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Abstract

Human induced pluripotent stem cells (iPSCs) are produced in vitro from specialised cells,
resolving the ethical issue of using human embryonic stem cells in biomedical experiments.
Their production is, however, currently very slow, costly and inefficient.

I model the behaviours of iPSCs with an agent-based approach (in Matlab) to gain insight
into the mechanisms of their evolution in specific experiments, both published and currently
conducted in the Institute of Genetic Medicine. I have developed models of isotropic and
biased random walks in 2D that accurately reproduce experiments on the movements of
single and several iPSCs. When the cells are more than 150 ym apart their motion is close
to an isotropic random walk. Cells within 70 yum move in a biased way, being strongly
attracted at separations less than 30 um; these behaviours are successfully modelled as a
strongly biased random walk with attraction. The model is then extended to describe the
growth of iPSC colonies with allowance for cell division and spontaneous differentiation. I
identify three aspects of the iPSC behaviour which require experimental clarification: how
a colony rearranges to accommodate cells produced by division, if the division rate of cells
is uniform across a colony and the rate of cell differentiation within a colony. The model
is further developed to include these features so comparison against experimental data can
answer these questions and the efficiency of future experiments can be optimised.



Chapter 1

Introduction

1.1 Stem Cells

Every organism is made up of specialised cells, which have specific functions, and unspe-
cialised cells with no specific functional purpose. Examples of specialised cells are red blood
cells or liver cells in humans. Unspecialised cells are called stem cells, and although they
do not have a specific function, they do have the ability to differentiate into (turn into)
specialised cells. Every cell (specialised or unspecialised) contains the same genes but some
are turned off and some are active. The combination of on and off genes gives a specialised
cell its specific function. A stem cell has enough genes turned on that it can differentiate
into a specialised cell by turning particular genes off. Until a stem cell differentiates, it will
continue to renew itself (divide) to give rise to daughter stem cells [24].

The number of specialised cells that a stem cell can differentiate into is referred to as
its potency, and is determined by the number of active genes it has available to turn on
and off. There are varying levels of potency [12, 6], with the highest level being totipotency.
Totipotent cells have the ability to give rise to any specialised cells in an organism; examples
are zygotes or spores. The next lower level is pluripotency. Pluripotent cells are able to
give rise to many specialised cells but not all of those which totipotent cells can. There is
a spectrum ranging from completely pluripotent cells, which have the ability to differentiate
into any cell that an embryonic cell can, to partly pluripotent cells which are still at least
able to give rise to all cells of the three germ layers [12]. Levels of potency below this decrease
in the number of specialised cells they are able to give rise to, with the lowest being that of
unipotent cells which are only able to differentiate into one cell lineage [7] .

Stem cells can occur naturally, for example embryonic stem cells, or can be artificially
produced by inducing pluripotency. Induced pluripotent stem cells (iPSCs) are created in
vitro by introducing specific genes into somatic cells (adult specialised cells) which give them
similar properties to those of embryonic stem cells. Pluripotency can be induced in a few
ways and there are different types of somatic cell that can be used [6, 11, 25]; in Section 1.2 1
will discuss the specific method used in the experiment I aim to model. As the induced stem
cells are pluripotent, they have the same potency as human embryonic stem cells (hESCs)
so they can differentiate into any specialised cell an embryonic stem cell can.

The scientific benefit of stem cells is huge. They can be used in drug development and
to model the spread of disease [6] due to the highly controlled and clean environment they
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Figure 1.1: The experiment time-line of the CytoTune™-iPS reprogramming experiment [22].

provide for in vitro testing and their ability to regenerate indefinitely [20]. The great advan-
tage of using iPSCs over hESCs is that this resolves the ethical controversy of extracting cells
from human embryos by providing an equally potent in vitro alternative. Another exciting
potential of iPSCs is using their potent ability in regenerative medicine to produce immune
matched organs for patients in need of transplants, although there is still a lot more research
needed in this area [6]. This could be achieved by extracting somatic cells from the patient,
turning them into iPSCs in vitro and then influencing the iPSCs to differentiate into the spe-
cific specialised cell(s) required for the organ needed. Immune rejection and the transmission
of infections and viruses can be mitigated by using a patient’s own cells [21].

1.2 Stem Cell Experiments

As previously mentioned, there are various ways of inducing pluripotency in cells. The
method I will focus on, and develop a mathematical model of, is that used at the Institute
of Genetic Medicine based at the International Centre for Life in Newcastle-upon-Tyne.

The experiments are based on the CytoTune™-iPS Reprogramming Kit [22]. This
method reprograms somatic fibroblast cells, found in the connective tissues of humans,
into induced pluripotent stem cells. The time-line for this process is shown in Figure 1.1.
Initial fibroblast cells are grown in culture for 2-3 days until they have 80% confluency (cov-
erage) in the well. Unlike stem cells, fibroblasts exhibit contact inhibition. This means
that their division rate decreases if they are in close contact with each other. Therefore, 80%
confluency is the optimal compromise between the number of cells and their growth rate. At
this point, transduction takes place: the fibroblast cells are transduced (treated) with 4
specific strains of the Sendai virus (SeV) which contain the 4 necessary transcription factors,
Oct4, Sox2, KlIf4, and ¢Myc (which hold the necessary genes), to induce pluripotency. The
cells are then cultured and grown in wells with the first colonies of iPSCs appearing around
12 days after transduction.

Stem cells are different to fibroblasts in the way they grow. Firstly, they do not exhibit
the issues of contact inhibition. In fact, their growth is aided by being in contact with other
stem cells, so they grow in colonies. They have a much shorter division time of around 14—
16 hours, compared to 26-30 hours for fibroblast cells [9]. About 3—4 weeks after transduction
the confluency of iPSCs in the wells is large enough that passaging can take place. This
involves transferring small sections of a stem cell colony from a highly confluent well into new
wells to allow new colonies to grow. Consequently, the number of iPSCs produced increases.

The morphology (appearance) of stem cells differs from that of fibroblasts. Stem cells are
small (usually round), with a diameter of approximately 10 um, and their nuclei occupy most
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Figure 1.2: The difference in morphology of iPSCs and fibroblast cells. Panel B shows fibroblast
cells at the correct confluency for transduction (80%), panel E shows an established iPSC colony
and panel F shows an image of iPSC with high magnification [20].

of the cell volume with small amounts of cytoplasm between it and the cell wall. Their shapes
are, however, variable and can change to become more square or rectangular as they aim to
be in complete adhesion with neighbouring stem cells (to aid their growth). In contrast,
fibroblasts have an elongated shape, and although they vary in length, are bigger due to the
larger amounts of cytoplasm surrounding their nuclei. Figure 1.2 illustrates these different
properties. Figure 1.2(B) shows the elongated shape of fibroblasts and their contact inhibition
by their spread. Figure 1.2(E) shows how stem cells form compact colonies and Figure 1.2(F)
shows the small circular morphology of the individual stem cells under high magnification.
The white circular cells in the images are dead cells.

Other experiments have been carried out at the Centre of Life as a consequence of the
work done in this project to allow testing of the mathematical models and clarification of
questions that arose from the modelling. These will be discussed throughout the report in
the appropriate place.

1.3 (Goals of the Project

At the moment the process of producing iPSCs is slow, costly and inefficient, with the iPSCs
produced being of highly variable qualities of pluripotency [15]. It costs in excess of £1000 to
run the experiment at the Centre for Life which induces pluripotent stem cells and currently
less than 1% of the fibroblast cells transduced become completely pluripotent stem cells, so
the efficiency is < 1%.

The main aim of my project is to model the production of iPSCs at the Centre for
Life in sufficient detail to improve the efficiency of their experiments. This involves gaining
an understanding of how to stop or control the death and spontaneous differentiation of
cells, and predict the best time and parts of colonies to passage in order to only grow new
completely pluripotent colonies. Currently, there is very little fundamental understanding
of the mechanisms of the processes that control the iPSC behaviour, which before now had
never been mathematically modelled before.
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Constructing a Mathematical Model

In order to create a model which will give us adequate understanding of an experiment we
want to incorporate all the important characteristic behaviours of stem cells into it. It is
therefore essential to outline what these are before deciding upon a model. The distinguishing
features which were identified are now outlined and explained [9].

