
Mesogranulation in the quiet Sun

MAS8091: MMath Project

School of Mathematics & Statistics

Martin Chambers

Supervisor: Paul Bushby



Abstract
The central object in our solar system is the Sun. However, a lot is still not un-
derstood about convective processes within the sun. Mesogranulation is a theorised
scale of convection lying between granulation and supergranulation. Since its dis-
covery in 1981 by November & Simon its existence has been intensely debated within
the solar community. Many researchers, using a number of different methods, have
discovered a wide range of results. One of the main techniques used to study the
solar photosphere are tracking algorithms. The validity of tracking algorithms is
often questioned, with many researchers suggesting that the discovery of mesogran-
ulation was down to averaging processes in the algorithms. Thus, I am going to
study a simple model of convection within a box in an attempt to answer two major
questions: Does mesogranulation exist?; are tracking algorithms a good method to
pick out such a scale?
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1. Introduction

The solar interior is built up of four layers defined by the different processes that
occur there. The innermost region of the Sun is the core in which energy is created
via nuclear fusion. This energy is forced outwards into the above layer; the radiative
zone. Here, via a random walk, radiation is transported to the next layer. This layer
is called the tachocline and is a very thin layer between the relatively calm radiative
zone and unstable solar convection zone. In the solar convection zone material moves
by convection and the fluid motions are visible at the surface as granules and super-
granules. The solar convection zone is an area of the Sun highly studied, but with a
lot of questions left unanswered. The solar interior is shown pictorially in Figure 1.1.

Figure 1.1: A diagram depicting the main layers within the sun. Reference: solar-
science.msfc.nasa.gov/interior.shtml

Granules are a cellular like pattern that cover the surface of the Sun. They occur
naturally as a result of Rayleigh-Bénard convection, that is, a layer of fluid heated
from below develops a regular pattern of convective cells. The heated plasma rises,
spreads out, cools, and then descends down intergranular lanes. It is this strong
cooling of the Sun’s surface that drives solar convection. In the Sun this pattern is
called granulation. The image in Figure 1.2 illustrates this. They are notably the
most understood flow within the solar convection zone, being well reproduced in
numerical simulations and having many studies dedicated to them. A typical gran-
ule is ≈ 1 Mm across, where ‘Mm’ represents a megametre (1000 Km), and have an
average lifetime of ≈ 10 minutes (Title et al. 1989). Supergranules are a much larger
scale motion superimposed upon granulation with an approximate size of 30 Mm
across and a lifetime of several days. These fluid motions are illustrated in Figure 1.3.

This brings us to mesogranulation. It is a theorised scale thought to occur in be-
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CHAPTER 1. INTRODUCTION 2

tween granulation and supergranulation. It was first discovered by November and
Simon (1981) who noticed prominent vertical motions at scales of size ≈ 5− 7 Mm.
Mesogranulation has been measured many times by a range of researchers: Ginet
and Simon (1992), Chou et al (1992), Abdussamatov (1993) etc. However, its exis-
tence is of intense debate within the solar community. November (1994) suggested
that the term mesogranulation was misleading and that it was merely the “vertical
component of supergranular convection”. Strauss and Bonaccini (1997) stated that
mesogranulation was a more powerful extension of granulation. In addition, other
researchers found no conclusive evidence in the power spectrum at scales that would
correspond to mesogranulation (Wang 1989; Chou et al. 1991; Strauss et al. 1992).
Even those who have detected mesogranulation differ in their measurements of life-
time and size.

Figure 1.2: This image was taken from the Swedish Vaccuum Solar Tele-
scope and shows granulation on the surface of the Sun. Reference: solar-
science.msfc.nasa.gov/feature1.shtml

There are many methods implemented by previous researchers that have been used
to study the fluid motions at the surface of the solar convection zone. November and
Simon (1981) are considered to be the fathers of the most common method: tracking
algorithms. This method has been criticised as it is suggested that mesogranula-
tion is produced as an artefact of the algorithm (Roudier et al. 1999b; Rieutord
et al. 2000). A simple model was created by Matloch et al. (2009) which showed
that mesogranules were created by “weird consequences of averaging processes”.
Consequently, in order to prove mesogranulation exists, either correlation tracking
algorithms will need to be validated or a different technique used to detect meso-
granulation.
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Figure 1.3: A simple background on the convective processes that are occurring
in the solar convection zone. Granulation is the small scale flow near the surface.
Supergranulation is the larger scale flow.

In the solar convection zone, the overturning eddies tend to expel magnetic flux
(Weiss 1966). This magnetic flux exits from the granule interior and becomes con-
centrated as localised structures within the intergranular lanes (Lin & Rimmele
1999). This is a small scale dynamo mechanism that requires only the chaotic mo-
tions of solar convection. Therefore, it is unsurprising that local convective motions
can influence the magnetic field. Many observations have suggested that mesogranu-
lar cells expel a concentration of magnetic flux that accumulates preferentially at the
boundary (Cerdena 2003; de Wijn et al. 2005; Chaouche et al. 2011). Therefore, if
a scale in between granulation and supergranulation exists, then the magnetic field
distribution may help identify it.

In chapter 2, I will go into more detail about compressible convection and the gov-
erning equations in the model. Then, I will perform a power spectrum analysis to
see if there is evidence of mesogranulation in the flow. In chapter 4, I will present an
in-depth write up of the tracking algorithm. Chapter 5 will display and examine the
results of the algorithm. Finally, chapter 6 describes my discussions and conclusions.



2. Compressible convection

Convection within the Sun is of enormous importance, defining its internal structure
and impacting upon all of the behaviour at and above the solar surface. Therefore,
the aim of my dissertation is to investigate a basic model of convection. I wish
to answer the question of whether mesogranulation is present within the fluid and
determine if computational algorithms are a good method to detect its presence.
Furthermore, by applying these methods to a basic model I hope to provide a step-
ping stone that will pave the way for similar results in more complex models.

Many recent studies of convection have had one central idea: Cartesian models of
Boussinesq convection, in an electrically-conducting fluid are capable of producing
a dynamo which is similar qualitatively to that observed in the solar photosphere
(Cattaneo 1999; Cattaneo, Emonet, Weiss 2003). This Boussinesq approach has one
main limitation: it ignores the effects of compressibility, which, as observations have
shown us, is important in the solar convection zone. Several recent studies have
tried to fix this problem by creating models based on compressible convection that
incorporate as many of the relevant physical processes that occur within the Sun
as possible (Rincon, Lignières, Rieutord 2005; Vögler & Schüssler 2007). Although,
compressible convection models are much more complex numerically than Bousinesq
models recent studies have shown it is possible to create convectively driven dynamo
action within a layer of fluid. However, as many of the previous compressible con-
vection models have been carried out in small computational domains, they were
not able to investigate scales larger than granulation.

