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Abstract

This project assess the level in which New Higgs Inflation can be used to
accurately model inflation. Beginning with a brief introduction on inflation
theory while detailing aims and objectives of the project, followed by notation
implemented and observations used. Derivation of density and pressure in
terms of scale factor is calculated to form a basis of the slow-roll equations and
slow-roll parameters, parameters are then restricted for the end of inflation.
The number of e-folds is calculated for the cases of a massive scalar field and
a self-interacting scalar field, tensor-scalar ratio and spectral index are then
written in terms of the number of e-folds. This procedure is repeated for
New Higgs Inflation and finally a graph of the model is analysed and further
work suggested, this is concluded by a summary of the model.
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1 Introduction

Since it’s creation in the 1980s cosmological inflation has been used to account
for the several discrepancies found in standard big bang cosmology, while also
providing a basis to generate inflationary models for the approximation of
the universe. These models have a wide range of complexity, from the most
basic using just simple approximations, to more complicated models involving
several of the observed parameters. In this project I will be examining some
of these models to try and asses their validity, while also casting out any
discredited or those less useful, hopefully leaving a small group of potentially
viable options.

Inflation is the expansion of the universe following the big bang, it is be-
lieved to explain why the universe is isotropic and why the cosmic microwave
background (CMB) is evenly distributed throughout it, see figure 3. A rel-
atively modern concept, the hypothesis was put forward in the early 1980s
and has solved several of the ”unwanted relics” of cosmology such as the hori-
zon, smoothness, and entropy problems as well as the presence of magnetic
monopoles detailed in [1], see figure 1. Currently the wait for confirmation
that inflationary gravitational waves have been detected is still ongoing, this
would in effect cement the theory of inflation with strong experimental evi-
dence.

1.1 Aims

At the end of this project I aim to have analysed the observational con-
sequences of a specific model of inflation, by using both experimental and
observed data. The most important thing is first to state the governing
equations as well as defining it’s parameters such as; the tensor-scalar ratio,
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spectral index and number of e-folds all of which will be examined later.
For a given value of potential the number of e-folds can be written purely
in terms of the slow-roll parameters, in this project I will be concentrating
on the massive scalar field and the self-interacting scalar field, or φ2 and φ4

cases respectively as explained by [2]. From here both the tensor-scalar ratio
and spectral index can be written as functions of one variable; the number
of e-folds and a graph can be plotted. Finally I must repeat this process
using the more general dynamical slow-roll approximations in order to as-
sess New Higgs Inflation, for completeness I will also show how the slow-roll
approximations can be derived from a Lagrangian.

Figure 1: Artistic impression of a magnetic monopole, the magnetic monopole
problem claims that in the very hot early universe a large number of magnetic
monopoles were produced, however none have been discovered to this day,
inflation theory accounts for this by claiming that inflation occurs after these
monoploes were produced, and in effect they are destroyed by expansion
(image courtesy: Heikka Valja).
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1.2 Observations

Our understanding of the universe is dependent on the observations taken,
the accuracy of the models is judged within their relation to experimental
observations from satellites such as COBE [3] and Planck [1] , the closer the
model is to the observed values the better it is at modelling the universe.
These satellites allow the observation of:

• Expansion rate H(t), known as the Hubble parameter this measures the
rate at which the universe is expanding, Hubble expansion is caused by
repulsive gravity caused by a false vacuum, see [4] for details.

• Temperature T (t), at large scales the temperature of the universe may
seem uniform, however with increased accuracy it is possible to see in-
finitesimally small fluctuations in CMB temperature. In an expanding
universe temperature is inversely proportional to the scale factor, see
notation section for details.

• Fluctuations in the cosmic microwave background, the CMB is the ra-
diation remaining after the big bang, temperature of the CMB is uni-
formly distributed, yet infinitesimal fluctuations in temperature can
yield vast amounts of information regarding the composition, growth
and origin of the universe. Fluctuations in the CMB are a result of the
primordial spectrum, which is made up of scalar and tensor perturba-
tions as will be examined later.

The scientific community are constantly trying to improve their measuring
techniques to gain greater detail of observations, the more accurate the mea-
surements the smaller the range of possible theories needed to be considered,
due to the tight constraints placed upon them.

1.3 Notation

Other parameters within the inflationary model are as follows:

• Scale Factor a(t) is a function of time, this is the relative expansion
rate of the universe, or the proper distance of two objects changing over
time due to the expanding universe, as the expansion of the universe is
exponential so is the scale factor.

• Density of the Universe ρ(t) is a function of time, taking both matter
and energy density of the universe into account. In general the energy
density is approximately equal to the rest mass density, due to the
speed of light being set equal to one as explained below.
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• Pressure p(t) is a function of time, the pressure of the universe may be
positive or negative, positive pressures induce gravitational attraction
which reduces the expansion rate of the universe, while negative pres-
sures cause gravitational repulsion leading to an increase in expansion.

• The idea that the universe is homogeneous and isotropic comes from
the cosmological principle, the basis for the big bang theory, it states
that the universe should look the same for all observers.

As is the standard convention in cosmology, constants such as the speed of
light c are set to be equal to one.

These parameters give the properties of the materials that make up the
universe, which in turn govern its expansion, hence can be used to form
analysing conditions on the slow-roll equations.

2 Cosmology

Theories can be tested by comparing their predictions to the actual state of
the universe known from observations. Cosmology aims to better understand
the origin and expansion of the universe through pragmatic use of various
hypotheses and models, the closer the predictions of the observations the
closer a model is to being complete. By being able to trace a path for the
universe, it is hoped that its future couse can be predicted and ultimate
destiny of it.