2.1 Key Features of Stem Cells

Pluripotency /Differentiation — As previously explained, pluripotency is a continuum of
states determined by the number of specialised cells a stem cell can give rise to. In the
experiments described in Section 1.2, the pluripotency of stem cell colonies is tested
and only those exhibiting completely pluripotent characteristics are considered as stem
cells.

Figure 2.1 shows an iPSC colony whose nuclei have been stained to show the cells’
varying levels of pluripotency. The concentration of the pink indicator shows the level
of pluripotency; the paler the pink in the nuclei the less pluripotent the cell is. We can
see that the pluripotency varies within the colony. Roughly, the most pluripotent cells
seem to occur at the centre of the colony with potency decreasing radially from the
centre. This is characteristic of all colonies [9].

Around the edge of the colony in Figure 2.1, the nuclei become sparse and pale because
stem cells differentiate into specialised cells. The specialised cells are larger with a large
amount of cytoplasm surrounding the nucleus, which the staining does not show, hence
the disperse appearance of the stained nuclei. The paleness is due to the fact that
the specialised cells are not pluripotent. Our collaborates at the Institute of Genetic
Medicine, Dr Majlinda Lako and Dr Irina Neganova, are not sure why this decreasing
level of pluripotency occurs in the colony or why cells spontaneously differentiate around
the edge. We do, however, know that, on a population level, we expect approximately
10% of the colony to completely lose pluripotency and differentiate. In fact it is thought
to be beneficial to maintain this ratio as it appears to give rise to the highest proportion
of stem cells that are completely pluripotent [9)].

Division/Proliferation — It takes an iPSC between 14 and 16 hours to complete its cell
development cycle and divide to give rise to a daughter cell [9]. The stages of the cell

4
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Figure 2.1: A colony of iPSC’s whose nuclei have been stained to show their pluripotency. The
cells which are more pluripotent have brighter red nuclei. The microscopic image was taken by the
author under x10 magnification. The typical size of a stem cell is about 10um.

s
(DNA synthesis)

Figure 2.2: A diagram of the four stages of the cell development cycle of an iPSC [1].
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cycle, shown in Figure 2.2, are G, S, G, and finally M. In the G; phase, also known as
gap 1, the cell is growing; experiments show that this stage typically takes 2.5 hours for
an iPSC [9]. The next stage is S, or synthesis, which takes between 6 and 8 hours for
an iPSC [9]. In this phase the cell replicates its exact DNA in preparation for division.
Next is the Go, or gap 2, phase where the cell continues to grow before division; this
takes between 3.5 and 4 hours for an iPSC. The final stage, M, is mitosis. Here the cell
splits to produce a daughter cell which contains the exact copy of its DNA produced
in the S phase; this takes around 1.5 hours for an iPSC [9].

Death — Transduction causes a high death rate of cells, which become too ‘stressed out’.
Previous experiments done at the Centre for Life show that around 50% of the cells
die on the day of transduction [9]. In addition, cells die throughout the experiment for
various reasons. The process of a cell dying is referred to as apoptosis (programmed
cell death). When a cell enters this irreversible state, it takes about a day for the cell
to completely die. Experiments at the Centre for Life show that between 10% and 14%
of cells are under-going apoptosis at any time [9].

Cells can also die from senescence (old age). However, as stem cells give rise to
daughter cells they are maintained in a nonageing state [19], so senescence is less
important when modelling iPSCs.

When a cell dies, it detaches from the colony which is fixed to the well by an underlying
matrix, and floats to the top of the medium; on photographs they are identified by white
spots, as seen in Figure 1.2(B). The dead cells are then manually removed from the
medium. The vacancy the detached cell leaves in the colony of iPSCs is always seen
to be filled. This is likely to be a consequence of adjacent stem cells wanting to be in
complete contact with each other in order to aid their proliferation.

Cell Migration — Experiments assessing the motility of hESCs have shown that their mi-
gration is a fundamental feature of their behaviour [10]. We will assume that iPSCs
have similar mobility abilities due to their vast similarities to hESCs. Individual cells
are not stationary but can move, apparently involved in a random walk. Experi-
ments performed with two cells show that migration becomes directional if two cells
are within a threshold distance [10]. Thus there is a mutual attraction between stem
cells within a certain distance of each other. This is thought to be caused by the release
of chemical signals by each cell which indicate its existence to neighbouring cells.

The existence of mutual attraction is consistent with the unique property of stem cells
in their preference to grow in full adhesion. Stem cells release growth factors as they
proliferate, which provide neighbour cells with essential chemicals to also proliferate
[9]. A single cell with no neighbours will often die before it has even undergone a single
cell division.

Experiments on hESC motility [10] have been described in sufficient detail to allow their
modelling. The migration of single stem cells and stem cells separated by more than
150 pm mimics that of a particle undergoing random walk. However, if the separation
distance is less than 70 yum, the movement of the cells is far more systematic, with an
almost straight line path at separations less than 30 yum. This behaviour is modelled in
Chapter 4.
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2.2 Types of Mathematical Model

Currently there are a few different models which could capture some of the characteristics
described, however none could encompass them all. I will now consider some of the different
types of model available before deciding on the most appropriate way forward and beginning
to develop a model of my own.

Continuous, Deterministic Models

Models of this kind include various types of dynamical systems: sets of first order ODEs
whose solutions are continuous functions of time and deterministic. Examples of such basic
one-dimensional dynamical systems would be the exponential-growth and the logistic model
[18]. Both would be suitable to monitor the increasing number of cells as they divided and the
additional parameter of the logistic model would also make it suitable to model the property
of contact inhibition that fibroblasts exhibit; however we knows this is not necessary for stem
cells.

Higher-dimensional dynamical systems were also considered in similar applications. In
[17], a three-dimensional model of cell growth is discussed which has three states of cells:
proliferating, quiescent and senescent. Proliferating cells are those which are dividing. Qui-
escent cells are considered as being ‘frozen’; they are not dead, but are not dividing either.
Quiescent is a reversible state from which cells re-enter the proliferating state at a constant
rate. Senescent cells are those which are no longer able to divide, which we consider as dead;
this is an irreversible state. In [17], a fourth dimension is added to model the stress of cells,
which is considered to be the cause of transferring from the proliferating to quiescent state.
However, this model is not suitable for stem cells, as they do not have a quiescent state and
they do not become senescent [9].

A more relevant use of a high-dimensional dynamical system could be to model the
movement between the phases of the cell cycle of iPSCs. A four-dimensional dynamical
system is used in [3] to model the transition between the phases of the cell cycle of human
tumour cells and their reactions to radiotherapy and chemotherapy, which can make the cell
cycle reversible. Although this is a more applicable model it still would not allow us to
capture any features of stem cells other than proliferation.

Discrete, Deterministic Models

A model currently used to describe the growth of stem cells is the Sherley model [5]:

1 — (2a)7t! t

—_—| = | = — 2.2.1

N = Ny |0.5+
with N the number of proliferating stem cells, Ny the initial number of stem cells, B the
cumulative number of dead cells (from mortality or migration), D; the division time of
the cells and a the mitotic fraction. The mitotic fraction is assumed to be constant and
reflects the presence of nondividing cells. These can arise from cells that can produce both
nondividing and dividing cells [5].
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The Sherley model predicts the current number of proliferating cells in terms of j (the
number of divisions), a dimensionless quantity. This discretisation of time seems sensible as
the division time of an iPSC is 14-16 hours, so modelling time continuously is superfluous.
Although this model encompasses death and division, it has no way of calculating B other
than by counting, so fails to adequately model any characteristic other than proliferation.

Continuous, Stochastic Models

The deterministic nature of the models considered so far allows no randomness when evolving
the cell states. This means the same initial condition would give the same solution each time,
which is not realistic in this application. Any two experiments, with even just 5 stem cells,
never produces the same result [9]. For this reason, a stochastic approach is far more suitable.
However, there are disadvantages to making a stochastic model continuous when representing
cell growth [8]. A discrete model is more realistic, especially for a small number of cells, as
the number of cells will not be a smooth function of time but instead changes step-wise each
time there is a division or death.

