (ω,Ω) =

∫ ∞
−∞

du

2π
eiΩu−iωū =

∫ ∞
−∞

du

2π
eiΩu−iω

eau

a . (150)

Again note that the Bogoliubov transformations imply a relationship only exists between
operators with positive momentum and operators with negative momentum. For example
there is no Bogoliubov transformation between b̂−−Ω and â−ω , â

†
ω.

6 Entanglement

6.1 Background

Particles or sets of particles sometimes behave in a way such that a measurement on
one particle is correlated to the measurement of another. This is known as quantum
entanglement. A interesting consequence of entanglement is that if two entangled particles
are separated, measuring a property on one will give us information about the state of
the other instantaneously. As information cannot travel faster than light, there is current
research into how entangled particles appear to communicate instantaneously over large
distances.
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A standard measure of the entanglement present in a bipartite pure state system is the
Von Neumann entropy [8]. In this section we will review some concepts of quantum
information including the notion of pure and mixed states, the density operator, and
finally give a definition of the Von Neumann entropy.

A quantum state is called pure if it can be represented by the state vector |ψ〉. |ψ〉 will
normally be represented as a superposition of eigenstates of the system with coefficients
related to the probabilities of measuring an particular eigenstate. However their may be
uncertainty about the nature of |ψ〉 itself and as such there may be more than one state
vector |ψ1〉 and |ψ2〉, for example with related probabilities of finding the system in each.
In such cases we have a mixed state. The density operator, usually denoted ρ is a matrix
which describes the probabilities associated with a mixed state. It is defined by

ρ =
∑
α

pα|ψα〉〈ψα|, (151)

where pα is the probability of finding the system in state |ψα〉. It can be shown that a
state is pure if and only if ρ2 = ρ. If we have a bipartite system, i.e one where α = [1, 2],
we may wish to find the density operator for the individual states rather than for the
whole system. These are called reduced density operators and are found by tracing out
one of the particles, for example if we wished to find the reduced density operator for
particle 1, denoted ρ1 we would trace out over particle 2. This is denoted

ρ1 = tr2ρ. (152)

The Von Neumann entropy is defined as [9]

S(ρ) = −tr(ρlnρ). (153)

Note that the entropy is zero valued for a pure state, hence the Von Neumann entropy is
used to measure the entropy in the out regime given the in regime has non (it is a pure
state). This is done as the out regime is a mixed state, so we trace out over the particle
to obtain the reduced density operator, then we apply this to the entropy equation. This
is a measure of the entanglement.

6.2 Entropy

In this subsection we will discuss some general results for the value of entropy which
is a measure of entanglement between particles. Entanglement can only be calculated
for a bipartite system [10]. We can use the fact the the modes can be separated into
ones of positive and negative momentum k (see section 5.2). This defines a bipartition
of the system. We have calculated in section 3.2 the relationship between the vacuum
state on the in regime and the excited states in the out regime. Taking into account the
bipartition of the system, we can in a similar calculation to section 3.2 deduce that
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|0in〉 =
∞∑
n=0

cn|nkout〉|n−kout〉, (154)

where

cn =

(
β?k
α?k

)√
1−

(
|βk|
|αk|

)2

, (155)

and |nkout〉 describes the excited states corresponding to the mode k. As we are assuming
that the in region is a vacuum state, there will only be ground state modes of frequency
k and −k, hence using the definition of the density operator (151) we simply have

ρ = |0−k0k〉in〈0k0−k|. (156)

This defines the density operator on the in region which is a vacuum state. Note that
although the density operator represents a pure state, this is only from the perspective
from an observer in the in region. As we can write (154), from the perspective of an
observer in the out region, the in vacuum is a mixed state. We can therefore trace out
modes with momentum −k by calculating the reduced density operator. Applying the
definition of the Von Neumann entropy to this reduced matrix will give a measure of the
entanglement between the modes with momentum k and modes with momentum −k. We
calculate the reduced density operator using the formula

ρk =
∞∑
m=0

〈m−k|ρ|m−k〉. (157)

Using our expression for the density operator (156) and (154) we can explicitly calculate
the reduced density operator

ρk =

(
1−

∣∣∣∣αkβk
∣∣∣∣2
)
∞∑
n=0

∣∣∣∣αkβk
∣∣∣∣2n |nk〉out〈nk|. (158)

