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Abstract

Throughout the centuries, volcanoes and earthquakes have had devastating ef-
fects on populations across the globe. Due to their chaotic and unpredictable
nature, observatories around the world have been established to monitor seismic
activity. However, due to a lack of historical data, patterns and trends, espe-
cially with regards to volcanic activity, are difficult to determine. The aim of
this dissertation therefore has been to use advances in technology, to recreate,
expand and develop idealised cellular automata models with an aim to gaining
a better understanding of some of the key processes and statistics exhibited by
volcanoes. The model considers the rise of magma through the chamber of a
volcano to be permitted in discrete batches, through cracks caused by stress
within the rocks. Once pre-established models had been verified, an adaptation
of the model was created, observing the interrelationship between the stress and
magma fields. It was discovered that incorporating a dependence on the stress
field by the magma field, resulted in an axial symmetry, a physical property of
volcanoes that could be utilised in future work on these models.
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O.J.Butters 1 INTRODUCTION

1 Introduction

Throughout the centuries, volcanoes and earthquakes have had devastating effects on
populations across the globe. Due to their chaotic and unpredictable nature, obser-
vatories around the world have been established to monitor seismic activity and other
diagnostics with the hope of providing advanced warnings of major events. Mathematics
plays an important role in monitoring techniques, as data from various precursor quan-
tities is collected, checked, cross referenced and analysed in order to discover trends or
anomalies. As developments in technology continue to increase, more and more methods
for potentially identifying catastrophic events are becoming available. The aim of this
work was to build upon a model that was originally produced by Piegari et al. in 2008 [1]

which looks at developing cellular automata models exhibiting self-organised criticality,
to recreate mathematical properties relating to volcanic activity.

A volcanic eruption is defined to be an event where molten lava and fragmental material
are ejected.[2] Eruptions range widely, from explosive eruptions to effusive eruptions,
large in magnitude to small in magnitude, persistent activity to dormant volcanoes.
These variations in magnitude and duration from volcano to volcano have made cata-
loging and recording volcanic data hard. Therefore by building up idealised models of
the physical processes involved in volcanic eruptions, the aim is to gain a better under-
standing of some of the key process and statistics exhibited by volcanoes.

The model written by Piegari et al. for volcanism was developed from earlier works
on self-organised criticality by Bak, Tang and Wiesenfield,[3] and further extensions of
that work, produced by Olami, Feder and Christensen[4] on cellular automata models. In
each of these cases, although the papers set out their principles and findings, the actual
computer models and the empirical data produced by the authors was not available. As
a consequence it was necessary to write the programs again and then rerun the models,
in order to confirm the results of the newly programmed model and verify these against
the findings set out in the published papers.

Therefore, all results in this report have been established following rewrites and replica-
tions of the previous models of others, and only when this work had been verified, was
it possible to develop the model further and test new additional variables.

1.1 Self-Organised Criticality

In 1988, Bak, Tang and Wiesenfeld (BTW) introduced the concept of Self-Organised
Criticality: “when a natural system is perturbed from a marginally steady state, it
will evolve back to a state of marginal stability”.[5] They postulated that the underly-
ing mechanism behind a diverse number of natural phenomena, such as river networks,
superconductors, the spread of epidemics and earthquakes, can be described by Self-
Organised Criticality.
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In their original paper, BTW considered a system comprising of many individual com-
ponents, driven by random local perturbations. They suggested that, under what can
be very general conditions, the individual components evolve globally into an organised
state with a complex but general structure. By observing complex systems (that is those
which are not controlled by one characteristic, such as time or length), with complex
responses and outcomes, they demonstrated that the properties shown in the system can
be described by simple power laws.[6] Examples of these power laws are observed in both
earthquake and volcano analysis. The most famous of these is the Gutenberg-Richter
Law which describes a relationship between the number of earthquakes per unit time
of a given magnitude, and the Omori law, regarding the distribution of aftershocks. In
Section 2.4, the Gutenberg-Richter Law will be considered in more detail and it will
prove a useful test to determine the realistic characteristics of the model.

1.2 Cellular Automata Models

The concept of cellular automata models was introduced in 1966 by John Von Neumann,[7]

and it provides a powerful technique for modelling complex systems. Although it was
initially developed to model the behaviour of a human brain, it has since been applied
to various systems in nature, such as earthquakes and volcanoes. The technique has
proven to be very effective in modelling some physical systems, as it can capture the
global behaviour of the system arising from the combined behaviour of the local action
of its (individually very simple) components.

A very simple description of the model can be given using a one-dimensional array of
cells, where at time t = 0, each component of the grid is assigned an initial state. Other
than the initial configuration of the system, there is no input into the system, hence the
model is autonomous. Over a period of discrete time steps, the state of each individual
cell is updated, based on a function commonly known as a “local rule”, that relates the
current state of the cell to the state of its neighbouring cells. In the one-dimensional
case, the neighbouring cells are those to the left and right of the original cell within
the array. The states of the cells are completely determined at each point in time by
this rule, and so the system proceeds deterministically over a set number of time steps.[8]

The initial model created by BTW was based upon modelling a sandpile using a Cel-
lular Automaton Model to illustrate numerically how the system can organise into a
critical state. Grains of sand were dropped onto the individual cells of the array, with
the gradient of each cell, that is the number of grains of sand, determining the stability
of the pile. The moment the number of grains rises above a critical value, the pile slips
and the grains are distributed to the neighbouring cells, determined by the local laws.
Within this model the number of grains of sand is discrete and the model is conservative
within the centre of the grid, whilst at the edges, boundary conditions determine the
conservative nature. However, looking ahead to implementing this model to represent
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seismic activity, the dynamic variable of the system is the local force or stress acting
on a block, which is not discrete. During an event the energy released dissipates and
so the conservation of this variable, both within the model and at the boundary, must
be considered since the total stress is not necessarily redistributed to surrounding cells.
The earthquake model implemented in this paper is known as the OFC model, after
its creators, Olami, Feder and Christensen and, in Section 2.4 the conservative nature
of the OFC model will be examined, taking into consideration the effects of different
boundary conditions.

1.3 The Burridge-Knopoff Spring Model

In 1967 the Burridge-Knopoff Spring model was developed. It simulates a two-dimensional
slider-block model which, whilst appearing very simple and uniform, is deterministically
chaotic.

Figure 1: The Burridge-Knopoff spring model.[9]

Relating Figure 1 to the basic cellular automata model, it can be seen that the cells
of the model are represented here by a finite number of blocks, connected to their four
neighbours by springs K2 and K3. Each of the blocks are resting on a fixed plate, whilst
a second plate is resting on top of them, attached by the springs denoted K1. The top
plate has momentum and, over time, this plate moves slowly causing stresses to build up
as friction between the blocks and the fixed plate counteracts the force trying to move
the individual blocks. As time elapses, the static frictional force needed to counteract the
force imposed by the top plate, increases until a moment is reached when it is overcome
by the force of momentum and one of the blocks slips. The result of this causes energy
to dissipate to the neighbouring cells, the amount being determined by the simple local
rules. So from the cellular automata model, the state of each cell represents the current
stress on that block.

There are however both key similarities and differences between the cellular automata
model and the slider-block model, and they are summarised in the table below:
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Cellular Automata Slider-Block Models

Discrete lattice of sites in space Discrete lattice of sites in space
Evolve in discrete time steps Evolve continuously in time

Each site takes on a finite set of Each site takes continuous values of
possible values displacement and stress

The value of each site evolves according The value of each site evolves according
to the same rules to the same rules

The evolution of a site depends only Upon failure a sliding block interacts
on a local neighbourhood of sites with all blocks which are in

motion simultaneously

Table 1: Comparison between Cellular Automata and Slider-Block Models.[5]

The Cellular Automata model has been shown to exhibit the key properties of Self-
Organised Criticality and therefore this very simple idea forms the basis upon which the
earthquake and volcano models are built. In Section 2.1 a physical interpretation of this
model will be discussed, relating the event of a block slipping to the occurrence of an
earthquake. Therefore, the initial model will reflect that produced by Olami, Feder and
Christensen(OFC),[4] which is an idealised version of the Burridge-Knopoff spring model.