Discrete and Stochastic

When discretising time we can consider the model to evolve in time steps of arbitrary length.
By making the time step small enough, the probability of more than one event happening
at a given time becomes negligible. Models of this type can also have spatial dependence
allowing us to include the migration of cells. We will therefore consider agent-based models,
which include cellular automaton models evolving in discrete time and space. A cellular
automaton model was applied to the migration of glioma cells in two dimensions, including
cell-cell attraction through communication [2], behaviours similar to the mutual attraction
properties of stem cells discussed in Section 2.1.

2.3 Agent-Based Models

Agent-based modelling (ABM) is a computer simulation with spatial (continuous or discrete)
and temporal dependence which is becoming increasingly popular [23]. ABM provides insight
into the characteristics of the system by modelling the behaviour of its individual components,
called ‘agents’. The agents act according to a set of rules which aim to describe how they
react to their environment and surrounding agents and which can be modified and developed
as the model is refined. In our application, the agents are the iPSCs and the rules they adhere
to would be the characteristic behaviours described in Section 2.1. For an agent-based model
to be suitable, the agents must abide by certain rules. An agent must be autonomous (have
the freedom to act independently), move to achieve its goals, be reactive (adapt its behaviour
when its environment changes) and be situated at a definite location in its environment. Stem
cells exhibit all these properties making an agent-based model ideal.

Cellular automaton models are a type of agent-based model with the restriction that
agents move in discrete space; the cells migrate around a grid according to a set of rules. This
will be the type of model I use in two dimensions with the square grid shown in Figure 2.3.
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Figure 2.3: The discrete space grid on which the agents can move in a cellular automaton model.

The iPSCs in the experiments occupy a layer one-cell thick; so, their colonies are genuinely
two-dimensional. Each grid point can be occupied by a maximum of one cell, so is either
occupied or unoccupied at any time. There are many advantages to this method, including
the fact that it incorporates spatial dependence. Firstly, the model can initially be made
dimensionless, using a time step 7 and grid size Ax. This means verifying the relevance
of physical measurements by changing parameters in the model is much simpler, which will
be extremely useful in our case when modelling experimental data. The other benefit is
that we can add complexity stage by stage, as trying to include rules which describe all the
characteristics given in Section 2.1 at once would be incredibly complex. Each adjustment to
the model can then be tested iteratively to identify the cause of problems more easily, with
further levels of complexity only being added to a coherent model. This way of modelling also
allows us to determine which characteristics are important and which may be unnecessary.



Chapter 3

Modelling Stem Cell Migration

In this chapter I will explain the development of my cellular automaton model for the migra-
tion of stem cells which is built in Matlab (code included on CD). This includes the random
walk behaviour of single cells and cells separated by more than 150 um and the attractive
behaviour of cells within a threshold distance. No other characteristics, including birth and
death, will be included in the model yet. The number of cells is denoted N, which is con-
stant as there are no demographic events, and the number of time steps that have evolved
is denoted M. The model is formulated in terms of dimensionless time 7 = 1 and distance
Ax =1, but it will be tested against experimental results [10] with dimensional parameters
specified in Chapter 4.

3.1 One-Dimensional Random Walk

I start by developing a model to simulate the simplest case of migration: a one-dimensional
random walk which models the diffusion of cells in one dimension [4, 13]. The model is run
with 1000 cells to determine the average behaviour. For simplicity, all the cells start at the
origin, so o = 0, and at each time step, 7, move one step, Az, either left or right with equal
probability. This means that the movement is isotropic.
It can be shown [4, 13] that after M time steps, the spatial position of any cell, x, can be
written as
x=2r—M, (3.1.1)

where r is the number of steps taken to the right. This is because if M steps are taken
in total, and r of those are to the right, then M — r steps are taken to the left. Hence,
the displacement from the origin can be written as © = r — (M —r) = 2r — M. Equation
(3.1.1) explains that, if M is even only even positions can be occupied (as x can only take
even values), and vice versa if M is odd. Figure 3.1 shows this by the alternating white and
black bars, especially visible in the top two panels, which represent unoccupied and occupied
gridpoints respectively. The histograms also give a qualitative check of the diffusion of cells
by the increasing spread of occupied z values along with the increasing maximum distance
specified for each simulation.

The distribution of the cells position can also be modelled by a Gaussian curve [4, 13].
The probability of a position, x, being occupied after M steps can be approximated with

10
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Figure 3.1: Displacement histograms of 1000 cells after 100 time steps (top left), 200 time steps
(top right), 500 time steps (bottom left) and 1000 time steps (bottom right). All cells start at the
origin and move isotropically. The Gaussian given in Equation (3.1.1) is overlaid in red and the
mean and maximum distance of each simulation is given in the legends.

great accuracy by the Gaussian [13],

p(, M) = ,/% exp (—a2/2M). (3.1.2)

The mean displacement of the cells at any time should be zero, due to their isotropic move-
ment and initial position of xqg = 0, and the variance of the Gaussian should increase with
time, hence Equation (3.1.2) is a Gaussian with g = 0 and 02 = M. The Gaussian given in
Equation (3.1.2) has also been multiplied by a factor of 2 to account for the fact only odd or
even values of z can be occupied at any time. The red dotted lines in Figure 3.1 represent
the values from Equation (3.1.2), evaluated at only odd or even values of = as appropriate,
and appear to fit the histograms well. This shows that the model generates data according
to Equation (3.1.2), so is working as desired. The mean displacement in each simulation is
also given and is another confirmation of the assumption that p = 0.
If the model is working correctly the cells should diffuse according to [4, 13]

A 2
0r = VM =~ 2kt =2 (;) t = V2, (3.1.3)

T
where r is the diffusion coefficient (recall that 7 = Ax = 1). Figure 3.2 shows that the
simulated points are fitted to a line of best fit with gradient 0.5, which confirms the square
root relationship between o, and ¢, and hence confirms that the model works correctly for
the diffusion of cells in one dimension. In order to quantify diffusion, we can calculate the
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Figure 3.2: The power law dependence of o, on t. In black are the model values and in red is the
line of best fit with equation Ino, = 0.5Int — 3 x 10™'3 found using Matlab data fitting.

constant diffusion coefficient, s, which tells us how efficiently the particles disperse from a
high to low density. To find the value of k, which would change if 7 or Az changed, we can
equate the y-intercept of the line of best fit in Figure 3.2 to In2 + 0.51In x and rearrange for
k. With 7 = Az = 1, the simulation gives x = 0.25.

3.2 Two-Dimensional Random Walk

The model can now be developed to model two-dimensional diffusion, which is more realistic
in application to the in vitro growth of stem cells in a well. We recall that the stem cells
are attached to the well by an underlying matrix, and colonies grow only one cell thick. At
each time step movement is now possible in four directions; up, down, left and right. Again,
the probability of moving in each direction is the same so the movement is still random
and isotropic, as Figure 3.3 shows. The possibility of moving in eight directions, so as to
include diagonal movements, was considered but decided to be an unnecessary complication
as a horizontal step followed by a vertical step gives the equivalent displacement. Restricting
movement to be horizontal and vertical only also adds the simplification that each step has
the same length, Ax. In developing the model both Az and 7 are kept dimensionless and
equal to unity as before. The simulation is again run for 1000 cells which all have initial
position at the origin, Zy = (0,0).

In order to test the model of two-dimensional diffusion we must consider the Rice Dis-
tribution. This gives the probability of the displacement of cells in two dimensions, Ar,
from their initial position, v, with the ‘spread’ quantified by o. Figure 3.4 illustrates these
parameters and the diffusion we would expect to see with the intensity of blue representing
the density of cells. The probability density function is given by

r r? 4+ v? rv r r’
o(Ar) = 3 €XP (— = ) Iy (;) = 2 &P (—T‘Q) ) (32.1)
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Figure 3.4: The parameters of the Rice distribution and the diffusion of cells around their initial
position, v. The intensity of blue represents the expected density of cells.
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Figure 3.5: The displacement histograms (black) and the fitted Rice distribution (blue), (a) after
100 time steps, (b) after 200 time steps, (c) after 300 time steps and (d) after 400 time steps.

with the simplification due to v = 0, as all cells start at the origin, and [y(0) = 1 for the
modified Bessel function of the first kind. The value of o, however, is unknown and should
increase with time. To estimate it, we can fit the Rice density function, Equation (3.2.1), to
the displacement histograms of the cells at each time step by minimising the sum of residuals
squared between the two. Figure 3.5 illustrates this after 100, 200, 300 and 400 time steps.
It is evident that, as time evolves, the cells spread further from their initial position v = 0.

