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Abstract

From about 7000 to 4000 BC in Europe, the transition from the Mesolithic to the Neolithic
era occurred. This was a key part of human history and saw the change from hunting and
gathering to agriculture and stock breeding. This allowed for the support of a much larger
population. Radio carbon dates and archaeological evidence suggest the source of the spread
of farming was in the Near East. Processing of said radiocarbon dates has allowed us to
produce a mathematical model which is presented here. All computations were performed
with MATLAB.
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Chapter 1

Introduction

1.1 The Stone Age

The Stone Age itself contains three main time periods; the Paleolithic, the Mesolithic and of
course, the Neolithic. This covers a broad period of time from around 2.5 million years ago
where Homo habilis started using the earliest stone tools (William et al., 2012) extending
up until around 3000BC in Europe with the start of the Bronze Age and the advent of
metalworking (Gimbutas , 1973). Figure 1.1 shows the timeline of the three eras of the
Stone Age.

Very recent research actually suggests the earliest stone tools came around 3.3 million years
ago, this date pre dating the first members of the Homo genus (Callaway , 2015). This has
proved shocking and leaves a lot of questions open about that time period; if the Stone Age
is to continue to meet its definition then it is possible the beginning of the Stone Age could
be moved back.

Figure 1.1: Timeline of the Stone Age showing some major events including the invention
of writing, which signalled the beginning of history, before which, we call prehistory.
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1.1.1 Paleolithic

The Paleolithic era spans from the beginning of the Stone Age about 2.5 million years ago
to around 20,000 BC. Many significant advancements were made throughout this period,
starting with homo habilis, by the end of this era, early homo sapiens had evolved. Humans
generally lived as nomadic hunter and gatherers in only very small groups with no leader,
though groups with more advanced food storage techniques were larger and occasionally had
leadership structures (Nettle and Romaine , 2002). This clearly highlights the link to having
a stable food supply being necessary for a larger population.

1.1.2 Mesolithic

The Mesolithic is the period up until the advent of agriculture, and hence varies considerably
in different locations. The start of this era is associated with the end of the last ice age.
Technologies had advanced considerably by this point, including the first small composite
flint tools and fishing tackle. For Europe, where this report is concentrating on, the transition
from the Mesolithic began at around 7000 BC.

1.2 Neolithic

The arrival of the Neolithic to Europe was a key period in the history of the European
population, specifically the introduction of agro-pastoral farming (the growing of crops and
the raising of livestock). This allows for a much larger population to be supported, in-fact
50 times larger (Davison et al., 2009). The Neolithic era was the last part of the Stone
Age. There were points where the Neolithic can be pointed to originating from all over
Earth however there are variations in advances associated with different Neolithic societies.
As well as agro-pastoral farming, the advent of pottery making and making use of polished
stone and bone tools and large-scale manufacture of ceramic ware. Different regions had
some of these advancements as can be told by the radiocarbon data. An example being
the Neolithic culture in the Levant, Upper Mesopotamia, Anatolia (9800-7500 BC) where
evidence shows that wheat and barley were cultivated there and permanent houses with
stone foundations were used. At these sites however there is no evidence of pottery (Perles
, 2001).

Figure 1.1 below shows some of the known source sites for the Neolithic but for this paper
in particular we are interested in Europe and so attempt to create a model based upon the
source in the Neart East at Jericho. Davison et al. (2009) suggests there is another source
that has an impact on Europe in the Ural mountains at 8200 BC. While keeping this in
mind, we are only looking here at the Near East source.
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Figure 1.2: Shown in green are some of the known source sites for the Neolithic. The
blue arrows indicate which direction the Neolithic population spread from its related source.
The dotted green area in Sub-Saharan Africa is such because the exact source location is
unknown. (Diamond J., Bellwood P., (2003). Farmers and Their Languages: The First
Expansions, Science 300 5619).

One interesting point is to look at the arrival of the Neolithic into Spain. There are two
possibilities here, those being whether it arrives first from throughout Europe or from across
the Mediterranean in Africa. Essentially this would cause two spreads to be occurring in
Western Europe which can change results considerably. The comparison to radiocarbon
dates allows us to make a conclusion.