As the universe is expanding the first law of thermodynamics is applicable,
from [4],

0 = dU + pdV, (1)

where U is the energy of matter and radiation of the universe, p is the
pressure, and V is the volume. As the speed of light has been set equal to
one the mass density is equal to that of the energy density which is,

ρ =
U

V
, (2)

hence by differentiation,

dρ =
dU

V
− UdV

V 2
,

=
dV

V

(
dU

dV
− U

V

)
, (3)
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and using (1) and (2) in (3) gives,

dρ = −(p+ ρ)
dV

V
. (4)

Setting the volume of the universe to be the cube of the scale factor,

V = a3, (5)

then,
dV = 3a2da, (6)

subbing back into (4),

dρ = −3(p+ ρ)
da

a
. (7)

Using dp = (dp/dt)dt,
dρ

dt
= −3(p+ ρ)

da

dt

1

a
, (8)

hence,

ρ̇ = −3(p+ ρ)
ȧ

a
. (9)

According to [4] this is one of the Friedmann equations, another being stated
as,

ä = −4π

3
G(ρ+ 3p)a, (10)

Where G is the gravitational constant, from this equation it can be seen
that a positive pressure will cause ä to be negative and thus causing the
deceleration of the universe, so for the universe to be accelerating negative
pressures will be required. This naturally leads to a scalar field φ to be chosen
as our inflaton, as they can quite easily construct negative pressures, and in
effect the repulsion force needed.

For the radiation of the universe set p = ρ/3 (recall c = 1), as a result
(9) becomes,

ρ̇ = −4ρ
ȧ

a
, (11)

rearranging,
ρ̇

ρ
= −4

ȧ

a
, (12)

hence by integration,

ln ρ = ln a−4 + b, (13)
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where b is a constant, finally taking the exponential leaves

ρ = Aa−4. (14)

This can be rationalised; as the energy density for the radiation is propor-
tional to temperature as well as volume, thus ρ ∝ Ta−3, however as the
universe cools due to expansion, temperature must be inversely proportional
to the expansion rate and as a result T ∝ a−1, leaving density proportional
to a−4.

Expansion can also be related to density using the equation,

3H2 = 8πGρ, (15)

which is given in [5]. Using a given function for density, it is possible to
relate the Hubble parameter to the potential of the scale factor, in effect
formulating a chief equation in the field of inflation.

2.1 Inflation

As first postulated by Guth in [6] the main restriction placed on inflation
to occur in physical space, is that a state can exists with negative pressure.
Consider p = −ρ in (9),

ρ̇ = −3
ȧ

a
(ρ− ρ), (16)

this leaves,
ρ̇ = 0, (17)

as with most inflationary models ρ is approximately constant which leads to
exponential expansion of the scale factor. Setting ρ = ρ0 in the equation,

3H2 = 8πGρ, (18)

implies that H is a constant and therefore,

a(t) ∝ exp(Ht). (19)

This becomes the first key equation for studying cosmological inflation.
From [2] density and pressure can be given as functions of the parameters

scalar field and its potential; φ(t) and V (φ) respectively,

ρ =
1

2
φ̇2 + V (φ), (20)

similarly for pressure,

p =
1

2
φ̇2 − V (φ), (21)
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the φ̇2/2 term in the equations can be viewed as kinetic energy, while the Vφ
term is the potential energy. From here sub (20) into (18) to yield,

3H2 = 8πG

(
1

2
φ̇2 + V (φ)

)
, (22)

as given in [5]. The next key equation is derived by first differentiating
equation (20) in terms of t,

ρ̇ = φ̇φ̈+
dV

dφ
φ̇. (23)

Rearranging (16) gives,
aρ̇+ 3ȧ(ρ+ p) = 0, (24)

substituting (20), (21) and (23) into equation (24) results in,

a

(
φ̇φ̈+

dV

dφ
φ̇

)
+3ȧ

(
1

2
φ̇2 + V +

1

2
φ̇2 − V

)
= 0, (25)

working through the bracket,

aφ̇

(
φ̈+

dV

dφ

)
+3ȧφ̇2 = 0, (26)

dividing by aφ̇,

φ̈+
dV

dφ
+ 3

ȧ

a
φ̇ = 0, (27)

substituting H = ȧ/a leaves the equation of motion given in [7],

φ̈+ 3Hφ̇+
dV

dφ
= 0. (28)

This will be the basis for the first slow-roll approximation, as will be shown
in the next section.

3 Slow-Roll Approximation

The slow-roll model suggests that inflation was caused by a scalar field rolling
down a potential energy hill, as seen in figure 2. When the gradient is small,
the field rolls very slowly in comparison to the expansion of the universe and
inflation occurs. Yet if the gradient of the hill is large, the field rolls more

9



quickly causing inflation to end and the universe to reheat. When φ̈ is small
equation (28) can be approximated as the first slow-roll approximation,

3Hφ̇+
dV

dφ
= 0, (29)

and 3H2 = 8πGρ becomes the second slow-roll approximation

3H2 = 8πGV. (30)

Now φ is the inflaton field and V is it’s potential.

Figure 2: Scalar field φ rolling down a potential energy hill, the gradient
of the hill must be approximately flat so that the inflaton rolls down very
slowly, at the bottom of the image inflation ends and reheating occurs due
to the steep gradient.

3.1 Dynamical slow-roll parameters

The dynamical slow-roll parameters are defined in this form in [8],

εx =
ẋ

Hx
. (31)
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Therefore taking x to equal to H,

εH =
Ḣ

H2
, (32)

and x equal to φ̇,

εφ̇ =
φ̈

Hφ̇
. (33)

As εH and εφ̇ are small then εv and ηv the slope and curvature of the potential
respectively must also be small. Therefore inflation occurs when the slow-
roll conditions are satisfied, ie when εv < 1, with prolonged inflation when
ηv < 1.

As shown in [7] it is often convenient for the parameters of inflation to
be written as,

εv =
1

16πG

(
1

V

dV

dφ

)2

, (34)

and,

ηv =
1

8πG

1

V

d2V

dφ2
. (35)

Using slow-roll approximations (see section A.1),

εH = −εv. (36)

Working out εφ̇ similarly (see section A.2),

εφ̇ = εv − ηv. (37)

Later it will be required that Ḣ/H2 is related to εv, this is done by simply
combining (32) and (36) thus,

Ḣ

H2
= −εv. (38)

3.2 End of inflation

The period following inflation is known as reheating as described in [9], after
supercooled expansion(inflation) ends the temperature of the universe begins
to rise back to the pre-inflation value. This is due to the energy density of
the inflaton returning to conventional matter as prescribed by the standard
big bang theory given by [2], the inflaton field itself breaks down into elec-
tromagnetic radiation and thus begins the radiation dominated phase of the
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universe. However due to quantum fluctuations within the scalar field, the
field will not roll at a constant rate down the energy hill, but will speed up
and slow down at certain sections as claimed by [4], therefore inflation will
not end in all locations at the same time, when it finishes is in fact dependent
on position.

