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Abstract

Meta-analysis techniques, comprising of both continuous and binary data, to detect and
adjust for heterogeneity are applied to both simulated and real life datasets. The distinction
between the two key models, fixed effects model and random effects model, will be explored.
Fundamental concepts such as heterogeneity statistics and summary measures will be intro-
duced. Interpretation and analysis of various graphical techniques will be discussed. Following
this their power for detecting heterogeneity and outliers will be investigated thoroughly with
simulated datasets.
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1 Introduction

Each layer of a wall contributes to its overall strength. It is safe to assume that each layer has a

lower strength than all the layers combined. This is not the only example where this holds true, for

example, imagine a randomised controlled trial where research was carried out to determine if a new

drug has a desirable effect on a patient. More than one person would be included in the trial because

the result from that individual couldn’t be said to hold globally. The idea behind a clinical trial is

to gather a random selection of people, which should represent the population, to obtain a result at

the end. What if this idea can be made bigger? Imagine now the results taken from clinical trials

are to be layers in a wall, the combination of these layers would make for an extremely strong wall

indeed. This is the basic idea behind meta-analysis.

1.1 History

The origins of meta-analysis are a source of controversy due to disagreement as to what actually

constitutes as the first real meta-analysis. The idea itself is not a new one, however without proper

structure some would argue that the earlier attempts cannot truly be called meta-analysis. Either

way it cannot be argued that these earlier attempts paved the way for the properly structured and

statistically sound meta-analysis of today. The very first recorded attempt at combining studies can

be traced back to Blaise Pascal in the 17th century. Pascal was a French mathematician whose main

concern was applying maths to games of chance. A by-product of Pascal’s research was a method

for combining astronomical observations (NCBI).

It was an English mathematician, Karl Pearson, who would make the next significant step in ad-

vancing techniques in meta-analysis. Pearson was looking at incidence and mortality statistics in

soldiers (who worked in both India and South Africa) for typhoid. Pearson, frustrated with the small

groups that he had to work with and the poor statistical power the results would have, attempted to

group the observations into larger series. The mathematics behind Pearson’s combination of smaller

studies would not be considered statistically sound by today’s standards, however the results Pearson

obtained are fairly similar to those which have been conceived through modern methods (Pearson

1904).

In the mid-20th century there were large quantities of data on extrasensory perception and with
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this came a demand to combine these results into an overall effect size. In 1940 J.G. Pratt and

J.B. Rhine published Extrasensory Perception Over Sixty Years, which combined studies spanning

that time period. Unlike Pearson’s work, the extrasensory perception studies were conceptually

identical, which was very helpful from a statistical standpoint. This was the first recorded case

where publication bias was accounted for and an attempt was made to correct it. However the

methods used were not universally accepted with accusations of poor methodological design which

led to misleading results.

The term meta-analysis was first used in a paper by Gene V. Glass in 1976, where it was defined

as ‘The analysis of analyses’. Glass was primarily interested in statistics within education and

expressed concerns about the ever increasing amount of literature and information being wasted.

Glass explained that traditional methods would no longer suffice without the aid of techniques

for organising, depicting and interrelating data. Meta-analysis allowed Glass to answers questions

single studies could not and to resolve disputes between studies where they arose. Glass concluded

that it was embarrassing that researchers have less knowledge than that which has been proven,

and further research must be carried out in the subject area of meta-analysis (Glass 1975). The

problem of publication bias needed to be addressed and, among others, Robert Rosenthal was one

to take charge. In 1979 he published a paper highlighting the problem. Rosenthal called it the file

drawer problem where statistically positive results were more likely to be published than negative or

insignificant results. Rosenthal decided that better bookkeeping was essential if meta-analysis was

to progress and be respected as a statistically sound area of research (Rosenthal 1979).

A paper displaying the differences between random effects and fixed effects models was published in

1998 by Larry V Hedges and Jack L. Vevea. The two models were discussed in this paper and the

conclusion reached was that the inference desired by the researcher should play a key role in deciding

which model is chosen (Hedges 1998).

1.2 What is meta-analysis?

Many people conduct a version of meta-analysis without applying the mathematics aspect of it every

day. If a student is given a piece of coursework requiring two factors to be weighed up, a common

strategy would be to read into previous studies. The student could then summarise the findings

and make judgements on which factors are of higher importance. Relationships between factors can
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also yield surprising results. Subjective conclusions have effectively been drawn from the critical

evaluation of reports and results available. However, with a lack of mathematical structure and

consistency these conclusions may not represent the actual strength of these results or relationships.

Meta-analysis was originally used in agriculture, education and vote counting, but without great

impact. It was not until G.V. Glass introduced it to social sciences that it really took off. It’s now

a common tool implemented in genetics, drug testing and anything involving a clinical trial.

Formally, meta-analysis is a statistical technique used to combine results from several independent

studies to get an overall effect size. In its most basic form it is a weighted sum of all the different

effect sizes. How these weights are chosen depends on which model is used. In theory all studies are

combinable if a researcher deems them so. Even different types of studies can be combined but if

results are to be useful or meaningful, rigorous pre-set guidelines must be followed. There are two

models that are going to be considered and the simplest of these is the fixed effects model. Here

the effect size is assumed to be the same size across all the studies. The second model is called the

random effects model and this assumes that the true effect size varies across the studies. However

both these methods only hold true asymptotically.

Many people consider the biggest problem in meta-analysis to be heterogeneity. Heterogeneity is

the measure of dissimilarity between studies, and of this there are two main types: methodologi-

cal heterogeneity and simple heterogeneity. Both contribute to the overall statistical heterogeneity.

Methodological heterogeneity comes from the naturally occurring diversity of the studies being com-

bined. Studies will have different designs and assessment methods. Simple heterogeneity arises from

differences in true effect sizes between studies and can be identified if there is more variation between

the studies than that which is expected due to chance. If heterogeneity falls within the threshold

of chance, researchers would often choose the simpler fixed effect model. However this is rarely the

case. Dissimilarity between the studies is inevitable no matter how strict our methodical design. If

significant heterogeneity is detected it is important that its source be found before moving forwards

with a random effects model.

In meta-analysis there is usually two groups, the treatment group and the control group. The

treatment group receive the treatment and their progress is recorded. The control group may receive

a placebo or nothing at all and their progress is also recorded. It follows that the effect size is then

the difference between the two groups in terms of progress. The effect size can take many forms,

some of which will be explored later in this study.
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1.3 Why conduct meta-analysis?

The reason we conduct meta-analysis is to improve the treatments we have available so as to find the

best way of treating patients. Naturally, there is a lot of concern with the magnitude of the effect

size and its direction (did it help or hinder). There are also regular disagreements between studies

which a meta-analysis can settle and it can add consistency to the results. Type I and type II errors

(see later) are a huge cause for concern in clinical trials, but with meta-analysis these are greatly

reduced.

In smaller studies a larger treatment effect is needed for the effect size to be declared statistically

significant (Sternea 2000). If a small study is carried out and there was an effect of a drug helping

but it was a small effect size it would be very difficult to verify if it was actually helping or if this was

simply due to chance. If trials are combined together and they all show a small effect size in the same

direction then there is more reason to believe that this effect is due to the drug rather than being

simply down to chance. This phenomenon is called statistical power and meta-analysis is a tool which

can improve it. Statistical power refers to the likelihood of detecting, within a sample, an effect or

relationship that exists within the population. More formally stated, ‘the power of a statistical test

of a null hypothesis is the probability that it will lead to the rejection of the null hypothesis, i.e., the

probability that it will result in the conclusion that the phenomenon exists’ (Cohen 1998).