A two-dimensional version of this model, namely a grid (matrix) of finite size, made
up of uniform cells, each connected to 4 neighbouring cells will be used. The state of
each cell within the model will represent the stress at a specific point on the grid at a
specific time. Initially the grid will represent an arbitrary section of the Earth’s crust,
orientated along a particular fault plane, as a model is developed to produce statisti-
cal outcomes of earthquakes and ground movement. However, from Section 3 onwards,
the grid will represent a vertical cross section of a volcano, stretching from the magma
reservoir to the surface.

4
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2 Earthquakes - The Properties of the OFC Model

2.1 Plate Tectonics - Earthquakes

Statistics show that the most common earthquakes occur at the boundaries of rigid
tectonic plates. The surface of the Earth is not static and therefore as the plates drift,
the relative motion occurs across a narrow network of edges. As two plates push against
each other, the friction between the rocks prevents the plates from sliding freely and
steadily over time, causing stress to build up and the ground to deform and accumulate
strain. As the stress increases over what can be hundreds or even thousands of years, the
strain on the rock builds until eventually it will fracture along a weakened fault plane;
within a matter of seconds, energy can be released in the form of heat, noise and seismic
waves as the plates slide. This fracture which initiates locally, is very quickly propagated
over a large distance of the fault surface.[7] Building upon the visual representation of
this idea as shown in Figure 1, the model, in a simplified form, was created by Olami,
Feder and Christensen in 1991,[4] to demonstrate some of the key physical properties of
earthquake analysis. In order to later produce a cellular automata model for volcanism,
the OFC model was first written and reproduced using Fortran, and the results from
107 simulations analysed, cross-examined and presented graphically using Matlab.

2.2 The Model

In order to simulate the OFC model and map the spring-block model to a cellular au-
tomata model, grids of varying size, L × L, were considered, where L was chosen in
order to compare, contrast and understand results. The grid was defined by an array
where each block of the grid had coordinates (i, j), with 1 ≤ i ≤ L and 1 ≤ j ≤ L, for
i, j ∈ N.

The dynamic variable labelled f , represents the local force/stress being applied to a
given block of the Burridge-Knopoff model . At time t = 0 each of these blocks were
assigned a random value fi,j, which was somewhere between 0 and the threshold value
fthresh, that is, the point at which the stress is greater than the opposing force resulting
in the block slipping. Throughout this paper fthresh = 1.

For convenience in this model, the elastic constants connecting neighbouring blocks
(represented in Figure 1 by K2 and K3) were set to be equal, that is the isotropic case.
Once the system was established, the basic state was then perturbed at a constant rate,
until one of the values rose above the threshold value. This was determined by the
equation,

fi,j → fi,j + ν∆t, (2.1)

where ∆t represents the elementary time period and ν is a constant. As the system was
slowly perturbed, the behaviour followed a set of simple rules described in the algorithm
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in Figure 2 below. For simplicity the direction of motion was restricted to be in the
direction of the moving plate.

 

 

 

 

 

NO 

YES 

1.     
𝑑𝑓𝑖,𝑗

𝑑𝑡
= 1  as long as  𝑓𝑖,𝑗 < 1 

  

2.   Is 𝑓𝑖,𝑗 > 1for 

any block? 

3.       Add additional stress onto 

neighbouring blocks using the rule: 

𝑓𝑖±1,𝑗  → 𝑓𝑖±1,𝑗 +  𝛼𝑓𝑖,𝑗 

𝑓𝑖,𝑗±1 →  𝑓𝑖,𝑗±1 +  𝛼𝑓𝑖,𝑗 

4.    Redefine the stress on the 

current block so that:   𝑓𝑖,𝑗 → 0. 

Figure 2: A flow chart picturing the algorithm of the OFC model.

The algorithm above shows the simple local rules that determine the transfer of stress
as a block slides. Step 1 shows a long-term driving force acting at a constant rate whilst
the blocks are stable and the rate of change of the stress, ν, has been normalised to
unity. However, as a block slides a proportion of the stress determined by the constant
α is allocated to the neighbouring blocks, whilst the stress on the original block is set to
zero. Due to the fact that each cell has a maximum of 4 neighbours, α ∈ [0, 0.25] since it
is dependent on the strength of the springs connecting the blocks. In order to generate
a realistic model, a non-conservative case was considered, using α < 0.25. Hence only
a fraction of the stress was distributed to each neighbour and the fraction of the stress
dissipated was given by,

(1− 4α)f. (2.2)

It is also important to take into consideration the time element of the model, which can
split into 2 distinct phases, namely,

1. The External Driving Rate - This refers to the periods of a constant driving
force, i.e. step 1 in Figure 2. In physical terms this relates to the time period
between earthquakes, which can range from minutes to hundreds of years.
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2. The Internal Relaxation Rate - This refers to the length of time of the earth-
quake itself which can last a matter of seconds.[6]

In order to determine the time between events, following each recorded earthquake, the
cell with the maximum stress was located. Each cell was identically perturbed at a
constant rate and so the cell with the maximum stress will be the next block to slip.
Therefore, using the threshold value of 1, the amount needed to cause the onset of a
future event was calculated to be:

δF = 1−maxval(f), (2.3)

(taking the value of ν from Equation (2.1) to tend to zero). This not only determined
the time between each event but also produced a faster running code since, rather than
adding a small perturbation to each cell at each time step and then checking for a block
slipping, the value of δF was added to each of the values of stress, resulting in the
occurrence of another event. The distribution of times between events is one test of the
accuracy of the model. This involves comparing the results of the model to the Omori
Law, which shows a power law relating to the frequency of aftershocks occurring after
major earthquakes.[6]

2.3 Boundary Conditions

Given grids of finite size, it is important to consider appropriate boundary conditions on
the blocks around the edge. There are three different methods that can be implemented
each with their various advantages and disadvantages.

Rigid frame boundary conditions are based on the idea that the blocks at the boundaries
are connected to a rigid frame in exactly the same way in which they are connected to
their neighbouring blocks. This can be implemented using a grid size of (L+1) x (L+1).
During the initial assignment of random values to each cell, those on the rigid frame
remain zero and therefore won’t be involved in an earthquake. As stress is distributed
to the neighbouring cells, step three of Figure 2, the cells on the rigid frame are set back
to zero. This results in a loss of stress at the boundaries since, along with the stress
dissipated as shown in Equation (2.2), there is a further loss of

αfi,j
4

, (2.4)

lost at the edges and

αfi,j
2

, (2.5)

lost at the corners.
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A second method of addressing boundary conditions is commonly known as free bound-
ary conditions. This approach is that the blocks on the edge of the grid only have three
neighbours and those at the corners two, whilst the rest have four. Therefore when a
share of stress is distributed to neighbouring cells following a slip, those at the boundary
receive a different amount to those in the middle. In order to implement this a concept
of connectivity was introduced, denoted by C, representing the number of neighbours a
cell has. Using this method, Step three of Figure 2 was rewritten to read:

fi±1,j → fi±1,j +
4α

C
(2.6)

fi,j±1 → fi,j±1 +
4α

C
(2.7)

where C = 4 in the centre of the grid, C = 3 at the edges and C = 2 at the corners.
In comparison to the rigid frame boundary conditions, this second method allows the
stress to be conserved across the boundaries.