Figure 1.3: Various different Neolithic artifacts, including axe heads, bracelets, chisels and
polishing tools. Stone implements are identified as Neolithic as they are polished.
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Chapter 2

Modelling

The underlying process in which the Neolithic population spreads through Europe can be
considered as a ’random walk’ process. This is irrespective to the real world mechanism of the
spread however there is considerable interest in said mechanism. This remains controversial
and there is no agreed conclusion here. Early on, the idea of direct migration of the farming
population was used to create a wave of advance (Ammerman and Cavalli-Sforza, 1973).
This could be viewed as the farmers either overwhelming the hunter-gatherer population
or simply converting them (Price, 2000). Alternatives views include the indigenous hunter-
gatherers adopting Neolithic attributes through the diffusion of cultural novelties through
intermarriages and assimilation (Thomas, 1996). Work recently with genetic evidence seems
to favour cultural transmission (Haak et al., 2005).

The ’random walk’ process is such that at each point in time, each individual will take a step
in any given direction with equal probability. Basically they are equally as likely to take a
step forwards as they are to take a step backwards, left or right. This leads to an isotropic
random walk. Figure 2.1 demonstrates a simple example.

Figure 2.1: A simple example demonstrating the ’random walk’ process. Eight different
paths are shown progressing in time. At each time step they have an equal probability of
increasing by one or decreasing by one.
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Considering the spread as a ’random walk’ process, mathematical modelling of it can be
based on a reaction-diffusion equation.

2.1 Reaction - Diffusion

Reaction-diffusion equations are mathematical models used to explain the concentration of
some variable (say human population or gas) and how it changes over time with respect
to two process. Firstly, a reaction process, commonly a chemical reaction in which one
substance is being created or in our case, the reproducing Neolithic population and secondly,
a diffusion process. The diffusion process is what causes the concentration to spread out; a
high concentration of gas in one corner of a room gradually spreads throughout the room.
Again, in our case, it can be thought of as the Neolithic population migrating gradually
through Europe.

Solutions of such equations can give a travelling wave, i.e. a propagation front which advances
at a constant speed (in a homogeneous and one-dimensional habitat) with the relevant
variable equal to a constant value (Murray, 1993). This is ideal as this type of spread of
agriculture has been confirmed previously (Ammerman and Cavalli-Sforza, 1973).

Davison et al. (2009) looked at the European Neolithic sites in the radiocarbon dates dataset
(that are associated with the source at Jericho) and compared the distance from the source
to the date associated with each site; to which you would expect to see a linear relationship
if a constant spreading speed is present. Figure 2.2 shows said relationship.

Figure 2.2: Sites associated with the Near-Eastern source at Jericho show a reasonable
correlation of C = −0.77 with a mean speed of V = 1.1±0.1km/year. (Davison et al., 2009)

While not a very tight relationship, this is what is expected. The landscape in Europe
is by no means homogeneous, so we would certainly expect varying propagation speeds in
different locations. Take for example, mountainous regions like The Alps, here you have
much decreased accessibility to humans and therefore spreading here would be very slow in
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comparison to low altitude terrain. Major rivers would act in the opposite way, and increase
the accessibility down the river, as well as being a very suitable place for settlement (Davison
et al., 2006).

This leads us on to use the FKPP equation and variants upon it to describe the intricacies
detailed above.

2.2 Our Model

2.2.1 The FKPP Equation

The Fisher-Kolmogorov-Petrovskii-Piscounov equation (named after the four mathemati-
cians who did early work with this equation) was first considered by Ronald Fisher in 1937
as a way to describe the spatial spread of an advantageous allele and explored its travelling
wave solutions (Fisher, 1937). The uses for this equation have obviously far extended beyond
just looking at alleles; these equations occur in many different fields including ecology, com-
bustion and of course population dynamics. It is an example of a reaction-diffusion equation
and the one used for our model. In its basic form it is given in Equation 2.1.

∂u

∂t
= ru(1− u) +D

∂2u

∂x2
, (2.1)

u is the value of the quantity which is spreading over the one spatial dimension, x, in time,
t. D represents the diffusivity, that is, how fast the spread takes place. Lastly r simply
represents some parameter.

As mentioned earlier, the solution in the form of a travelling wave which propagates at
constant speed, V . This is a well known result when working with these equations and is
given by Equation 2.2 to a first order approximation.

V = 2
√
rD, (2.2)

2.2.2 Simplistic 1 Dimensional Model

To begin with, we create a model in 1 spatial dimension only. This is important to allow us
to have a good understanding of our model before generalising it to a 2nd dimension. The
FKPP equation (Equation 2.1) is altered slightly for our needs, introducing a new parameter
that we require.