As the rate of expansion of the universe is accelerating, then the second
derivative of the scale factor must greater than zero, as a result conditions
can be placed on the inflationary parameters by deriving ä in terms of εv.
Starting with,

ȧ = aH, (39)

and differentiating in t gives,

ä = ȧH + aḢ. (40)

Using relations (38) and (39),

ä = aH2 − aH2εv,

= aH2(1− εv). (41)

As ä > 0 then εv < 1, as shown by [10] inflation ends when slow-roll is no
longer valid this occurs when εv = 1. As inflation is present when the slope
of the potential is less than one, constraints can be formed on the expansion
rate and as a result the scale factor a.

4 e-folds

As stated in [4] the universe contains around 1090 particles, neglecting the
possibility of expansion would mean that these 1090 particles would have
needed to be present at the birth of the universe. This itself seems quite hard
to believe; that the entire observable universe sprang into life all at once, and
as a result would be difficult to explain. A much simpler account of all these
particles is that the universe is modelled on an exponential, the exponential
expansion of inflation simplifies the origin of theses 1090 particles to just
the 50 − 60 e-foldings required to produce them, note that 54 e-foldings is
sufficient to satisfy all constraints. Using this exponential term then in effect
drastically reduces the task of explaining all the matter of the universe, and
as a result seems far more viable.

To measure inflation use N(t∗) the number of e-folds, which is the loga-
rithm of the amount of expansion, N is measured from t = t∗ the beginning
of the inflationary era to the end t = tf . Data from Planck 2013 [7] suggests
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that 50 < N < 60, so calculations will be concentrated on this range.From
[2] the formula for N is,

N(t∗) = ln

(
a(tf )

a(t∗)

)
. (42)

following on express N as a function of φ∗ = φ(t∗).

N(t∗) =

∫ a(tf )

a(t∗)

da

a
=

∫ tf

t∗

1

a

da

dt
dt =

∫ tf

t∗

Hdt,

=

∫ φf

φ∗

H
dt

dφ
dφ =

∫ φf

φ∗

H
dφ

φ̇
. (43)

Where φ∗ and φf mark the initial and final value of the inflaton during
inflation as seen in [11]. Finally using equations (29) and (30) to derive the
formula below in accordance with [7],

N(t∗) = −
∫ φf

φ∗

3H2dφ

Vφ
= −8πG

∫ φf

φ∗

V

Vφ
dφ. (44)

From this general case continue to use different values of the potential V to
derive formulas for εv in N . Later this will help to relate both tensor modes
and spectral index to N , allowing a graph of the models to be plotted and
their usefulness assessed in comparison to observed data.

4.1 Examples

For the massive scalar field; V (φ) = m2φ2/2 implies V ′(φ) = m2φ where m
is the particle mass, when these are subbed into (34) it results in,

εv(φ) =
1

4πGφ2
. (45)

Now also work out N(φ∗) for this value of V from (44),

N(φ∗) = −8πG

∫ φf

φ∗

m2φ2

2m2φ
dφ,

= −4πG

∫ φf

φ∗

φdφ,

= −2πG(φ2
f − φ2

∗). (46)
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From equation (45) take φ2 = 1/4πGεv substituting this into (46) gives,

N(φ∗) = −2πG

(
1

4πGεf
− 1

4πGε∗

)
=

1

2ε∗
− 1

2εf
. (47)

For the purpose of simplifying notation take ε∗ = εv(t∗) and εf = εv(tf ). In
this case εf occurs at the end of inflation and is equal to 1, therefore,

N(φ∗) =
1

2ε∗
− 1

2
. (48)

As the model must be parametrised in terms of N , rearrange to find ε∗ as a
function of N(φ∗),

ε∗ =
1

2N(φ∗) + 1
. (49)

Similarly for the case of a self-interacting scalar field take V (φ) = λφ4/4 and
thus V ′(φ) = λφ3 where λ is known as the Higgs self-coupling term, later
stringent limits will be placed on λ, but for now calculate ε∗ by the same
method,

ε∗ =
1

N(φ∗) + 1
. (50)

5 Fluctuations in the cosmic microwave back-

ground

The photons which the cosmic microwave background is made up of are
moving throughout the universe as it expands and cools, from [4] it is believed
that they have always been moving in straight lines, so they can be traced
back to form an image of what the universe looked like 400,000 years after
the big bang when it’s radiation was emitted . These photons were originally
closely connected to matter in the early hot dense universe, but were released
as the temperature began to fall, before this the universe was believed to have
been uniform in temperature due to the observed uniformity of its radiation.
Both the temperature and polarization give us vast amounts of information
of the physical composition of the universe.

As stated in [6] the universe was thought to have initially been made up
of massless particles forming a gas with thermal equilibrium. Observing the
CMB seems to corroborate that it is homogeneous and isotropic to better
than 1% accuracy, implying that it came from a simpler time, when the
universe was not cluttered by planets and stars, the theory accounts for this
uniformity by claiming that the thermal-equilibrium found at microscopic
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scales was expanded by inflation to cover the whole universe. Due to the
simplicity of this very early universe, predictions of the CMB properties are
highly accurate. This gives a base which to compare the theoretical models
with experimental data and the probability of future CMB polarization, to
determine how applicable the inflationary model is. Fluctuations within the
CMB are in part made up of scalar and tensor perturbations which can be
described using a power spectrum.

The presence of such fluctuations have often been a source of contention
within inflation theory, as inflation homogenises the universe completely re-
moving all differences. However discrepancies in the density of the universe
are thought to have been the result of quantum fluctuations in the inflaton
field itself after the end of inflation, as explained in [4].
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Figure 3: Cosmic microwave background of the night sky taken by satellite
(WMAP Science Team / NASA [12]).
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5.1 Scalar and tensor perturbations

At large scales it may seem that the CMB is uniform, however with increased
accuracy fluctuations in temperature throughout are visible, this is analogous
to viewing the earth’s surface as covered in water at a macroscopic level, but
land mass being visible at a microscopic one.