1.4 Steps taken in meta-analysis

1. Form a clear focused review question.

2. Carry out an extensive search of all primary studies, if possible using a global language search.

3. Formulate a strategy to assess the quality of studies and check how they are

relevant. Select studies and consider whether you will include unpublished studies.

4. Synthesis of study results and calculation of the effect size.

5. Interpret and analyse the results (Madhukar 2004).
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2 Methods in meta-analysis

2.1 Fixed and Random Effects

When combining studies in meta-analysis there are two statistical techniques developed for inference.

They are called the fixed effects and random effects models (there exists a third model called mixed

effects model which we are not going to consider in this study) which have slightly different definitions

and procedures, with guidelines available for choosing either one. Beyond affecting the computations,

the models help define the goals of the analysis and interpretation of the statistics.

Fixed effect models assume that the effect size is the same across all the studies, the only variance

here is the within study variance in each study. Weights are assigned according to the inverse of

the variance so larger studies are more likely to take the lion’s share of the weight. It is highly

unlikely in real life for all studies to have a common effect size, although in rare cases datasets may

be sufficiently close to this and the model will work well. Random effects models assume that the

effect sizes are a random sample from the relative distribution of effects. Patients being older, more

educated or from a wealthier economic background are likely to have different effect sizes giving way

to two sources of variance, within study variance and between study variance. The weights are again

assigned according to the inverse of the variance, except here the variance contains both between

study and within study variance. This means that smaller studies are less likely to be trivialised.

Heterogeneity and the statistical inference we desire will help decide which model is chosen.

Some researchers suggest heterogeneity is the principle factor in deciding which model to use, claim-

ing that if heterogeneity is below a pre-set threshold then a fixed effects model should be chosen.

Conversely if there is significant heterogeneity then a random effects model must be assumed (Hedges

1998). Although the two models give fairly similar results when there is a common population effect

size, the inferences they give are different. Two types of inference will be considered for deciding a

model, conditional and unconditional inference. If the researcher is mainly concerned with inference

on the effect size parameter in the studies observed, we call this conditional inference. In this case

a fixed effect model should be chosen. A potential drawback is that the inference gathered can only

explain the studies included in the analysis and cannot be applied generally. Nothing can be said

about past or future inferences. However the researcher may want to generalise the inference so

that it holds globally using the selected studies. This assumes that the effect size is not a constant
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Figure 1: Example of fixed effect analysis

Figure 2: Example of random effects analysis

parameter shared by all studies and we call this unconditional inference. In this case the researcher

should choose a random effects model.

Before continuing type I and type II errors should be recapped. A type I error is when a researcher’s

null hypothesis is true but it is incorrectly rejected. They are thought of as false positives. Type

I errors are particularly dangerous, for example, imagine a new drug which is being tested for its

ability to combat a nasty disease. A false positive will suggest that said drug does indeed combat the

disease and should be manufactured for that purpose, but really it does not have the desired effect.

Type II errors are when we fail to reject a null hypothesis which is false. This has less potentially

harmful implications but is still misleading and must be minimised where possible.

Random effects models tend to have appropriate error rates for statistically significant tests at 5%,

both when study sizes are the same (which is rare) and when study sizes vary. For fixed effects,

where study sizes vary, Type I error rates are much higher than they should be and so confidence

intervals based on these will be misleading (Hunter 2000).

Figure 1 and Figure 2 display the differences on a Forest plot (see later) between each model for

the same data, Olkin95, for the treatment of myocardial infarction. After suffering a myocardial

infarction, there are many treatments available, but one which is perhaps underused is thrombolytic
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therapy. Thrombolytic therapy is the use of drugs to break up or dissolve blood clots and has been

a major advance in the management of acute myocardial infarction. Unfortunately, it continues to

be underused or is administered later than is optimal. The studies span from 1959 to 1990 and are

mostly made up of small studies with 3 larger studies, and a few which are medium sized. From here

on out this will be referred to as Olkin data and the desirable effect in the treatment group means

the event occurs less frequently than in the control. Figure 1 displays the fixed effect model and

Figure 2 displays the random effects model for the subset of studies 41,47,51,59.

The same data is used to highlight the differences between the two models. The random effects

model has a higher confidence interval as expected but also notice the weight distribution on the

very right hand column. Smaller studies gain more weight whilst larger studies have their weights

reduced. This change of influence is one of the key differences between the models.

2.2 Computing the Combined Effect

Both random effects and fixed effects models use the inverse of the variance to weight each study,

but how is this variation defined? There are several sources of variation throughout our analysis so

to keep our analysis consistent the overall study variance will be used. Fixed effects models assume

one true effect size meaning all studies have a common effect size, denoted by θ and the only source

of variance is the within study error or estimation error, εi. The observed mean of each study is then

represented as

Yi = θ + εi (1)

The overall study variance here is just the within study variance and is given by

Vi =
σ2

n
(2)

where σ2 is the variance of the individual observations and n is the sample size. Clearly the variance

decreases as n increases, i.e, if the sample size gets bigger we have a more precise estimate of the

population parameter as a whole.

Random effects models assume that the studies are a random sample from the relative distribution
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of effect sizes. So here µ is defined as our effect size instead of θ because it represents the mean of the

distribution. There are two sources of variance here which will make up our overall study variance, the

between study component and the within study component, denoted ζi and εi respectively (ζi = θi−µ

where θi is the mean for study i and µ is the mean of all the studies). The observed mean Y for

study i is then given by

Yi = µ+ ζi + εi (3)

2.3 Weighting of studies

The weight we assign each study is decided by the inverse of the variance so that more precise studies

get more weight. We introduce τ 2 as the between study variance. The sample estimates of τ 2 are

denoted T 2.

Fixed effects models only contain one source of variance, the within study variance. The weight for

study i is then defined by

Wi =
1

Vi
(4)

For random effects models we use the means of all the studies to compute the grand mean, µ, which

introduces a second source of variance which we must include in our weighting of the studies. The

between studies variance stays the same and is therefore a constant. The weight for study i is then

defined by

Wi =
1

Vi + T 2
(5)

where T 2 represents the between study variance. The within study variance continues to change from

study to study. Note that if T 2 is zero then this is identical to our fixed effects model. It follows

that our combined effect is found by

M =

∑k
i=1WiYi∑k
i=1Wi

(6)

where MF denotes fixed effects estimate and MR denotes the random effects estimate. The variance
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and standard deviations of M are found by

VM =
1∑k

i=1Wi

(7)

and

SEM =
√
VM (8)

Giving us 95% confidence intervals of

CI = M ± 1.96 × SEM (9)

(Borenstein 2009)(Hedges 1998).

The differences between fixed and random effects will now be shown using data (Else-Quest et al

2006) for the early development of gender differences. Using a fixed effects model, the combined

effect returned was 0.0589 with a 95% confidence interval of (0.0242, 0.0935), and for the random

effects model the combined effect returned was 0.0456 with a 95% confidence interval of (-0.0429,

0.1342). This again displays that although both models may have a similar mean, the random effects

model will have a wider confidence interval.

2.4 Presence of Bias in meta-analysis

Meta-analysis has been subject to controversy from the outset. Some give it their highest praise

whilst others question the validity of its techniques and results. One particular area of scrutiny is

the potential sources of bias which appear at various stages of the analysis. Although it is impossible

to eradicate bias completely, the results obtained should be as unbiased as is statistically possible.

With less bias comes less heterogeneity, more precise results and better meta-analyses.

2.4.1 Publication bias

Publication bias is generally considered to be the most common and often the most difficult to

eradicate. Ideally if a researcher carries out an analysis the results should be published. Then
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picking studies to combine in a meta-analysis would be a simple lottery. This however is not the

case. Studies which are statistically positive/significant are more likely to be published, published

quickly, published in English, cited by others and published in well-known journals. The main concern

is that particular studies never get published. This causes a shift in the effect size towards positive

or desirable findings which results in misleading meta-analysis. This situation can be dangerous.