∂N

∂t
= γN(1− N

K
) +D

∂2N

∂x2
, (2.3)

Firstly we are using N to represent the Neolithic human population (just more inherently
logical variable than u for our case), we now have two parameters, γ and K. These represent
the intrinsic growth rate (reproducing population) and the carrying capacity of the land
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respectively. That first (’reaction’) term collectively models the increasing population with
respect to fact there is a limit in the carrying capacity.

If we look at the case where N reaches the same value as K, we have

γN(1− K

K
)

which is clearly going to have a value of 0. At this point this term would no longer contribute,
which is as exactly as we would like. If the value of N is somehow larger than the carrying
capacity K, then we would have

γN(1− K + a

K
)

where a is a positive number representing how much larger N is. Clearly we have a negative
value here, hence this term would decrease the population until it is at the carrying capacity
value. Again, this is exactly what we would like.

Figure 2.3: Here, K = 5 and two lines are shown, the red line representing the initial value
of N = 2 and the blue line representing the initial value of N = 8. Over time, they increase
and decrease respectively to the carrying capacity in accordance with the first term on the
RHS of Equation 2.3.

Implementing this carrying capacity parameter does not affect the speed of propagation, V ,
so under our variables, we have

V = 2
√
γD, (2.4)

The second (’diffusion’) term represents the migration of the Neolithic population. The
parameter D is the diffusivity and can be altered to affect the speed of propagation.

For our model, the initial distribution of N is a truncated Gaussian and we adopt a numerical
scheme with centred differences in space and evolves using an explicit Euler time step with
forward differences in time.

8



Figure 2.4: The wave front is shown here progressing forward over time, and is shown at
equal time intervals. The initial distribution is shown at the far left, and the farther right,
the later in time. A carrying capacity of K = 20 was used here with γ = 0.02 and D = 6.25.
As time goes on, a plateau is forming at the carrying capacity. It looks as though the wave
front is moving at roughly constant speed.

In Figure 2.4 we plot at equal time intervals, the advancing wave front. The value of
N increases at each point until it reaches the carrying capacity, which is as expected and
explained above. Due to this we start to see a plateau forming over time at this value, and as
time goes on, this plateau would increase in size. Basically this is showing that between that
point in space and the source, the population has reached the maximum allowed. By eye-
balling the distance between each plot, we can see that the wave front is moving at roughly
a constant speed. We will explore the propagation speed in more detail in Section 2.2.4.

At this stage, we understand the model and what each term contributes to the equation.
We have seen what we expect when running our model in the simple 1D case and are thus
confident to now generalise this to 2D.

2.2.3 Generalising to 2 Dimensions

At this stage, we now implement zero flux boundary conditions. That is ∂N/∂n = 0, where
n is the normal to the boundary. This does not affect our results in any significant way
because of the fact the the boundary is in the sea. The spread of the Neolithic population
should then not reach this boundary anyway.
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Our equation is now as follows

∂N

∂t
= γN(1− N

K
) +D∇2N (2.5)

Again here, before adding further complexities, we want to ensure we understand exactly
what is happening with the model in order to be able to implement any future changes.

Figure 2.5: The model here running in 2D. It is shown at 4 different points in time, with the
source at the centre. The plateau is shown forming similar to the 1D case and it is apparent
that the wave front keeps a constant width. Here blue represents 0 and dark red represents
the carrying capacity value, k.

Now at this stage in the model, the source has been made so that its location can be changed
(whereas in the simple 1D model, it was simply at x = 0). This will enable us to set it to be
at Jericho later. As hoped, we see similar features as we did previously, in Figure 2.5 we can
see a similar plateau forming and increasing in size through time as N reaches the carrying
capacity value, K. This gives us a good indication that the model is working properly based
on our understanding from the simple 1D case. Another feature that now is clear, is that the
width of the wave front looks to be constant (in Figure 2.5, that being the radial distance
from the dark blue edge, to the edge of the dark red).
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One thing that is no longer so clear, is whether the wave is propagating at a constant speed.
It therefore makes sense to look at this in more detail, to see if this is the case.

2.2.4 Checking the Propagation Speed

Before going on to implement the landscape, and bring in all the extra detail to our model,
we need to ensure it is working as expected. Checking that propagation speed is what we
would expect it to be based on our approximation using Equation 2.2. This speed is a
fundamental part of forming our model, as it is one key quantity that can be taken from the
radiocarbon data and implemented through the values we choose for our growth rate, γ and
our diffusivity D.