Scalar modes are perturbations in the energy density of the CMB and
are the most common of all fluctuations. Unlike any other fluctuations scalar
modes use gravitational instability to form structure in the universe. Use the
following formula from [8] to describe scalar perturbations,

Ps =
1

4π2

H4

φ̇2
. (51)

Tensor modes are plane gravitational wave perturbations that stretch out
space in 4 dimensions, these gravity waves distort space in the perturbation
plane. Early tensor fluctuations came in the form of gravitational waves
which added to both the temperature and polarization of the CMB. Tensor
perturbations are described in [8] as follows,

Pt =
16GH2

π
. (52)

5.2 Density fluctuation

Due to inflation there are fluctuations in the density of the very early uni-
verse. By observing the cosmic microwave background numerical data on
the fluctuations which outline the structure of the universe is gained. As
the fluctuations have been caused by inflation they can be used to place re-
strictions on the inflationary models. At large scales the density fluctuations
of the CMB seem uniform, however as observations became more detailed
dipole anisotropy can be noticed, the variation of temperature over angle.
Later still, in 1992, the COBE [12] satellite detected the first cosmological
temperature fluctuations in the CMB. It may seem that many models are
a good fit at large scales, yet the more accurate observations become the
less models hold up to the scrutiny of observed data, this allows a large por-
tion of potential inflationary candidates to be discarded, leaving a few strong
candidates remaining.

5.3 Tensor-scalar ratio

The tensor-scalar ratio r is the ratio of tensor to scalar amplitudes, where
tensor fluctuations are related to gravity waves, and scalar fluctuations arise
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from the density fluctuations, these are the two components that make up
the primordial spectrum. Theoretically the tensor-scalar ratio is believed to
be between 0 and 0.3, the latest observed data now confirms this. From [7]
the tensor-scalar ratio is given as (see section A.3),

r =
Pt
Ps
,

= −16εH . (53)

Now by (36) write r in terms of εv ,

r = 16εv. (54)

5.4 Spectral index ns

As the spectral index can be used to measure the dependence of the radiative
flux density on frequency of any given source, the measure of spectral index
often indicates the type of source that is being analysed, and it’s associated
properties According to [4] ns will in general deviate from 1 by a value of
order 0.1. From [5],

Ps = Akns−1, (55)

where (see section A.4),
ns = 1 + 2ηv − 6εv. (56)

Now that the equations for tensor-scalar ratio and the spectral index have
been parametrised plot r over ns, to asses the validity of the model in com-
parison to observed information.

6 The parameters of inflation

The finals aim is to write the tensor-scalar ratio r and the spectral index ns
in terms of N the number of e-folds. First derive equations for εv and ηv in
terms of N so that they can substituted back into the original equations for
r and ns. Of course the values of r and ns differ depending on what value V
is taken to be equal to, hence here are two examples.

6.1 More examples

This time examining the self-interacting scalar field in more detail, V =
λφ4/4 derive V ′ = λφ3 and V ′′ = 3λφ2.

N(φ∗) =
1

ε∗
− 1. (57)
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From (35),

ηv =
3

2πGφ2
=

3

2
ε∗, (58)

rearranging and using (57),

η∗ =
3

2(N∗ + 1)
. (59)

As before,
r = 16εv. (60)

Equation (57) shows that εv = 1/(N + 1) and so,

r =
16

1 +N
. (61)

For ns in terms of N start with,

ns = 1 + 2ηv − 6εv, (62)

substitute in (57) and (59),

ns − 1 =
3

1 +N
− 6

1 +N

= − 3

1 +N
. (63)

Similarly for the massive scalar field, V = m2φ2/2 rearranging (48) gives,

ε∗ =
1

1 + 2N
. (64)

From (35),

ηv =
1

4πGφ2
= εv, (65)

thus,

η∗ =
1

1 + 2N
. (66)

By a similar procedure,

r =
16

1 + 2N
, (67)

and,

ns − 1 = − 4

1 + 2N
. (68)

Later this equation will be used examine the model, see plots.

19



7 New Higgs Inflation

Though previously the Standard Model Higgs boson has been used as the
principle candidate for inflation, [13] states that no slow-rolling inflation can
occur for the Higgs boson when it is minimally coupled with gravity. To
remedy this a non-minimal coupling of the Einstein tensor with the Higgs
boson must be made, so that inflation may occur without any negative con-
sequences. The approximation for the New Higgs model is derived from a
Lagrangian, the derivation of the Lagrangian itself can be found in [11], but
takes the final form,

L =

{
R

16πG
− 1

2

(
gµν − w2Gµν

)
φµφν − V (φ)

}√
|g|. (69)

Where
√
|g| = a3, the metric tensor gµν has components,

gtt = −1, (70)

and,
gxx = gyy = gzz = a−2, (71)

the Einstein tensor Gµν has components,

Gtt = 3H2, (72)

and,
Gxx = Gyy = Gzz = −2a−2Ḣ − a−2H2. (73)

Using summation convention on,

∂

∂µ

(
∂L

∂φµ

)
−∂L
∂φ

= 0, (74)

results in,

∂

∂t

(
∂L

∂φt

)
+
∂

∂x

(
∂L

∂φx

)
+
∂

∂y

(
∂L

∂φy

)
+
∂

∂z

(
∂L

∂φz

)
−∂L
∂φ

= 0. (75)

To formulate the approximation neglect spatial terms and use,

∂

∂t

(
∂L

∂φt

)
−∂L
∂φ

= 0, (76)

from the Lagrangian, ∂L/∂φt can be written as,

∂L

∂φt
= −(gtt − w2Gtt)a3φ̇. (77)
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Inserting gtt and Gtt gives,

∂L

∂φt
= a3φ̇(1 + 3w2H2). (78)

Differentiating the Lagrangian in terms of φ equates as,

∂L

∂φ
= −a3Vφ, (79)

now using equations (78) and (79) in (76) results in,

[a3φ̇(1 + 3w2H2)]′ = −a3Vφ. (80)

This is the basis for one of the slow-roll approximations, and therefore all
the equations previously taken for granted can be derived from this point.