2.1 The simulation
I am going to study the evolution of an electrically-conducting, compressible fluid
heated from below. The simulation data is taken from Bushby & Favier (2014) and
is based on solving fully compressible convection within a box. It is a simple ide-
alised portrayal of convection aimed at mirroring the flow within a region close to
the surface of the quiet Sun.

The box itself is a Cartesian domain (x, y, z) of dimensions 0 ≤ x, y ≤ λ and
0 ≤ z ≤ 1. There are two different data sets. For data set 1, λ = 20 Mm and
any magnetic elements have been ignored. This means that the box for data set 1
is 20 Mm by 20 Mm by 1 Mm. For data set 2, λ = 10 Mm and a magnetic field
has been introduced. Hence, both models are large enough to analyse behaviour at
scales larger than granulation. The z-axis points vertically downwards, parallel to
the constant gravitational acceleration, g = gẑ, which implies that z = 0 and z = 1
correspond to the top and bottom of the box, respectively. Furthermore, the sides
of the box are horizontally periodic meaning that if fluid exits through any side of
the box it will enter through the side opposite to it. The top and bottom of the
box are impermeable and stress-free meaning that fluid cannot leave through either
surface and no stress forces exist at those boundaries.
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To initialise the hydrodynamic simulation, a small random perturbation to the tem-
perature distribution is imposed. Hence, the box is heated from below, with the top
and bottom of the box held at fixed uniform temperatures. Finally, a seed magnetic
field is introduced to the flow to initialise dynamo action. A basic illustration of the
box that highlights the concept of the model is shown in Figure 2.1.

Figure 2.1: A diagram to graphically represent the simulation. The top and bottom
of the box are impermeable (uz = 0) and stress-free (∂ux/∂z = ∂uy/∂z = 0). Both
the top and bottom have fixed uniform temperatures, T0 and T0 + ∆T respectively,
with ∆T ≥ 0. The sides of the box are horizontally periodic (f(x+ λ, y + λ, z, t) =
f(x, y, z, t)).

I have plotted the temperature map at four different depths within the box, shown
in Figure 2.2. The plot exhibits a similar behaviour to the Sun’s solar surface, where
we also see a well defined granular pattern just below the surface (z = 0.2), defined
by warm upflows and a surrounding network of cooler downflows. Similarly, the
lower depths show behaviour similar to the solar convection zone, where the well
defined granular patterns become weaker, less defined and the scales become larger.
Therefore, although this is a simplistic model, the results from the simulation can
be related in a qualitative way to the solar photosphere.

It should be noted that, although, the model can be related quantatitvely to the
solar photosphere, it has one main drawback. Computational constraints mean that
we can only model scales slightly larger than granulation. Therefore, we have no
idea how larger scales such as supergranulation will impact upon the flow.
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Figure 2.2: The temperature map for data set 1 at four different depths for time
1. The top left image shows the evolution of the fluid just below the surface. The
temperature maps in the top right and bottom left show depths z = 0.4 and z = 0.6,
respectively. The bottom right shows the fluid just above the bottom.

2.2 The governing equations
The properties of the fluid are described by many variables such as thermal diffu-
sivity, K, the magnetic diffusivity, η, the magnetic permeability, µ0 and the shear
viscosity, µ. The unperturbed uniform, density at the upper surface is defined to
be ρ0, when there is no motion. In addition, specific heat capacities at constant
density and pressure are added; cv and cp, respectively. We can use these to define
the gas constant as R∗ = cp − cv, whilst γ = cp/cv. For all of these quantities, we
assume that they are constant throughout the fluid. The various parameters in the
governing equations are described in detail in section 2.3. The governing equations
follow Bushby & Favier (2014):

Under the above assumptions for the box and the fluid there are four governing
equations for the density ρ(x, t), the fluid velocity u(x, t), the magnetic field B(x, t)
and the temperature T (x, t). Let us start by defining the governing equation for
density. First, note that we can use conservation of mass, so that the density ρ(x, t)
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satisfies
∂ρ

∂t
+∇ · (ρu) = 0

for a fluid with velocity field u(x, t). Expanding this out using the product rule, we
obtain

∂ρ

∂t
+ (u · ∇)ρ+ ρ∇ · u = 0. (2.1)

The governing equation for the density is described by two terms. The first term,
u · ∇ρ, describes the changes in the density as material elements move from one
point to another whilst, ρ∇ · u is proportional to the divergence of the flow velocity.

Next, we derive the governing equation for momentum. This is complex due to the
fact that if we consider a blob of fluid, its momentum may change because of surface
and body forces. Therefore, let us first consider the surface force for the fluid. In
tensorial form the surface force is

σij = −P (x, t)δij + µτij,

where the rate of strain tensor is given by

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij∇ · u. (2.2)

Here, the rate of strain tensor corresponds to the ijth component of the viscous
stress. The body forces associated with the fluid are gravity and the Lorentz force
which occurs under the presence of a magnetic field. The Lorentz force is given by

FL = j×B,

where B(x, t) is the magnetic field, and

j =
1

µ0

∇×B,

where j(x, t) is the current density. This is Ampère’s law. Therefore, taking these
forces into consideration we can express the momentum equation as

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + ρgẑ + j×B + µ∇ · (τ). (2.3)

We can express µ∇ · τ as

[µ∇ · τ ]i = µ
∂

∂xj
(τij)

= µ
∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij∇ · u

)
= µ

(
∂2ui
∂xj∂xj

+
∂

∂xi
[∇ · u]− 2

3

∂

∂xi
[∇ · u]

)
= µ

(
∂2ui
∂xj∂xj

+
1

3

∂

∂xi
[∇ · u]

)
= µ

[
∇2u +

1

3
∇(∇ · u)

]
.
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Equation (2.3) is described by four terms: ρ(u · ∇)u, which is responsible for the
transfer of kinetic energy in the turbulent flow; ∇P , which is the pressure gradient;
ρgẑ, describes the gravity in the z-direction and, µ∇ · τ , is the shear stress.

We can represent the governing equation for the magnetic field using the induction
equation:

∂B

∂t
= ∇× [u×B− η∇×B]. (2.4)

This must remain solenoidal at all times, that is, ∇·B = 0. The induction equation
implies that any initial solenoidal field should remain for all t. However, this is not
always the case numerically. Because η is constant we can rewrite the second term
in the induction equation using vector identities:

∇× (η∇×B) = η

(
∇����

�:0
(∇ ·B)−∇2B

)
= −η∇2B.

Hence,
∂B

∂t
= ∇× [u×B] + η∇2B. (2.5)

The first term in (2.5) represents induction due to fluid motions and the second
term represents magnetic dissipation. It is important to rewrite (2.4) as (2.5) as it
is more stable numerically.

The last equation determines the time evolution for the temperature, T (x, t). This
couples to the other governing equations via the pressure, which satisfies the equation
of state for a perfect gas;

P = R∗ρT.