Imagine a treatment which has no effect, studies showing a positive result are being published whilst

some of the negative studies are not. A meta-analysis of the published studies would yield a positive

result and unhelpful treatments may be administered (BMJ 1998). Publication bias can be identified

with relative ease if one thinks about the process of burying an undesirable study. Large studies

with thousands of patients are likely to be in the public eye, so burying them would pose a difficult

challenge. Conversely smaller studies don’t have such a high profile and so can disappear relatively

easily. This leads to a very interesting observation, that smaller studies are going to have a higher

rate of publication bias, and statistical methods for spotting this will be discussed later.

2.4.2 Search and selection bias

To conduct meta-analysis a researcher must first find studies which are going to be included. This

introduces a potential source of bias. Meta-analysis published in English are often exclusively based

on trials published in English (BMJ 1998). There is no reason for not including trials published in

different languages. To avoid this a ’Global language search’ can be used. Armed with studies from

a global language search the researcher must then pick the inclusion criteria which can potentially

lead to another source of bias. If the criteria are picked by an expert with knowledge in the area,

the criteria may then be influenced by knowledge of previous trials. The inclusion criteria must not

be manipulated with the intention of increasing the probability of including a study which yields a

significant result.

2.4.3 Agenda Driven Bias

The main objective of most corporations is to make money. So if a business finances a clinical trial

or provides a trial with their products, the studies may be affected by bias. This could involve

manipulating the data or not publishing negative results which may harm the sales of that product

or service. If a meta-analysis is carried out, sponsors should be named so the credibility of the results
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can be checked. Corporations behind the analysis cannot be allowed to interfere. The World Health

Organization (WHO) has created the International Clinical Trials Registry Platform (ICTRP) to

help combat bias. If signed up to the register then details of the methodological procedure must be

uploaded and the results of the study must always be published. This stops researchers manipulating

procedures to get a significant result and all studies are published. Their sponsors must also be named

along with other regulations to stop misleading meta-analyses. Unfortunately it is not mandatory to

register, but fortunately this is an increasing trend. This step is in the right direction for improving

the credibility of meta-analysis.

2.5 Quantifying Heterogeneity

The difficulty heterogeneity poses to meta-analysis has already been discussed and to statistically

assess the difficulty we need some way to quantify it. Two types of heterogeneity (simple and

methodological) are combined to give an overall statistical heterogeneity. Random effects meta-

analysis can be used to give some measure of heterogeneity because it accounts for between study

variance, and so a simple estimate could be found from an odds ratio or risk ratio. However this

estimate is rather poor and does not allow for any comparisons to be made, such as that between

binomial and continuous data. A common method for quantifying heterogeneity is Cochrane’s Q-

test, where a p-value is given as an indication of the extent of between study variability. However

this test has a low power for detecting heterogeneity when there are too few studies and superfluous

power to detect clinically unimportant heterogeneity. The problematic nature of this test means it

is usually not taken as a relevant summary when quantifying heterogeneity, but it can be used to

derive more appropriate measures. Here the precision is assumed to be known, however in real life

we get this from the data. A homogeneity test for θi is given by

Q =
∑

wi(yi −MF )2 (10)

with k − 1 degrees of freedom on a χ2 distribution, where k is the number of studies. Q is poor at

detecting true heterogeneity. The expectation of this is:

E[Q] = T 2(
∑

wi −
∑
w2

i∑
wi

) + k − 1 (11)
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Which in the absence of heterogeneity gives E[Q] = k − 1

A better measure for heterogeneity is H2 which is given by

H2 =
Q

k − 1
(12)

H2 is better because it describes the relative excess of Q over its degrees of freedom. Higher levels

of H2 mean higher levels of heterogeneity. If H = 1, this suggests homogeneity since E[Q] = k − 1

(Higgins 2002). An even better statistic to measure heterogeneity is I2

I2 =
H2 − 1

H2
(13)

The I2 statistic describes the percentage of variance that is not down to chance, but rather het-

erogeneity. I2 provides a measure of the consistency between studies and is usually expressed as a

percentage. Higher values of I2 mean higher levels of heterogeneity.

At least one of these statistics should always be present in meta-analyses.

2.6 Summary Measures

The selection of a summary measure for binary data has always been an area of controversy. There

are a range of summary measures which can be used in a meta-analysis. The risk ratio or relative risk

(RR), odds ratio (OR) and risk difference (RD) are all going to be considered here. RR and OR are

relative and RD is absolute. Each summary statistic corresponds to a different pattern of predicted

absolute benefit of treatment with variation in baseline risk. The factors considered in making this

decision are:

1. Consistency of effect

2. Ease of interpretation

3. Mathematical properties

(Deeks 2002). A problem arises because the summary statistic which has the best mathematical

properties (OR) is difficult to understand and interpret. Many meta-analyses have been carried out

assuming RR has been used in analyses when in fact OR has been. The problem here arises when
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researchers are keen to get people interested in undertaking research and so intuitive understanding

of the summary measure is very useful. Here RR would be suggested. Conversely other researchers

claim that better mathematical properties are of paramount importance and ease of interpretation

is of little value, and so suggest OR. RD is actually the easiest to interpret but unlike the other two

it isn’t relative and so lacks consistency. For this reason it is usually not used in meta-analysis as

absolute values are unlikely to be generalisable. There is very little difference between OR and RR

and so deciding between them can be a difficult choice. A possible solution would be to try both out

and choose which ever has the smallest heterogeneity statistic, but this doesn’t work in cases where

there are too few studies. For ease of interpretation and consistency RR is the best compromise and

will be used throughout this study unless otherwise stated.

Event ‘success’ No Event ‘Fail’

Treatment Group SE FE NE

Control Group SC FC NC

Table 1: Clinical trials results

The results from clinical trials can be captured such as in Table 1

From here, the summary statistics can be calculated

RR =
Risk of event in experimental group

Risk of event in control group
=
SE/NE

SC/NC

(14)

OR =
Odds of event in experimental group

Odds of event in control group
=
SE/FE

SC/FC

(15)

RD = Risk of event in experimental group - risk of event in control group =
SE

NE

− SC

NC

(16)

Figure 3 displays the three different summary measures used in a funnel plot.

Both OR and RR have a value for I2 at 69.9% with respective confidence intervals [46.8% ; 83%] and

[46.3% ; 82.8%]. This shows how similar the two summary measures are in terms of heterogeneity.

The value of I2 for RD was 76.6%, considerably higher than the relative summary measures, but its
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Figure 3: Cisapride data plotted with different summary measures

confidence interval was much smaller, [60.1% ; 86.3%]. Notice also that the effect size estimate is

much higher for OR than RR.

2.7 Sensitivity analysis

A term very often found in conjunction with meta-analyses is ‘sensitivity analysis’. This is a cautious

approach to ‘correct’ for publication bias in which we draw conclusions from meta-analyses under

different study groups (not to be confused with sub group analysis), treatments or patients and look

at plausible possibilities for the extent of publication bias. These are then compared with each other

and with standard methods for obtaining results. The aim is to embed a standard model with a range

of different models which are plausible in the context of the data, and the range of these different

models are then compared with the original model (Copas 2000).
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3 Graphical tools for meta-analysis

Bias and heterogeneity are present in all meta-analyses of clinical trials. Sometimes it’s a symptom

of the clinical trials which has manifested itself in the meta-analysis, and sometimes it’s a problem

with the meta-analysis itself. Bias must be minimised and eradicated completely where possible.

In order for this to be done methods are needed to spot bias, remove it, and adjust for it before

re-estimation of the effect size. All summary measures in this study will be taken as risk ratios unless

otherwise stated and datasets are binomial unless otherwise stated.

