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Abstract

This report has three main aims. These are:

• to provide an introduction to directional data and its uses;

• to formulate and perform Bayesian analysis on the von Mises-Fisher distributions
in both two dimensions and its generalised form in p dimensions;

• to apply the subsequent results to data.

Common problems with directional data, such as identifiability issues and effective visu-
alization, are discussed. The von Mises-Fisher distributions on the p-dimensional sphere
are presented and inference for the distribution’s parameters is presented via a Bayesian
approach.

Markov Chain Monte Carlo methods are applied, and a Metropolis-Hastings within Gibbs
algorithm in p dimensions is proposed. The general method is illustrated using two real
datasets: one on the homing directions of pigeons in two dimensions, and the other on
the arrival locations of low-level muons in three dimensions.



Chapter 1

An Introduction to Directional
Statistics

1.1 Overview

Directional data arise when measurements are made regarding a direction, rather than a
magnitude. For data relating to the circle, this predominantly arises through measure-
ments on the compass or the clock; natural occurences include wind directions, animal
migrations and waiting times. Meanwhile, data on the sphere can be used to measure
event occurences on the surfaces of celestial objects, such as the formation of a hurricane
on Earth or solar flare locations on the sun, as well as smaller objects such as measure-
ments of imperfections on the surface of an eyeball.

Although the study of directional data encompasses many geometries, we will focus
solely on analysis on circles, spheres and hyperspheres (collectively named p-dimensional
spheres). Additionally, we will only consider the case where the object has a radius of 1.
Only data recorded as measurements on the surface of the shape will be considered, i.e
all data points have unit length from the origin; thus, the magnitude of results will not
be discussed.

1.2 Coordinate systems

Measurements of direction can be analysed either using a Cartesian or an angular system.

To define a Cartesian system in p dimensions, we require a vector of length p, with
elements denoted x = (x1, x2, x3, . . . , xp)

T , where

−1 ≤ xi ≤ 1, ∀i ∈ 1, 2, . . . , p and ||x|| = 1,

and ||x|| is the Euclidean length of the vector x. These conditions ensure that x lies on
the p-dimensional unit sphere, denoted Sp.
On the other hand, angular notation uses a parameterization that requires p − 1 values,
say an angle x for circular data and angles (α, β) for spherical data. Note that, as working
with radii of unit length, we can describe the position of the data points as

(cosx, sinx), or (cosα, sinα cos β, sinα sin β)

for two and three dimensions respectively. These vectors satisfy the same properties
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as described for the Cartesian system, as can be seen through Euclidean normalization.
However, there still remains an identifiability problem.

Consider circular data, which requires a central direction from which to measure x, and
any range of length 2π to specify the direction. We can remove the identifiability problem
by using x ∈ [−π, π), although another sensible range is [0, 2π).

This highlights a fundamental difference between directional statistics and statistics on
the real line. Due to the periodic nature of sin and cos, a measurement recorded as π+ 1
is equivalent to a measurement of −π+1, i.e. a shift of 2π results in the same observation.
Consider the simple case of a dataset consisting of these two observations, before range
adjustment is applied. The classical interpretation of the mean of the observations is
given as 1; however, the mean direction is actually −π+ 1, easily seen once the first data
point is transformed to be in the correct range. This problem arises in several instances
through the Bayesian analysis in Chapters 2 and 3, and will be discussed further then.

Spherical coordinate systems have similar issues, however complexity is increased due to
the presence of two angles, both which must be carefully defined. We will take α ∈ [0, π)
as our azimuthal (or latitude) angle, and β ∈ [0, 2π) as our polar (or longitude) angle. A
visualization of this coordinate system is presented in Figure 1.3.2.

In order to explore the merits of both systems, we will perform Bayesian analysis in
angular coordinates on the circle in Chapter 2 and Cartesian coordinates on the sphere
in Chapter 3.

1.3 Visualization and programming

One of the major challenges involved in directional statistics is the graphical presentation
of results. Fortunately, the R package circular gives a number of ways to present circular
data, as well as a variety of other functions relating to relevant distributions. For spherical
data, the R package movMF simulates von Mises-Fisher distributions, and so provides a
method for checking simulations in three dimensions. Plotting data on the sphere is
performed through the package rgl, the 3D visualization device system within R.

Figure 1.3.1 shows an example data set of the orientation of pebbles, provided by the
package circular. Although originally specified in geographics (i.e. as an angle measured
in degrees from North), the data have been transformed in order to be suitable for our
range of [−π, π). A stacked histogram, as well as a density estimate, is provided. Note
that measurements of North are given at the point described by −π/π, and measurements
are reflected to transform from clockwise to anticlockwise.