Hence, T can be written as

ρcv
∂T

∂t
+ ρcv(u · ∇)T = −P∇ · u +∇ · (K∇T ) + ηµ0|j|2 + µ

τ 2

2
. (2.6)

Here, ρcv(u · ∇)T describes the advection of heat in the system, that is, the heat
that is transferred by the flow of the fluid. Likewise, the other terms include P∇·u,
which defines the heating that is contributed by pressure, ∇ · (K∇T ) which is the
heat flux and, lastly, µτ 2/2 which is the amount of heat added to the system via
viscous friction.

2.2.1 Non-dimensionalising the governing equations

We are now in a position to non-dimensionalise the governing equations. The scal-
ings that have been used are

x→ x′; t→ 1√
R∗T0

t′; B→
√
µ0ρ0R∗T0B

′;

u→
√
R∗T0u

′; ρ→ ρ0ρ
′; T → T0T

′; P → R∗ρ0T0P
′. (2.7)

All the lengths have been scaled by 1 meaning that the domain has unit depth for this
dimensionless system. Additionally, it is sensible to introduce some non-dimensional
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parameters to simplify the final governing equations further. First, a dimensionless
measure of stratification is given by θ = ∆T/T0. Secondly, the polytropic index is
m = (g/R∗∆T )− 1. Thermal diffusivity is defined as κ = K/(ρ0cp

√
R∗T0), and the

Prandtl number is σ = µcp/K. Lastly, we define ζ0 = ηcPρ0/K. These dimension-
less parameters are discussed in detail in section 2.3.

Let us start with the equation for density as described in (2.1). Applying the scalings
in (2.7) gives

ρ0
√
R∗T0

∂ρ′

∂t′
+ ρ0

√
R∗T0(u

′ · ∇′)ρ′ + ρ0
√
R∗T0ρ

′∇′ · u′ = 0,

and with a simple division we obtain the dimensionless equation for the density:

∂ρ′

∂t′
= −(u′ · ∇′)ρ′ − ρ′∇′ · u′.

By applying the above scalings to the momentum equation we get

ρ0R∗T0ρ
′∂u

′

∂t′
=− ρ0R∗T0ρ′(u′ · ∇′)u′ − ρ0R∗T0∇′P ′

+ ρ0gρ
′ẑ +

µ0ρ0R∗T0
µ0

(∇′ ×B′)×B′ + µ
√
R∗T0∇′ · τ ′.

Dividing through by ρ0R∗T0 leaves;

ρ′
∂u′

∂t′
=− ρ′(u′ · ∇′)u′ −∇′P ′ + ∆T

T0

(
g

R∗∆T
− 1 + 1

)
ρ′ẑ

+ (∇′ ×B′)×B′ +
µcp
K

K

cpρ0
√
R∗T0

∇′ · τ ′.

This can be rewritten using the various dimensionless parameters:

ρ′
∂u′

∂t′
=− ρ′(u′ · ∇′)u′ −∇′P ′ + ∆T

T0

(
g

R∗∆T
− 1 + 1

)
ρ′ẑ

+ (∇′ ×B′)×B′ +
µcp
K

K

cpρ0
√
R∗T0

∇′ · τ ′.

Hence, by using the above dimensionless parameters the dimensionless governing
equation for momentum becomes

∂u′

∂t′
= −(u′ · ∇′)u′ − 1

ρ′
∇′P ′ + θ(m+ 1)ẑ +

1

ρ′
(∇′ ×B′)×B′ +

σκ

ρ′
∇′ · τ ′.

Next, we apply the scalings to the induction equation in (2.5):

B0

√
R∗T0

∂B′

∂t′
= B0

√
R∗T0∇′ × (u′ ×B′)− η

√
µ0ρ0R∗T0∇′ × (∇′ ×B′).

Dividing through and applying the dimensionless parameters to the above equation
we get

∂B′

∂t′
= ∇′ × (u′ ×B′)− ζ0κ∇× (∇×B′).
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The equation of state becomes

R∗ρ0T0P
′ = R∗ρ0ρ

′T0T
′,

and dropping the primes shows
P = ρT.

Lastly, the equation for heat becomes√
R∗T0ρ0T0cvρ

′∂T
′

∂t′
=−

√
R∗T0ρ0T0cvρ

′(u′ · ∇′)T ′ −
√
R∗T0R∗ρ0T0P

′∇′ · u′

+ T0K∇′2T ′ + ηρ0R∗T0|∇′ ×B′|2 + µR∗T0
τ ′2

2
.

Tidying this up shows

ρ′
∂T ′

∂t′
=− ρ(u′ · ∇′)T ′ − R∗P

′

cv
∇′ · u′ + K√

R∗T0ρ0cv
∇′2T ′

+
ηR∗

cv
√
R∗T0

|∇′ ×B′|2 +
µR∗√

R∗T0ρ0cv

τ ′2

2
.

Using the fact that R∗ = cp − cv = (γ − 1)cv, we can reduce the above equation to

ρ′
∂T ′

∂t′
=− ρ′(u′ · ∇′)T ′ − (γ − 1)P ′∇′ · u′ + K

ρ0cp
√
R∗T0

cp
cv
∇′2T ′

+
R∗
cv

η√
R∗T0

|∇′ ×B′|2 + (γ − 1)
µcp
K

K

ρ0cp
√
R∗T0

τ ′2

2
.

Again, the use of the dimensionless parameters defined above shows that

∂T ′

∂t′
= −(u′·∇′)T ′− (γ − 1)P ′

ρ′
∇′·u′+κγ

ρ′
∇′2T ′+(γ − 1)ζ0κ

ρ′
|∇′×B′|2+(γ − 1)σκ

ρ′
τ ′2

2
.

Therefore, with these deductions, we can drop the primes and hence the governing
equations for the density ρ(x, t), fluid velocity u(x, t), induction equation B(x, t)
and temperature T (x, t) in a dimensionless form are:

∂ρ

∂t
= −(u · ∇)ρ− ρ∇ · u, (2.8)

∂u

∂t
= −(u · ∇u)− 1

ρ
∇P + θ(m+ 1)ẑ +

1

ρ
(∇×B)×B +

κσ

ρ
∇ · τ, (2.9)

∂B

∂t
= ∇× (u×B)− ζ0κ∇× (∇×B), (2.10)

∂T

∂t
=− (u · ∇)T − (γ − 1)T∇ · u +

κγ

ρ
∇2T

+
κ(γ − 1)

ρ

(
σ
|τ |2

2
+ Fζ0|∇ ×B|2

)
. (2.11)
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Finally, boundary conditions are now set at z = 0 and z = 1. In dimensionless units,
the fixed temperatures correspond to T = 1 at z = 0 and T = 1 + θ at z = 1. Here,
θ = 3 meaning that the temperature differs by a factor of four within the box. The
magnetic field boundary conditions at z = 0 and z = 1 correspond to a vertical field
(Bx = By = ∂Bz/∂z = 0). The magnetic field is initialised from a small seed field
with zero net flux. In a hydrostatic case, a solution to the governing equations is
given by the equilibrium solution:

T = 1 + θz; ρ = (1 + θz)m; u = 0, (2.12)

which corresponds to a hydrostatic polytropic layer (see Matthews et al. 1995). The
values of m and θ are fixed as 1 and 3 respectively, as this ensures the solution is
far away from the convective stability boundary.