7.1 Deriving the slow-roll equations

Differentiating the left hand side of equation (80) in terms of t gives,

3a2ȧφ̇(1 + 3w2H2) + a3φ̈(1 + 3w2H2) + 6w2HḢa3φ̇ = −a3Vφ, (81)

dividing through by a3,

3(
ȧ

a
)φ̇(1 + 3w2H2) + φ̈(1 + 3w2H2) + 6w2HḢφ̇+ Vφ = 0, (82)

expanding the brackets and using H = ȧ/a,

3Hφ̇+ φ̈+ 9w2H3φ̇+ 6w2HḢφ̇+ 3w2H2φ̈+ Vφ = 0, (83)

finally,
(φ̈+ 3Hφ̇)[1 + 3w2H2] + 6w2HḢφ̇+ Vφ = 0. (84)

Approximating the slow-roll equation by eliminating the small terms; φ̈ and
Ḣφ̇ leaves,

3Hφ̇[1 + 3w2H2] = −Vφ. (85)

Taking w = 0 will in effect return the slow-roll approximation for the equation
of motion, as previously stated.
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7.2 Spatial terms and scalar perturbations

When including the spatial terms of (75) the following identities are required,

∂L

∂φx
= −(gxx − w2Gxx)a3φx,

= −aφx − 2aw2Ḣφx − aw2H2φx. (86)

Differentiating in terms of x,

∂

∂x

(
∂L

∂φx

)
= −aφxx − 2aw2Ḣφxx − aw2H2φxx

= −a(1 + 2w2Ḣ + w2H2)φxx. (87)

Similarly for the y and z components simply replace x with y and z respec-
tively, subbing everything back into (75),

[a3φ̇(1 + 3w2H2)]′ − a(1 + 2w2Ḣ + w2H2)(φxx + φyy + φzz) = −a3Vφ, (88)

dividing by a3 and using φxx + φyy + φzz = ∇2φ leaves,

a−3[a3φ̇(1 + 3w2H2)]′ − a−2(1 + 2w2Ḣ + w2H2)∇2φ+ Vφ = 0. (89)

Compare this equation to its value when w = 0, as is the case in the original
slow-roll approximations,

a−3[a3φ̇]′ − a−2∇2φ+ Vφ = 0. (90)

Overall there is a factor of 1 + 3w2H2 missing, this implies that for scalar
perturbations,

Pw =
Pw=0

1 + 3w2H2
. (91)

7.3 Heat equation

To produce the heat equation take the density of the Lagrangian as shown
in [11],

ρ = −1

2
(gµν − 3w2Gµν)φµφν + V. (92)

Taking µ and ν equal to t,

ρ = −1

2
(gtt − 3w2Gtt)φ̇2 + V, (93)
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and subbing in gtt and Gtt,

ρ =
1

2
φ̇2(1 + 9w2H2) + V. (94)

As from (15),
3H2 = 8πGρ, (95)

now replace ρ with (94),

3H2 = 8πG

(
1

2
φ̇2(1 + 9w2H2) + V

)
. (96)

As φ̇ is small, neglect φ̇2 leaving the first slow-roll approximation,

3H2 = 8πGV. (97)

As it was found that the original Higgs model failed for both the λφ4 and
the m2φ2/2 cases a new model for inflation must be formulated. From [11] λ
is believed to be in the range 0.11 < λ < 0.27 as discovered by direct Higgs
boson searches, this means that λ is too large to fit within the parameters of
observed inflation, even when taking a non-minimal coupling λ is lower than
the minimal bound as shown by [11], therefore this model cannot be counted.
For the massive scalar field it was found that φ2 agreed with expected results
at large scales, but not at higher levels of accuracy. Now as a result the
gravitational parameter w must be included in the model at a value not
equal to zero, so as to correct for these anomalies.

One of the most promising candidates for inflation is the Standard Model
Higgs Boson. Whereas before slow-roll inflation used a specific form of the
initial equations, now a more general case will be taken using the explicit
form of the slow-roll approximations by introducing gravity w, as previously
stated.

To construct Higgs Inflation a new set of slow-roll equations are required,
as previously formulated,

3H2 = 8πGV, (98)

and,
3Hφ̇[1 + 3w2H2] = −Vφ. (99)

Take,

εH =
Ḣ

H2
= − εv

1 +Q
. (100)

Where,
Q = 8πGw2V, (101)
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and (see section B.1),

εφ̇ =
(1 + 3Q)εv
(1 +Q)2

− ηv
1 +Q

. (102)

Now substituting these equations in the tensor-scalar ratio and spectral in-
dex formula generates them as functions of εv, ηv and Q only as desired. As
satellite data for both tensor-scalar ratio and spectral index is readily avail-
able, then their values are most easily constrained, therefore it is best to aim
for a plot of these two variables for which to judge the φ2 model.

7.4 Tensor-scalar ratio

For the Higgs Inflation model the previous formula for scalar perturbations
has changed due to the generalised slow-roll approximations. Using (91)
then,

Ps =
H4

4π2φ̇2(1 +Q)
. (103)

Though tensor perturbations remain the same, now calculate the new tensor-
scalar ratio (see section B.2).

r =
Pt
Ps

=
16εv

(1 +Q)
. (104)

7.5 Spectral index

Now deriving the spectral index in terms of εH and εφ̇,

ns − 1 = 4εH − 2εφ̇ − ε1+Q. (105)

Where,

ε1+Q =
2Q

1 +Q
εH . (106)

Thus (see section B.3),

ns − 1 =
2ηv

1 +Q
− (8Q+ 6)εv

(1 +Q)2
, (107)

The aim remains to be able to write r and ns in terms of N so that they can
be plotted simultaneously, but to do this first εv, ηv and Q must be derived
as functions of N .
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7.6 Number of e-folds

It is now possible to derive a new formula for N in terms of φ using the new
slow-roll approximations. As before,

N(φ∗) =

∫ φf

φ∗

H
dφ

φ̇
, (108)

from (151) use,

φ̇ =
−Vφ

3H(1 + 3w2H2)
, (109)

thus (108) becomes,

N(φ∗) = −
∫ φf

φ∗

3H2(1 + 3w2H2)dφ

Vφ
, (110)

now using H2 = 8πGV/3 it is possible to eliminate H.