For a quantitative check of diffusion, we can plot the estimated values of o against ¢ as
shown in Figure 3.6(a). The diffusion of cells should again follow the diffusion law o = 2+/kt.
Figure 3.6(b) shows that, on a log-log scale, the line of best fit has a gradient of 0.52, which
gives good agreement with the square root relationship we expect. When calculating the
equation of the line of best fit, the first 20 estimated values of o were excluded to increase
accuracy, as the relationship given in Equation (3.2.1) is asymptotic. This confirmation
means that the model adequately describes diffusion in two dimensions and confirms that
excluding diagonal movement along the grid is not damaging.

Again, the diffusion coefficient can be estimated by equating the y-intercept of the line
of best fit in Figure 3.6(b) with In2 4+ 0.5Inx. For the simulation shown in Figure 3.6 we
find k &~ 0.087. As expected, this is smaller than the diffusion coefficient in one dimension
(k = 0.25) as allowing movement in four directions means on average, Ar < Ax after the
same number of steps.
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(a) The estimated values of o versus ¢ (b) o versus t on log-log scale

Figure 3.6: The diffusive spread illustrated by the dependence of o on t. The left-hand panel
shows the estimated values of ¢ as time evolves. The right-hand panel shows a log-log plot of this
dependence to identify the power law and has line of best fit Ino, = 0.52Int — 0.53 found using
Matlab data fitting tools.

At this point, extending the model to three dimensions was considered but deemed un-
necessary, as stem cell colonies in vitro grow one cell thick keeping constant contact with the
underlying surface of the well [9].

3.3 Two-Dimensional Biased Random Walk

The next element of migration to include in the model is the mutual attraction between
cells which are close enough to interact (Section 2.1). It is not likely that their migration
suddenly becomes purely attractive at a certain distance with no isotropic element. It is more
plausible that the relative importance of biased and isotropic elements in the cells movement
varies with attraction becoming dominant when the distance between cells reduces beyond
some threshold. However, for simplicity, we will consider the attraction of cells to be binary.
I will refer to the distance between two cells as D and the threshold distance where cells
switch between isotropic and attractive migration as 7' (a parameter of the model). The
angle between the horizontal and shortest distance between Cell 1 and Cell 2 is denoted
0. The initial positions of the two cells are arbitrary. Figure 3.7 illustrates this setup. If
D > T, the two cells are completely unaware of each other and they perform independent
two-dimensional random walks as in Chapter 3.2. However, their movement becomes biased
if D <T by mutual attraction.

When D < T, the probabilities of moving in each direction depend on 6. In the case shown
in Figure 3.7, the probability of Cell 1 moving right is proportional to cosf and moving up
is proportional to sin . The probability it moves down or left is 0 as the model only allows
attractive motion. If we denote, for example, the probability of Cell 1 moving up as Py (up),
then the probabilities of motion of Cell 2 are given by P;(up) =Py(down) and vice versa and
P (left) = Po(right) and vice versa. Although the probabilities of movement of the two cells
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Figure 3.7: The parameters in the biased random walk model. The shortest distance between the

two cells is D and the angle between the straight line joining cells 1 and 2 makes and the horizontal
is 0.

are related, the direction of motion of each cell is chosen randomly (with the probabilities
specified) and independently at each step. After each step, the model recalculates D and 6,
and hence the probabilities of motion for each cell, which always sum to unity. The model
continues to run until either the cells occupy adjacent grid points or a specified length of
time has evolved.

Figure 3.8 shows two examples of the model in action. In both cases the cells have initial
positions of (z,y) = (=5, —5) and (5,5) and T is made large enough such that D = 10/2 < T
intially. The migration of cells follows a biased random walk where the separation between
the cells reduces at each step. The simulation stops when the two cells are next to each other.

If the initial positions of the two cells are such that D > T, the cells will either migrate
further apart from each other and never come within 7', or, will randomly step within the
threshold distance and then perform the biased random walk to become adhesive. This be-
haviour is shown in Figure 3.9 with two cells which have initial positions (z,y) = (—10, —10)
and (10, 10) and threshold distance T' = 25, so initially D = 20v/2 > T but the values are
similar. We see that initially the cells move randomly around their initial positions but when
D becomes smaller than 7' they migrate towards each other as in a biased random walk.
With confidence that the complete migration model is working as we expect, we can begin
to test it with specific parameter values against an in vitro experiment.

Currently the model only works with two cells since the experiment we discuss in Chapter
4 focuses on cell pairs. Further development would generalise this to model the migration of
N cells at various separation distances. This would involve calculating the distance between
all cells and whether each cell had neighbours within the threshold distance or not. Cells
which had no neighbouring cells within the threshold distance would perform the isotropic
random walk. However, for cells with neighbours within the threshold distance, T', the overall
probability from all surrounding cells within a circle of radius 7" would have to be calculated
for moving in each direction and then normalised to ensure they sum to unity for each cell.
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Figure 3.8: Biased, converging random walks of two cells that start at (x,y) = (=5, —5) and (5,5)
within the attraction distance, D = 10 < T, illustrated with their trajectories in the (z,y)-plane.
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Figure 3.9: The trajectories of two cells that start at (x,y) = (—10,—10) and (10, 10) outside the
threshold distance, with D = 20v/2 and T = 25.



Chapter 4

The Experimental Migration of Stem
Cells

Experiments and statistical analysis of the migration of single hESCs and collective hESC
movement are described by Li et al. [10]. The results show these to be fundamental properties
of hESCs, however, a mathematical model for the migration of stem cells was not attempted
by Li et al. [10]. In this chapter I will apply our agent-based model for the migration of stem
cells to their results shown in Figure 4.1.

Two experiments are discussed in [10]. One measures the migration of a single cell in
the absence of neighbouring cells and the second measures the attraction of cells where
neighbouring cells are present. In experiments with more than one cell, the experiment was
stopped at 10 hours if the cells had not already merged. My model is built to reflect this.

4.1 Parameters

In this section I will discuss how I choose the model parameters, which now need to be
dimensional, and explain some of the quantities used to quantify the migration of the hESCs.

Li et al. [10] introduce two so far undefined quantities: directionality and travel radius.
The directionality of cells is defined as the ratio of the shortest distance between the start
and end positions, L, to the total distance traversed, Li.y. In my model, L can be calculated
at any time by

L= \e(r) — wo® + [y(r) — v, (4.1.1)

where (z9, yo) is the initial position of the cell. Since each cell moves either along z, or along
y, by the same distance Ax at each time step,

Ly = M Az, (4.1.2)

where M is the number of steps. Hence, the directionality is given by

Ll —xol + ) - wl’
Ltrav B MAI‘ )

(4.1.3)

18
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Figure 4.1: Experiments on the individual and collective migration of hESCs [10]. (A) Qualitative
data on the migration of a single hESC with no neighbouring cells. Migration velocity (um/h)
quantifies the motility of the cells and the travel radius is the furthest point reached by a cell in 41
hours, referred to as Lpyax. Data is from 87 cells in four independent experiments. (B) Images of
the characteristic movement of a single hESC with no neighbouring cells. In the right-hand panel
lines represent cell trajectories with the arrows showing the direction of movement. The bars length
are 20 um. (C) Images of the characteristic migration of single hESCs with a neighbouring cell
less than 70 um away, with the bar length 50 um. (D) Qualitative data on the directionality of a
single hESC with separation distances from a neighbour of more than 150 yum and less than 70 um.
The directionality is the ratio of L and Lty as explained in Section 4.1. Data came from four
independent experiments and the bars represent the standard deviation based on more than 150
cells per group. (E) Images showing the asymmetric movement and colony expansion of hESCs.
Bars are 100 pm.
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The travel radius of a cell is defined as the maximum linear distance from its initial po-
sition reached within 41 hours. This farthest point is not necessarily its root mean square
displacement at 41 hours. I will call this parameter L,,,,. This is not the most mathemati-
cally useful parameter and my model had to be adjusted to capture this information. If the
cells migration is based on a tailed distribution (for example, the Rice or Gaussian distribu-
tion) then the maximum distance traveled could be uncharacteristically large with a small
probability. Recording the mean distance traveled at each time step would quantify the data
more appropriately. However, the analysis in Figure 4.1 uses the travel radius to quantify
cell migration so it is necessary to develop my model so it can be tested against these results.