3.1 Forest plot

These are sometimes also known as confidence interval plots. Forest plots are perhaps the best known

graphical tool in meta-analysis and they show effect estimates and the corresponding confidence

intervals for each study. A forest plot is drawn in Figure 4. The middle of each green square on the

right hand side of the plot is the effect estimate, and the larger this square the more weight has been

assigned to it. The line through the block corresponds its 95% confidence interval. The overall effect

is represented by a red diamond with its confidence interval being the width of the diamond. To the

right of this is the numerical representation of the effect size and the confidence interval. The purple

bar below this represents the size of the prediction interval, and weights assigned to each study are

on the very right hand side of the graph (Anzures-Cabrera 2010). Some heterogeneity statistics are

printed on the bottom left for additional information. The line in the middle of the Risk Ratio

section divides ‘favours control’ with ‘favours treatment’.

The data used was collected in 2001 and was in relation to cisapride (Hartung 2001). Cisapride, a

gastrointestinal tract promotility agent, can cause life-threatening cardiac arrhythmias in patients

susceptible either because of concurrent use of medications that interfere with cisapride metabolism

or prolong the QT interval, or because of the presence of other diseases that predispose to such

arrhythmias (Smalley 2000). From here on out this will be referred to as cisapride data. The

desirable treatment effect is increasing the number of events in the treatment group.

The data has been ordered smallest effect size to largest to help with analysis. It can be seen that the

fixed effects model has a much smaller confidence interval and with the weighting primarily assigned

to larger studies. Also notice that the larger studies tend to have a treatment effect closer to the
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middle.

Figure 4: Forest plot for cisapride data

3.2 Funnel plot

Meta-analysis has the advantage of using many studies to get an overall treatment effect. This

process should increase the precision of the effect size due to the larger number of patients considered.

However it has been the case that clinical trials with a large number of patients often contradict the

results in a meta-analysis. The result isn’t as shocking as it seems when bias is considered. There are

many types of bias trials may succumb to, with publication bias being the most frequent offender.

Larger studies have received a greater investment of money and time which means they are more

likely to be of high methodological design and published regardless of the result. Conversely there

is a tendency for smaller studies to be more prone to selective suppression and less thought put into

their design (Stern 2000).

Funnel plots plot the inverse of the standard error against an effect estimate (Egger 1997), in this

case RR. Its name arises from the fact it looks like an inverted funnel, with smaller studies scattered

widely at the bottom and larger studies becoming narrower as standard error decreases. This decrease

in scatter is due to increased precision of the clinical trial. In the absence of bias the funnel plot

will be symmetric, but in the presence of bias it will skew to one side or another and be asymmetric.
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Figure 5: Left:Funnel plot for the Olkin data; Right: Funnel plot for the cisapride data

For example, if publication bias is present we expect there to be a skew in the direction of the

desirable finding where negative or insignificant findings may not be published. A funnel plot should

not be used for any kind of analysis if there are less than ten studies (Stern 2011). The value of

analysing a funnel plot is not exact but it can give a good indication of any potential issues within

the meta-analysis.

Figure 5 displays the Olkin data and cisapride data respectively. The Olkin data is an example where

there is very little bias present, however there appears to be a small area in the bottom right corner

with no studies but this isn’t extreme. On the other hand, the cisapride has a lot of its smaller

studies on the right hand side with none on the left hand side. However the larger studies are fairly

evenly spread out. From inspection it seems that there is publication bias present in the cisapride

data. The random effects estimate is a purple dotted line whereas the fixed effect estimate is in

green.

The problem with Funnel plots is that they give no statistical evidence of heterogeneity or bias and

so we must look to other methods for analysing this in a quantifiable manner. Linear regression tests

may have the answer.

3.3 Linear regression

Linear regression methods are used to quantify the bias in meta-analysis which corresponds to analysis

of a Galbraith plot or radial plot, although the regression does not necessarily run through the

origin. Egger suggested a method which regresses the standard normal deviate (or Z score, where

the standard normal deviate is x + y× precision) against precision (Sterne 2000). Smaller studies
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Figure 6: Left: Galbraith plot for the Olkin data; Right: Galbraith plot for the cisapride data

have lower precision and a smaller standard normal deviate (SND) and so will be close to the origin.

Conversely larger studies will be more precise and will have larger SNDs if the treatment is effective

(Egger 1997). Thus, if unaffected by bias, the regression will pass through the SND zero (i.e. the

origin) with the slope of y indicating the magnitude and direction of the effect size. Conversely if

bias is present, it will not pass through the SND zero (i.e. not through the origin) and the distance

it is from zero is indicative of how much bias there is. If it passes through the y axis at y > 0 this

means that bias is affecting the effect size in a negative way, and if y < 0 this means it’s affecting the

effect size in a positive way. To aid our interpretation of the analysis lines are added which represent

the 95% confidence interval, if more than 5% of the studies are outside this threshold it is a sign

of heterogeneity. The radial plot also displays the direction of the treatment effect, and an upward

slope represents an increased event frequency, whereas a downward slope represents a reduction in

event frequency. The Radial plot for both the Olkin and cisapride data are plotted in Figure 6.

Both sets of studies seem to go through zero which is a good sign, this could be an indicator that

there is little heterogeneity. However with the cisapride data, notice that 6 of the 13 studies (> 5%)

are outside the 95% confidence interval. This is a strong indication of heterogeniety. Conversely

with the Olkin data only 3 of 70 studies are outside this range, which is around 5% as required. The

regression line for the Olkin data slopes downward suggesting a reduction in event frequency for the

treatment group, which is the desirable effect. Conversely for the cisapride data the regression line

slopes upward, an increase in event frequency for the treatment group, which is again the desirable

result. This suggests that both treatments are having a more desirable effect than their respective

control groups.

18



Figure 7: Left: L’Abbe plot for the Olkin data; Right: L’Abbe plot for the cisapride data

3.4 L’Abbe plot

L’Abbe plots can only be used on a binomial dataset with risk ratios and were first seen in 1987.

It plots the observed risks for both control group on the x axis and the treatment group on the

y axis and is used to detect heterogeneity. A regression line may be plotted through the graph

which indicates no effect. The dots are now sized in proportion to the study weights as there is no

measure of variance or precision anywhere else on the plot. This allows us to inspect the range of

risks among the studies and to highlight heterogeneity. Clustering of control group risks along the

x axis suggest that our assumptions about baseline risk are broken and so heterogeneity is present

(Anzures-Cabrera 2010). The plot can give an indication on which summary measure to use to get

more consistent results. Outliers can be identified by their distance away from the effect estimate

lines. One suggestion here would be to remove these outliers one by one until heterogeneity is no

longer significant (Song 1999).

Figure 7 displays L’Abbe plots for the Olkin data and for the cisapride data.

For the Olkin data we see that our fixed effect estimate and random effects estimate are both below

the line of no effect suggesting that events were happening less frequently in the treatment groups

than in the control group. Conversely with cisapride data only one study is below the line of no effect

whilst the rest are above, suggesting more treatment group events are occurring. There appears to be

one small outlier for the cisapride data at the top left. There is no strong suggestion of heterogeneity

for either study here but Baujat plots can be useful in analysis.
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Figure 8: Left: Baujat plot for the Olkin data; Right: Baujat plot for the cisapride data

3.5 Baujat plot

Another graphical method to check for heterogeneity is a Baujat plot. First introduced in 2002 it

was well received by most statisticians. It is very effective for finding which studies are the source

of heterogeneity in meta-analysis. On the x axis is the contribution to the overall heterogeneity

statistic (Cochranes Q statistic), and on the y axis the standardised difference of the overall treatment

effect.