N(φ∗) = −
∫ φf

φ∗

8πGV (1 +Q)dφ

Vφ
. (111)

7.7 Massive scalar field

Setting V = m2φ2/2 and Vφ = m2φ work out N(φ∗) for this model (see
section B.4).

N(φ∗) = − 1

2(1 +Q)
− w2m2

4(1 +Q)2
+

1

2ε∗
+
w2m2

4ε2∗
, (112)

Rearranging and using the quadratic equation enables ε∗ to be written in
terms of N,

ε2∗N(φ∗) = − ε2∗
2(1 +Q)

− ε2∗w
2m2

4(1 +Q)2
+
ε∗
2

+
w2m2

4
. (113)

As N ∼ 50− 60 neglect terms less than one, primarily the first two,

ε2∗N −
ε∗
2
− w2m2

4
= 0, (114)

using the quadratic formula,

ε∗ =

1
2
±
√

1
4

+ w2m2N

2N
, (115)

ε∗ > 0 therefore only take the plus sign of the formula so not to generate a
negative ε∗.

ε∗ =

1
2

+
√

1
4

+ w2m2N

2N
. (116)
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7.8 Spectral index in terms of N

For spectral index to be a function of N first derive Q in terms of N to
proceed.

Q∗ = 4πGw2m2φ2
∗. (117)

Equation (45) implies φ2 = 1/4πGεv therefore,

Q∗ =
w2m2

ε∗
. (118)

Subbing in (116) to eliminate ε∗,

Q∗ =
2w2m2N

1
2

+
√

1
4

+ w2m2N
. (119)

Using ε∗ = η∗ in (107),

ns − 1 =
−8ε∗Q− 6ε∗ + 2ε∗(1 +Q)

(1 +Q)2
,

=
−6ε∗Q− 4ε∗

(1 +Q)2
. (120)

Substitute (116) and (119) into (120) to write ns − 1 in terms of N .

ns − 1 =
−6w2m2N − 1− 2

√
1
4

+ w2m2N

N

(
1 + 2w2m2N

1
2
+
√

1
4
+w2m2N

)2 . (121)

Consider two cases wm = 0 and wm >> 1, firstly wm = 0 results in,

ns − 1 = − 2

N
. (122)

If on the other hand wm is very large the equation simplifies to,

ns − 1− 3

2N
. (123)

7.9 Tensor-scalar ratio in terms of N

Similarly subbing in (116) and (119) into (104) allows r in terms of N .

r =
4 + 8

√
1
4

+ w2m2N

N

(
1 + 2w2m2N

1
2
±
√

1
4
+w2m2N

) , (124)
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once again setting wm = 0,

r =
8

N
. (125)

However when wm is large,

r =
4

N
. (126)

Now that the extremal values of wm = 0 and wm >> 1 have been calculated
for tensor-scalar ratio and spectral index, it makes sense to use computing
software such as Matlab to calculate intermediate values and generate a plot.

7.10 Plotting r and ns

As both r and ns are in terms of N it is possible to plot the results. As
the accepted value for N is believed to be between 50 and 60, both of these
will be plotted with wm increasing from zero to infinity. From here proceed
to compare the model to the observed data in the form of the CL plot in
figure 4 to asses its validity, CL plot and statistical constraints taken from
[14] and [12]. As explained in [14] the data taken from WMAP (Wilkinson
Microwave Anisotropy Probe) provides strict limits which are used to con-
strain inflationary models. These limits then restrict the properties of such
cosmological phenomena such as primordial fluctuations and gravitational
waves, furthermore values of tensor-scalar ratio and spectral index have been
limited in [14], so that firm criteria can be set for the models, and in effect
can be approved or discredited, .
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Figure 4: This plot shows the constraints placed on the model, where Planck
TT+lowP denotes data from the combination of the TT likelihood at mul-
tipoles and a low-l temperature likelihood based on the CMB map, BKP is
the constraint placed by the Bicep2/Keck/Planck collaborations 2015 and
lensing+ext is the lensing potential power spectrum [15] plus its extensions
such as BAO(baryon acoustic oscillation), image taken from [10].

Overlaying the CL plot of figure 4 onto the experimental data generates
figure 5, which is in effect the best tool available for assessing the model and
its acceptance of the constraints placed upon it.
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Figure 5: Plot of r vs ns. The set of approximations form a ”C” shape with
wm equal to zero at the upper edge of the ”C” and wm increasing towards
infinity at the lower edge.

From the graph the case in which wm is set to infinity seems to fall within
the ”Planck TT+lowP” and ”+lensing+ext” boundaries, yet it just seems to
lie outside of the final constraint. Though the estimate where wm = 0 still
falls within an accepted range it only satisfies the least rigorous constraint,
it seems most models with a smaller value for wm lie outside the range of
possible values however in all cases the BKP mode disfavours the φ2 model
as described in [10]. It may be a good idea to further restrict the range in
which N operates for wm large, as points with N = 50 lie just outside the
”+lensing+ext” boundary, plus that 54 e-folds are the minimum required
to produce the mass of the universe, so anything lower will be redundant.
Overall though this plot does not strongly support the belief in the massive
scalar field being the elusive inflaton, due to failing to achieve the most
rigorous constraints.
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8 Planck data and other models

As previously stated due to the fact that very few inflationary models have
been discarded, there is currently a libraries worth of candidates to consider
at the present time. There are several plots available showing how the most
promising models hold up to observed data in the form of confidence intervals
produced by the various satellites, such as figure 6. Using these plots it is
possible to see how the new Higgs model fares compared to the others, and
perhaps determine a frontrunner within the field of inflation, even if it may
not be possible to eliminate any more models.

Figure 6: Plot of various inflationary models shown with expected value
boundaries taken from given satellites, where WP is the Wilkinson Microwave
Anisotropy Probe and highL is the Planck high-l likelihood taken from [7].

Of the different models shown on the plot, the majority involve various
orders of the inflaton field φ proportional to the potential V , as in the case
studied with φ being second order. These power-law potentials are within
the accepted range when the power is less than or equal to 2, once again the
number of e-folds N is believed to be between 50 and 60. What is left are
known as hilltop models as inflation occurs at the maximum value of their
potential, one example being natural inflation as described in [7].