Applying (153) we can calculate the entropy

S = −tr(ρklogρk) = log

(
γγ/γ−1

1− γ

)
, (159)

where γ =
∣∣∣ βkαk ∣∣∣2 and αk and βk are the appropriate Bogoliubov coefficents.
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6.3 Example

Consider a quantum field which is flat at some distant point in the past and again at a
distant point in the future, where in the period between there is curved spacetime. An
example of this can be described by a time dependent harmonic oscillator with a specific
time dependent frequency, see for example 4.5. Suppose the in region is a vacuum state
with respect to an inertial observer in the in region. We have shown through Bogoliubov
transformations, that in the out region there will be a presence of particles caused by a
curved spacetime in the time lapsed between the in and out regimes. In the example 4.5 we
found Bogoliubov transformations of the mode functions of the form (116). Furthermore,
we have shown that in curved spacetime we can make some mathematical substitutions
to make the analysis conformally flat so that dealing with curved spacetime reduces
to dealing with time dependent harmonic oscillators. In this case we found that the
Bogoliubov transformations between annihilation and creation operators of various mode
functions are of the form (74) and (75). That is the Bogoliubov transformations of the
mode functions, and annihilation and creation operators involve a mixing between modes
with momentum k and −k. Using (114) and (115) we can hence calculate

γ =
sinh2(πω−/λ)

sinh2(πω+/λ)
. (160)

Therefore entanglement between modes with postive momentum k and negative momen-
tum −k is given by (159) with γ specified above.

We observe that if ω− = 0 then γ = 0, which means the entanglement S = 0. This is
clearly the case whenever ωin = ωout, thus there is no entanglement in flat spacetime.
From (108), (117) and (118) we observe that ω− = 0 also when m = 0, which again
corresponds to the case where there is no gravitational field. Hence we deduce that
the presence of mass, and so the gravitational field results in the creation of entangled
particles in this example 4.5.

6.4 Entropy to determine cosmological parameters

In this section we will review some results from [12] which allows us to use (159) to find
an expression for γ in terms of the entanglement S, and as such derive an expression
for the parameter λ (known as a cosmological parameter) which was introduced in 4.5.
Although the majority of calculation in 4.5 is completely analogous to that used in [12],
there are some small changes in the exact form of the problem and as such some notation
will be initially introduced. Following this we will explain how to find an expression
for the cosmological parameter and interpret what this means, as well as noting some
limitations. Finally we will also look at how the parameter changes when considering
Dirac fields in a simple 1+1 dimensional universe in contrast to the scalar field in a 1+1
dimensional universe which is what we have looked at so far.

Consider the two dimensional conformally flat metric (65). If we choose the scale factor
such that
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a2(η) = 1 + εtanh(λη), (161)

where η is the conformal time, and ε and λ are parameters which control the total
volume and how fast the universe expands [12], then we obtain the same expression for
the entanglement entropy (γ is given by (160)) between modes of positive and negative
momentum as we did for the case of the time dependent oscillator in 4.5. However there
are small changes in the analysis made in 4.5. We now define

ωin =
√
k2 +m2,

ωout =
√
k2 +m2(1 + 2ε),

(162)

where m is mass. Consider what happens if m � 2λε−
1
2 . [12] found that in this limit,

the parameter ε which is related to the total volume can be approximated by

ε ≈ 2E2
k

m2

√
γ(s), (163)

where γ(s) can be found from (159) (if the entanglement is known), and Ek =
√
k2 +m2

is the energy of a mode with momentum k. Similarly in this limit is can be found by
considering the entanglement between two modes of similar energy E that

λ ≈ πE

2

(
1 + γ(s)

−E
4

d
dE
lnγ(s)− 1

)
. (164)

Equations (163) and (164) show that if we calculate the entanglement between the modes,
then we can estimate the cosmological parameters ε and λ. A limitation of these calcu-
lations is that all approximations are based on the limit that m� 2λε−

1
2 . In section 6.3

we showed that when the mass is zero then so is the entanglement, hence our approxi-
mations hold in the case where the entanglement is almost zero, which is not necessarily
true when describing the observed universe, thus the estimations of the cosmological pa-
rameters may not be very precise. To obtain better parameter estimates we will now
consider a brief overview of an example of entanglement in a Dirac field.