The final method for treating boundary conditions is referred to as periodic boundary
conditions. In order to remove the issue of conservation of stress, this idea is formulated
in such a way that the blocks on the edge of the grid are connected to those on the
opposite edge which results in zero energy loss. However, in relation to this paper, these
boundary conditions were not considered to be appropriate for the physical interpre-
tation of both earthquakes and volcanoes, since finite sided systems are required and
therefore such an extended system will not be sensible. Throughout this report, rigid-
frame boundary conditions will be applied to the model being considered, in accordance
with both the OFC model and the later Piegari model.

2.4 Gutenberg Richter Law

Plate boundaries, where the majority of earthquakes occur, are complex and it is of-
ten difficult to identify one single fault line as there can be branching faults that add
complexity to the system.[5] Nevertheless, in 1954, Gutenberg and Richter developed an
equation showing a simple relation for N(m) - the number of earthquakes of a given
magnitude m per unit time:

log10(N(m)) = a− bm, (2.8)

where a, b are constants. This law is useful because it can be applied not only to local
events but also global ones. However, the parameter b has been recorded to have a wide
range of values, 0.8 < b < 1.54, varying from region to region and also with respect to
the size of the earthquake.

8
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The energy released during an earthquake increases exponentially with its magnitude,
that is,

log10E = c+ dm, (2.9)

where d changes depending on the size of the earthquake and c is a constant. Using this
a power law can be generated, related to the size distribution measured, that looks at
earthquakes with a minimum energy, E against the number of observed earthquakes.

N(E0 > E) ∼ E−b/d = E−B. (2.10)

The exponent B can vary between 0.8 < B < 1.05 for different fault lines.[4]

In order to show that the model produces the self-organised power law shown in the
Gutenberg Richter Law, a graph representing the probability density distribution of the
size of earthquakes was obtained. If the model emulates this law, it would suggest that
the process that causes earthquakes is largely scale invariant.[10] This would imply that
the large-scale statistical properties of earthquakes is insensitive to the specific environ-
mental details and therefore can be represented by simple models that duplicate the
basic statistical properties shown in real life data.

In the 1992 paper of Olami, Feder and Christensen[4] they recorded the result their model
produced regarding the probability density distribution of the size of earthquakes, and
so their paper was ideal for checking the validity of the model. The statistics produced
are based on 109 results, using a fixed value of α, namely 0.2. In order to analyse the
results varying grid sizes were used, L = 15, 25, 35 and 50. In keeping with the OFC
paper, rigid frame boundaries were applied to the system. This resulted in the figure
shown below.

Figure 3: Probability density of having an Earthquake of Energy E, for varying L.

9
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The power law described in Equation (2.10) can be rewritten in order to describe the
probability density function,

P (E0 = E) ∼ E−(1+B). (2.11)

In Figure 3, Olami, Feder and Christensen postulated that the gradient, that is the
power law exponent shown in Equation (2.11), was B ≈ 0.91. However, in their later

paper[11] they produced a table which stated that for α = 0.2, B = 0.89±0.1. The result
obtained by the model was B = 0.909 with a standard deviation of 0.015. Therefore it
can be seen that the model is producing plausible values of an important statistic from
actual recorded earthquake data.

Further checks on the model can be made by using the same law to determine the
role of the conservative nature of the system. Varying the value of α, it is possible
to determine whether the self-organised property shown above is maintained for the
model with varying levels of conservation. Running the model, this time fixing L = 35,
using rigid boundary conditions and varying α for the values above, the sizes of 108

earthquakes were obtained producing the probability density plot below.

Figure 4: Simulation results for the probability density of having an Earthquake of
Energy E, varying α.

The gradients of these curves and the comparative results produced by Olami, Feder
and Christensen can be seen in Table 2 below.

10
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Model 1 +B (Given OFC results) 1 +B (Simulated Results)
α = 0.10 2.72± 0.10 2.747
α = 0.15 2.22± 0.10 2.226
α = 0.20 1.89± 0.10 1.895
α = 0.25 1.22± 0.05 1.241

Table 2: The critical exponents of the system produced by Olami et al. and the
recreated OFC model, with errors indicated.[11]

The results produced in Figure 4 are within the confidence levels shown in Table 2.
From this it can be deduced that this continuous, non-conservative model exhibits a
self-organised criticality. It is important to note that when changing the value of α,
although it does have an impact on the exponent, it does not alter the critical nature of
the model.

There are two important things to note here:

1. By basing the model being written on pre-established work by Olami, Feder and
Christensen, it has been possible to verify the algorithm used. Also by cross
comparing obtained results, the code produced during this project was verified
with respect to the work of others.

2. On a wider scale, through agreement with the OFC model results and common laws
regarding the physical phenomena, the model used can be seen to be in agreement
with observed data from earthquakes across the globe.

Therefore having achieved verification of the replication of the OFC model, the model
can now be adapted and developed for an assessment of volcanic activity.

11
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3 Magma transport via a Fracturing Mechanism

3.1 Introduction

In order to create a cellular automata model for volcanism, a variant of the OFC model
was used, building upon the underlying concept that: “Volcanoes can be regarded as large
scale natural magma-fracturing experiments repeated over a long period of time.”[12] Re-
cent discoveries have suggested that the transport of magma is facilitated through stress
fields within the magma chamber of a volcano, and, along with the natural buoyancy
of magma, it is allowed to ascend towards the surface through crack networks in the
fractured rock. Previously the cellular automata model has represented a horizontal
section of the Earths crust, recording at each time period the size and distribution of
ground movement across the grid. In order to employ the model for volcanic purposes,
the grid will now represent a vertical cross-section of a volcano with the OFC model
tracking the areas of fractured rock within the magma chamber.

For clarity, the volcano was schematised into three different regions, the magma reservoir,
the magma chamber and the surface.

1. The Magma Reservoir - This is the feeder from the source of the magma into
the chamber of the volcano. (In the majority of cases this will not be involved
within an eruption, however there are a small number of large eruptions, such as
the Soufriere Hill in Monserrat, where input from the reservoir is involved within
the eruption, and therefore this is something that must be taken into consideration
when implementing the model.[13])

2. The Magma Chamber - Within the chamber, the magma that is fed in from the
reservoir is transported and stored, as it migrates through the rock towards the sur-
face moving through connected fractured cells. During ascent, if the magma stops
at any point then the magma loses some of its volatiles. This will be considered
in greater detail in Section 3.3.

3. The Surface - The surface is the outlet for eruptions. Once magma reaches the
surface, an eruption occurs and the size is dependent on the volume of magma lost
from the system.

Therefore the model being developed builds on the premise that, rather than there being
a connection from the surface of the earth to a deep pressurised magma chamber via
a continuous conduit, the magma is injected into the system in small batches, where
magma is seen to be a diffusive field, permitted to rise through self-organised cracks in
the rocks.

3.2 The Model

To adapt the model, the principal idea shown in Figure 1 and the algorithm shown in
Figure 2 were applied to determine the location of fractures appearing in the formation

12
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of the magma chamber as the pressure builds up in the rocks. Again a square lattice
of size L × L was used, only this time a further space and time dependent field was
incorporated, denoted ni,j to represent the presence of magma. This model focused on
describing closed conduit volcanoes, i.e. volcanoes with infrequent eruptions, with inter-
eruption times up to tens of thousands of years.

Throughout the simulations the 2 fields, fi,j and ni,j, were recorded regularly at various
time steps, since both arrays can be mapped onto the same grid in order to determine
the location of both stresses in the rock and the presence of magma within the chamber
at a given moment in time. Initially the array ni,j was set to zero since at the start of the
simulations no magma was within the system. However, as magma began to rise through
the chamber, the field ni,j was updated, with those cells containing magma represented
by a 1. Further details of additional properties of magma that were introduced into the
model are discussed in Section 5, requiring a change from an integer array ni,j to a real
array.