Experiments which were carried out for two cells separated by a minimum distance of
150 pm yielded results analogous to a particle undertaking a random walk. However, when
the separation distance was less than 70 ym; movement became directional. For this reason,
the threshold distance in my model, 7', will be taken as 70 pym.

The final step before running the simulation is to establish the magnitudes of 7 and Ax.
Assuming, as before, that one stem cell occupies a grid point and that adjacent cells are in
adhesion, we can use the approximate diameter of a stem cell as Az, so Az = 10 pm. Then
Equation (4.1.2) simplifies to L.y = 10M pm. To calculate the corresponding value of 7 we
can use the mean migration velocity of a single cell given in Figure 4.1, v = 9.1 um/h, with

Ax =T, (4.1.4)
to find 7 ~ 1.1 hours.

4.2 Diffusion of Stem Cells

This section includes the migration of a single cell or two cells separated by a distance
greater than 150 pm. The experiment finds the travel radius of single hESCs in the absence
of neighbours as L,x = 51.6+£18.6 um, with a maximum of 88 ym, and the migration velocity
as v = 9.1+ 6.0 um/h (Figure 4.1(A)). The change in position of a single cell in a well with
snapshots every few hours is shown in Figure 4.1(B), with the white lines representing 20 ym
for scale.

The model described in Section 3.2, with the parameters given in Section 4.1, for 1000 cells
produces the average L. and L in Figure 4.2. We would expect (Ly.x) to approximately
go through the point (¢, L) = (41,51.6) if the model replicates the experiments. From
Figure 4.2 we can see that at 40.7 hours the model predicts the travel radius to be 67.98 um,
which is within 1 standard deviation of the mean travel radius shown in Figure 4.1(A), so
gives good agreement. Some of the ambiguity in this result may be down to the precision
of the experiment, especially when dealing with such small quantities, but also due to the
approximation of taking 7 = 1.1 hours. The value of 7 was calculated using Equation (4.1.4)
with the mean migration velocity 9.1 um/h. However, the migration velocity has a standard
deviation of 6.0 um/h. This is relatively very large (about 65% of the average), so T has a

standard deviation of —;ov ~ 45 minutes. The standard deviation of the 1000 simulated
v

travel radius values was also calculated at 40.7 hours and found to be 21.6 ym (3d.p). This

also gives very good agreement with the experimental standard deviation of the travel radius

of 18.6 um after 41 hours.
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Figure 4.2: The average travel radius, (Lmax), in blue and average shortest distance from the cells’
initial position, (L), in red in pm. Values are averaged over 1000 cells.

We can also quantify the directionality of the cells in this model, which represents the
migration of single cells and also of cells separated by a distance larger than 150 um. This
is done by running the simulation for 1000 cells and determining the average directional-
ity as (L)/(Ltray). The results are shown in Figure 4.3. At 41hours the directionality is
approximately 0.15 and then appears to settle on approximately 0.1. If we now consider
Figure 4.1(D), we can see that the mean directionality for cells at a distance greater than
150 pm is about 0.15, so again my model reflects the experimental values.

The agreement between my model and the experimental data for the migration of a
single stem cell and cells separated by more than 150 um strongly suggests that they follow
an unbiased random walk with the parameters established by my model.

4.3 Mutual Attraction of Stem Cells

When the separation of cells is less than 70 ym the hESCs movement becomes directional, and
with separations of less than 30 um they move along a nearly straight line. Figure 4.1(C)
shows this with photographs taken from a well with three cells all within 70 um of each
other. The directionality of cell migration in the model of Section 3.3, with Az = 10 um and
7 = 1.1, is shown in Figure 4.4. The duration of the simulation is approximately 10 hours
as the experiment continued until 10 hours had elapsed or the two cells had joined. We can
see that the directionality settles at 0.7 quite quickly. Comparing this with Figure 4.1(D) for
a separation less than 70 um, we see that 0.7 is not the average value of the experimentally
measured directionality, but roughly the maximum. This, however, could be expected as the
model of Section 3.3 has only attractive behaviour with no isotropic element in the random
walk. In this sense, the random walk model of Section 3.3 may be too strongly biased by the
cell attraction. Hence we would expect the mazimum experimentally measured directionality
to be around the directionality in Figure 4.4 (= 0.7), as cell attraction cannot be any stronger
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Figure 4.3: The directionality of cells (averaged over 1000 cells) in the isotropic random walk of
single cells and cells separated by more than 150 pym.

09r 1
0.8r 1
0.7r ]
061 1

trav

0.5F 1

/L

04r 8

0.1 8

O 1 1 1 1
0 2 4 6 8 10 12

Time (hours)

Figure 4.4: The directionality of the attractive biased random walk for the migration of cells
separated by less than 70 pm.
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than in our model! This completely mutual attractive migration is more visible when the
cell separation is less than 30 ym [10] , so the attraction model would be more suitable for
cells in this case.

The model gives good agreement for the migration of single cells, cells separated by
distances greater than 150 um and cells separated by less than 30 um. However, the behaviour
of cells with a separation distance between 70 um and 30 gym is not modelled with great
accuracy. This is probably because my model for attractive motion does not have an isotropic
element in the random walk which is distance-dependent, as discussed in Section 3.3. If
developing the model further this would be my next adaptation. Then, when modelling
the migration of cells with separation distances between 70 um and 30 um, the isotropic
element would decrease in intensity, vanishing when D = 30 um. The difficulty would be in
quantifying the ratio of unbiased motion to attraction between these distances and deciding
how the attraction intensity increases as separation decreases. New experiments would be
required to develop the model in this direction as it would involve further parameters that
need to be estimated experimentally. However, we decided to proceed to models more directly
related to the experiments conducted by our colleagues at the Institute of Genetic Medicine
who are more interested in the evolution of colonies of stem cells.



Chapter 5

Growth of Stem Cell Colonies

In this chapter I will discuss the development and testing of another agent-based model which
was implemented in Matlab (the code for this is given on the CD). The focus will now be
on modelling a colony of stem cells and how it grows. I will expand the capabilities of the
previous model to include more of the stem cell features introduced in Section 2.1. This will
include the division of cells and the cell development cycle for a more insightful model of cell
proliferation. Finally, cell differentiation will be included. The migration model discussed in
Chapter 3 will be refined and adapted to deal with a slightly different scenario.

The model still evolves in discrete time and space on a square grid in steps of duration 7
and length Axz. The model now includes an ‘information” matrix which records for each cell
its number, two-dimensional position, age, division time (how long it takes to complete the
cell cycle) and how long ago it last divided. This matrix is updated each time step, with all
previous information still stored, to provide a clear picture of the how the colony evolves.

5.1 Initial conditions

An isolated stem cell rarely survives more than 15hours (approximately one division time)
due to its lack of contact with neighbouring cells and the consequent lack of chemical growth
factors [9]. Therefore, each simulation is now started with a small colony of 5 cells at adjacent
grid points as shown in Figure 5.1, i.e. Ny = 5. This corresponds to the experiments, where
iPSCs are passaged as small colonies of approximately this size [9]. Each cell is assumed to
fill a grid square, i.e. to be Ax x Az in size, with Az = 1 in terms of dimensionless length.

At the start of a simulation each cell is given the same division time, D; = 15007.
Experiments suggest this is 14-16 hours, so stochastic, but for simplicity we will assume it
is deterministic. Each cell in the initial colony is then given a random age, C, such that
1 < C < Dy to avoid complete synchronisation in the division of the colony. This random
starting age for each cell in the initial colony is also considered as the time since the cell last
divided, denoted Tj.

24
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s>

Figure 5.1: The initial colony of stem cells, shown by the blue regions, on the discrete grid.

5.2 Cell Division

The model works by increasing the age, C', and time since last division, Ty, of each cell by 7
at each step. Then, when in the course of the simulation, Ty = D; for a cell, it splits. The
daughter cell is given age zero but a value of T is chosen randomly between 0 and 0.07D;
to avoid all the cells descended from the same initial parent dividing at exactly the same
time. Allocating Ty at random has the same effect as making the division time scale, Dy,
random. The daughter cell then occupies the grid position of the cell which has just divided,
and the parent cell moves to an adjacent unoccupied grid point to avoid the layer of cells
becoming more than one cell thick. This is simple when the parent cell is on the boundary
of the colony: we determine which of its adjacent grid points are unoccupied and move the
parent cell to one of these, with equal probabilities. However, as the colony grows, a parent
cell may be in the middle of a colony with no adjacent grid points unoccupied. Thus, we
must consider how the cells rearrange in the colony to make room for the new daughter cell.