A plot is drawn with and without each study to measure the contribution to the overall effect size

of each study (Baujat 2002). Further to the right and top indicates high heterogeneity and influence

of result. A Baujat plot is important when a researcher wants to bypass subgroup analyses and

immediately find which study is causing the heterogeneity. The Baujat plots for both sets of data

are plotted in Figure 8.

To aid graph visual analysis, only study names with extremes of both heterogeneity and influence of

effect size are printed. With the Olkin data it appears there is only one result with extremely high

influence on the overall result (GISSI-1), with White being the only study affecting heterogeneity

to a high degree without also affecting influence on the overall result in a similar way. The rest of

the studies look normal. With the cisapride there is also one study causing heterogeneity without

affecting influence on overall result to a similar degree, Milo [14], but not enough to be considered

an outlier. The rest of the results do not appear to be cause for concern.
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Figure 9: Trim and Fill plot for the Olkin data

3.6 Trim and fill

A difficulty in meta-analysis is that we must collect all studies to do with that meta-analysis, pub-

lished and not published, if inferences are to be valid (Egger 1997, Duval 2000). A representative

sample must be taken for credible meta-analysis to be carried out, and to get a representative sample

we must have a representative population from which to choose a sample. When publication bias is

detected a researcher should find the source of it and try to remove it. If this can’t be done other

methods are needed to correct for high levels of heterogeneity.

A nonparametric, graphical technique available is called trim and fill. If a funnel plot is undergoing

a trim and fill, first the asymmetric funnel plot has a line drawn up the centre. Then smaller studies

which are making the funnel plot asymmetric are removed temporarily and the new, ’true’, centre of

the graph is found and drawn. The studies which had been removed along with their mirror images

are replotted (the mirror being the new centre of the graph not the old centre) and analysis is done

on the original studies and these added studies. The added studies represent the studies which are

assumed missing due to publication bias.

This method heavily relies on the assumption that there should be a symmetric funnel plot, and there

is no way to tell if the adjusted effect size would match that of the meta-analysis had there been

no publication bias, giving this method a low power. There are other reasons why the funnel plot

is asymmetric other than publication bias which this method neglects. This method has also been

proven to be very misleading when there are high levels of between study variance (Peters 2007).

Trim and fill for both sets of data are shown along with their original funnel plots for comparison in

21



Figure 10: Trim and Fill plot for the cisapride data

Figure 9 and 10.

From inspection it appears that the random effects and fixed effects estimates have been brought

closer together in Figure 3.6. The graph looks more symmetric but these estimates aren’t that much

different to before, suggesting that trim and fill was not necessary here. This was not unexpected

as there were already low levels of heterogeneity with this data set. The data before addition of

simulated studies had a value of I2 = 18.6% with a 95% confidence interval of [0% ; 40.1%]. With

the 10 simulated studies added I2 = 26.6% with a 95% confidence interval of [2.6% ; 44.7%]. Trim

and fill has increased the amount of heterogeneity. The random effects estimate from the original

funnel plot was 0.7323 and this increased to 0.7565 which is expected, as all the studies added into

the plot were above the original estimate. The 95% confidence interval also increased from [0.6638

, 0.8078] to [0.6785 , 0.8434]. The trim and fill technique has not been beneficial to the analysis in

this case.

Figure 10 shows the cisapride data and again we see that the estimates for both random effects and

fixed effects are closer. This funnel plot looks much more symmetrical but some studies are now

quite far away from being included inside the 95% region. The heterogeneity here was quite high

to start off with, at 69.9%, and this increased to 79.9%. The respective confidence intervals were

[46.8% , 83%] and [69% , 87%] so there was a decrease in this, which is perhaps the only positive

thing from this trim and fill. A researcher must use discretion when deciding whether to implement

this method.

22



Figure 11: Left: Contour enhanced funnel plot for the Olkin data; Right: Contour enhanced funnel
plot for the cisapride data

3.7 Contour enhanced funnel plots

Deciphering which type of bias that is present in a particular analysis can be very difficult, but

contour enhanced funnel plots can aid in doing just that. The mechanism for how publication bias

works is important here. Statistically nonsignificant papers and statistically negative papers are

less likely to be published. Of the two, more often it is statistically nonsignificant papers that are

not published rather than negative findings (Peters 2008). Outcome reporting bias also plays a

part. Presence of outcome reporting bias suggests that even in papers which are published, only the

significant outcomes are reported.

When funnel plot asymmetry is found, there may be reasons other than publication bias that are

responsible. Any factor which affects study variance or effect size could act as a confounding agent.

Contour enhanced funnel plots highlight the different areas of statistical significance. If the asym-

metry is in a place of low significance it is more likely that the asymmetry is due to publication bias,

but if it is in a place of high significance, bias is more likely to do with poor methodological design.

Another case is where there is a ‘tunnel’ effect, where there is an absence of studies up the middle of

the funnel plot caused by suppression of nonsignificant papers. This type of suppression will leave a

higher number of studies sitting on or outside the significance lines.

The contour enhanced funnel plots are plotted for the two sets of data in Figure 11. Blue dots

with red contours represent the Olkin data and red dots with blue contours represents the cisapride

data. The Olkin does not seem to have much asymmetry. If any exists it’s in a nonsignificant zone
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Figure 12: Continuous data funnel plots for amlodipine

on the right hand side of the graph which indicates possible publication bias. The cisapride data

shows clear asymmetry, with missing studies within the nonsignificant zone indicating the presence

of publication bias.

3.8 Continuous data

The extension to continuous datasets will be explored in this section. The summary measures for

continuous data are the mean difference (MD) and standardised mean difference (SMD). In this

study SMD will be used because standardised summary measures can be applied more generally

than absolute summary measures. MD is just

MD = mean of treatment group − mean of control group (17)

However, the standardised mean difference is

SMD =
MD

pooled standard deviation of both groups
(18)

Plots drawn with continuous data are drawn in the same way as for those with binary data except

with different summary measures. There are some plots which cannot be drawn with continuous

data such as a L’abbe plot.

First we need to introduce a continuous dataset. This data set will be referred to from now on as the
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Figure 13: Left: Baujat plot for amlodipine; Right: Galbraith plot for amlodipine

Figure 14: Trim and Fill plot for amlodipine

amlodipine dataset. Amlodipine is in a group of drugs called calcium channel blockers. Amlodipine

relaxes blood vessels and improves blood flow. It is used to treat hypertension or angina among other

conditions. The data was taken from (Hartung 2001). Although the data set is too small to be used

for funnel plot analysis, the following plots in were generated from the amlodipine dataset to display

the similarity of the methods. Figure 12 shows the funnel plots. The Baujat plot and Galbraith plot

are displayed in Figure 13.And finally Figure 14 displays the trim and fill funnel plot for continuous

data.
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4 Simulation studies

Simulating studies with different parameters will give examples of how the graphical techniques from

section 3 can detect different sources of heterogeneity and bias. In this section, different pseudo

datasets will be compared using whichever graphical techniques are appropriate. The probability

of event for treatment and control groups were taken to be 0.6 and 0.4 respectively for the binary

data simulations. This means a beneficial treatment effect is more events occurring in the treatment

group. Each data set will have 20 trials with 1000 overall patients in the meta-analyses with the

exception of section 4.2 which varies the number of trials to measure this effect. The figures stated

will be found using a for loop with 10,000 iterations for consistency and precision.

4.1 The Control Case

Figure 15: Funnel plots for control case

This example is very basic and will be used for comparisons. There are 20 trials with 50 in each

trial, and all the trials are the same size so any heterogeneity will simply be due to chance. Here I2

is expected to be small or zero because there is nothing to cause heterogeneity and for the funnel

plots to be asymmetric. These are displayed in Figure 15

There does not seem to be any suggestion of asymmetry with the studies fanned out as expected.