A visual representation of this model can be seen in Figure 5 which shows a schematic,
simplified view of the initial model over 4 consecutive time periods, using a grid of size
8 × 8. Defining the top row to represent the layer of rock adjacent to the surface, the
bottom row to represent the magma reservoir of width N = L/4 (which is filled with
magma throughout the whole simulation) and the rest of the grid to be the magma
chamber, made it possible to model the idealised rise of magma.

Figure 5: Schematic cartoon of four stages of the model.

In order to determine how the magma rises from the reservoir to the surface, three simple
flow diagrams of the model were created, relating to the four stages of the model above.
The first of these describes the rise of magma from the reservoir into the chamber. This
algorithm was applied at each time step when stresses in the rock appeared.
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Figure 6: Stage 1 - Flow diagram picturing the rise of magma from the reservoir into
the chamber.

The top left hand grid of Figure 5 shows stress in the rock causing a fracture to appear;
however due to the relative position of the fracture being located far away from the
reservoir, no magma was permitted to enter the system. In the example shown by the
top right hand square, fractured cells appear adjacent to the reservoir and so magma was
permitted to enter all connected cells. By recording the cells involved within this magma
movement, the model has no need to check these cells again for magma movement since
all connected fractured cells to the reservoir have been accounted for.

In their 2011 paper, Piegari et al. provided a flow diagram determining the move-
ment of magma within the chamber. However, in order to refine the model and better
determine how the magma moved, a few variants of the method were tested in order to
determine which ran most efficiently, before the algorithm in Figure 7 was created.

• Vertical Movement - After a check to see if magma could rise up one cell, the
next step initially was to perform a check on the possible horizontal movement of
the batch of magma. However, this did not allow the buoyancy of the magma to
dominate and so to refine the model, first the magma was allowed to rise as high
(and through as many cells) as it could, before any horizontal movement was even
considered. If the magma then moved a cell either to the left or right the vertical
check would be performed again, before any further horizontal motion could occur.

• Horizontal Movement - It was not possible to determine easily from the flow
chart below provided by Piegari et al. how many times the model would allow
for horizontal movement. Due to the probabilistic nature of the horizontal move-
ment, the magma could be moving backwards and forwards continuously within
the magma routine. Therefore it was decided to limit the horizontal movement be-
tween cells. After checking for vertical movement, the magma would be allowed to
move one place horizontally, followed by a subsequent check on the vertical move-
ment. If again magma was permitted to move upwards, then a further horizontal
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movement one place across would be permitted, until no further vertical move-
ments could occur. This would then mark the end of the magma movement with
the current fractured event and so another ‘Earthquake’ run would be required. In
the second 2011 paper by Piegari et al.[14] they applied restraints to the horizon-
tal movement in order to implement a central conduit, thereby assuming an axial
symmetry. Due to the fact that this is in a later paper, this was implemented after
the results of the first 2011 paper were verified.
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Figure 7: Stage 2 - Flow diagram picturing the movement of magma within the
chamber.

This algorithm sequentially considers each cell in turn as it sweeps through the grid
and a simple application of this algorithm can be seen in the bottom left hand square
of Figure 5. One of the magma filled cells is fractured and adjacent to a cluster of
fractured cells, hence the magma present can diffuse into the fractured cluster with
buoyancy resulting in an upward bias. The rest of the magma filled cells which are not
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fractured remain as they are. Following each application of the check for vertical move-
ment of magma in Figure 7, a check was performed to determine whether any magma
had reached the surface (the top row of the grid). If it had, then the following eruption
algorithm was called.

The third and final algorithm focused on the surface of the volcano and recorded erup-
tion events. It is described by the flow chart in Figure 8 and is illustrated by the bottom
right hand square of Figure 5. In order to determine when an eruption occurs, this
algorithm is called once a cell adjacent to the surface is filled with magma.

 

NO 
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surface. 
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Figure 8: Stage 3 - Flow diagram picturing an eruption of varying sizes.

By keeping track on which cells are involved within an eruption the model becomes more
time effective, as once an eruption had taken place these cells could be ignored, as the
simulation continued to loop over the remaining cells within the chamber determining
further magma movement. In the special cases where the fractured cells connect the
reservoir to the surface, the algorithm described in Figure 7 is bypassed, and an eruption
occurs directly following the rise of magma from the reservoir into the system.

3.3 Reservoir to surface connection

When the cracks within the magma chamber remain relatively small, magma moves in
small batches up from the reservoir towards the surface, resulting in relatively small
volumes of magma in any ensuing eruptions. However, it is also important to take into
consideration the special cases when the reservoir and surface are connected by a con-
tinuous set of fractures, allowing a rapid and continuous flow of a very large volume of
magma that drains the chamber.

This is a realistic property of certain volcanic eruptions, and in the 1980 paper written
by Wilson et al. on explosive volcanic-eruptions, they state that an explosive eruption
is “initiated by the formation of a fracture connecting the magma to the surface.”[15]

In the case of Figure 9 the reservoir is connected to the surface by a wide conduit
resulting in an eruption of high velocity. It shows an event where the fractured cells
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stretch from the reservoir to the surface. The lighter shaded cells represent those filled
with magma, but not fractured. The darker red cells are those fractured cells, filled with
magma that can move between connected fractured cells. This snapshot was taken at a
time step when the algorithm described in Figure 6 had occurred, resulting in magma
rising to the surface from the reservoir through fractured cells, but prior to the eruption
algorithm being called, which flushes the magma out of the system.

Figure 9: Reservoir to surface eruption.

It was decided that in order to prevent the model getting trapped on a continuous flow
of magma rising from the reservoir to the surface, only one batch of magma would be
permitted to rise into the system from the reservoir, and once this had been flushed out
of the fractured cells connected to the surface, that event would be terminated and the
whole process would start again. In physical terms the eruption ends when either the
pressure results in the collapse of the chamber walls, preventing the rise of additional
magma, or the magma supply is exhausted.[13]

3.4 Stationary state

To analyse the results effectively, it is important to consider the time it takes for the
system to evolve to a stationary state. At the start of simulations, there is no magma
present within the grid, resulting in a much larger time period between eruptions, until
the system evolves to a steady state. Therefore in order to determine the transient
period until the system reaches the steady state, the mean magma level per grid point
was recorded following an eruption. Then plotting the mean eruptions as a function of
the eruption number and calculating the mean values of magma, increasing percentages
of the starting data were removed resulting in Figure 10.
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Figure 10: Mean Magma value per grid point following 105 eruptions where the values
in the legend refer to the number of data points removed.

It can be seen from the graph that the mean value of magma within the grid fluctuates
rapidly following an eruption and regardless of the percentage of data removed at the
beginning of the simulation, all the values are within less than 0.02 of each other, and
do not tend to one specific value. In comparison to the size of the fluctuating data, the
difference in the mean values across the 105 eruptions excluding various percentages of
data is very small and, therefore, it is very difficult to determine at which point the
model reaches a stationary state.

Subsequently it was decided that the first 5000 pieces of data would be ignored from
the observations as, seen above, anything less than this would result in a very small but
slightly higher mean magma value than observed once the system has reached a steady
state.
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4 Analysis of Results

4.1 Complications

Unlike empirical earthquake records, there has been no analogous system for recording
volcanic eruptions over the centuries, with most recorded events being limited to descrip-
tive documentations of major events, such as the eruption of Vesuvius in AD79 which
had catastrophic effects. There is a distinct lack of records regarding smaller events and
often the data is incomplete and lacking in essential quantitative data. In light of this
it is very hard to determine statistical properties of volcanic eruptions, similar to the
Gutenberg-Richter Law found for earthquakes. Consequently within the last century a
composite estimate of past eruptions was proposed, known as the Volcanic Explosivity
Index (VEI).[16] It is comprised of semi-quantitative data based on small pockets of data
and written reports of events. This lack of quantitative data presents a significant ob-
stacle when wanting to compare the model against historical data and known properties
of eruptions. However, some trends have been found and in more recent times, eruptions
occurring across the globe have been well documented.