2



- p p

-
p
2

0

p
2

+

Figure 1.3.1: Orientation of pebbles found in Fox river, Illinois

Figure 1.3.2: Visualization of spherical conventions

Visualization of spherical data is understandingly more challenging. The main problem is
negating the confusion of which hemisphere a particular point lies in. The most convenient
solution is to plot ambiguous points from the same sample in different colours. This is
best shown through an example, given in Figure 1.3.2. Points given in light green are
on the other side of the sphere, i.e. if the sphere was opaque, these points would not
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be visible. Figure 1.3.2 also demonstrates the effect of altering α and β when data is
measured in angular system.

In order to provide a more natural, three dimensional interpretation of data on the sphere,
shadow lines have been added that explore α values for set β values. These are included
solely to make graphical interpretation easier, and play no part in the description of the
data or distributions.

1.4 Common distributions

Circular distributions take one of two forms: wrapped distributions and circular-only dis-
tributions. Wrapped distributions are formed by taking a distribution on the line and
wrapping it around the circumference of the circle of unit radius, i.e. x = y mod 2π,
where y is the realization on the real line and x is the corresponding angular value on
the circular distribution. Commonly found wrapped distributions, described at length by
Mardia and Jupp (2000) and Best and Fisher (1979), include the wrapped Normal, the
wrapped Poisson and the wrapped Cauchy distributions. Simulation for such distribu-
tions is straightforward and Bayesian analysis in such situations is best peformed before
wrapping is undertaken.

Analysis for circular-only distributions is often more challenging. Distribution functions
are often given in terms of infinite series, due to their periodic nature, and so numeric
evaluation and simulation is more difficult. However, most circular-only distributions have
a comparable distribution on the real line; for example, the circular uniform distribution
provides a good method for analysis of points with no concentration or skew on the circle.

Wrapped distributions do exist on the sphere, although they are not commonly studied.
This is due to the requirement of simulation on the two dimensional plane, which is
performed in specialist situations when further wrapping to the sphere would likely be
counterproductive and so are not discussed here. Spherical-only distributions are our
main focus, and are used extensively in the areas described in Section 1.1.

One family of distributions used to describe data on spheres, on all p-dimensions, dom-
inates the mathematical literature; these are the von Mises-Fisher distributions, and
Bayesian inference for data assuming these distributions provide the basis for this re-
port.

1.5 The von Mises-Fisher distributions

Mardia and Jupp (2000) describe the von Mises distribution as “perhaps the most useful
distributions on the circle”. First published by Richard von Mises in 1918 with respect
to the circle, the continuous distribution was introduced in order to study the deviations
of measured atomic weights from integral values, before the discovery of isotopes in the
1920s. Since then it has been used extensively in circular statistical analysis, and it can
be considered as the circular analogous of the Normal distribution on the real line.
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Contributions by R.A. Fisher in the 1950s and other developments lead to the von Mises-
Fisher family of distributions, used to describe points in all p dimensions.

Consider a vector x of unit length, taking values on a p-dimenisional hypersphere Sp with
unit radius and center at the origin; then x has a von Mises-Fisher distribution if it follows
the probability density function

f(x|µ, κ) =
(κ

2

)p/2−1 1

Γ(p/2)Ip/2−1(κ)
exp{κµTx}, x ∈ Sp, (1.5.1)

where κ ≥ 0, µ ∈ Sp and Iν denotes the modified Bessel function of the first kind and
order ν. Here

• µ is a measure of location;

• κ is a measure of concentration (points become more clustered around µ as κ→∞).

It can be shown that the mean and the median is µ, comparable with the Normal distri-
bution. Mardia and Jupp (2000) present a method for calculating the variance, given as
Ip/2(κ)/Ip/2−1(κ). Additionally, as κ→ 0, the distribution tends to the uniform distribu-
tion on Sp. Provided κ > 0, it can also be shown that µTx has a maximum (mode) at µ
and a minimum (antimode) at −µ.

Although the analysis provided in Chapter 3 is applicable in p-dimensions, we will be
concerned with p = 2 and p = 3, i.e. data on the unit circle and sphere. This is because,
for p > 3,

• it is challenging to present findings in a meaningful manner

• there exist very few data sets

The von Mises-Fisher distributions are denoted vMFp(µ, κ) for p dimensions. Note that
vMF2(µ, κ) reduces to the von Mises distribution on the circle, discussed in Chapter 2,
whilst vMF3(µ, κ) reduces to the Fisher distribution on the sphere, discussed in Chapter
3.
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Chapter 2

Circular Data and the von Mises
Distribution

2.1 The von Mises distribution

Consider the von Mises-Fisher distributions given in Equation (1.5.1). In p = 2 dimensions
the density is

f(x|µ, κ) =
1

2πI0(κ)
exp {κ cos(x− µ)} , x ∈ [−π, π) (2.1.1)

where κ ≥ 0 and µ ∈ [−π, π). The modified Bessel function of order 0, denoted I0, is
defined as

I0(κ) =
1

2π

π∫
−π

exp {κ cosu} du. (2.1.2)

It is clear that this density integrates to 1. Also, by parameterising µ and x in terms of
angles (discussed in Section 1.2), the exponent of Equation (1.5.1) can be written as

κµTx = κ(cosµ, sinµ)T (cosx, sinx)

= κ(cosµ cosx+ sinµ sinx)

= κ cos(x− µ) (2.1.3)

using a cosine trigonometric identity.