2.3 Model parameters
The evolution of the system is determined by various dimensionless parameters
which, as in Bushby & Favier (2011), are defined in Table 1. The first parameter
γ, is the ratio of specific heat capacities. For an ideal gas, γ = 1 + 2/f , where f is
the number of dimensions in phase space. Hence, as f = 3 a choice of γ = 5/3 is
appropriate for a monatomic gas. Next, the polytropic index is defined to be m = 1
as this implies convective instability within the fluid. The thermal stratification is
θ = 3. The Prandtl number is the ratio of momentum diffusivity to thermal dif-
fusivity. Within the solar convection zone σ � 1, suggesting that the system is
dominated by thermal diffusivity. However, as the model is simplistic and computa-
tional constraints restrict us, a value of σ = 1 is chosen for numerical convenience.
An appropriate value for the thermal diffusivity is κ = 0.00548.

Table 1: Non-dimensional parameters in the model (Bushby & Favier 2011, p.4).
Parameter Definition Description Value

γ cp/cv Ratio of specific heat capacities 5/3
m (g/R∗∆T )− 1 Polytropic index 1.0
θ ∆T/T0 Thermal stratification 3.0
σ µcp/K Prandtl number 1.0
κ K/ρ0cp(R∗T0)

1/2 Dimensionless thermal diffusivity 0.00548
ζ0 ηρ0cp/K Ratio of magnetic to thermal diffusivities 0.32

There are four important parameters focussed on in this model: one of them is
the mid-layer Rayleigh number, which is a dimensionless measure of how heat is
transferred in the fluid. If the Rayleigh number is below a critical value of ≈ 900 we
see that heat transfer is mainly in the form of conduction. If this value is exceeded
then the heat is transferred primarily via convection. This is important as we want
the fluid to be convective; that is, we want the Rayleigh number to be much larger
than Racrit. Therefore, the Rayleigh number is defined as

Ra = (m+ 1−mγ)(1 +
θ

2
)2m−1

(m+ 1)θ2

κ2γσ
, (2.13)
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and with the above parameter choices, Ra ≈ 300000 which ensures that the resulting
convection is energetic and time-dependent. When working with fluid models, it is
often worth observing the Reynolds number as it provides an idea of what measure
of turbulence is present in the flow. I have chosen the same definition as in Bushby
& Favier (2014):

Re =
ρmidUrms

κσ
, (2.14)

where Urms is the total root mean square velocity, and ρmid is the mean density
at the mid-layer of the domain. The above parameters give a value of Re ≈ 153.
In the solar photosphere Re ≈ 1012, with higher values not possible for us due to
computational constraints (Ossendrijver 2003). The magnetic Reynolds number is

Rm =
Urms
κζ0

. (2.15)

and with our parameter choices, Rm ≈ 205. A value of Rm � 1 ensures that
the flux lines of the magnetic field are advected with the fluid flow, as in the solar
surface. However, our value of Rm is very small when compared to the Sun where
Rm ≈ 106 (Ossendrijver 2003). Lastly, the mid-layer magnetic prandtl number is

Pm =
Rm

Re
. (2.16)

Within the Sun, Pm � 1, however in the simulation it has been set equal to 1 as
lower values are inaccessible due to computational constraints.



3. Spectra

Turbulent convection in the solar convection zone is characterised by the superpo-
sition of a large number of scales within the turbulent spectrum. It is observing the
physics of such a system that leads us to ask the question: If a scale such as meso-
granulation is present, how would we identify and characterise it? For granulation,
there is clearly a distinction from other scales due to the fact that granulation shows
the highest contrast in intensity and the largest fluctuation of velocity. However,
for mesogranulation it is not clear how to characterise such a scale. In Figure 2.2,
at the lower depths, there is evidence that scales larger than that of granulation are
present. Therefore, it is sensible to do a power spectrum analysis to see whether or
not a scale exists in the kinetic energy spectrum that is as transparent, but larger
than granulation. To calculate the kinetic energy spectra we start from the definition
of kinetic energy:

Kinetic energy =
1

2
|U|2.

Integrating this over the volume V of the box gives

1

2

∫
V

(u2 + v2 + w2) dx dy dz =
1

2

∫
V

|f |2 dx dy dz. (3.1)

Here, the first integral has been rewritten as a real general periodic function, f . The
discrete Fourier transform of f can be written as

f(x, y, z, t) =
N−1∑
l=0

N−1∑
m=0

f̂lm(z, t) exp

(
−2πilx

λ

)
exp

(
−2πimy

λ

)
. (3.2)

The complex conjugate of this is

f ∗(x, y, z, t) =
N−1∑
l′=0

N−1∑
m′=0

f̂ ∗l′m′(z, t) exp

(
2πil′x

λ

)
exp

(
2πim′y

λ

)
. (3.3)

Hence, using the fact that |f |2 = ff ∗ we can substitute (3.2) and (3.3) into (3.1):

1

2

∫ 1

0

∫ λ

0

∫ λ

0

|f 2| dx dy dz =
1

2

∫ 1

0

∫ λ

0

∫ λ

0

[
N−1∑
l=0

N−1∑
m=0

f̂lm(z, t) exp

(
−2πilx

λ

)
exp

(
−2πimy

λ

)]

×

[
N−1∑
l′=0

N−1∑
m′=0

f̂ ∗l′m′(z, t) exp

(
2πil′x

λ

)
exp

(
2πim′y

λ

)]
dx dy dz

=
1

2

∫ 1

0

∫ λ

0

∫ λ

0

N−1∑
l=0

N−1∑
m=0

N−1∑
l′=0

N−1∑
m′=0

f̂lm(z, t)f̂ ∗l′m′(z, t)

× exp

(
−2πi(l − l′)x

λ

)
exp

(
−2πi(m−m′)y

λ

)
dx dy dz.

13
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Next, we can rewrite this integral in terms of cosine and sine:∫ 1

0

∫ λ

0

∫ λ

0

|f 2| dx dy dz =
1

2

∫ 1

0

∫ λ

0

∫ λ

0

N−1∑
l=0

N−1∑
m=0

N−1∑
l′=0

N−1∑
m′=0

f̂lm(z, t)f̂ ∗l′m′(z, t)

×
[
cos

(
−2π(l − l′)x

λ

)
− i sin

(
−2π(l − l′)x

λ

)]
×
[
cos

(
−2π(m−m′)y

λ

)
− i sin

(
−2π(m−m′)y

λ

)]
dx dy dz.

Let us now examine the integrals over x and y. For these two integrals there are
four posibilities to consider:

1. l 6= l′ & m 6= m′;

2. l 6= l′ & m = m′;

3. l = l′ & m 6= m′;

4. l = l′ & m = m′.