4.2 Probability Distribution

In order to analyse the results produced by the model, the initial aim was to reproduce
the results published by Piegari et al. in 2008.[1] In a similar way to the OFC model,
they started off by looking at the probability distribution of eruptions in relation to their
volume, V , via a log-log scale and using varying grid sizes. The results they obtained
are displayed in Figure 11, and a value −1.6 was quoted for the gradient of their curves.

Figure 11: Probability distribution, P (V ) of eruptions generated by Piegari et al.[1]
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However, looking closely at their graph and calculating the gradient manually, the gra-
dient shown is closer to a value of −1.36, which does not appear to support their quote
for the exponent of the power law fit.

In Figure 12 below is the comparative plot produced by the statistics of 107 eruptions
from the model. A very similar distribution with a power law behaviour can be seen,
characterising a large proportion of the data. The difficulty with attempting to replicate
the resultant power law quoted, is that no further information was available regarding
the limits chosen when calculating the line of best fit. Therefore the data was collected
by applying rigid frame boundary conditions, in line with those used in the 2008 paper,
and the fit was determined within limits [0,1]. The resultant power law fit had the value
−1.488.

Figure 12: Probability distribution, P (V ) of eruptions, as a function of the volume V
on a log-log scale.

As can be seen in Figure 12, the system evolves into an organised state displaying a
power law relation between the log frequency of eruptions of differing sizes. Despite the
lack of tangible data as outlined in Section 4.1, more than 4 decades of recorded data
from active volcanoes has been recorded,[2] and catalogue records also show a power law
regime relating the number of eruptions and their Volcanic Explosivity Index. Another
factor made evident in the figure is the grid size dependence and the cut off of the power
law. It can be observed that the larger the value of L, the longer the power law regime.
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4.3 Inter-Eruption Times

Another key feature in the statistical analysis of volcanoes is the time between the
occurrence of eruptions. Observing patterns in the data, or noticing any correlations, is
essential when monitoring or attempting to predict future volcanic activity. Determining
whether eruptions are random processes or are correlated is therefore essential. In order
to glean as much information about the time between events, the cumulative distribution
P (> t) of repose times was examined, defining the time difference to be from the start
of one event to the start of the subsequent event. The aim was to determine whether
a Poisson process is controlling the occurrence of eruptions, i.e., do the inter-eruption
times follow an exponential distribution?

Figure 13: The cumulative distribution, P (t) of inter-eruption times larger than t (in

units of ν−1) as a function of t in a log-linear scale produced by Piegari et al.[1]

Figure 13 shows that a change point at t ≈ 7500 identified two regions of importance.
For large values of t, the figure shows an exponential behaviour, whereas for small values
of t a stretched exponential was observed. From this they inferred that the probability
of eruption is often not dependent on the prior history of the volcano. Within their
paper the exponential and stretched exponential fits were presented but the results were
dependent on the value of ν.

The result in Figure 13 was based upon t being calculated in units of ν−1, where ν
is the constant in Equation (2.1) determining the speed of the driving rate. However, in
Section 2.2 the value of ν → 0 was determined by pinpointing the cell with maximum
stress and calculating,

1−maxval(f), (4.1)
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in order to determine the external driving rate of the system. Therefore in order to
determine the scale of the model, contact was made with Ester Piegari and further
clarification was sought. She stated that within their model they“counted the steps
necessary for magma to reach the surface”, which was interpreted to mean they produced
an integer value representing the time between events by summing the values of ∆t. This
corresponds to the number of steps of ν needed for an eruption to occur. Considerable
time was spent on adapting and altering the code with the hope of recreating their
numerical results and, in the end it was decided that to be consistent with the OFC
model, the time between events would be determined by summing the values of 1 −
maxval(f) needed to get from the onset of one earthquake to the beginning on the next.

This was based on the method explained in the 1998 book by Henrik Jensen[6] during the
discussion and reproduction of the Omori Law regarding the aftershocks of earthquakes.
He defined the time span between successive events to be denoted by Equation (4.1).
This method produced Figure 14 with the scale of the graph determined by binning the
data into 40000 bins to create the best possible comparison with Piegari et al.’s results.

Figure 14: The cumulative probability distribution of inter-eruption times, calculated
for 107 events.

Whilst in Figure 13 the cut off point between the stretched exponential and normal
exponential is very pronounced, with the stretched exponential ranging over the values
[0 8000), the point of change in Figure 14 is less clear, and the linear fit over the larger
values of t less apparent.

Comparing the two figures above numerically, on a log-linear scale, both show that
events occurring after a large inter-eruption time are far less probable. An attempt was
made to reproduce the exponential behaviour for large t using the equation
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P (t) ∝ exp(−t/τ1). (4.2)

In Figure 13 Piegari et al. determined the gradient of the straight line between the values
of approximately (8000 40000], resulting in τ1 = 104. Looking between the same limits
on Figure 14, τ1 was obtained to be 1.064 × 104 which, although seemingly relatively
accurate, doesn’t fit along the line as obviously as in Figure 13, as the data dips below
the line of fit. The value of τ1 was calculated between various limits, however the best
comparative result was produced by the same limits as shown in Figure 13.

Figure 15: The cumulative probability distribution of inter-eruption times, calculated
for 107 events.

Having spent a lot of time attempting to gain more concise results, it was decided to
move on, especially since further adaptations to the model, such as the axial symmetry
described in the next subsection, would change the shape of the inter-eruption time
graph anyway.

4.4 Axial Symmetry

In later papers written by Piegari et al.[17] they imposed an axial symmetry upon the top
half of the grid. Volcanoes such as Vesuvius have the property that the magma cham-
ber favours the a central path through which the magma can rise. This is prevalent in
many cone-shaped volcanoes, and so within the model the aim is to limit the horizontal
movement of the magma towards the flanks of the volcano. The impact of adding in
this additional restraint has no effect on the geometry of the cracks, determined by the
field fi,j. Instead it required adapting the method portrayed in Figure 7, by restricting
the movement within the field ni,j so that within the top half of the grid, horizontal
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movement of magma is permitted if, and only if, it is towards the centre of the grid.

This restriction produced little change within the probability density distribution of
eruption events, but a noticeable change occurred within the inter-eruption times of the
resultant events.

Figure 16: The cumulative probability distribution of inter-eruption times: (a) using
no axial symmetry, and (b) using axial symmetry on the upper half of the grid.

Statistics taken from 106 eruptions.

Running the simulation for a model implementing axial symmetry and the model used
in previous sections, Figure 16 was produced. As can be seen from the Figure 16(b),
there is a much more obvious stretched exponential in the cumulative distribution than
that shown in Figure 16(a). This implies there is a greater occurrence of events with
longer inter-eruption times.

Although the physical properties of inter-eruption times can be analysed for both the
model with and without the addition of an axial symmetry, the cross-comparison with
results produced by Piegari et al. is more inconclusive. This is due to the fact that
their only published analysis of the inter-eruption times is in their 2011 paper, whereas
in the 2013 paper, with the axial symmetry applied, no further analysis of the times
were discussed. However, since the results show a more conclusive agreement with laws
regarding the physical phenomena, the model is deemed sufficiently accurate to move
on to further adaptations.

24



O.J.Butters 5 DEGASSING AND STYLES OF VOLCANIC ERUPTIONS

5 Degassing and Styles of Volcanic eruptions

5.1 Physical Degassing

Volcanoes are very complex systems; whilst some display persistent activity with effusive
eruptions (e.g. Mount Etna, Italy), others occur infrequently, in some cases after hun-
dreds or thousands of years of apparent inactivity and erupt explosively (e.g. Mount St
Helens, USA). Therefore, in order to encompass the varying explosive natures of volca-
noes from around the globe, the model will now be adapted, following the idea outlined
in Piegari et al. (2011),[18] that once the magma has reached the local saturation pres-
sure, it starts to exsolve water. This loss of water content is controlled throughout the
magma chamber, by the pressure on the magma at varying depths. Incorporating this
into the model, creates a physically more accurate model and, allows for the analysis of
the probability of eruptions based on varying gas content, which is essential to under-
stand in regards to the style of Volcanic eruptions.