5.2.1 How Does a Colony Accommodate Daughter Cells?

When we identified this problem we approached our collaborates at the Centre for Life for
their opinion, as well as doing our own literature search. It quickly became apparent that
this is a question biologists have never asked, or been asked, before and that there was no
conclusive answer.

We thought that there might be three possibilities. Firstly, that central cells may not
divide at all. This is a bold assumption to make without any experimental evidence, so
this idea was not adopted here. However, a way of determining whether this is the case is
discussed in Section 5.4. Secondly, the mechanism can be purely mechanical, so that when a
new cell needs to create space it pushes the surrounding cells outwards by applying pressure
as it grows. However, it is difficult to accept that a single cell would be able to create a
pressure large enough to move a large number of other cells, especially given that the colony
cells are attached to the well via a chemical matrix [9]. The alternative we came up with is
that there can be a complex communication between the cells which alert them of the fact a
cell is going to divide. Consequently, the surrounding cells create space by moving outwards.
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The communication could be via the release of chemical signals, which we already know
iPSCs are capable of doing from their interaction when migrating (Chapter 4). Thus, our
mathematical model has helped to identify a new feature of stem cells behaviour which needs
to be explored and which could provide fundamental understanding of their interactions.

As aresult, a new experiment was launched in the Institute of Genetic Medicine to address
questions arising from our model. In that experiment, about 50 small colonies of iPSCs are
grown, and their microscopic photo images are taken every 15 seconds to allow trajectories of
individual stem cells to be determined. Analysing this new experimental data is my priority
for a summer research project in June-July 2015.

5.2.2 A Model of a Growing Colony

Assuming that stem cells are able to communicate in an appropriate manner, I use ideas from
my migration model in Section 3.3 to build a mechanism which creates space for daughter
cells produced inside the colony. We first calculate where the boundary of the colony is
and which cells form it, by identifying the cell numbers occupying the (z,y) positions of the
boundary. Then, the shortest distances between the splitting cell and all the boundary cells
are calculated. If there are multiple boundary cells at this shortest distance, say N, , one of
them is chosen at random with equal probability 1/N,,.

At this point the model of cell movement described in Section 3.3 is employed. Consider
Cell 1 to be the splitting parent cell and Cell 2 to be the boundary cell which has been selected
to move. The migration model now only includes attraction, (an infinite threshold distance),
and the position of Cell 2, the boundary cell, is temporarily fixed. Then we can determine a
shortest path in the (z,y)-plane between the dividing cell and the selected boundary cell.

The (z,y) coordinates of all the grid nodes on the shortest path are calculated so we can
identify the cell numbers occupying these positions and move each cell one grid point towards
Cell 2 along x or y as appropriate. This includes the parent cell, so the newly born daughter
cell can occupy the grid point that the parent cell previously occupied. The boundary cell is
then moved to one of its adjacent unoccupied grid points with equal probabilities.

This process is illustrated in Figure 5.2 with an example of an 18 cell colony where central
Cell 3 (red) divides. The model creates space for the daughter Cell 19 (green) as follows:

e Cell 19 occupies the previous position of Cell 3.

e Cells 2, 9 and 18 are all 2Ax from Cell 3 (the shortest distance between Cell 3 and the
boundary) so one is chosen with probability 1/3, in this case Cell 18 (dark blue).

e Cell 18 now occupies one of its adjacent unoccupied grid points.

e The chain of cells, including the parent one, between Cell 19 and the new space at the
boundary all move in recurrence. The path (3,6,18) is shown by the coloured cells in
the left-hand panel of Figure 5.2. Cell 3 now occupies the previous position of Cell 6,
and Cell 6 now occupies the vacancy made by Cell 18.

e All other cells (white) stay in the same position.

Thus, the model selects a path of least resistance by moving only the cells along the path
to the nearest boundary cell.
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Figure 5.2: The rearrangement of a stem cell colony when an interior cell divides. Cell 3 (red) splits
producing daughter Cell 19 shown in green. The daughter cell occupies the grid point of its parent
cell. Cell 18 was chosen as the nearest boundary cell to Cell 3, and moves to an unoccupied adjacent
grid point. Cell 6 moves to the previous position of Cell 18 and Cell 3 moves to the previous position
of Cell 6. This creates space for the new daughter cell.
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Figure 5.3: The left-hand panel shows the number of cells in the simulated colony as a function of
time. The right-hand panel is the log-linear plot of this that demonstrates the power law dependence
between the variables. The red line is a fitted line of best fit found with Matlab fitting tools and
has equation logy N = 0.00067¢ 4 2.3. The division time of each cell in the simulation is Dy = 1500,
with NO = 5.

5.3 Quantifying the Growth of Colonies

It is important at this stage to check if the model describes the growth of colonies as we
would expect. To do this, we need a way of quantifying the growth of the simulated colonies.
This can be done by tracking the number of cells in the colony as a function of time and/or
by monitoring the area of the colony as a function of time. Both will be discussed here taking
Ax = 7 = 1, meaning that the division time of each cell, Dy, is 1500.

5.3.1 The Cell Number

The number of cells in a growing colony is a function of time, N(¢). When one cell divides,
it results in two cells, the parent and daughter, so

N(t) = Ng2t/P (5.3.1)

should describe the growth. The simulation results are shown in Figure 5.3 together with
the dependence of Equation (5.3.1). The line of best fit in the right-hand panel of Figure 5.3
has gradient 0.00067 ~ 1/D; = 1/1500 and y-intercept 2.3 ~ log, Ny = log, 5. This shows
that the model is working as expected and gives us a way of comparing the simulation to
experimental data.

Comparison to Experimental Data

In experiments presented by Ohmine et al. [14], images of a growing iPSC colony were taken
every 12 hours and the number of cells in each colony counted. These images are shown in
Figure 5.4. Assuming that the division time of iPSCs is 15 hours and noting that the initial
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Figure 5.4: Long-term time-lapse images of an iPSC colony [14]. Time in hours is shown in the
upper right corner, and the cell count is shown in the bottom right corner of each panel.

colony in the experiment had 32 cells, Equation (5.3.1) reduces to
N(t) = 32 (2!/15howrs) | (5.3.2)

Figure 5.5 shows the experimental data on a log-linear scale to check if it follows the same
exponential behaviour as Equation (5.3.2). Figure 5.5 confirms that it does, as the data fits
well a straight line with positive gradient. The gradient of the line of best fit is 0.043 hour~!
which suggests the division time of iPSCs is 1/0.043 hour™! ~ 22 hours. This difference from
Dy = 15hours adopted above could be for a number of reasons. Firstly, my model for cell
growth does not include differentiation or death which would decrease the number of stem
cells estimated by Equation (5.3.2) at each division. Figure 5.4 shows quite a few white
dots in each image, which indicate dead cells, so this is certainly a contributing factor to the
difference in the living cell number. Another reason which may contribute to the difference
is that my model assumes that the growth throughout the colony is uniform. However, we
are not sure if this is the case as the central cells may divide at a lower rate.

5.3.2 The Colony Area

The growth of the colony can also be quantified by its area, A(t), also a function of time.
The area of the colony at any time is given by

At) = N(t) A, = Ny2/Pr A, (5.3.3)

using Equation (5.3.1), where A. is the area occupied by a single stem cell. In terms of
dimensionless variables, A. = 1 and then Equation (5.3.3) simplifies to A(t) = N(t).
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Figure 5.5: Testing the accuracy of the model of colony growth (in the absence of differentiation and
death) against experimental data [14]. The line of best fit shown in red is logy N = 0.043t + 5 hours.