Up to this point in the report, we have considered quantization of scalar fields. This
process and most of the theory of basic quantum field theory is based on bosonic fields.
In contrast a Dirac field is an example of a fermionic field. Bosons and fermions are
essentially two different classes of particles, one of which (bosons) have integer spin, and
the other (fermions) have half-integer spin. A Dirac field, ψ obeys the Dirac equation

(iγµDµ +m)ψ = 0, (165)

where γµ are the Dirac matrices in general spacetime, Dµ is the covariant derivative of
the fermionic field and m is mass. A feature of a fermionic field is that they obey anti-
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commutation relations as opposed to the commutation relations that bosonic fields obey.
For example, in flat spacetime the Dirac matrices γ̂µ satisfy

[γ̂α, γ̂β] = γ̂αγ̂β + γ̂βγ̂α. (166)

It can be shown that the relationship between the Dirac matrices in curved spacetime
and flat spacetime is given by

γµ = eµαγ̂
α, (167)

where eµα are an orthonormal set of vector fields, known as a vierbein field [13]. In a flat,
Robinson-Walker universe, the vierbein reduces to [14]

eαµ = a(η)ηαµ, (168)

where η is the conformal time, and ηαµ is the Minkowski metric. Now to apply a similar
problem to 4.5 in the context of a Dirac field we choose the conformal factor to be

a(η) = 1 + εtanh(λη). (169)

Note the slight difference to the conformal factor use in (161). This is because to obtain an
analytic solution in the Dirac field, we are solving for the vierbein field, hence as the form
of the vierbein field in this conformally flat spacetime is given by (168), we need to make
the adjustment so that the vierbein field is proportional to 1 + εtanh(λη). This is exactly
analogous to the earlier case where it was the metric (65) which was proportional to
1+ εtanh(λη) also. In a process similar to that in 4.5 the relevant Bogoliubov coefficients
can be found, and have a only slightly more complex form [15] to those in (113)

α±k =
Γ(1− (i/λ)ωin)Γ(−(i/λ)ωout)

Γ(1− (i/λ)ω+ ± imε/λ)Γ(−(i/λ)ω+ ∓ imε/λ)
,

β±k =
Γ(1− (i/λ)ωin)Γ((i/λ)ωout)

Γ(1 + (i/λ)ω− ± imε/λ)Γ((i/λ)ω− ∓ imε/λ)
,

(170)

In this case of the Dirac field the expression for the entropy also differs. It was found by
[16] that the entropy is given by

S = −tr(ρklogρk) = log

(
1 + γ

γ
2γ
γ+1

)
, (171)

where

γ =
(ω− +mε)(ω+ +mε)sinh(π/λ[ω− −mε])sinh(π/λ[ω− +mε])

(ω− −mε)(ω+ −mε)sinh(π/λ[ω+ +mε])sinh(π/λ[ω+ −mε])
. (172)
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This expression has some similarities to what we found for the entanglement of a scalar
field. Most notably, again this shows that there is no entanglement when the mass is
zero. However there clearly is a difference in entanglement between modes in a bosonic
and fermionic field, and these differences can be most clearly seen when we plot the
entanglement entropy against the mode k. Note that the entropy, S depends on the
cosmological parameter λ as well as k, hence Figures 3 and 4 show the entanglement
entropy against k for varying values of λ, [16].

Figure 3: Scalar field entanglement with m = 1, ε = 1, for varying λ

From Figures 3 and 4 we can see the difference in entanglement entropy between the
scalar field and Dirac field cases. Figure 3 shows that for a scalar field, the mode with
maximum entanglement is the one with momentum k = 0, and entanglement entropy
decreases as k increases. This is in contrast to the entanglement in a Dirac field, where
a mode with non zero momentum k has the maximum entanglement entropy. [16] notes
that the value of k for which the entanglement is maximized in the Dirac field case is
very sensitive to the cosmological parameter λ but is almost unaffected by ε, whereas the
value of the maximum entanglement is sensitive to ε but almost unaffected by λ. Hence
if the value of the maximum entropy is known, as well as the corresponding mode, this
will tell us information about the cosmological parameters. Finally we note that in the
Dirac field case our deductions are not based on limits of small mass, hence studying
the entanglement in a Dirac field may give more information about the cosmological
parameters than in the case of entanglement in a scalar field.