The heterogeneity statistics are: I2 =0%, Q= 13.91 which is consistent with funnel plots. The 95%

confidence interval for I2 is [0%, 28.9%] and the p-value for heterogeneity comes in at 0.7887, which

is non-significant. The null hypothesis that there is no heterogeneity cannot be disproved and so

we infer no indication of heterogeneity. The fixed effects and random effects estimates are the same

showing very little between study variance. No further analysis is needed here.
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Figure 16: Funnel plots with fewer studies

4.2 Varying the number of trials

Here the number of trials was decreased to 10 and the number of patients in each trial increased to

100 so that the total number of patients remain at 1000. The heterogeneity statistics are expected

to be around the same value, maybe a little higher with larger confidence intervals because one trial

which leans to one extreme will have more influence on the analysis. The funnel plots are displayed

in Figure 16.

There does not appear to be any asymmetry here even though there are 6 studies on the left hand

side and only 4 on the right hand side of the funnel plot. This is because the studies on the left

hand side of the effect size estimate are closer to this estimate. Conversely those on the right are

more extreme values. The heterogeneity statistic as expected is around the same value as before but

with a bigger confidence interval, 0% and [0% , 52.1%]. The value for Q came in at 10.17, which is

considerably smaller because there are fewer studies and so fewer degrees of freedom. The p-value for

heterogeneity came in at 0.632, again our null hypothesis cannot be disproved. No further analysis

is needed here.

4.3 Varying the size of the trials

Instead of all the trials being the same size it was decided to vary the size of the trials. There are

10 trials with 30 patients, 6 trials with 60 patients, 2 trials with 75 patients and 2 trials with 95

patients. Having different sized trials could increase the amount of dissimilarity between the trials
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Figure 17: Funnel plots with different sized studies

Figure 18: Funnel plots with added publication bias

and so increases heterogeneity. The funnel plots are displayed in Figure 17.

The value for I2 came in at 0.2% with a confidence interval of [0% , 48.1%]. The value for Q was

19.05. The p-value came out at 0.4539, so still there is not significant enough heterogeneity to

cause concern. The fixed and random effects estimates were very close again. From this it is clear

that difference in trial size has little effect on heterogeneity, so if bias is not present, significicant

heterogeneity is unlikely as any disimilarity is due to chance.
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Figure 19: Left: Galbraith plot with added publication bias; Right: L’Abbe plot with added publi-
cation bias

4.4 Adding publication bias

4.4.1 Significant case

The next step was to add publication bias to the studies. The same study sizes from the previous

section were used, except there was an increase in the probability of an event occurring in the

treatment group. The smaller the study, the more publication bias which was added, as smaller

studies are more prone to selective suppression than larger studies. From the trials with 30 patients,

0.3 was added, for trials with 60, 0.25 was added and for trials with 75, 0.2 was added. Nothing was

added to the trials with 95 patients. Heterogeneity statistics were expected to increase significantly.

The funnel plots are displayed in Figure 18.

There is clear asymmetry present, with the studies shifted towards the right hand side of the graph.

The contour enhanced plot shows that the publication bias is present as the asymmetry is being

caused by a lack of studies in a non-significant area of the funnel plot. Figure 19 displays a Galbraith

plot and a L’Abbe plot.

The Galbraith plot has 3 or 4 studies outside the 95% confidence interval points (15-20% of studies)

suggesting significant bias. This notion is reinforced by the L’abbe plot. The assumptions about

baseline risk have been broken because all the studies lie between the x axis 0.2 and 0.6. This cluster-

ing is an indication of heterogeneity. The heterogeneity statistics came in at : I2=45.6%,Q=34.92.

The confidence interval for I2 is [8.1% , 67.8%] with a p-value of 0.0143 showing that significant
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Figure 20: Trim and Fill with added publication bias

heterogeneity is present. A trim and fill adjusted funnel plot is displayed in Figure 20.

This is much more symmetrical. The random effects estimate before the trim and fill was 1.9526 with

a confidence interval of [1.7485 , 2.1806]. Before the publication bias was added the random effects

estimate was 1.5205 with a confidence interval of [1.3895 , 1.6638]. Clearly the publication bias is

exaggerating the effect estimate. After performing a trim and fill the effect estimate decreased to

1.7344 with a 95% confidence interval [1.5387 ; 1.9549]. The trim and fill has lowered the random

effects estimate to within 0.02 of its actual value. This method may have a low power but has made

a huge improvement in this case. Note also that the confidence interval is smaller than the estimate

where there was no publication bias, this is because 7 simulated studies have been added.

The overall heterogeneity statistic for I2 after the trim and fill has increased from 45.6% to 61.8%

but its confidence interval has decreased from [8.1% ; 67.8%] to [42% ; 74.9%]. The trim and fill

technique has reduced asymmetry and has given a much better estimate of the ’true’ random effects

estimate. Although asymmetry has decreased, its confidence interval has been been slightly reduced.

This example is an ideal example of when a trim and fill should be executed.

4.4.2 Significant case, less bias

The last section displayed an extreme version of publication bias which is very easy to spot using a

funnel plot. However, in reality publication bias is rarely this extreme or obvious. In this section

the bias will be reduced gradually to see at what point the publication bias is impossible to spot

graphically using funnel plots. Previously 0.3, 0.25 and 0.2 were added to the smallest, second
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Figure 21: Funnel plots with publication bias halved

Figure 22: Funnel plots with publication bias halved again

smallest and third smallest trials. This was decreased by a half to 0.15, 0.125 and 0.1 to give the

funnel plots in Figure 21.

There is still evidence of publication bias present, but its effect is less pronounced. The value of

I2 came in at 21.5% with a 95% confidence interval of [0% ; 54.3%]. Note that as the amount of

publication bias being added is halved, the heterogeneity statistic is reduced by around a half too.

The previous levels of publication bias added were reduced again by a factor of a half. Figure 22

displays the effect when 0.075, 0.0625 and 0.05 were added to the smallest, second smallest and third

smallest trials.

It is becoming much more difficult to tell if there is publication bias or not. There still appears to be

some hints but this could be down to chance. This suggests that the borderline values for detecting
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Figure 23: Funnel plots with insignificant publication bias

Figure 24: Left: L’Abbe plot with insignificant publication bias; Right: Baujat plot with insignificant
publication bias

heterogeneity via funnel plots are around 0.075, 0.0625 and 0.05.

4.4.3 Adding publication bias (Insignificant case)

Publication bias is not always pushing the effect estimate one way or another, sometimes it is in-

significant trials which are not published. This type of publication bias is the more likely of the two

to occur (Deeks 2002). A problem arises in that it is difficult to spot using heterogeneity statistics

alone, graphs must be used to assess what is causing the heterogeneity. To simulate this, half of the

treatment group’s event probabilities must be increased and half must be decreased, with this effect

being more exaggerated in smaller studies. The funnel plots are displayed in Figure 23.
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There appears to be some asymmetry caused by studies being shifted slightly to the left, but what’s

more striking is the lack of smaller sized studies present up the middle of the funnel plots. This, com-

bined with so many studies in areas of high significance, suggests that insignificant studies have been

suppressed. The random effects estimate here was 1.5650 and I2 was 64.5% with a 95% confidence

interval [44.4% ; 78.4%]. The L’abbe plot and Baujat plot are displayed in Figure 24.

The L’abbe plot shows clustering around the x axis, again indicating publication bias. The Baujat

plot interestingly shows the splitting of the smaller studies with a large gap through its middle

as the plots move diagonally upwards. This is another sign that it is insignificant studies causing

the publication bias. Heterogeneity levels are much too high here and because it is insignificant

studies causing the asymmetry, a trim and fill would not help. Results from this meta-analysis would

be misleading, and so the meta-analysis should be carried out again but with unpublished studies

included.