As magma moves from high pressured depths towards the surface, it starts off with
all the available volatiles being dissolved within the liquid magma. As it rises towards
the middle of the chamber, the exsolution of volatiles occurs, resulting in a magma com-
prising of liquid and gas bubbles. As it reaches the surface the pressure acting on the
magma reduces further and the magma is split into pyroclasts and released gases.[15] Ex-
plosive eruptions are the most dangerous, destructive and powerful events of all volcanic
activity. The physical process responsible for these events, and for the fragmentation
of the magma ejected is poorly understood. This makes forecasting and monitoring the
conditions of the volcano in the lead up to events difficult, as is determining the resultant
explosive nature of the eruption.[19] Therefore in this section, the varying water content
of magma residing at different depths will be implemented, and the statistics of both
effusive and explosive events analysed.

5.2 The Model

The OFC model described in Section 2.2, and the subsequent additions made in Sec-
tion 3.2, facilitated further adaptations to the array tracking the movement of magma,
ni,j. As before, an empty cell was defined with a value of 0, but the presence of magma
could now be denoted with values ranging from (1 − nloss) to 1, where nloss represents
the percentage of gas lost from the magma. For the initial model only the water con-
tent of the magma of the model was taken into account, determined by the relationship
between the dissolved water concentrate, nd, and the lithostatic pressure p for basalt,
where the lithostatic pressure is the pressure caused by the weight of the overlying rock.
This relationship is given by

nd = 6.8× 10−8p0.7, (5.1)

where the lithostatic pressure is calculated using
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p = p0 + g

∫ z

0

ρ(z) dz, (5.2)

and ρ(z) is the density of the rock at depth z. n0 was defined to be the initial dissolved

water content, whilst the value of nd varies with the depth.[17]

In order to replicate the results of the 2011 paper,[18] the depth of the grid was set
to be h = 12km, the gravity to be g = 9.81, the pressure at the surface to be p0 = 0 and
the constant rock density to be ρ = 2700kg/m3. To implement this, 12000 (the depth
in m) was divided by the total number of blocks from the reservoir to just below the
surface, that is L+ 1, and then multiplied by the number of the row to obtain the depth
of each row. As before a magma reservoir at the bottom of the grid was created to be
filled with saturated magma, where the value of ni,j in this section was denoted by a 1.
The gas lost nloss was calculated using the equation

nloss = n0 − nd, (5.3)

with an initial value of n0 ≈ 6%. Therefore it was anticipated that if water was lost as
the magma rises, then nd gets smaller the closer it is to the surface. The water would
be exsolved if and only if the magma stopped at any point in the model, (i.e. between
earthquake events), with ni,j taking the value of (1−nloss) based on the depth at which
it comes to rest. In this case nloss could never be greater than 6%. Hence the value of
the magma filled cells ranged from 0.94 < ni,j < 1, where 0.94 denoted magma without
water near the surface and 1 the saturated magma found within the magma reservoir.

5.3 Types of Eruption

In the 2008 paper by Scandone et al.[13] they looked at the role of the velocity of the
magma in producing episodic and sustained eruptions, which are determined by the
velocity of the magma as it rises through the chamber. They looked at four common
cases regarding the ascent of magma, including both effusive and explosive eruptions
dependent on the velocity of the magma, as can be seen in Figure 17 below.

In order to fully comprehend how these four common cases relate to the model, Fig-
ure 18 was created. It shows a visual representation of the varying types of eruption.
Each grid represents a vertical cross section of a volcano, where the y-axis represents
the depth of the chamber, and the x-axis the width. The fractured cells are represented
by the grey cells and the magma cells by varying shades of reds and pink dependent on
the gas content of the magma. The higher up the grid the magma stops, the lighter the
shade of the magma. In a similar vein, the blue cells represent the cells of the array which
are both fractured and filled with magma. (By varying the colour of the blue shades, it
was easier to determine the water content of the magma present in the chamber.) Each
of the four cases presented in the two figures are described below.
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Figure 17: Scheme of magma ascent and eruptive mechanisms.[13]

Figure 18: Comparative representations of eruptions produced by the model. The
colour bar labels are arbitrary; see text for an explanation.
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(a) Figure 17(a) shows an episodic explosive eruption caused by small batches of gas
filled magma reaching the surface. In Figure 18(a) it can be seen that these occur
when deeper small batches of magma are connected to the surface via fractured
cells. Therefore when magma containing a high water content is connected to the
surface, it results in a relativity small but explosive eruption.

(b) Figure 17(b) shows a sustained explosive eruption can be seen caused by a much
lower region of the magma chamber (or the magma reservoir) being connected to
the surface. At lower depths, the magma has a higher water content and so this
results in a fast ascent of magma, and an explosive eruption. In the corresponding
Figure 18(b), the fractured cells are connected to the surface from the reservoir,
and a large amount of magma containing a high water content is erupted.

(c) Figure 17(c) shows a slow ascent of magma, where the pressure has allowed the
water content of the magma to drop, resulting in gas depleted batches. These
batches result in effusive eruptions which have a short duration period. As seen in
Figure 18(c), only a small amount of magma is erupted.

(d) Figure 17(d) shows eruptions caused by the feeding of magma from a large shallow
‘reservoir’, resulting in an eruption. This required looking at individual eruptions
and the distribution of magma within the grid to determine whether or not the
magma is being fed to the surface via this reservoir, something which will not be
considered here. Looking at Figure 18(d) however it could be interpreted that the
pool of magma in the top left hand quarter of the grid is a secondary reservoir
containing magma with a much lower gas content.

In order to determine the types of eruption, following an event volcanologists will calcu-
late the Magma Discharge Rate by taking samples of the erupted magma and analysing
its properties.

5.4 The Probability Distribution of Eruptions with regards to
gas loss

Figure 19 presents the results of the simulations in the form of a histogram of the
occurrence of eruptions with given percentages of gas loss. The results in accordance
with Piegari et al. were generated using a grid of size 120× 120, collecting the number
of eruptions of given gas loss into bins of equal width ≈ 0.1%. The graph shows a
far greater probability of the occurrence of an eruption with the magma having almost
completely lost its gas content, whilst at the other end of the spectrum, those eruptions
with almost fully saturated magma are far rarer.
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Figure 19: Distribution of 106 simulated eruptions grouped according to the percentage
of gas loss.

The results appear to follow an approximately exponential distribution (the histogram
produced is normalised and produced on a log-linear scale); that is events of increasing
gas loss are exponentially more likely to occur than those of a much smaller gas loss.
The histogram shows that events with no gas lost almost never occur (in regards to
surface to reservoir eruptions, magma that resided within the grid before that time step
will have lost gas and therefore 100% gas loss is extremely unlikely). Physically this is
a reasonable result as large eruptions from volcanoes will have experienced gas loss to
some extent.

Explosive eruptions, such as the recent eruption of Calbuco in Chile, are often char-
acterised by large volumes of lava, accompanied by ash clouds and pyroclastic flows.
This is the result of the dissolved gases within the magma escaping during the eruption
and blasting rock and lava fragments into the atmosphere. Explosive eruptions often
have lethal effects, where as effusive eruptions are generally not particularly hazardous
to humans[20] (although in the case of the Calbuco eruption, nearby citizens were evac-
uated in sufficient time to avoid fatalities). The more common effusive eruptions are
characterised by the outpouring of magma down the flank of a volcano. For example
Kilauea volcano, which is almost constantly erupting, has lava flows commonly occurring
down its flank. It is of paramount importance therefore, to develop an understanding of
the different types of flow and their probabilities, due to the resultant impact they have
on peoples lives.