Starting with case 2., let us observe what happens to the above integral:

∫ λ

0

∫ λ

0

|f 2| dx dy =

∫ λ

0

∫ λ

0

[
cos

(
−2π(l − l′)x

λ

)
− i sin

(
−2π(l − l′)x

λ

)]
× [cos (0)− i sin (0)] dx dy

=

∫ λ

0

[
cos

(
−2π(l − l′)x

λ

)
− i sin

(
−2π(l − l′)x

λ

)]
[x]λ0 dy

=

∫ λ

0

λ

[
cos

(
−2π(l − l′)x

λ

)
− i sin

(
−2π(l − l′)x

λ

)]
dy

=

∫ λ

0

λ2

2π(l − l′)

[
sin

(
2π(l − l′)x

λ

)
+ i cos

(
2π(l − l′)x

λ

)]λ
0

dy

=

∫ λ

0

λ2

2π(l − l′)

[(
���

���
���:

0
sin(−2π(l − l′)) + i

���
���

��:1
cos(2π(l − l′))

)]

− λ2

2π(l − l′)
[(sin(0) + i cos(0)))]

=

∫ λ

0

0 dy = 0.

Clearly, whenever l 6= l′ the integral will be zero. Therefore, to avoid a null case we
set l = l′, leaving only cases 3. and 4. as possible options. Hence, let us now observe
what happens to the x and y integrals for the case where l = l′ and m 6= m′:
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∫ λ

0

∫ λ

0

|f 2| dx dy =

∫ λ

0

∫ λ

0

[cos (0)− i sin (0)]

×
[
cos

(
−2π(m−m′)y

λ

)
− i sin

(
−2π(m−m′)y

λ

)]
dx dy

=

∫ λ

0

[
cos

(
2π(m−m′)y

λ

)
− i sin

(
2π(m−m′)y

λ

)]
[x]λ0 dy

=

∫ λ

0

λ

[
cos

(
2π(m−m′)y

λ

)
− i sin

(
2π(m−m′)y

λ

)]
dy

=
λ2

2π(m−m′)

[
sin

(
2π(m−m′)y

λ

)
+ i cos

(
2π(m−m′)y

λ

)]λ
0

=

[(
��

���
���

��:0
sin(−2π(m−m′)) + i

��
���

���
��:1

cos(2π(m−m′))

)]
− [(sin(0) + i cos(0))]

=

∫ λ

0

0 dy = 0.

Again we get a null case. Thus, we must have l = l′ and m = m′ as the only
possibility. So, the integrals over x and y must reduce to

∫ λ

0

∫ λ

0

|f 2| dx dy =

∫ λ

0

∫ λ

0

[cos (0)− i sin (0)]× [cos (0)− i sin (0)] dx dy

=

∫ λ

0

∫ λ

0

1 dx dy =

∫ λ

0

λ dy = λ2.

Now, we are now left with a much simpler integral that only involves integration
over z; ∫ 1

0

∫ λ

0

∫ λ

0

|f 2| dx dy dz =
λ2

2

∫ 1

0

N−1∑
l=0

N−1∑
m=0

|f̂lm(z, t)|2 dz. (3.4)

To work with this integral let us define

I =
N−1∑
l=0

N−1∑
m=0

|f̂lm(z, t)|2

and make an approximation over the continuum for I:

I ≈
∫ ∞
0

∫ ∞
0

|f̂(kx, ky)|2 dkx dky.

We further assume that there is no preferred direction, i.e. horizontal isotropy.
Therefore, we can integrate with respect to dkx, dky, where kx, ky are the compo-
nents of the wave vector. We make the integration easier by changing into polar
coordinates:

I ≈
∫ 2π

0

∫ ∞
0

|f̂(k, z)|2k dk dϕ = 2π

∫ ∞
0

|f̂(k, z)|2k dk
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Here, dk is the integral over the wavenumbers, dϕ is the integral over the wavenum-
ber angle and k is the Jacobian determinant. Now, we can plug this back into (3.4)
giving ∫ 1

0

∫ λ

0

∫ λ

0

|f 2| dx dy dz =

∫ 1

0

∫ ∞
0

λ2kπ|f̂(k, z)|2 dk dz

=

∫ ∞
0

∫ 1

0

λ2kπ|f̂(k, z)|2 dz dk.

The order of integration does not matter here. Therefore, this is a representation of
the kinetic energy spectrum in the form of an integral:∫ ∞

0

E(k) dk,

where the kinetic energy spectrum is defined as

E(k) =

∫ 1

0

λ2kπ|f̂(k, z)|2 dz. (3.5)

The plot of the time averaged kinetic energy spectrum against all wave numbers for
“a range of layers in the box” is shown in Figure 3.1. The peak in both graphs at
low wave numbers shows me that mesogranulation is clearly present at all depths,
for both data sets. However, the peak is at different wave numbers for each graph.
That is, for data set 1, k ≈ 6, whereas, k ≈ 3 for data set 2. This discrepancy
is due to the different box sizes used in the data sets. Visually, the mesogranular
peak equates to the horizontal scales that are illustrated at depths z = 0.4, 0.6 in
Figure 2.2.

Figure 3.1: A plot of the kinetic energy spectrum for both data sets against all
horizontal wave numbers for depths, z = 0.1, 0.5, 0.9. The graph on the left shows
data set 1 with λ = 20. Similarly, the graph on the right is data set 2 where λ = 10.

It is clear that mesogranulation is a strong feature of this system. This shows that
it is possible to find mesogranulation in both a relatively small 10× 10× 1 domain



CHAPTER 3. SPECTRA 17

and larger. Additionally, the above graphs are similar to those in previous studies
of both Boussinesq and compressible convection, providing further validity to my
results (Bushby & Favier 2014; Busby & Favier 2011; Cattaneo et al. 2001).

In the next chapter, I will implement tracking algorithms on the simulation to see
whether they can re-produce the above kinetic energy spectrum and hence, show
the reliability of correlation tracking algorithms.



4. Tracking algorithms

Correlation tracking algorithms are one of the most common methods used to deter-
mine solar surface velocity fields. They involve observing various structures visible
at the surface of the Sun over a period of time. There are three main algorithms
used by researchers today, all applying similar techniques:

1. Local correlation tracking (LCT),

2. Coherent structure tracking (CST),

3. Ball tracking (BT).

The first algorithm, local correlation tracking works by maximising the correlation
between small sub-images to determine the motion of features on consecutive snap-
shots at a certain time. Coherent structure tracking, determines coherent structures
between images and measures their displacement over time. Lastly, ball tracking
works by adding balls to the flow and tracking their movement as the flow develops
in time.

Local correlation tracking considers every pixel in both images, which contrasts
with coherent structure tracking as it segments the image and considers where these
larger segments move. Due to the fact that LCT considers each pixel it is my belief
that it is more reliable, and for that reason I will implement an LCT algorithm on
the simulation. Although, it is my belief that LCT is the most reliable algorithm,
it should be noted that none of these algorithms are perfect and the techniques
themselves, incorporate no physical conservation laws. Therefore, because of these
imperfections I will take care when interpreting the results from the LCT routine.