4.5 Identifying an outlier

Figure 25: Funnel plots with outlier

Outliers can skew a meta-analysis and detecting them should be of high priority. The following

meta-analysis will be done with an outlier present. Graphical techniques will be used to detect

which study is the outlier so the researcher can remove it and re-estimate the effect size. The data

set from 4.1.3 has an ordinary study with 30 patients changed into an outlying study. This outlying

study has a large reduction in the probability of an event occurring in the treatment group. Figure

25 displays the funnel plots.
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Figure 26: Left: Galbraith plot with outlier; Right: Baujat plot with outlier

Figure 27: Left: Galbraith plot with outlier removed; Right: Baujat plot with outlier removed

The funnel plots show that there is a potential outlier on the bottom left in otherwise symmetric

plots. Figure 26 displays a Galbraith plot and Baujat plot to investigate this further.

There are 3 studies outside the 95% significant area indicating heterogeneity, but apart from the

potential outlier the funnel plots were otherwise symmetric and homogeneous. The Baujat plot

shows that there is one point which disproportionately adds heterogeneity compared to its influence

on overall result. This study, number 10, is the outlier and is removed. The random effects estimates

and values for I2 are recorded before and after removal. I2 decreases from 49.1% to 0%. Effect

estimates drop from 1.4741 to 1.3941. Figure 27 displays the Baujat and Galbraith plots after the

outlier has been removed.

The Galbraith plot now has only 1 study outside the 95% confidence lines as expected (=5%) and
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Figure 28: Funnel plots with continuous data

the Baujat plot has no studies with disproportionately high heterogeneity.

4.6 Extension to continuous data

The methods used for binomial data can easily be extended to continuous data as seen in section 3.8.

As before, L’abbe plots only work for binomial data but all other graphical techniques work. In this

next section the data simulated will not be the same format as the previous section. There are 20

trials and the trial sizes can range from 37 to 118 and the treatment group/control group ratios do not

necessarily equal 1. This is because in reality patients are randomly allocated to either group. The

treatment and control groups are then often slightly different sizes. In these data, treatment group

and control group numbers will be within three of each other which will increase the heterogeneity

in these meta-analyses.

4.6.1 Continuous data with no bias added

The first case being considered will be the case with no added publication bias. This funnel plot

is expected to be symmetrical and any asymmetry which may be present is simply due to chance.

Figure 28 shows the funnel plots for this data.

The plots are fairly symmetric with one fairly extreme value on the right hand side. There are 4

studies outside the 95% lines, but this could be due to the outlier. The value for I2 here came out

at 37.4% with a 95% confidence interval [25.5% ; 56.2%]. The outlier could be removed and effect
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Figure 29: Continuous data Funnel plots with added publication bias

Figure 30: Left: Baujat plot for continuous data with added publication bias; Right: Galbraith plot
for continuous data with added publication bias

re-estimated, but it doesn’t seem to be causing that much of a problem. The random effects estimate

came out at 0.4207. There is no further analysis needed here.

4.6.2 Continuous data with publication bias added

The publication bias being added is going to be that of negative findings not being published. To

do this an equi-spaced sequence of length 20 ranging from 0.2 to 0 was added to the effect size in

the treatment group. This shift allows for more publication bias in lower studies and less in larger

studies as required. The funnel plots are displayed in Figure 29.

Smaller studies have shifted to the right causing asymmetry. This asymmetry is caused by ‘missing’
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Figure 31: Trim and Fill for continuous data

studies in the bottom left corner in an area of non-significance. Clearly this is due to publication

bias (section 3.7). Figure 30 shows the Galbraith and Baujat plot.

There does not appear to be any outliers in the Baujat plot as there are no points contributing highly

to heterogeneity and contributing very little to influence on overall result. However the Galbraith

plot shows 25% of the studies outside the 95% lines, indicating high levels of heterogeneity. Clearly

publication bias is present and a trim and fill should be carried out, this is displayed in Figure

31.

The funnel plot now looks a lot more symmetric, however there is still a high proportion of studies

outside the confidence lines. A total of 5 extra studies have been added. The random effects estimate

has decreased from 0.6391 to 0.5076. This is closer to the value when no bias was added but is still

a little high. The 95% confidence interval has increased slightly from [0.5090 ; 0.7691] to [0.3607 ;

0.6545]. This increase along with an increase in I2 from 65.3% to 76.9% shows that although we have

got a better treatment effect estimate, it has increased variability. Overall the benefits outweigh the

drawbacks.

4.6.3 Identifying an outlier

Outliers can cause heterogeneity and misleading effect estimates. As before, graphs will be used to

identify an outlier and then analysis can be repeated with the outlier removed. The outlier data set

was made by subtracting 1 from one of the smaller data set’s effect size. Already it appears that the

study in the bottom left is a potential outlier. A Baujat plot and Galbraith plot are shown in Figure
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Figure 32: Funnel plots with an outlier for continuous data

Figure 33: Left: Galbraith plot with an outlier for continuous data; Right: Baujat plot with an
outlier for continuous data

33.

The Galbraith plot shows one study very far outside the 95% confidence lines which again could be a

possible outlier. The Baujat plot shows one study (labeled ‘1’ in Figure 33) which has higher level of

heterogeneity than the other studies. This was the study which had 1 subtracted from its treatment

effect and is the outlier. This should be removed and the treatment effect should be re-estimated.

This is shown in figure 34 with a funnel plot and Baujat plot.

The outlier has been removed and the funnel plot is less asymmetric. The Baujat plot shows no

indication of any outliers and the random effects effect estimate comes out at 0.3928, which is an

increase from 0.3030.
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Figure 34: Left: Funnel plot with outlier removed; Right: Baujat plot with outlier removed
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5 Bayesian meta-analysis

5.1 Bayesian meta-analysis

With an explosion in the use of meta-analyses, Bayesian meta-analyses methods are becoming in-

creasingly popular within medical statistics. One of the main reasons for its recent popularity is

advances in computers along with its more appealing nature. There are clear advantages with a

Bayesian approach not present in frequentist statistics. The Bayesian approach is to combine a prior

distribution with a likelihood, giving you a joint posterior function up to proportionality.

Some notation must be reconsidered for the multivariate case. µ must be defined as the common

effect size in the fixed effect model and all other extensions are intuitive. This leaves us with the

following model

Ti ∼ N [θi, νi], i = 1, ...., k (19)

θ0 ∼ N [µ, T 2], i = 1, ...., k (20)

Bayesian methods differ from frequentist methods in that the data and model parameters are taken

to be random quantities, and the likelihood function is thought of as defining the plausibility of

the data given values of the model parameters (Sutton 2001). Prior beliefs are chosen based on

external evidence from related studies. Usually the only two parameters of interest are the effect

size and marginal posterior densities for these parameters, where marginal posteriors are found from

integrating the joint posterior densities with respect to all of the other parameters. Difficulty can

arise here with evaluation of high dimensional integrals, this can be made simpler with asymptotic

approximation or conjugate models. Computational techniques such as Markov Chain Monte Carlo

(MCMC) simulations are used more frequently due to modern day computational power. MCMC is

a type of Gibbs sampler, and Gibbs samplers sample from posterior condition distributions to get

marginal posterior distributions.
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5.2 Dissemination of failed reviews

In some meta-analyses, conclusions may not be reached. Usually this is due to poor methodological

design, but there are a variety of other reasons. Poor methodological design leads to study parameters

which may be too varied to combine sensibly. Sometimes meta-analyses which consist of a small

number of trials are also deemed inconclusive, even if a significant effect is found (Smith 1998).