At this stage, it is not accurate to just eyeball the plots and must look at this in a more
refined way. At each time step, we look at all the values of N where y = 0 and x > 0 (due to
the fact this spread is taking place uniformally in all directions), and then select the point
that falls in a small range centred around N = 0.1K. We then know this point will be on
the wave front and exactly the distance, r, that we are from the source. We can then look
at how r changes over time where we should expect a linear relationship.

Figure 2.6: The distance of the wave front from the source is plotted here as it increases
over time. Excluding some noise, a straight line is clearly visible. The gradient of this line,
m = 3.31.

Shown in Figure 2.6 is a plot over time of the distance from the source to the wave front.
There is substantial noise right at the start, this is expected as the initial distribution for
the population gradually changes into the expected shape of the travelling wave. After this
and until the spread starts to reach the boundary, there is a clear linear relationship, which
indicates the constant speed we are looking for. Briefly looking at Figure 2.7 where dr/dt
is plotted over time, we can see this matches what we have in Figure 2.6. There is a large
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peak right at the beginning and this noise decreases gradually.

Figure 2.7: This plot shows how dr/dt varies over time. There is a lot of noise which gets
smaller over time, but dr/dt stays around one value as expected.

Now by using MATLAB’s linear regression tool, we obtain a value for that constant speed
of propagation. This returned

V = m = 3.31

.

In this 2D model, we set γ = 0.02 and D = 100. Now using Equation 2.4:

V = 2
√
γD =

√
0.02 · 100 = 1.41

While this value is not exact, it is reasonable and is correct to order unity as expected under
the approximation. Confident our model is working as expected, the next step is to start to
implement real world features and apply it to the spread of the Neolithic.

2.2.5 Implementing the Landscape

Due to the inhomogeneity of the land in Europe, we know that two things must vary, the
diffusivity D, and the carrying capacity K. Certain regions would prevent a population from
spreading or settling at all, an obvious such location being the seas. To do this, we need to
alter Equation 2.5 slightly.

∂N

∂t
= γN(1− N

K
) +∇ · (D∇N), (2.6)
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This is a simple change to our model, as it actually only involves the addition of an extra
term. By a simple vector identity, the last term becomes

∇ · (D∇N) = (∇D · ∇)N +D∇2N

The last term here is the same term we had previously in Equation 2.5 hence we only need
to add (∇D · ∇)N into our model to have the same result.

It is important to note that clearly, K and D are now functions of position rather than
simply constants. Before implementing the landscape of Europe, it makes sense to do one
final test with a varying diffusivity to see if the desired effect is achieved. To test this, we
implement a simple function for D, with a maximum value at one corner of the domain,
and minimum at the opposite corner and a gradually reducing slope between as shown in
Figure 2.8. That is

D = D0(1−
x

Lx

) +D0(1−
y

Ly

)

where Lx and Ly are the widths of the domain in the x and y directions respectively.

Figure 2.8: A simple example of a function for the diffusivity D with maximum value at the
lower left corner of the domain, and minimum value at the upper right corner.

Now as before, we run the model and plot at several different points in time (shown in
Figure 2.9). The spread is now clearly non uniform and there is an increased speed of
propagation in the lower left corner of the domain, and a slowed speed of propagation in the
upper right. This is as expected and shows we can easily alter the speed of spread through
different regions of Europe by simply increasing or decreasing the value of D at each location.
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Figure 2.9: 2D model running with variable D defined as above. The spread clearly takes
place faster in the lower left quarter of the domain, where the values of D are higher. This
is clearly visible in the 4th image where the spread has reached the boundary but has not
elsewhere.

Now we are prepared to set up our model for the Neolithic spread in Europe. We first need to
choose our grid spacing in two dimensions on the Earth’s (approximately) spherical surface.
We choose a grid spacing of 1/12 degree (which varies depending on latitude between 2-8km)
as done by Davison et al. (2009) with boundaries of the computational domain set at 25◦N
and 75◦N, and 15◦W and 60◦E. This domain, along with the European coastline is shown in
Figure 2.10.