4.1 Fourier local correlation tracking
The fathers of local correlation tracking are considered to be November & Simon
(1988) whose method shifts images at nine integer-pixel spatial lags then computes
a cross-correlation for each shift. The many LCT routines used by researchers today
all work by using one principal idea. Proper motion or displacement between sepa-
rate images is found by maximising a cross-correlation function. For my dissertation
I will use a Fourier local correlation tracking algorithm (FLCT) from Welsch (2004),
adapting their routine to work in Matlab.

The algorithm involves six major steps:

1. Selecting the image,

2. Multiplying each image by a Gaussian window function,

3. Creating the reduced size images,

4. Computing the cross-correlation function,

18
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5. Locating the displacement that maximises the cross-correlation function,

6. Calculating the velocities: vx(i, j) = δx ∗ δs/δt and vy(i, j) = δy ∗ δs/δt.

Now, let us describe the algorithm in detail:

4.1.1 Selecting the image

The idea behind the FLCT algorithm is that given two, 2-dimensional images
I1(x, y, t1) and I2(x, y, t2), with the second image taken slightly after the first one,
so that t2 = t1 + δt, we can calculate the 2-dimensional flow field: vx(x, y), vy(x, y).
Then, when we apply the flow vx(x, y), vy(x, y) to the scalar field in the first image,
it should resemble the second image.

To construct the 2-dimensional velocity field, we must begin at a certain location
within both images. In FLCT, we calculate the maximum between both images and
compute the velocity vectors for all the points that are within a certain threshold.
Threshold is a free parameter in FLCT and the optimal value is discussed in chapter
5.

4.1.2 The Gaussian window function

For the pixels at which we wish to compute a velocity vector, we multiply by a
windowing function to de-emphasise the parts of the image away from the pixel.
FLCT does this by multiplying each of the images to be considered by a Gaussian
window function of width α, which is centered at the location of the maximum,
(xi, yj). This is defined as

S1(i,j)(x, y) = I1(i,j)(x, y) exp(−
[
(x− xi)2 + (y − yi)2

]
/α2),

S2(i,j)(x, y) = I2(i,j)(x, y) exp(−
[
(x− xi)2 + (y − yi)2

]
/α2),

where S1(i,j)(x, y) and S2(i,j)(x, y) represent ‘sub-images’. A 2-dimensional Gaus-
sian function has been chosen because it is a well known distribution that appears
repeatedly in real life observations. In particular, the Gaussian distribution is a
pragmatic choice for our data as it will maximise the entropy for the given energy
whilst smoothing the data so as to only focus on the important areas. Moreover,
different window functions were evaluated in Louis et al. (2015), who found that
a Gaussian window was an efficient window choice. Figure 4.1 shows the Gaussian
curve in a 3-dimensional domain. It is easy to see how the points away from the
maximum are de-emphasised.

The window size, α, is an important parameter as it defines the size of the region of
interest. That is, α encompasses the flow structure around the pixel we are consid-
ering. Like threshold, α is a free paramter in FLCT with optimal values discussed
in chapter 5.
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Figure 4.1: Gaussian function similar to that in the routine.

4.1.3 The reduced size images

The next step is to create reduced size images that surround the sub-images. This
is done to stop MATLAB looping over the entire array for each pixel, considering
many insignificant values. This process is shown pictorially in Figure 4.2, with three
detailed steps to explain.

1. First, let us consider two sub-images, S1(i,j)(x, y) and S2(i,j)(x, y), separated
in time by δt. In figure 4.2 the sub-images are represented by the ellipses,
where everything inside is considered as significant. For both the images, the
algorithm loops over all the values in x, from 1 to 512 stopping when we find
a value of x that is within a certain tolerance of the of the sub-images. These
values of x are defined as iminS1 and iminS2 for images S1 and S2, respectively.
Then we repeat the same operation, but loop over the values of x from 512
to 1 in steps of −1 until again, we are within a certain tolerance of the sub-
images. These values of x are defined as imaxS1 and imaxS2 for images S1
and S2, respectively. This operation is then repeated for the y direction in
both images. The resulting values are labelled jminS1, jmaxS1, jminS2 and
jmaxS2. These, four operations for both images create a box, centred at the
maximum, which surround the sub-images.

2. The first step, above, only defines a box around the significant parts in the
image it is considering. This leaves a problem. We need one box that encom-
passes the significant areas in both images. To solve this problem, we take
the smallest ‘minimum’ from the x and y directions in both images to give a
lower bound. Repeating this operation for the maximum values and taking
the largest ‘maximum’ gives an upper bound in the x and y directions. These
bounds form the ‘reduced size image’.

3. An illustration of the resulting reduced size images is superimposed upon im-
ages I1 and I2.
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Figure 4.2: This figure shows how the computational routine crops the images to
create one reduced size image that encompasses both the significant areas from
image I1 and image I2.
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4.1.4 Calculating the cross correlation function

We now calculate the cross correlation function between the two sub-images, S1(i,j)

and S2(i,j). The cross-correlation function for the (i,j)th pixel is

Ci,j(δx, δy) = S1(i,j)(x, y) ? S2(i,j)(x, y)

=

∫ ∞
−∞

∫ ∞
−∞

S∗1(i,j)(−x,−y)S2(i,j)(δx− x, δy − y) dx dy, (4.1)

where δx and δy represent the shifts in the x and y direction, respectively, between
the two consecutive images. Here, ? denotes the cross-correlation and S∗1(i,j) is the

complex conjugate of S1(i,j). FLCT calculates C(δx, δy) by using the convolution
theorem to rewrite (4.1) in terms of Fourier transforms (Fisher 2008). Let us define
the Fourier transforms of S1(i,j)(x, y) and S2(i,j)(x, y) as

S1(x, y) ≡ F−1i,j [s(kx, ky)] (x, y) =

∫ ∫
s(kx, ky) exp(2πi(kxx+ kyy)) dkx dky,

S2(x, y) ≡ F−1i,j [s(kx, ky)] (x, y) =

∫ ∫
s(kx, ky) exp(2πi(kx(δx+ x) + ky(δy + y))) dkx dky.

Then, using the convolution theorem shows

S1 ? S2 =

∫ ∫
S∗1(−x,−y)S2(δx− x, δy − y) dx dy

=

∫ ∫
S∗1

[∫ ∫
ŝ2 exp(2πi(kx(δx− x) + ky(δy − y))) dkx dky

]
dx dy

=

∫ ∫
ŝ2

[∫ ∫
S∗1 exp(−2πi(kxx+ kyy)) dx dy

]
exp(2πi(kxδx+ kyδy)) dkx dky

=

∫ ∫
ŝ2ŝ
∗
1 exp(2πi(kxδx+ kyδy)) dkx dky

≡ F−1kx,ky [ŝ∗1ŝ2](x, y).