Now that the method for analysing these models is set out, what remains
as further work is to repeat the procedure for other values of the potential V
with different estimates for parameters like w. The plots of the CL regions
will help to restrict the amount of models needing to be to analysed, making
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what seems a gargantuan task somewhat less difficult. As there is no one
single inflation theory, but rather a set of theorems this project only shows
a small glimpse of the inflationary paradigm, naturally it makes sense now
to further interpret other inflation theories such as the multi-verse theory to
see where they lead.

9 Conclusion

Through examination of the massive scalar field φ2 model it may seem that
it presents a reasonable case for being the chief inflationary model due to its
close observance of most of the satellite constraints, as can be seen on the
graph, as well as remaining within the expected bounds for its parameters.
However due to the vast amount of models still not discredited, with many
of these fitting into the observed limits as strongly as φ2, (i.e R2 inflation)
it is not possible to predict a front runner in the inflation race. The best
course of action remaining is to further study models, during the course
of which technology will have hopefully increased the accuracy of satellite
observations, so to better extrapolate data from the infinitesimal fluctuations
in the CMB. In time it is hoped that a single definitive model may be put
forward as the sole inflation theory, yet the idea of inflation itself is currently
bound by the limits of technology to reach this point, all that is left to do in
the meantime is to analyse any models available and hope to minimise what
seems to be a galleries worth of possibilities.

A Slow-roll approximation

A.1 relating εH to εv

It is possible to show that εH is equal to −εV as follows, from (32)

εH =
Ḣ

H2
, (127)

using (30) and

Ḣ =
4πGVφφ̇

3H
, (128)

in (32) leaves

εH =
1

2H

Vφ
V
φ̇, (129)
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replacing φ̇ with −Vφ/3H gives,

εH = −
V 2
φ

6H2V
, (130)

and again using (30),

εH = − 1

16πG

V 2
φ

V 2
,

= −εv, (131)

from (34).

A.2 relating εφ̇ to εv and ηv

Writing εφ̇ as a function of εv and ηv, rearranging (29),

φ̇ = − Vφ
3H

, (132)

differentiating with respect to t, and using (128) and (34) gives,

φ̈ =
−3HVφφφ̇+ 3VφḢ

9H2
,

=
−3HVφφφ̇+ 3

2
H

V 2
φ

V
φ̇

24πGV
, (133)

dividing through by H and φ̇,

φ̈

Hφ̇
= − Vφφ

8πGV
+

V 2
φ

16πGV 2
. (134)

Once again using (34) and (35) gives,

εφ̇ = εv − ηv. (135)

A.3 r in terms of εv

The ratio between tensor and scalar perturbations is labelled r and given as,

r =
Pt
Ps
, (136)
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subbing in equations (51) and (52) for Ps and Pt gives,

r =
16GH2

π

4π2φ̇2

H4
,

=
64πGφ̇2

H2
. (137)

Using (29) and (30) to eliminate φ̇ and H,

r =
1

πG

V 2
φ

V 2
, (138)

thus from (131),
r = −16εH . (139)

A.4 ns in terms of εv and ηv

From (55),
Ps = Akns−1. (140)

Where k = 1,−1, 0 for a closed, open or flat universe respectively from [6],
taking the natural logarithm and differentiating in ln k results in,

ns = 1 +
d lnPs
d ln k

, (141)

at t = tk it follows k = a(tk)H(tk) and thus ln k = ln a+ lnH, where,

d lnPs
d ln k

=
d lnPs/dtk
d ln k/dtk

, (142)

changing variables by differentiating ln k in terms of ln tk and then dividing
by H leaves,

1

H

d ln k

d ln tk
=

ȧ
a

+ Ḣ
H

H
, (143)

using H = ȧ/a and (32),

1

H

d ln k

d ln tk
= 1 +

Ḣ

H2
,

= 1 + εH , (144)
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similarly from (51) and using (32) and (33),

1

H

d lnPs
dtk

=
1

H

d

dtk
(lnH4 − ln φ̇2 + const),

= 4
Ḣ

H2
− 2

φ̈

Hφ̇
= 4εH − 2εφ̇. (145)

Combining these two results and using the fact that εH << 1,

ns = 1 +
4εH − 2εφ̇

1 + εH
,

= 1 + 4εH − 2εφ̇. (146)

Substituting (36) and (37) gives ns in terms of εv and ηv,

ns = 1− 4εv − 2(εv − ηv),
= 1 + 2ηv − 6εv. (147)

B Higgs Inflation

B.1 Dynamical slow-roll parameters

Following the same steps as before now generate a general solution for εv.

εH = − 1

2H

Vφ
V

Vφ
3H(1 + 3w2H2)

. (148)

Setting 8πGw2V = Q and using (30) the equation becomes,

εH = − 1

16πG

V 2
φ

V 2

1

1 +Q
. (149)

Using (34),

εH = − εv
1 +Q

, (150)

Working out εφ̇ similarly, from (99),

φ̇ = − Vφ
3H(1 + 3w2H2)

, (151)

differentiating with respect to t,

φ̈ =
3H(1 + 3w2H2)(−Vφφφ̇) + Vφ(3Ḣ + 27w2ḢH2)

9H2(1 + 3w2H2)2
, (152)
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dividing through by H and φ̇,

φ̈

Hφ̇
= − Vφφ

8πGV (1 +Q)
+

V 2
φ

16πGV 2(1 +Q)2
+

3w2V 2
φ

2V (1 +Q)2
. (153)

Once again using (34) and (35) leaves,

εφ̇ =
εv

(1 +Q)2
− ηv

1 +Q
+

3Qεv
(1 +Q)2

,

=
(1 + 3Q)εv
(1 +Q)2

− ηv
1 +Q

. (154)

B.2 Tensor-scalar ratio

Inserting (52) and (103) into r = Pt/Ps gives,

r =
64πGφ̇2(1 +Q)

H2
. (155)

Using (98) to replace H,

r =
192πGφ̇2(1 +Q)

8πGV
,

=
24φ̇2(1 +Q)

V
, (156)

substituting in (99) for φ̇ followed by (98) and (34),

r =
24V 2

φ (1 +Q)