Experiments show that colonies always form an approximate circle as they grow [9]. So,
it is more appropriate to consider the colony radius, r(t) and area A(t) =nr(t)?>. However,
the colonies are not perfect circles so do not have an exact radius. Therefore, at each time
step, the distance between the centre of the colony and every boundary cell is calculated
and the average taken to be the average radius r, of the colony. Figure 5.6 shows how this
quantity evolves. The area of the simulated colony can then be calculated as

A(t) = mr. (5.3.4)

Figure 5.7 shows how the area of the colony from Equation (5.3.4) evolves with time. The
right-hand panel shows that the colony size also grows exponentially as the gradient of the
log-linear best-fit is 0.0007 ~ 1/1500. This is less accurate than the gradient of the line of
best fit in Figure 5.3, but this could be expected due to the approximation of using r,, and
agreement to four decimal places is still satisfactory.

We can now check the accuracy of r, as a measure of colony size. Using Equations (5.3.3)
and (5.3.4), we get N/r2 ~ m. So, we expect this ratio to tend to 7 asymptotically, because
with a small number of cells the shape of the colony will be very irregular. Figure 5.8
shows that this is the case. This was important to test as it gives another validation of
our assumptions of how a colony rearranges to accommodate daughter cells, as explained
in Section 5.2.1. It appears that the model assumptions do not affect the behaviour of the
growth of stem-cell colonies.

5.4 Stem Cell Lineages

We discussed with the biologists at the Centre for Life how to gain insight into the precise
mechanisms of the rearrangement of a colony when cells are dividing. We also need to check
if the growth of the colony is uniform. Do the central cells, which are smaller in appearance
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Figure 5.6: The average radius of the colony versus time.
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Figure 5.7: The area of the colony increases in time as in Equation (5.3.4): The right-hand panel
shows the log-linear plot in blue, so the power-law variation can be confirmed. The red line is a line
of the best fit found using Matlab data fitting, logy A = 0.0007¢ + 1.6.
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Figure 5.8: Testing the change in the colony shape as it grows. The ratio of the number of cells to
the colony area plotted against time should tend to m asymptotically.

(perhaps due to being more ‘squashed’), proliferate at the same rate as cells nearer the edge of
a colony? A decision was made to carry out specialised experiments which start with a small
initial colony where each cell is stained with a different colour [9]. This allows the migration
of each cell to be tracked and the daughter cells it produced to be tracked as well. A clear
picture of the growth of a colony can also be determined by comparing the relative sizes of
differently coloured areas of the colony. Although time and resources have not allowed me
to analyse the results of the experiment yet, I will explain the adaptation of the model that
would allow the method of Section 5.2.1 to be applied to the experiment.

The ‘information” matrix described in Section 5 now has another column which assigns
a different number between 1 and Ny to each cell in the initial colony. Any daughter cell
produced by the initial cells or their offspring is then given the same number. By associat-
ing a different colour to each number, plots and videos can then be made which show the
proliferation of the colony and its rearrangement by colour-coded cell paths.

Figure 5.9 shows an example starting with an initial colony of size Ny = 5. Each initial
cell is coloured separately: yellow, black, red, blue and green. The cell division parameter
is Dy = 1500, so each plot shows the colony at successive times that are multiples of Dj.
Hence, the number of each colour cell doubles in each plot. This is a consequence of the weak
stochasticity in the model, as the time taken for a cell to split is nearly constant. We recall
that, in the model all cells have the same division time but a daughter cell is given a random
value of Ty (between 0 and 0.07Dy). If the division time of each cell was made completely
random we would not see the exact doubling of the colony size every 1500 time steps.

Figure 5.9 shows that initially the offspring tend to stay more or less in the same family
area. Exceptions to this start to arise in panel (d) where some cells have become separated
as the colony has had to rearrange itself to create space for the division of interior cells. Once
a ‘family’ has become dispersed the cells continue to grow in different sections of the colony
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Figure 5.9: Colour-coded plots of the simulated colony at a varying number of time steps. Colour
coding allows us to track parent cells and their offspring, which have the same colour. These results
can be directly compared to experimental data.

as we can see in panel (f) where the colours are more mixed, especially the black cells which
have dispersed the most. This is most likely because the central cell in the initial colony was
black, so they have to move around the most to make room for their daughter cells, as they
rarely have an unoccupied adjacent grid point when splitting. Although the mixing appears
to increase with time, even after six divisions the colony is still clustered in clear lineage
sections.

The spread and relative size of each cell lineage section in the colony can be used to test
whether growth is uniform across a colony and to clarify whether the interior cells divide as
often as the outer cells. Figure 5.9 has an equal number of cells of each lineage at all times
due to the assumptions that growth is uniform and all cells have the same division time.

5.5 Including the Cell Cycle

The next development is to add the stages of the cell development cycle of an iPSC to the
model. This is for two reasons. Firstly, it describes the proliferation process in more detail,
and secondly, it will allow more accurate modelling of processes such as differentiation. Only
stem cells in Gy phase of the cell cycle can differentiate [9], so the model needs this level
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Figure 5.10: Colour-coded images showing cells transition through the cell development cycle. Blue
represents a cell in G phase, red a cell in S phase, green a cell in G2 phase and black a cell in M
phase. After completing the cycle, a cell splits.

of detail to capture this. The time spent in each phase is recorded for each cell in the
‘information’ matrix, and when the duration of a phase is completed, the cell either moves
to the next phase, or splits if it was in M.

The stages and durations of the cell development cycle of an iPSC are given in Section 2.1.
Using the proportions of the division time spent in each phase we can determine the length
of G as 2507, S as 7007, Gq as 4007 and M as 1507 in our model, as D; = 15007. These are
constant for each cell for simplicity, although, a slight variation in division time is accounted
for by giving daughter cells an initial age in G; between 0 and 1007.

Using the relative duration of each phase we can give the initial colony a realistic propor-
tion of cells in each phase: 16% in G; phase, 50% in S phase, 25% in G, and 9% in M phase.
We also expect these ratios to be maintained as the colony grows. Once the phase of each
initial cell is determined, a random age (between 1 and the phase duration) is given to each
cell. Colour-coded plots and videos can then be made which show the growth of the colony
in more detail, with each colour representing a stage of the cell cycle.

Figure 5.10 shows an example. In the simulation blue represents a cell in G; phase, red a
cell in S phase, green a cell in G, phase and black a cell in M phase. Comparing panels (a),
(b) and (c) shows clearly how the model cycles each cell through Gy, then S, then Go, then
M phase, before dividing. Comparing panels (d), (e) and (f) shows this on a larger scale and
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also that the cells in each phase are in collective areas. This is a consequence of the behaviour
seen in Section 5.4: that offspring of parents cells grow in the same area. Therefore, as all
cells have the same constant phase durations, apart from the weak stochasity in the initial
G; age of a daughter cell, each cell lineage will move through the cell cycle at a very similar
rate. If the duration of each cell cycle stage was made stochastic this collective behaviour
may be less obvious.

Comparing panels (d) and (e) we see that the black area of cells at the bottom left of the
colony at 8000 time steps has increased in size and become blue by 8200 time steps. This is
due to the short duration of M phase (1507) and the fact that after completing this stage
the cells divide. Comparing panels (d) and (f) we see that the few green cells on the left side
of the colony at 8000 time steps have become black, i.e. transitioned from Gs to M, after
another 400 time steps. This is due to the longer duration of Gy (4007). We can be confident
that the model is working as desired and is giving a more detailed description of the division
process which can be compared to experimental data.

5.6 Including Differentiation

The final modification of the model discussed in this report is to include differentiation,
which as explained in Section 2.1, happens around the edge of a colony. Stem cells can
only differentiate when in G; phase of their cell cycle and, on average, we would expect
approximately 10% of cells in a colony to be differentiated at any time [9]. Therefore, to
incorporate this phenomenon into the model each boundary cell, which is also a stem cell in
G; phase, is given a probability of differentiating each time step of

0.1N — Ny

- (5.6.1)

Here N is the number of cells as given in Equation (5.3.1), Ny is the number of differentiated
cells (a function of time) and « is a normalisation constant to ensure the probabilities sum
to unity. The normalisation constant, «, is equal to the number of cells which could possibly
differentiate at each time step. Hence, it can be estimated by the proportion of cells in
phase G; multiplied by the approximate circumference of the colony of stem cells, that is
a=0.16 x 27r, = 0.3277,.

The ‘information’ matrix is developed to note which cells are stem cells and which are
differentiated at all times. For simplicity in the model, differentiated cells are considered
as having the same morphology as stem cells, i.e. being of area 1, and do not divide.
Modification of the model would have differentiated cells occupying 2 or more grid points, to
account for their relative larger size, and give them a division time of 24007, so they divide on
a comparable scale to stem cells. Using the probability in Equation (5.6.1) within our model
the number of differentiated cells can be monitored as a function of time and compared to
the number of stem cells. If Equation (5.6.1) is valid we expect to see proportions of 90%
stem cells and 10% differentiated.