Here, F−1kx,ky [F̂ ∗1 F̂2](x, y) is the inverse Fourier transform. Thus, the cross correlation
is

Ci,j(δx, δy) = F−1kx,ky [ŝ∗1(i,j)(kx, ky)ŝ2(i,j)(kx, ky)](x, y). (4.2)

4.1.5 Determining the shifts

The cross correlation function is a measure of similarity between the two sub-images.
It fixes the second image then shifts the first image across the second image until
all possible positions have been covered. We want to find the shifts δx and δy that
maximise the cross correlation function, as it is this point where the sub-images are
most similar. That is, it is the point where we move sub-image 1 to get sub-image 2.
This works due to the fact that when the peaks in S1(i,j) match the peaks in S2(i,j),
we get a large contribution to Ci,j(δx, δy). Similarly, when the troughs match, the
two negative numbers give a positive number which also provides a large contribu-
tion to Ci,j(δx, δy). In FLCT, the peak of |Ci,j(δx, δy)| is calculated, so that we
avoid complex arithmetic.
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4.1.6 Calculating the velocities

The maximum of |Ci,j(δx, δy)| gives us the shifts δx and δy. Then, multiplying by
pixel size, δs and dividing by time separation, δt results in a velocity, and thus a
velocity field can be created.

Quite often, higher order techniques such as interpolation are used to locate the
maximum to ‘sub-pixel’ resolution (Welsch 2004; Welsch 2007). The reason for
this is that the data gathered from solar observations is usually very noisy and low
resolution, and higher order techniques achieve more accurate results. However, as
my data has come from a simulation it is much more resolved than observational
data meaning that it is more beneficial to save time computationally and accept the
small error. This error will be only +/ − 1 pixel, which, in a large domain with
well resolved data is irrelevant. Hence, I chose not to implement any higher order
techniques.

4.2 Testing the code
To verify that the code was working correctly, I created a test code that employed
my FLCT technique to two smaller images that I knew the results for. The functions
I opted for were

I1(x, y) = sin
(πx

50

)
sin
(πy

50

)
,

I2(x, y) = sin

(
π(x− 1)

50

)
sin

(
π(y − 3)

50

)
,

which are defined over the domain 0 ≤ x, y ≤ 50. The image I2 is treated as the
lagged image, where I2 = I1 + δt, and is a translation of +1 in the x direction,
and +3 in the y direction. These are sensible choices as functions because they de-
fine a simple uniform shift. To illustrate this, the functions are plotted in Figure 4.3.

Figure 4.3: The two images I1 and I2 over the domain 0 ≤ x, y ≤ 50.

As these functions are purely for test purposes, the domain has been shrunk mas-
sively as there is no point in wasting time computationally. Some parameters have



CHAPTER 4. TRACKING ALGORITHMS 24

been changed to compensate this as their optimal values change due to different
factors. Secondly, there is no time difference between the two functions, so δt has
been left the same as in the simulation. This will not affect the final result.

The code gave me shifts of δx = +1 and δy = +3. I plotted the velocity field,
shown in figure 4.4, to illustrate this. Furthermore, I checked negative shifts by
interchanging the two images I1 and I2. Values of δx = −1 and δy = −3 were
returned, verifying that the FLCT algorithm works for both positive and negative
shifts. As a final sanity check I replaced I2(x, y) with I1(x, y) so that there was no
difference between either image. The FLCT routine returned values of δx = 0 and
δy = 0, as expected.

Figure 4.4: The resulting velocity field between images I1 and I2.



5. Application to simulation data

5.1 Testing
I found that when I used temperature maps as the FLCT input variable, no velocity
field could be created. For the routine, we have considered the temperature maxi-
mum, which lies at the granules center. No velocity field is created due to the fact
that the maxima in the images are too broad. That is, the areas we are considering
are quite wide. A solution to this problem could be to consider the temperature
minimum, which lies in the narrow intergranular lanes. This is clearly an area for
future research. The problem with the temperature means that like researchers we
have to use a proxy to calculate the velocity field. Hence, as the magnetic field
distribution follows the flow accumulating preferentially at the boundaries of gran-
ules, I will use the magnetic field. It is noteworthy, that in the past, researchers
have preferred intensity maps as their proxy. Consequently, as data set 1 has no
magnetic elements, I shall exclude it, deferring all further considerations of this to
future research. This is a considerable problem because researchers are using this
algorithm to identify robust features within the flow. If the algorithm will not pick
out anything when using the temperature as the routine variable then what prob-
lems arise when using a proxy?

Before we can obtain results, we need to find the optimal values for the free pa-
rameters in the Fourier local correlation tracking routine. FLCT has three free
parameters: the tolerance, the threshold and the Gaussian window size. When cre-
ating the reduced size images, the tolerance defines how far away from the maximum
we wish to evaluate, and hence, the size of the reduced size images. The threshold
considers if a pixel, (i,j) has moved far enough to calculate a velocity. If it has, a
velocity is calculated, if not the velocity for that pixel is set to zero. The Gaussian
window de-emphasises the area away from the flow structure we are considering.
If α is too small then we may not encompass the full structure we are considering
leading to innacurate results. Similarly, if α is too large then we may encompass
more than one structure leading to incorrect results. The optimal values have been
found by using images I1 and I2 for a quarter resolution.

I chose an optimal value of 0.5 for the tolerance as anything smaller ignored some
significant values and anything larger increased computation time with no benefit.
To find the optimal value for the threshold we use a trial and error method. I found
that whenever the threshold was greater than 0.3 no pixels were considered in the
creation of the velocity field. In Figure 5.1 the effects of varying the threshold are
shown for depth z = 0.2. The field in the top left is the plot for a value of 0.1 and
shows that the flow pattern is only just starting to emerge. If we lower the value
of the threshold further to 0.01 we see that a granular pattern begins to emerge,
as we would expect. A value of 0.001 shows a good estimation of the flow pro-
file, emulating the behaviour of the solar photosphere qualitatively, where we see
that the magnetic field accumulates preferentially at the boundaries. Lowering the
threshold further increases the computational time massively but does not show any-
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thing new in the flow profile. Hence, I have chosen a value of 0.001 for the threshold.

Figure 5.1: The flow profile at different thresholds between time 1 and time 2 for
data set 2.

The final free parameter is the Gaussian window size, α. The results from the FLCT
routine have some dependence on the choice of Gaussian window. Figure 5.2 illus-
trates this. When α = 5, we see that the window is not big enough to encorporate
some flow structures and the resulting velocity field shows smaller structures than
what we would expect. We know that the result is not accurate as we can compare
it with the velocities from the simulation. If we increase α to 10 the resulting flow
profile looks more accurate, giving structures that are similar in size to what we
would expect. By increasing the window size to 15, and then 20, the velocity field
shows scales larger than expected. Hence, I have chosen a value of α = 10. As res-
olution changes the value of this parameter, I will scale the parameter, accordingly.
That is, if I halve the resolution then I will halve α. By observing Figure 5.2, it is
clear to me that choosing the optimal value for α is not easy, and hence, there is
room for error.