Having made a qualitative comparison between the results produced by the code and
that by Piegari et al. a more quantitative check was needed. Below in Figure 20 the
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conditional probability was obtained for the size of events with gas loss ≥ 5.5%, where
again the size of an event is defined to be the number of cells which lose magma during
an eruption (Figure 8).

Figure 20: The conditional probability distribution of events of size S with
nloss ≥ 5.5%.

Figure 20 shows the conditional probability p(S|nloss) of eruptions of size S with a gas
loss nloss of eruptions with nloss > 5.5%. That is, effusive eruptions, made up of magma
that has stopped within the top cells of the grid, as shown in Figure 18(c). The signif-
icance of this graph is that effusive eruptions are relatively small in size with a range
of the number of cells involved of only 0 − 17. This is in agreement with the result
produced in Figure 5 of the 2013 Piegari paper.[18]

Having now reproduced some of the key statistical features of volcanic eruptions in
terms of gas loss and cross-analysed these results against those produced by Piegari et
al., the next step was to develop the model by looking at other physical properties of
magma and the impact they have on eruptions.
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6 Magma Induced Fractures

6.1 Introduction

Since deciding to develop the OFC model to incorporate a magma field, developments
of the model have focused solely on variables that have a direct impact on the magma
field ni,j. These have included the gas loss, as discussed in Section 5, and the difference
in density levels between the magma and surrounding rock which was evaluated in the
2013 paper by Piegari et al. Therefore in order to take a step away from, and further
advance the work developed by Piegari, a new variable was considered that not only has
an impact on the magma field ni,j, but also on the stress field fi,j. Prior to this point
the stress field has been an independent variable, determined solely by the OFC model,
whilst the magma field has been dependent on the location of fractures determined by
the stress field. Within this section of the paper, the interrelationship of these variables
will be considered.

The geophysical process of loading is complex, as stress can be caused by compres-
sion, tension or shear processes.[21] Previously the role of the shear stress had been
emphasised, based on the underlying principle behind the OFC model, of friction build-
ing up until it is overcome by the shear stress. However, other factors could be taken
into consideration such as overpressure in the chamber, the weakening of the Earth’s
crust by corrosion[17] or stress caused by the intrusion on magma. Within this report
the last of these will be considered and the effects of this additional factor on the model
will be analysed.

For magma to migrate through the chamber, it must exert enough stress to induce
new fractures sufficiently large enough for the magma to continue its ascent.[22] So as
magma is injected into the system, the chamber deforms plastically and the pressure
increases. As this happens fractures can appear as, in a similar way to the OFC model,
a threshold value is reached and the pressure becomes too great. The resultant high
pressure creates a compressive stress zone close to the cells of the grid where the magma
is located, with a radial stress zone radiating out from the magma to surrounding cells.
This additional pressure leads to further crack initiation and fracture growth.[21]

6.2 Implementation

To implement this new, additional, physical concept into the model, the basic OFC
model was adapted so that an additional amount of stress was added onto the magma
filled cells (initially ignoring radial stress zones). At the end of an “earthquake event”,
the stress of those cells which had slipped and become fractured was reset to zero, as
can be seen in Step 4 of Figure 2, due to the non-abelian nature of the model. Therefore
when applying the OFC model to volcanic eruptions, as the magma rises, it stops in cells
where the stress value of the block is zero. The magma can also reside in unfractured
cells where the value of stress increases with the constant driving force defined in the
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OFC model.

In order therefore to take into account additional stress caused by the magma filled
blocks, Equation (2.3) was adapted. By splitting the grid into two, i.e. those cells with
magma (regardless of the gas content) and those cells without magma, it was possible
to calculate the maximum value of stress for both sets. These were determined by the
two equations,

dtnomag = 1−maxval(fnomag), (6.1)

dtmag =
1−maxval(fmag)

1 + δ
, (6.2)

where fnomag denotes the set of values of fi,j for those cells with no magma, and fmag,
those containing magma. The value of δ, represents a new model parameter, describing
the fractional, additional stress occurring in the magma filled cells.

The smallest of these two values were then determined and the value was denoted by dt.
The next earthquake event was then produced by adding the additional stress arising in
the time dt to fi,j. Hence if a cell was empty of magma, the stress added was determined
by

f = f + dt, (6.3)

and for the cells filled with magma,

f = f + (1 + δ)× dt. (6.4)

After implementing these concepts, it was then possible to analyse the model in order
to test the impact these changes had. This required checking the efficiency of the model
against well known physical properties of volcanic activity.

6.3 Implications to Eruption Statistics

Simulating the model, using the method above with the new stress property, the results
for the probability density, time and maximum water content were observed. Most
interesting perhaps is the effect this property has on the probability density of eruptions
of given sizes for varying values of δ. In Figure 21 it is observed that a power law
distribution is maintained regardless of the values of δ ranging from 0.1−0.6 respectively.
In comparison with Figure 12 which shows the probability density setting δ = 0, a bulge
of larger events can be seen with a higher frequency. Also of note is the length of the
power law region. As δ increases, the range of the power law decreases. For example for
δ = 0.1 the power law extends as far as ≈ 2.2; where as for δ = 0.6 it is ≈ 1.8.
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Figure 21: Probability distribution for simulated eruptions, varying the value of δ,
using data from 106 eruptions.

By exerting an additional stress onto those cells filled with magma, there is an increase
in the likelihood of those cells fracturing again in the next “earthquake” event. Once
magma has moved into a fractured cell and the stress level of that cell is reset to zero, in
the model discussed in the previous sections, it would take a longer time for this cell to
become fractured again, as the perturbations applied to the model are constant across
the whole of the grid. In this model however, the likelihood of that same cell becoming
fractured again due to the presence of magma is increased depending on the value of δ.
This will lead to an increased likelihood of large events since clusters of cells containing
magma all have an increased stress rate, and therefore are considerably more likely to
trigger a new earthquake event, or be involved in one following the distribution of stress
to neighbouring cells via the rules shown in Figure 2. If the cells that contain magma are
more prone to becoming fractured, there is therefore an increased probability of much
larger events occurring.
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Similarly, if the inter-eruption times are considered at the extremes, δ = 0.1 and δ = 0.6,
a noticeable difference appears; see Figure 22.

Figure 22: The cumulative probability distribution of inter-eruption times for
simulated eruptions, varying the value of δ and using data from 106 eruptions.

For large values of δ, there is a far larger probability of having a short span of time
between events, than that produced by using small values of δ. In a sense this seems
logical, since the addition of more stress onto cells containing magma will result in
higher values of the maxval(f), as discussed in Section 2.2, and hence smaller values
of 1 −maxval(f), resulting in much shorter inter-eruption times. On the other hand,
Figure 21 shows that an increase in δ leads to a greater occurrence of larger events,
which often occur following long periods of inactivity. From this later factor alone, it
might be expected that larger inter-eruption times are more common for large values of
δ. It would appear, however, that the additional stress plays a much larger role, thus
producing the behaviour seen in Figure 22.

6.4 Implication on the Stress Field

The aim of this section is to analyse the impact this additional stress has on the distri-
bution of fractures across the grid (size 64×64). In order to determine this, the number
of times a cell becomes fractured during a run of 106 eruptions, is recorded, and the
results for the original model and the new model are compared.
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Figure 23: Distribution of Fractures across the grid - (a) representing a simulated
model without imposing additional stress on cells containing magma, (b) representing

a simulated model with the additional stress on magma cells. The numbers on the
colour bar correspond to thousands of fracture events.