The environmental factors taken into account in our model are the altitude and coastlines.
Both will be taken into account by altering the diffusivity values at certain grid points.
Before detailing that, we need to get some initial values for our parameters. As mentioned
in Section 2.2.4, the propagation speed is important and hence it is the focus of our model
due to the fact this quantity can be easily linked to the radiocarbon age used to date the
arrival of the wave of advance. A first order approximation of this speed of advance, as given
in Equation 2.4:

V = 2
√
γD

As this depends upon only the intrinsic growth rate and the diffusivity, it is possible to
calculate values of these parameters.
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Figure 2.10: Plot of the European coastline in the computational domain. Coastlines defined
as when Altitude is zero.

Estimations of these parameters has been done in many past works and we will use these
values in our model. We take the intrinsic growth rate of a Neolithic population as γ =
0.02 year−1 (Birdsell, 1957). Then the mean speed of the wave front propagating through
Europe of V ≈ 1 km/year gives the background value of the diffusivity D = 12.5 km2/year
(Davison et al., 2006). The background value for the carrying capacity K, is adopted as
3.5 persons/km2 (Ammerman and Cavalli-Sforza, 1973).

Now there are two scenarios where the diffusivity and carrying capacity values are affected.
That is at high altitudes, where farming is impractical and hence a farming Neolithic pop-
ulation cannot be supported and at coastlines heading into the sea which are obviously
incapable of supporting the human population. D and K need to tend smoothly to zero for
all of these locations as one would reasonable expect (and especially to avoid instabilities
in the numerical model). We take altitudes of 1 km and above to be land where farming is
impractical, and start smoothly tending to zero within 200 m of this altitude. This is done
by making D and K proportional to

1

2
− 1

2
tanh(

a− 1000 m

200 m
)

where a is the altitude in metres as shown in Figure 2.12.

From the coastlines, the diffusivity tails off exponentially which allows the population to
go out a short distance from the shore and this gives the model a way for the spread to
reach Britain and Scandinavia from the continent. Davison et al. (2009) fine-tuned this
exponential tail to reproduce the delay of the spread crossing the seas into Britain. This
exponential tail is shown in Figure 2.13.
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Figure 2.11: Visual representation of the altitude data used, altitude in metres.

Figure 2.12: The change in diffusivity and carrying capacity based upon altitude.

Figure 2.13: The change in diffusivity based on distance from the coast.

After this, we have a set of diffusivity and carrying capacity values for each particular grid
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square representative of the landscape of Europe which can be used in our model. These are
both shown in Figure 2.14.

Figure 2.14: Visual representations of the values for diffusivity and carrying capacity
throughout Europe. The exponential tail from the coastlines can be seen and here it is
visually clear that the population will be able to spread from the continent to Britain with
these values. It is also clear the spread can cross from Africa to Spain. Red represents large
values, and blue small.

We use the source location and start date as in Davison et al. (2009). That places the start
location at 35◦N, 39◦E with propagation starting at 6700 BC. Our model is shown running
in Figure 2.15 where four points in time are shown. The first point to mention here, is the
bottleneck through Turkey. Much of Turkey is high altitude terrain, leaving only a small
bottleneck along the Southern coast for the spread to pass through. This proved an issue
in actually getting the model in a situation where it would run and produce results. The
values for D have to be sufficiently smoothed out in order to not cause instabilities but not
so smooth that the bottleneck was not present.

The second point is the propagation wave reaching Spain through Africa prior to the wave
front arriving from Turkey. Not too much is known about the spread of the Neolithic
in Northern Africa and it is possible the diffusivity values associated with this region are
too high. This is something that we will consider when comparing our results with the
radiocarbon dates.
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Figure 2.15: Visual representations of the values for diffusivity and carrying capacity
throughout Europe. The exponential tail from the coastlines can be seen and here it is
visually clear that the population will be able to spread from the continent to Britain with
these values. It is also clear the spread can cross from Africa to Spain. Red represents large
values, and blue small.
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Chapter 3

Radiocarbon Dates

3.1 Selection of radiocarbon dates

The selection of dates used in this study were taken with permission from Davison et al.
(2009). There is a large number of dates available from all over Europe which will allow us to
look at our model’s accuracy throughout different regions. The data for Southern, Central
and Western Europe was originally from Shennan and Steele (2000), Gkiasta et al. (2003)
and Thissen et al. (2006). The Eastern Europe dates were taken from Timofeev et al. (2004)
and Dolukhanov et al. (2005). The treatment of the dates was completed by Davison et al.
(2009) and is described in more detail there but is summarised here.