Finally, all these free parameters are sensitive to the cadance of the data. Smaller
values of δt would probably produce more accurate results even for small α.
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Figure 5.2: The velocity field for different Gaussian window sizes.

5.2 Results
Due to time constraints I could not run full resolution data. Therefore, I consid-
ered three cases: half resolution, quarter resolution, and an eighth resoltuion. The
effects of resolution are shown in Figure 5.3. As we degrade the resolution it is
apparent that the image becomes less constructed. The image in the top left is the
full resolution of our simulation. For a typical solar observation, the resolution is
similar to the image at the bottom right. It is clear that there is a massive difference
between simulation and observational resolution, which could suggest why results
differ. The analysis of resolution is quite important as it has been suggested that at
certain resolutions correlation tracking is ‘fruitless’ (Bogart et al. 1988). It would
be interesting to see if the same results can be found for simulation data.

I first ran the FLCT routine for times 1 and 2. In terms of results I found typical
velocity scales of order unity for the half resolution and quarter resolution cases.
This is in good agreement with what we would expect for a scale in the mesogran-
ular range. The quarter resolution case gave a smaller velocity. Hence, only the
two higher resolution cases compare favourably to real velocity data. I have plotted
Ux and Uy for all cases in Figure 5.4. These plots clearly highlight why there are
different results for velocities between resolution. The half and quarter resolution
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Figure 5.3: A plot showing different resolutions. The top left is the temperature
map for our data at time 1 as shown in previous chapters. The top right image has
been degraded by half, the bottom left by four and the bottom right by eight.

cases are very similar, so, it is unsurprising that the velocities obtained from both
cases are similar. Furthermore, these plots show that the eighth resolution case is
very different from the above two. This leads me to believe that when resolution is
degraded far enough the results become innacurate.

To show whether or not FLCT was a good technique to observe mesogranulation I
then plotted the kinetic energy spectrum for the above cases. The kinetic energy
spectrum is different here than in Figure 3.1. In this case, it is purely an approxi-
mation as the velocity in the z-direction and the density have been neglected. Due
to this fact, there will be changes in normalisation, but the overall shape should
be similar. Because of these changes, I have only observed the kinetic energy spec-
trum at the top of the box, plotting the depth averaged kinetic energy spectrum
for depths z = 0.1, 0.2, 0.3, in Figure 5.5. The graph at the top left shows the full
resolution case depth averaged at the top of the box for comparison. In the half
and quarter resolution cases there is a clear mesogranular peak, located at the same
wave number as the full resolution case. However, the peaks are different shapes.
Although this is expected due to the approximate nature of these spectra, there is
some evidence that the results are dependent on resolution. In the lowest resolution
case the kinetic energy spectrum is erratic and the peak is in a different location.
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Furthermore, there is no evidence of mesogranulation for this case. There are hints
of this shown in the relationship between the velocity and the resolution. As reso-
lution decreases the velocity scales decrease. Therefore, it is unsurprising that there

Figure 5.4: A plot of Ux and Uy for all three cases at times 1 and 2. Left: The
plots for Ux. The bright patches are where the flow is moving to the right and the
darker patches represent flows moving to the left. Right: The same plots, but for
Uy. Brighter patches correspond to flows moving upwards and the darker patches
are the flows moving downwards.
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are differences between each case, and that when the resolution is lowered far enough
mesogranular scales are not found.

Figure 5.5: The depth averaged kinetic energy spectrum for a half, quarter and
eighth resolution, respectively.

The only case that the FLCT routine could not pick out mesogranulation was the
lowest resolution case. However, the above depth averaged spectrum was for times
1 and 2, only. This tells me that although mesogranulation is not present for the
above case it may be present at other times. Hence, I have plotted the time averaged
kinetic energy spectrum for the top of the box. Again, we see that there is no peak
in the mesogranular range at any time. To add further validity to my results I then
depth averaged the time averaged spectrum. This also showed that mesogranulation
is not present. Hence, as we know mesogranulation exists in our simulation, there
is very strong evidence that in low resolution studies the FLCT algorithm performs
poorly.
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Figure 5.6: The time averaged kinetic energy spectrum for data set 2, at depths
z = 0.1, 0.2, 0.3.

Figure 5.7: The time and depth averaged kinetic energy spectrum for data set 2.



6. Discussions, conclusions & future work

For this report, I introduced a compressible convection model and discussed how
this could be related to the solar surface. Then, I calculated the kinetic energy
spectrum showing that mesograulation was visible at all depths in the simulation.
Furthermore, I implemented a Fourier local correaltion tracking algorithm on the
simulation to see whether or not the algorithm was a good tool to study features at
the solar surface.

In conclusion, this study may well have solved the mesogranulation puzzle. I found
that the algorithm worked well and highlighted a mesogranular peak at high res-
olutions. This mesogranular pattern compares favourably with solar observations.
However, when the resolution was lowered to that comparable with a typical solar
observation, results showed that mesogranulation was not present in the simula-
tion. It has been suggested that for observational studies higher order techniques
like interpolation are necessary when reconstructing the velocity field (Welsch 2004;
Rieutord 2007a). This opens an avenue to future researchers who could implement
higher order techniques on the quarter resolution case to see if the results improve.
Furthermore, higher cadence data may give better results. It may also, be beneficial
to observe if different proxies give better results. Lastly, we have chosen to evaluate
a variation of the most common algorithm. There are many other algorithms used
by researchers that have not been validated.

In addition, there are still huge problems when working with ‘idealised’ models of
this type. Many of the parameters in this model are massively different than what
we would expect at the solar surface. For example, the magnetic Prandtl number
is of order unity, whereas it should be much less than 1. This has not been investi-
gated in convectively driven dynamos but is noteworthy because it has been shown
that turbulent dynamos are inefficient for low Pm (Boldyrev & Catteneo 2004).
The boundary conditions in this model are very idealised. That is, an impenetra-
ble lower boundary is unrealistic for a model of the solar convection zone where
the boundaries are open. Stein et al. (2003) suggested that dynamo action was
inhibited when open boundary conditions were imposed at the bottom of the box.
Brummell et al. (2010) came to the opposite conclusion with a two layer model of
a convectively unstable region above a stable region. This suggests that the lower
boundary being closed may not have as much of an effect as first thought, although,
these are ideas that need further exploration. Additionally, more complex models
will need to verify my results to increase the reliability of my work. Hence, this
report should act as a stepping stone for future researchers.

Another avenue worth investigating is, that just because there is a peak in the
kinetic energy spectrum at the mesogranular range, does not mean this is an intrinsic
scale. It was suggested that mesogranulation could be the vertical component of
supergranular convection (see, November 1994), or even, a more powerful extension
of granulation (Strauss and Bonaccini 1997).
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