37



Figure 4: Dirac field entanglement with m = 1, ε = 1, for varying λ

7 Entanglement and relativity

In this section we will discuss some results of quantum entanglement in non-inertial
frames. In section 5.2 we looked at the Unruh effect; the effect where an observer in an
accelerating frame (Rindler spacetime) could observe particles in the vacuum state of a
inertial frame (Minkowski spacetime). Here we review some results of the entanglement
of these particles, and the effect of acceleration on entanglement. We consider the sce-
nario where, in the inertial frame, all modes are in ground state, except two which are
entangled. We have seen in section 6.4 that entanglement varies between modes. In this
case we suppose that the two modes in the inertial frame have maximum entanglement,
and consider the measure of this entanglement from the perspective of the accelerated
observer.

In order to describe the entanglement, we will first introduce Unruh modes, which are
a special type of mode which can be used as a link between the modes in Rindler and
Minkowski spacetime. Transformations between the various modes will be stated and
Bogoliubov transformations between various annihilation and creation operators will be
discussed. Next I will describe an alternative measure of entanglement that will be used
in this case: Negativity. This is an alternative to entanglement entropy as discussed in
6.2, and we will see that entanglement reduces to zero as acceleration increases.

7.1 Unruh Modes

We start by considering the Klein Gordon equation in Minkowski spacetime. The positive
energy solutions with respect to the timelike Killing vector field [17] is given by
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uω,M(x, t) =
1

4πω
e−iω(t−εx), (173)

where a Killing vector field is a vector field which preserves the metric gµν , ω is the
frequency in Minkowski spacetime, and ε = 1 for modes with positive momentum, and ε =
−1 for modes with negative momentum. In order to represent the accelerated observer,
we introduce Rindler coordinates (η, χ) such that

η = atanh

(
t

x

)
,

χ =
√
x2 − t2.

(174)

In contrast to the results introduced in 5.1, these coordinates are used to describe an
accelerated observer in both regions x > |t| and x < −|t| which we denote region I and
region II respectively. The spacetime diagram can be seen in Figure 5, where regions I
and II highlight worldlines of accelerated observers in Rindler spacetime, denoted Rob
and anti-Rob respectively. The worldline of Alice is a representation of the worldline of
an inertial observer.

Figure 5: Worldlines of accelerated observers from perspective of inertial observer coor-
dinate frame

The solutions to the Klein-Gordon equation in regions I and II are given by [17]

uΩ,I(t, x) =
1√
4πΩ

(
x− εt
lΩ

)iεΩ
,

uΩ,II(t, x) =
1√
4πΩ

(
εt− x
lΩ

)−iεΩ
,

(175)

where Ω is a positive dimensionless constant, and lΩ is a positive constant with dimension
of length related to the phase of the modes. Note that Ω is related to the frequency of
the Rindler modes, and the dimensional equivalent is
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Ωa = aΩ, (176)

where a is the acceleration.

Using (175), a new set of modes can be introduced

uΩ,R = cosh(rΩ)uΩ,I + sinh(rΩ)u?Ω,II ,

uΩ,L = cosh(rΩ)uΩ,II + sinh(rΩ)u?Ω,I ,
(177)

where tanh(rΩ) = e−πΩ. These are called Unruh modes. Note that from (176) we observe
that if a = 0 then uΩ,R = uΩ,I and uΩ,L = uΩ,II .

Unruh modes are useful as they allow the analysis of entanglement between modes in
Minkowski and Rindler spacetime easier to compute. This can be done as it is known
that the Unruh modes have a high Rindler frequency and so correspond to solutions in
the Rindler frame, as well as being a linear combination of (positive frequency) solutions
in the Minkowski frame [18]. Hence analyzing the relationship between the Rindler and
Unruh modes with tell us something about the relationship between the Rindler and
Minkowski modes.

The mode expansion of the field can be written as

φ =

∫ ∞
0

(a−ω,Muω,M + a†ω,Mu
?
ω,M)dω, (178)

where a−ω,M and a†ω,M are the annihilation and creation operators in the Minkowski coor-
dinates. As the Unruh modes are a linear combination of the Minkowski modes [18], this
could also be written as

φ =

∫ ∞
0

(A−Ω,RuΩ,R + A†Ω,Ru
?
Ω,R + A−Ω,LuΩ,L + A†Ω,Lu

?
Ω,L)dΩ, (179)

where A−Ω,R,A†Ω,R,A−Ω,L and A†Ω,L are the Unruh annihilation and creation operators. Fi-
nally we could then use the relationship between the Rindler and Unruh modes to write

φ =

∫ ∞
0

(a−Ω,IuΩ,I + a†Ω,Iu
?
Ω,I + a−Ω,IIuΩ,II + a†Ω,IIu

?
Ω,II)dΩ, (180)

where a−Ω,I ,a
†
Ω,I ,a

−
Ω,II and a†Ω,II are the Rindler annihilation and creation operators.