The main problem in selecting the dates is that many of the archaeological sites considered
have many radiocarbon dates; some up to 30-50. Each individual radiocarbon measurement
has an associated laboratory error, which was then converted into a calibration error σi,
however this laboratory error is not really appropriate as we want to characterise the accuracy
of the date compared to the true age of the archaeological site. This meant it was logical to
establish an estimate of a minimum error and this was used for treating sites with multiple
dates. An global minimum error of σmin = 160 years was obtained from well explored,
archaeologically homogeneous sites with a large number of tightly clustered dates.

There were then several strategies used to reduce each site to one or two dates and give each
an associated error value. Firstly and most simply, if a geographical location had only one
radiocarbon measurement associated with early Neolithic activity, then that date is taken
to be the most likely date for the arrival of the Neolithic. The error associated with this
date is taken to be the maximum of the calibration error obtained at the 99.7% confidence
level and the global minimum error just discussed. Next if there are only a few (less than 8)
dates measurements for a particular site, and all those dates are all within the calibration
error, then their weighted mean value is taken to be the most likely date. Uncertainty in
this scenario is characterised with an error equal to the maximum of the calibrated errors
sigmai, the standard deviation of the dates involved, and the global minimum error.

In the circumstance where there are a series of dates that cluster in time but do not agree
within the calibration error, a different approach is needed depending on the number of dates
available. If there are only a small number of dates (again, less than 8), then the mean of
the dates is taken. Reasoning being that any more sophisticated statistical technique is not
appropriate with such a small sample size. The error is chosen in the same was as previous.
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Figure 3.1: Examples of histograms from many Neolithic sites and how their date was
determined. (a) There are a large number of dates from Ilipinar which are approximately
normally distributed. They are not within the calibration error so the χ2 criterion is used
to calculate the age of this site. (b) There is clearly two distinct peaks here, suggesting
multiple waves of Neolithic settlers through this site. Each peak is treat independently via
the χ2 criterion. (c) This site has 4 dates which very tightly cluster around a single date.
The weighted mean is taken here. (d) There is no clear peak in the dates from Mersin and
are spread out over a wide period of time. The oldest date is taken here to represent the
arrival of the Neolithic. (e) Similar to (d), no particular peak, with a wide spread of dates.
(f) There are only 7 dates from this site, which means there are not a sufficient number to
apply the χ2 criterion therefore the mean date is used.

If the cluster of dates is large (more than 8), the χ2 statistical test can be used to calculate
the most likely date, T , from the sample. The exact technique is described in detail by
Dolukhanov et al. (2005). The algorithm is as follows:

• Calculate

T =

n∑
i=1

ti/σ̃
2
i

n∑
i=1

1/σ̃2
i

• Calculate the statistic

X2 =
n∑

i=1

(ti − T )2/σ̃2
i

• Compare X2 with χ2
n−1, if X2 ≤ χ2

n−1 then T is taken as the most likely date for the
arrival of the Neolithic. If not, then the dates that provide the largest contribution to
X are discarded one at a time until they can be compared in this way.
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with σ̃ = max(σi, σmin). That is the maximum of the calibration errors of all the individual
dates and the global minimum error.

Lastly, for sites where there are many radiocarbon dates that do not cluster around a single
date, a histogram was analysed. There are two main possibilities, the first being that the
data have a wide range with no peak. This would suggest that there may have been sustained
Neolithic activity at the site and hence the oldest date was chosen as the most likely. The
second possibility is that there are two or more peaks; this suggests that there may have
been multiple waves of settlement at this location. Multiple dates were given to these sites
and were calculated by treating each peak independently.

3.2 Comparison with our model

We are now in a position where we can compare the results of our model with the radiocarbon
dates. The quality of the model is assessed by considering the difference in time between the
model arrival time, Tm at each site, to said site’s associated radiocarbon date T , obtained
as described above. We calculate the time lag for each site:

∆T = T − Tm

and will use various plots to judge which sites are modelled badly and how the model could
then be improved.

Figure 3.2: A Histogram of the time lags for each site. The ∆T values are clearly not
normally distributed; there is a distinct positive skew.