Figure 23(a) shows the distribution of the fracture events across the grid, with only
shear stress being taken into account. Its shows that the distribution of stress is spread
evenly around the grid, which was to be expected given the initial random configuration
of the OFC model and the subsequent constant drive. The cells on the corners have a
lower probability of being fractured, closely followed by those at the edge, due to the
non-conservative nature of the boundary conditions being implemented. In contrast the
results of Figure 23(b), which shows the distribution of fracture events with the addi-
tional stress added in by the presence of magma, shows that the cells within the lower
central section of the grid have a higher probability of being fractured. Physically speak-
ing, stress being applied constantly results in repeated failure, known as static fatigue.
This is a commonly known property of materials such as rock[22] and so therefore an
increase in this stress in certain sections of the grid, will lead to a higher concentration
of fractures in that area, as can be seen above. The significance of this will be tested
when cross examined with the magma field, as to the location and movement of magma.

The reason behind the preference for fractured cells occurring towards the centre of
the grid, is that when magma does rise into the system from the reservoir, it primarily
resides directly above the middle quarter of the grid. Therefore when the system stops
and the stress is recalculated, it makes sense that these cells subsequently feel the effect
of the additional stress imposed by the magma. Previous numerical checks made by Pie-
gari et al. on the model determined that the size of the opening to the magma reservoir
did not alter the statistical properties of the model.[18] However, with the addition of
this new development the choice of the size of this opening at the bottom of the grid
must be taken into consideration and analysed. An interesting area to consider in future
work on this model, would be the impact of increasing the size of this connection to the
central reservoir and determining the effects this has on the model.
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6.5 Subsequent Implications on the Magma Field

The imposed condition regarding the axial symmetry of the model, as described in Sec-
tion 4.4, was removed prior to observing the distribution of magma. Whilst monitoring
the distribution of fractures across the grid, every time a new set of fractures appeared
in the rock, and magma had the potential to move within the system, the distribution
of magma across the grid was recorded. Figure 24 shows the distribution of magma for
both the original model (a) and the new model (b).

Figure 24: Distribution of Magma across the grid - (a) representing a simulated model
without imposing additional stress on cells containing magma, (b) representing a

simulated model with the additional stress on magma cells. The numbers on the colour
bar correspond to thousands of fracture events.

From Figure 24 key similarities and key differences can be seen between the 2 models.

• Similarities - In both the grids above, magma is rarely present in the bottom
left and right hand corners of the grid. This result is to be expected due to the
probabilistic nature of the horizontal movement within the algorithm. Another
similarity is that at the top of the grid, the magma has a smaller probability of
being present; this is because an eruption will often occur, removing the magma
from these cells. As can be seen previously, the most common eruptions are those
with a high gas loss, resulting in effusive eruptions and therefore it is these cells
that will lose the magma present more often.

• Differences - The major difference between the 2 grids is the spread of magma
across the centre. In Figure 24(a) it appears to form a v-shape, spreading out
across the whole grid. In contrast Figure 24(b) shows a central preference, with
the area more likely to contain magma being along a central channel.

A slight concern in these results is the shift in distribution towards the top left hand
corner of the grid, a characteristic present in both models. However, one potential ex-
planation is that this is the result of the algorithm looping over the magma cells on a left
to right basis, resulting in a slight net preference for motion to the left. In order to test,
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understand and hopefully overcome this apparent discrepancy it would be advisable to
run the simulation again, restricting the movement of magma back into a cell it has just
vacated during each horizontal loop of the magma algorithm (Figure 7). Alternative
grid sizes should also be considered since the figures above are created on a grid size of
64 × 64, which may not be large enough to exclude the effect of the applied boundary
conditions.

In Section 4.4 and the 2011 paper by Piegari et al. an axial symmetry was applied
to the model manually through the adaptation of the algorithm in Figure 7. This was
due to the physical property that in many cone-shaped volcanoes, the magma chamber
favours a central path. Figure 25 shows the likelihood of magma in each of the cells of
the grid being involved in an eruption, with the blue end of the scale representing the
least likely and the red, the most likely.

Figure 25: Distribution of the Magma involved in an eruption across the grid - (a)
representing a simulated model without imposing additional stress on cells containing
magma, (b) representing a simulated model with the additional stress on magma cells.

The numbers on the colour bar correspond to thousands of eruptions.

This figure shows a natural preference to a central path, produced by the additional stress
of the magma onto the walls of the magma chamber. Not only does this alleviate the
need to impose an axial symmetry on the grid, it uses a well known physically property
of magma that imposes the property naturally. In the VEI index, volcanoes favouring
central craters make up 61% of volcanoes in the list,[2] and so in future work this model
could be applied to, and focused on, volcanoes such as those. Relating this analysis
to the result that an increase in δ leads to larger eruptions more commonly occurring,
as shown in Figure 21, this makes sense. In Figure 25(a) where the distribution of
magma cells involved in an event is largely congregated in the top sixth of the grid, it
would be expected that the most common eruptions are of small size. On the other
hand, the distribution shown in Figure 25(b) shows a much wider spread of distribution
showing that, in comparison to the other grid, cells lower down are much more likely to
be involved in an event, hence resulting in eruptions of much larger size.
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7 Conclusions and Future Directions

This report has reviewed, analysed and developed the recent model produced by Piegari
et al. with a focus on the mathematical properties of the model relating to volcanic
activity. Having written the computer model replicating the results of Olami, Feder and
Christensen, Chapter 2 focused on verifying results in the literature, in order to use this
as the underlying model upon which the volcano model was later produced. Following
this work, it was then possible to alter and adapt the computer code to incorporate the
addition of a magma, reproducing and identifying significant results from both the 2008
and 2011 papers by Piegari et al. This background investigation, and the code produced,
facilitated further consideration of the model and the implementation of a further and
more detailed analysis of the interaction between the magma and stress fields. These
results were then analysed and cross examined against known physical properties of
volcanoes, and the outcomes of this advancement to the model were then presented in
Section 6.

Throughout the work on this model, a few discrepancies occurred when reproducing
some of the work by Piegari et al. Contact was made with the first author and some of
theses discrepancies were successfully addressed, allowing for an update of the model,
based on their feedback. However, in some cases there remained difficulties in repli-
cating the precise numerical results from the Piegari model. Nevertheless, the patterns
obtained from the current model, such as the power law clearly displayed in the probabil-
ity density of eruptions of given size, were in keeping both with Piegari’s results and the
patterns shown in numerical data from volcanic statistics. In their 2008 paper, Piegari
et al. recognised that “a quantitative comparison with our probability distribution can
not be made” and therefore we concluded that our model was working efficiently, despite
the lack of exact numerical agreement.

Section 6 sets out the details of the advancement made to the Piegari model. Nei-
ther new statistics nor laws regarding volcanic eruptions were discovered, although the
results of Figure 21 do show small variations of the power law; rather the key finding
was the effect the dependence between the magma and stress fields had on the interior
of the magma chamber. The results negated the need to implement an imposed axial
symmetry on the magma field, since incorporating this physically appropriate variable
in the model produced a central conduit naturally. This is important for future work,
since over 61% of volcanoes display this phenomena.

Prior to a paper being written on the findings of Section 6, the results of longer runs must
be obtained and analysed to further verify the results achieved. In addition the width
of the reservoir warrants further consideration, and a check made for the consistency of
the results for varying widths. However, the results so far support the intuitive idea of
a central conduit within the magma chamber. Once these results have been verified, a
radial stress zone would be the next obvious step to consider, as this would produce a
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more physically precise adaptation of the model.

In light of the results obtained, the works undertaken have made significant adapta-
tions to the Piegari model, which could be implemented in the development of future
work in this field. It is considered that the findings of the report add to the knowledge
base and will assist in developing further understanding of some of the physical proper-
ties of volcanoes. Given the impact of major volcanic eruptions and the large numbers
of people living in close proximity to volcanoes, any advancement in understanding and
in the ability to predict major events will be of benefit.
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