The transformation between the Minkowski and Rindler modes can be found by taking
appropriate inner products and appealing to orthornormality between the operators.
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uω,M =

∫ ∞
0

(αRωΩuΩ,R + αLωΩuΩ,L)dΩ,

uΩ,R =

∫ ∞
0

(αRωΩ)?uω,Mdω,

uΩ,L =

∫ ∞
0

(αLωΩ)?uω,Mdω,

(181)

where

αRωΩ =
1√
2πω

(ωl)iεΩ,

αLωΩ =
1√
2πω

(ωl)−iεΩ.
(182)

Using similar methods to those in 5.3 we can also deduce the Bogoliubov transformations
between the annihilation and creation operators

a−ω,M =

∫ ∞
0

[(αRωΩ)?AΩ,R + (αLωΩ)?AΩ,L]dΩ,

AΩ,R =

∫ ∞
0

αRωΩaω,Mdω,

AΩ,L =

∫ ∞
0

αLωΩaω,Mdω.

(183)

Since the transformation between the Unruh and Minkowski modes do not mix annihila-
tion and creation operators [17], the vacuum states are equal, that is

|0〉U = |0〉M . (184)

The Rindler vacuum can be written in terms of the mixed excited states in regions I and
II as [17]

|0Ω〉U =
∑
n

(tanhrΩ)n

coshΩ

|nΩ〉I |nΩ〉II . (185)

Consider the Rindler operators a−Ω,I ,a
†
Ω,I ,a

−
Ω,II and a†Ω,II . As the Unruh modes are Rindler

modes of high frequency, we could write a creation operator of the general form

a†Ω,U = qLA
†
Ω,L + qRA

†
Ω,R, (186)

where |qL|2 + |qR|2 = 1 are complex constants.
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7.2 Measure of entanglement

In this subsection we will look at the entanglement between the Minkowski and Unruh
modes. As opposed to the bipartite system we considered in section 6.2, we are now
dealing with a tripartite system consisting of the Unruh modes (both L and R) with
frequency Ω and the Minkowski modes of frequency ω. These can be separated into
two bipartitions by considering the Minkowski modes and the R Unruh modes, and the
Minkowski modes and the L Unruh modes. These correspond to a partition between
Alice and Rob, and Alice and Anti-Rob respectively, see Figure 5. An example of such a
bipartite state is given by

|ψ〉 =
1√
2

(|0ω〉M |0Ω〉U + |1ω〉M |1Ω〉U). (187)

As opposed to entanglement entropy that was used in 6.2, an alternative, Negativity, can
be used to give a measure of entanglement. Negativity is defined as

N(ρ) =
∑
i

|λi| − λi
2

, (188)

where λi are eigenvalues of the partially transposed density matrix [17]. The following
results are presented in [17], where the density matrices and negativity are calculated to
measure the entanglement between Alice and Rob, and Alice and Anti-Rob (see Figure
5).

The Alice-Rob density matrix is obtained by tracing out over region II to obtain

ρAR =
1

2

∞∑
n=0

(
(tanhrΩ)n

coshrΩ

)2

ρnAR, (189)

where

ρnAR = |0n〉〈0n|+
n+ 1

cosh2rΩ

(|qR|2|1n + 1〉〈1n + 1|+ |qL|2|1n〉〈1n|)

+

√
n+ 1

coshrΩ

(qR|1n + 1〉〈0n|+ qLtanhrΩ|1n〉〈0n + 1|)

+

√
(n+ 1)(n+ 2)

cosh2rΩ

qRq
?
LtanhrΩ|1n + 2〉〈1n|+ (H.c)non−diag,

(190)

and (H.c)non−diag means the Hermitian conjugate of the non-diagonal elements only. A
similar expression can be found for the Alice-AntiRob density matrix.

To calculate the negativity, we require the eigenvalues of the density matrices. Due to
the complex nature of the the density matrices, these calculations can only be obtained
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Figure 6: Negativity against r for varying values of |qR|. Blue lines correspond to Alice-
Rob bipartition, and red to Alice-AntiRob

numerically in all but some special cases. Figure 6 is a plot that of the negativity in both
the Alice-Rob, and Alice-Anti-Rob cases, for varying values of |qR|, [17].