Figure 3.2 shows a histogram of the ∆T values and highlights a clear positive skew. Ideally,
we should have a normally distributed set of values, which would imply on average that the
model was correct. The positive skew shows that there are many sites for which the model
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is reaching too soon and possibly needs to be slowed down. In Figure 3.3, we look at all
the archaeological sites and place them into categories depending upon how inaccurate the
associated model time of arrival was. This enables us to clearly identify that there is a major
problem in Great Britain, as at almost all the sites here, the model arrived too soon. Most
likely this implies that there is not enough delay before the spread crosses the sea.

The sites which the model gets most incorrect however, are the sites in Eastern Europe. which
is expected based upon Davison et al. (2009) and the work which was done on identifying
a second source in Eastern Europe which many of these sites are attributed to. There are
also a large number of sites near the source at Jericho where the model is arriving too late.
These sites are not of much concern compared to Southern, Central and Western Europe
which is where our primary interest is.

For a more quantifiable figure on how well our model represented the Neolithic spread, there
are 125 archaeological sites which have ∆T ≥ 1000. There are 261 archaeological sites
which have ∆T ≥ 500, which means roughly 48.9% of the sites were modelled well (Taking
modelled well to mean a ∆T of less than 500).

Figure 3.3: Each subplot shows all the sites which are have a sufficient enough error from
the model. Green represents the model arriving too early at at that site, and red represents
the model arriving too late. There are a large collection of green sites in Great Britain.

As briefly discussed at the end of Section 2.2.5, the model reaches Spain first, from Africa.
This may be affecting some of the results for the sites in Western Europe and it is still
a controversial topic whether the Neolithic did reach Spain in this way. It is a valid test
for us to now suppress the spread through Africa by reducing the diffusivity in this region.
This was simply done by selecting a set region of longitudes and latitudes and halving the
diffusivity there. Figure 3.4 shows the updated diffusivity values. This will ensure the spread
reaches Spain first through Europe and we will see if there is any difference in the results.
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Figure 3.4: Updated diffusivity values with suppressed Africa.

Figure 3.5 is similar to Figure 2.15, only with Africa suppressed. It is clear by looking at the
3rd snapshot, that the spread did indeed in this scenario, reach Spain through Europe first.
We expect any improvements to the results will be marginal, as there are only a handful of
sites in the region which is affected by the arrival of ’two’ separate wave fronts. It will also
not improve upon the fact the model arrives in Britain too early, as shown in Figure 2.15,
the spread through Africa does not reach Britain first.

As expected, there is little change in the results, due to this only having a possible impact
in Spain and France. Figure 3.6 shows there are a few sites which have been modelled worse
in this scenario, and indeed if we consider the number of sites in each category again, we see
an increase. Under this model, there are 127 sites with ∆T ≥ 1000 and a total of 268 sites
with ∆T ≥ 500. This leaves us with 47.6% of sites modelled well. This is a decrease of 1.3%
suggesting that it is more likely that the spread did reach Spain first From Africa. This is
by no means a verifiable conclusion due to the fact we are dealing with just a handful of
sites in this region and there is sufficient room for future work on this question.
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Figure 3.5: Model running shown at 4 different snapshots in time, with suppressed Africa.
In this scenario, the wave front spreading through Europe reaches Spain first.

Figure 3.6: A few sites have different results in Spain and France. Mostly they have moved
into the ∆T ≥ 1000 category from the ∆T ≥ 500 category. Notably, this model is providing
worse results.
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Chapter 4

Conclusion

The complexities of the Neolithic era causes the spread to be very difficult to model. The
fact there are various types of Neolithic population who had advancements in some aspects
of this era, but not others mean it is very unlikely just one or two simple spreads took place
at this time. There is possibly room for more work in categorising the radiocarbon dates
into more types of Neolithic population which likely spread in different waves.

Our model proved fairly good in the Southern, Central and Western areas of Europe, but
had problems elsewhere, specifically Britain where the model arrived much too soon. The
added complexity of Britain being over the sea is more challenging to model, given little
information is known about humans seafaring ability during this period.

The question of whether the Neolithic arrived in Spain through Africa or from through
Europe needs further exploration, and has potentially some interesting results if so. Little
information is known on the Neolithic in Northern Africa and perhaps advents of slightly
different technologies could have taken place through this route and introduced those into
Europe through Spain. When suppressing Africa in our model, the results for some of the
sites in Western Europe got worse, suggesting it is more likely that the Neolithic did arrive in
Spain from Africa. We are dealing with such a small number of sites in this region however,
so it is not possible to conclude that this is the case.
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