Abandoning the data found in these cases is a waste of collected information. A researcher should

go back and recollect the information and conduct analysis again, but with a stricter methodological

design.

5.3 Non-Normally distributed meta-analysis

Random effects and fixed effects meta-analysis assumes that effect sizes follow a normal distribution.

However there is usually little justification for this assumption, effect sizes being normally distributed

tend to be the exception rather than the rule. This is especially the case with meta-analyses that

have a small number of studies. The impact of assuming a different distribution has been relatively

under researched (Kontopantelis 2010).

There are a number of different effect sizes distributions which could be considered and a range of

different parametric and nonparametric methods for effect estimation. To test this studies would be

simulated with different distributions. These different methods would then be used to test if there

is a significant difference in effect estimation.

5.4 Meta-regression

Figure 35: Meta-regression plot
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Statistical heterogeneity is any variation which is not due to chance alone. This is mainly caused

by different methodological design, something which is almost impossible to keep exactly the same.

Meta-regression can be used to explain the characteristics involved in generating an effect size.

It follows that if particular characteristics are causing heterogeneity, they can then be identified

and progress can be made in reducing heterogeneity. Meta-regression requires visual representation

and Figure 35 shows a meta-regression plot. A graphical presence is required to visualise how the

regression coefficient is found in relation to study size and the distribution of information. It does

however share a common problem in that the technique is not very effective when too few studies

are considered (Thompson 2002).

The characteristics which explain the heterogeneity are known as effect modifiers and it would be

reasonable to assume that all heterogeneity can be explained by them. The possibility of residual

heterogeneity must also be entertained and for this reason only random effects meta-regression will

be considered. The weighting of meta-regression uses the inverse of the variance, which is the same

as with meta-analysis. Random effects and fixed effects meta-regression differs in that with fixed

effects, variance is the within study variance. For random effects meta-regression it is the sum of

between study variance and the within study variance. The test for overall heterogeneity has a low

power, so if a meta-analysis has a nonsignificant heterogeneity statistic, there may be characteristics

contributing to it. A meta-regression should still be performed in the absence of a significant result

to check for effect modifiers.

Meta-regression does still have its limitations. The relationships observed are across all the trials

and are not allocated to randomisation. The effect modifiers are then likely to be affected by con-

founding. Relationships found between trials may not be found between patients in a single trial.

This phenomenon is known as ecological confounding. Investigating ecological confounding requires

individual patient data. Even with its drawbacks, meta-regression is a tool which is very important

for finding and eradicating bias. It follows naturally from this study in detecting bias.
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6 Conclusion

The idea behind combining results extends back as far as 1904, but for a long time it was an underused

technique. In 1976 Glass coined the term meta-analysis and sparked interest in the subject area

through its applications in social sciences. From then on it became popularised for mathematicians

to work on methods to perfect meta-analysis into the useful tool it is today.

A meta-analysis can be conducted no matter how many studies are involved. However, an issue arises

when too few studies are combined. This means that in order to get a significant result there must be

a large overall treatment effect. When more studies are included, it becomes easier for a researcher

to say that the effect size is due to the treatment, rather than being simply down to chance. This

is the idea behind statistical power, and improving the statistical power to detect an effect is one of

the main advantages of meta-analysis.

There are two models considered in this study, fixed effects and random effects. Fixed effects models

assume one true effect size and any variation from this value is simply due to chance. The only source

of variance is within study variance, meaning any inference gathered with this model can only be

said to hold for that particular set of studies. The absence of between study variance is a situation

which happens only rarely, if ever. However, this model can still be useful when dealing with a group

of studies with low between study variance. Random effects models assume that the effect sizes are a

random sample from the relative distribution of effect sizes. There are two sources of variance here,

within study variance and between study variance. Inference gathered with this model can then be

said to hold globally. This is a more realistic situation and so random effects models should be used

in almost all situations.

Researchers usually want to get a significant treatment effect in both meta-analyses and clinical trials.

This introduces sources of bias. The problem with bias is that it contributes to the heterogeneity

of a meta-analysis and may give misleading effect estimates. There are many types of bias, but the

most problematic is publication bias. Detecting bias and pinpointing which type of bias is present

is a necessity of meta-analysis. Graphical techniques are a good way for not only spotting bias, but

also detecting which type of bias is present. To numerically measure the amount of heterogeneity

present there are a range of statistics available. The best of which is I2 because it describes the

percentage of variance that is not down to chance and adds a measure of consistency to the results.

I2 does not change over the degrees of freedom and it measures heterogeneity as a percentage.
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Graphical techniques are of great importance in meta-analysis. Some of them are good at spotting

particular problems, but the one which contained the most information is the funnel plot. Funnel

plots show bias and outliers and with the aid of contours can even help decipher what kind of

bias is present. Each graphical technique used in this study has a purpose and so they are all

important.

Simulating studies was perhaps the most informative part in relation to both measuring heterogeneity

and testing the power of these graphical techniques. Varying the number of trials had relatively little

effect when the number of patients was the kept the same. Varying the size of the studies on the

other hand also had a small effect. However, any heterogeneity observed would not be significantly

changed by varying either of these factors. Simulating a data set with publication bias significantly

increased heterogeneity. Even the slightest changes increased the heterogeneity statistic and made

the funnel plots asymmetric. Funnel plots were very good at picking up publication bias, but there

was a threshold where it was difficult to infer if it was publication bias or chance that was causing

the asymmetry observed. If a researcher was unsure with the levels of heterogeneity after a funnel

plot, a L’abbe plot or Galbraith plot can be very useful in cementing or disproving this notion. If

heterogeneity is believed to be a present a trim and fill can help adjust the effect estimate. This

method has a low power and works on the assumption that a funnel plot will be symmetric in the

absence of bias, but it does improve the estimate in these conditions. Deciding whether to use a trim

and fill depends on the levels of bias. If there is a lot of bias it makes sense to do one, if there is

relatively little bias it’s better to proceed without.

There is another type of publication bias which is actually more common, where insignificant studies

are not published but significant studies in either direction still are. Most of the plots in this study

are fairly poor at picking this up except for the funnel plot. The funnel plot will have a gap in the

middle. Contour enhanced funnel plots play a role here because they can show whether it is bias or

poor methodological design causing asymmetry present in a funnel plot.

Identifying an outlier can be tricky, especially with funnel plots because the scale can make it difficult

to gauge whether a point is really far out or not. If a funnel plot shows signs of containing an outlier

the best plot to use is a Baujat plot. They are more likely to contribute more highly to heterogeneity

than influence on the result and so should appear low and to the right. All obvious outliers should

be highlighted and removed before re-estimation.
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The extension to continuous data is relatively straightforward. All of the graphical methods used

for binary data also work for continuous data with the exception of the L’abbe plot. All inferences

can be taken in the same way but different summary measures must be used. For binary data

the best summary measure was risk ratio because it was relative, easy to understand and had good

mathematical properties. For continuous data the best summary measure was the standardised mean

difference as it was the only relative term.

Although it has made lots of advances in recent years, meta-analysis still has a few problems. The first

being the presence of avoidable heterogeneity. There will always be some unavoidable heterogeneity

caused by differences in trial design and assessment, but it should end there. The presence of

publication bias can be stopped by publishing all findings, regardless of their result. Institutions

should persuade all research to be published, and those who do not should face repercussions. There

are also some poor meta-analyses being performed from bad clinical trials, and for this reason many

researchers will side with a single large clinical trial over a meta-analysis of several smaller trials.

The graphical tools displayed in this study were only a few of the most important techniques for

detecting heterogeneity, and there are many others which have not been discussed. These tools and

an increased standard of analysis has led to meta-analysis becoming one of the most implemented

techniques in genetics, drug testing and anything involving a clinical trial.
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