Figure 5.11 shows the number of differentiated cells and stem cells of a simulation initially
with Ny = 5 and Ngq = 0. Panel (a) shows the step wise increasing values of cell numbers
of each type and panel (b) shows the relative proportions of the colony that are stem cells
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Figure 5.11: The number of differentiated cells and stem cells in the growing colony. In the left-hand
panel the black, blue and red lines represent all cells, stem cells and differentiated cells respectively.
In the right-hand panel the blue line shows the proportion of stem cells in the colony and the red
line shows the proportion of differentiated cells in the colony. The desired ratios of each type of cell
are seen.

and differentiated cells. It appears to take roughly 2500 time steps for the colony to reach
the expected ratios of 10% differentiated cells and 90% stem cells and beyond this these
proportions are maintained. This gives confirmation that the model is working as expected,
and that the assumed probability of a stem cell differentiating each time step (Equation
(5.6.1)) gives the desired result.

In an unpublished paper [16] experiments suggest that around the edge of a colony there is
a band of constant width of differentiated cells. This band is thought to be three differentiated
cells thick at all times, even as the colony continues to grow. This means that at any time
we can approximate the number of differentiated cells by

Na

27T,

~ 3, (5.6.2)

where 7, is the radius of the colony of stem cells, disregarding the boundary of differentiated
cells. Figure 5.12 shows the number of differentiated cells in the model against 27r,, where
the probability of differentiation was given by Equation (5.6.1). It shows that the ratio is not
constant, but instead an increasing step-wise function. The model was run with a smaller
and larger probability of stem cells differentiating than in Equation (5.6.1) and the ratio
given in Equation (5.6.2) was never seen to settle on a constant value, let alone 3.

The model shows good agreement with the proportions of stem cells and differentiated
cells expected in a colony, however, for these to be maintained it is not feasible for the ratio
in Equation (5.6.2) to be constant. Further experiments would need to be done to investigate
whether it is the case that the ratios are 10% differentiated cells and 90% stem cells in a
colony or whether there is a constant width band around the edge, however, my model has
shown that both are not simultaneously possible.
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Figure 5.12: Quantifying Equation (5.6.2) using the probability of differentiation at each time step
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Conclusions

The key features of iPSCs behaviour which I initially identified as important were their
division process (including cell cycle), migration, pluripotency spectrum, death and their
ability to differentiate (Section 2.1). These are the primary elements of a useful mathematical
model.

Stem cells are autonomous, reactive to their environment and migrate to be closer to other
stem cells. An agent-based model is an adequate tool to describe such behaviours. Because
stem cells divide on a large time scale of 14-16 hours [9] and have a small migration velocity of
approximately 9.1 gm/h [10], it is reasonable to describe their behaviour in discrete time and
space. This means we can use a particular type of agent-based mode: a cellular automaton
model.

The model is based on a grid of step size Az, where only a single cell can occupy each grid
point, and evolves in time steps of duration 7. The value of 7 can be made small enough that
only one event happens at each time step but large enough that it is not necessary to make
the model continuous in time to capture the behaviour. A cellular automaton model is ideal
for including further levels of complexity step by step, particularly helpful when including
the many complex characteristic behaviours of stem cells. Thus, the model can be tested at
each stage for its suitability before any further development is made.

The analysis of my agent-based model for the migration of stem cells discussed in Chapters
3 and 4 assumes that iPSCs and hESCs move in the same way. It shows that it is appropriate
to model the migration of a single hESC and multiple hESCs separated by a distance greater
than 150 yum by a two-dimensional isotropic random walk along a grid. The mean and
standard deviation of the travel radius of 1000 simulated cells obtained from the models
agree well with experimental results [10].

At separation distances less than 70 um, the migration of stem cells becomes directional,
so we can consider 70 um as a threshold distance where the cells are able to communicate
and are attracted to each other. When cells are within 30 um of each other, it is appropriate
to model them according to a strongly biased random walk with attraction. This was done
by comparing the directionality of cells within the threshold distance in my model with the
experimental directionality [10]. For separations between 70 ym and 30 um, the attraction
between the stem cells increases from 0% to 100%, so my migration model could be improved
by having a distance-dependent attraction.

The second agent-based model developed in this report describes the growth of stem cell

38
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colonies. Upon developing the model, I identified two other features of stem cell behaviour
which were not initially considered, but appear to be important for the growth of colonies.
Firstly, it is unclear how a compact colony of cells, that are in close contact with each other,
creates space for interior daughter cells. Secondly, it remains to be understood if the division
rate of cells is uniform across a colony. A way of modelling both of these features was created
by adapting my model to track the cell lineages in a colony. This would allow for comparison
against relevant experimental data that has been obtained in an experiment designed at the
Institute of Genetic Medicine to address these questions.

Cell division alone leads to an exponential growth of their number in time. The lack of
death and differentiation in this case leads to a discrepancy in the estimated cell division
time. Including the cell development cycle in the model gave more detailed insight into the
proliferation of cells in the colony. This showed that equal phase durations in the model meant
that large areas of a colony evolved through the cycle in almost perfect synchronisation. This
needs to be tested against experimental data.

When including the differentiation of stem cells I computed the probability of differen-
tiation that reproduces the experimentally measured proportion of differentiated cells in a
colony, 10% [9]. T also explored a suggestion from another experiment that a colony has a
band of differentiated cells of constant width 3 cells around the edge. My model showed
that this is inconsistent with a fixed fraction of cells differentiated at any time. Both cannot
be simultaneously true. Further experiments need to be carried out to determine the exact
nature of the differentiation within a colony of iPSCs.

6.1 Further Developments

Although the models already give useful results, there are clear opportunities for further
improvements to increase the level of insight into the behaviour of iPSCs.

Cell Migration

My model for migration inside the threshold distance, T', currently only works for simulations
of two cells. It needs to be generalised to an arbitrary number of cells at various separation
distances. For cells with neighbours within 7', the overall migration probability depending
on all surrounding cells within a circle of radius 7" would need to be calculated.

The other necessary development of this model is to make the attraction distance-dependent
when D < T. This would mean adding an element of isotropic random walk, say w(D), to the
probability of moving in each direction which decreases with D. The probability of moving
in each direction for each cell would then need to be normalised to unity. The manner in
which w(D) decreases would need to be investigated, however, from the experiments [10], we
can assume that w(70 ym) ~ 1 and w(30 pm) = 0.

Growing Colonies

The first modification to this model would be to give each cell an independent random division
time between 14 and 16 hours. This randomness would then be carried through when the
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cell development cycle is added by making the duration of each phase random for each cell.

The next step would be to clarify how a colony accommodates daughter cells and whether
the growth is uniform across the colony. This could be done by comparing the new experi-
mental data on stained colonies to the model discussed in Section 5.4.

The characteristics of differentiated cells included in the model are currently very basic.
The model firstly needs to distinguish between the morphologies of stem cells and differen-
tiated cells. This may involve a differentiated cell occupying two or three grid points per
cell compared to one grid point per stem cell to reflect their distinct sizes. With further
development it may even become helpful to generalise the cellular automaton model to an
agent-based model with continuous spatial dependence to reflect this.

The model for differentiation also needs to be adapted to include the division of differen-
tiated cells (around 24 hours for differentiated cells compared to 14-16 hours for stem cells).
If the proportion of differentiated cells is to be maintained at 10% (as experiments suggest
it should [9]), including their division would mean decreasing the rate at which stem cells
differentiate. Further experimental analysis needs to be done to quantify the rate of differ-
entiation in the colony as there are currently two conflicting ideas. Once this has been done,
the model will be more accurate and can be used to make suggestions of how to prevent or
control differentiation within an iPSC colony.

Finally, cell death needs to be added to the model. This could initially be done in a similar
way to differentiation, by giving each cell a probability of starting the process of apoptosis
each time step. Then 24 hours later the cell would be considered as dead and removed from
the simulated colony. The rate of death (or cells entering apoptosis) could be an arbitrary
parameter to be determined from comparison of the model to experimental data.
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