Note that r = arctanh(e−(πΩa)/a), hence as a increases, so does r, and from Figure 6
we see that if r increases then the entanglement reduces. Thus if if acceleration tends
to infinity the entanglement reduces to zero. It can also be shown that in the fermionic
case the amount of entanglement reduces as acceleration increases, however instead of
reducing to zero, it reduces to a finite limit.

In this chapter we have seen that when considering two observers; one inertial and one
accelerating, not only will the accelerating observer observe particles in the vacuum of the
inertial observer, but there is also entanglement. However this entanglement is dependent
on the acceleration, and in increasing limits, the entanglement reduces to zero. These
results have been reported in many papers in the last decade, however there are some
more recent papers where different results were obtained. [18] showed that entanglement
exists, and even increases as the acceleration of an observer increases.

In [18], instead of considering the bipartite state (187), a family of bipartite states were
considered

|ψ〉 = P |0ω〉M [α|1Ω〉U +
√

1− α2|0Ω〉U ]

+
√

1− P 2|1ω〉M [β|1Ω〉U +
√

1− β2|0Ω〉U ].
(191)

Using this family of states, [18] used negativity to show that for the case where P = 0.4,
α = 0 and β = 1 then there is actually an increase in entanglement as acceleration
increases. Figure 7 shows that in the fermionic case, there is an increase in entanglement
between the modes in the Alice and Anti-Rob case.

Entanglement is very sensitive to interactions with the environment. As such experi-
ments which may attempt to capture quantum entanglement and its degradation due to
acceleration is problematic, as the question may be asked of the underlying cause of the
reduction in entanglement. However the creation or increase of quantum entanglement,
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Figure 7: Negativity against r where P = 0.4, α = 0 and β = 1 in fermionic field. Red
lines correspond to Alice-Rob bipartition, and blue to Alice-AntiRob

if detected would confirm the theory, as there is nothing in the environment that could
create the entanglement, hence we would have to accept it was due to the acceleration
[18].
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8 Conclusion

In this report some key aspects of quantum field theory have been discussed. In partic-
ular, the quantization of a scalar field, which in chapter 2 we saw is equivalent to the
quantization of a infinite set of simple harmonic oscillators. This was then extended to
the time dependent oscillator in section 3 which allowed us to describe a field which is
changing in time, and hence we introduced the Bogoliubov transformations. In chapter
4, quantum field theory in the presence of gravity was introduced, and it was shown that
by using a change of variable allowed for techniques developed in 2 to be employed. Ex-
plicit examples of using Bogoliubov transformations to show particle creation were then
discussed in two cases. The first was a case of a harmonic oscillator of constant frequency
which changed to a new constant frequency at a particular point, and the second was a
more complex case where the time dependence of the oscillator was a hyperbolic tangent
function. Section 5 introduced concepts of relativity into the analysis. The notion of
Rindler spacetime and the Unruh effect were explained through the use of quantum field
theory and Bogoliubov transformations. These concepts were particularly important as
grounding for the final sections on entanglement.

Sections 6 and 7 focused on applying quantum field theory to describe entanglement. 6
introduced some concepts of entanglement, as well as the Von-Neumann entropy which
is a measure of entanglement. This was used to calculate entanglement between modes
in the example in 4. The analogous problem in a fermionic field was also computed and
comparisons were drawn between the two cases. Figures 3 and 4 show the fundamental
differences between entanglement in the bosonic and fermionic fields where there is a
specific mode in the fermionic case for which entanglement is maximized. As this mode
is very sensitive to cosmological parameters, we concluded that entanglement in the
fermionic case is a more useful measure if we are interested in estimating the values of
particular cosmological parameters.

Finally in section 7, some of the mathematics of how to measure entanglement between
particles in an inertial frame from the perspective of an accelerating frame was reviewed.
This allowed us to use some ideas from 5 as well as to explore an alternative measure
of entanglement; negativity. Figure 6 shows that as acceleration increases, then the
entanglement reduces to zero. This is a result that agrees with much of the literature on
the subject, however we have also seen from recent research that acceleration may not
only destroy entanglement, but it can also amplify entanglement, and these results are
very briefly reviewed in the final part of the report.
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