9H2V (1 +Q)2
,

=
1

πG

(
Vφ
V

)2
1

(1 +Q)
,

=
16εv

(1 +Q)
. (157)

B.3 Spectral index

From (141),

ns = 1 +
d lnPs
d ln k

,

= 1 +
1

H

d lnPs
dt

. (158)
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Inserting (103) for Ps,

ns − 1 =
1

H

d

dt

(
lnH4 − ln φ̇2 − ln(1 +Q) + const

)
,

=
1

H

(
4Ḣ

H
− 2φ̈

φ̇
− Q̇

1 +Q

)
,

= 4
Ḣ

H2
− 2

φ̈

φ̇H
− Q̇

(1 +Q)H
. (159)

Using (31), (32) and (33) then,

ns − 1 = 4εH − 2εφ̇ − ε1+Q, (160)

as,

ε1+Q =
Q̇

(1 +Q)H
. (161)

By the dynamical slow-roll formula (31) when taking x = Q,

εQ =
Q̇

QH
,

=
(1 +Q)ε1+Q

Q
. (162)

Therefore,

ns − 1 = 4εH − 2εφ̇ −
Q

1 +Q
εQ. (163)

and using (101),

εQ =
6w2HḢ

3w2H3
,

=
2Ḣ

H2
,

= 2εH . (164)

Finally,

ns − 1 = 4εH − 2εφ̇ −
2Q

1 +Q
εH (165)
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Now substituting in (100) and (102) and writing ns−1 in terms of εv, ηv and
Q only.

ns − 1 = − 4εv
1 +Q

+
2ηv

1 +Q
− 2εv(1 + 3Q)

(1 +Q)2
+

2εvQ

(1 +Q)2
,

=
2εvQ− 2εv(1 + 3Q)− 4εv(1 +Q)

(1 +Q)2
+

2ηv
1 +Q

,

=
2ηv

1 +Q
− (8Q+ 6)εv

(1 +Q)2
. (166)

B.4 Number of e-folds

Setting V = 1
2
m2φ2 and Vφ = m2φ in (111) with Q replaced by (117), proceed

to work out N(φ∗) for this model.

N(φ∗) = −
∫ φf

φ∗

4πGm2φ2(1 + 4πGm2φ2w2)

m2φ
dφ,

= −4πG

[
1

2
φ2 + πGφ4m2w2

]φf
φ∗

,

= −4πG

[
1

2
φ2
f + πGφ4

fm
2w2 − 1

2
φ2
∗ − πGφ4

∗m
2w2

]
.

Using φ2 = (4πGεv)
−1 and that εf = 1 +Q as εH = −1.

N(φ∗) = −4πG

(
1

8πGεf
+
πGw2m2

16π2G2ε2f
− 1

8πGε∗
− πGw2m2

16π2G2ε2∗

)
,

= −4πG

(
1

8πG(1 +Q)
+

w2m2

16πG(1 +Q)2
− 1

8πGε∗
− w2m2

16πGε2∗

)
,

= − 1

2(1 +Q)
− w2m2

4(1 +Q)2
+

1

2ε∗
+
w2m2

4ε2∗
.

References

[1] P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 results.
XX. Constraints on inflation,” arXiv1502.02114 [astro-ph.CO].

[2] A. R. Liddle, “An Introduction to cosmological inflation,”
astro-ph/9901124.

[3] J. C. Mather, E. S. Cheng, R. A. Shafer, C. L. Bennett,
N. W. Boggess, E. Dwek, M. G. Hauser and T. Kelsall et al.,

37



“A Preliminary measurement of the Cosmic Microwave Back-
ground spectrum by the Cosmic Background Explorer (COBE)
satellite,” Astrophys. J. 354 (1990) L37.

[4] A. H. Guth, “Inflation,” astro-ph/0404546.

[5] A. R. Liddle, P. Parsons and J. D. Barrow, “Formalizing the
slow-roll approximation in inflation,” Phys. Rev. D 50 (1994)
7222 [astro-ph/9408015].

[6] A. H. Guth, “The Inflationary Universe: A Possible Solution to
the Horizon and Flatness Problems,” Phys. Rev. D 23 (1981)
347.

[7] P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results.
XXII. Constraints on inflation,” Astron. Astrophys. 571 (2014)
A22 [arXiv1303.5082 [astro-ph.CO]].

[8] A. R. Liddle and D. H. Lyth, “Cosmological inflation and large
scale structure,” Cambridge, UK: Univ. Pr. (2000) 400 p

[9] A. H. Guth, “Phase Transitions In The Very Early Universe,”
MIT-CTP-1027.

[10] P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 re-
sults. XIII. Cosmological parameters,” arXiv1502.01589 [astro-
ph.CO].

[11] C. Germani and A. Kehagias, “New Model of Inflation with
Non-minimal Derivative Coupling of Standard Model Higgs
Boson to Gravity,” Phys. Rev. Lett. 105 (2010) 011302
[arXiv1003.2635 [hep-ph]].

[12] G. Hinshaw et al. [WMAP Collaboration], “Nine-Year Wilkin-
son Microwave Anisotropy Probe (WMAP) Observations: Cos-
mological Parameter Results,” Astrophys. J. Suppl. 208 (2013)
19 [arXiv:1212.5226 [astro-ph.CO]].

[13] C. Germani and A. Kehagias, “Cosmological Perturbations in
the New Higgs Inflation,” JCAP 1005 (2010) 019 [JCAP 1006
(2010) E01] [arXiv:1003.4285 [astro-ph.CO]].

[14] J. Dunkley, D. N. Spergel, E. Komatsu, G. Hinshaw, D. Lar-
son, M. R. Nolta, N. Odegard and L. Page et al., “Five-Year

38



Wilkinson Microwave Anisotropy Probe (WMAP) Observa-
tions: Bayesian Estimation of CMB Polarization Maps,” As-
trophys. J. 701 (2009) 1804 [arXiv:0811.4280 [astro-ph]].

[15] P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results.
XVII. Gravitational lensing by large-scale structure,” Astron.
Astrophys. 571 (2014) A17 [arXiv:1303.5077 [astro-ph.CO]].

39