This is the von Mises distribution, the name given to the von Mises-Fisher distribution on
p = 2 dimensions, i.e. the circle. The notation for this distribution, vMF2, is commonly
abbreviated to vM .

2.2 Simulation

Simulation of the von Mises distribution is discussed by Best and Fisher (1979). They
begin by discussing a number of difficulties with the efficient generation of pseudo-random
observations from the von Mises distribution, including that the cumulative distribution
function does not have a closed form (and so inverse transform methods are impractical).
Also there is no way of writing a general von Mises density in terms of a standardised von
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Mises with say unit concentration. Therefore simulation cannot be focused on the case
when κ = 1 and then transformed; it must be performed for every κ individually.

After considerating previous (and generally quite unsuccessful) attempts of simulation,
Best and Fisher examined algorithms based on envelope-rejection methods, and decided
on a method using the Wrapped Cauchy distribution as an envelope.

The full algorithm for simulation of one x-value from the vM(µ, κ) distribution is given
as follows:

1. Define

τ = 1 +
√

1 + 4κ2, ρ =
τ −
√

2τ

2κ
, r =

1 + ρ2

2ρ
.

2. Generate u1, u2 and u3 as independent random observations from a uniform U(0, 1)
distribution.

3. Set

z = cos(πu1), f =
1 + rz

r + z
, c = κ(r − f).

4. If c(2− c) > u2, go to step 6.

5. If log (c/u2) + 1− c < 0, return to step 3.

6. Set
x = sign(u3 − 0.5) cos−1(f)

where the sign function returns the values −1, 0 or 1 depending on if the argument
is negative, zero or positive respectively.

We illustrate the output of this algorithm by simulating 100 data points from a vM(0, 1)
distribution. The output is summarised as points in Figure 2.2.1, and is compared to the
vM(0, 1) density. The density describes the distribution of the simulated points well, with
a peak at x = 0 and decreasing concentration as the angle moves away from this point.
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Figure 2.2.1: 100 simulations from a vM(0, 1) density

2.3 Von Mises distributions with different parameter

values

Figure 2.3.1 shows a comparison of three von Mises densities with different parameter
values.

Figure 2.3.1: Comparison of three von Mises densities

We can see that each distribution is centered on their respective µ value, and that the
distributions clearly become more concentrated around µ as the von Mises concentration
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parameter κ increases.

The symmetric nature of the von Mises distribution is made immediately apparent in Fig-
ure 2.3.1. Additionally, the distribution with the highest concentration parameter (blue)
graphically resembles the more familiar Normal distribution, supporting the remarks made
in Section 1.5.

2.4 Assessing von Misesness

Much of the work within this chapter assumes that the data are consistent with an under-
lying von Mises distribution, and so it is beneficial to explore ways in which von Misesness
can be assessed.

One manner to assess von Misesness is graphically. This can be performed via a von Mises
probability-probability plot, referred to within the R package circular as a pp.plot. This
calculates the frequentist MLEs for µ and κ from the data, and plots the corresponding
empirical distribution function, as well as the data points, for comparison. Note that this
is similar to the method used to create a qqplot when testing for Normality with real-line
data.

A pp.plot, for the data simulated in Section 2.3, is given in Figure 2.4.1.
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Figure 2.4.1: Von Mises probability-probability plot for 100 simulated vM(0, 1) points

As we expect, the points fit well to the line, suggesting that the simulation has successfully
generated values from a vM(0, 1) distribution.

A second way to asses von Misesness is to perform a Watson’s goodness-of-fit test. This is
also given as a function within R that returns a test statistic and a corresponding p-value.
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Performing the test with the simulated data above gives p > 0.1, again suggesting that
there is little evidence against the von Misesness of the simulated data.

2.5 The likelihood function and prior distributions

The likelihood function for a random sample of n points x1, x2, . . . , xn from a vM(µ, κ)
distribution is

f(x|µ, κ) =
n∏
i=1

fX(xi|µ, κ) =
n∏
i=1

{
[2πI0(κ)]−1 exp{κ cos(xi − µ)}

}
= [2πI0(κ)]−n exp

{
κ

n∑
i=1

cos(xi − µ)

}

∝ [I0(κ)]−n exp

{
κ

n∑
i=1

cos(xi − µ)

}
(2.5.1)

where µ ∈ [−π, π) and κ ≥ 0.

Before conducting Bayesian analysis, we must first give consideration to a suitable prior
distribution for the parameters of interest µ and κ. In this chapter we assume that µ and
κ are independent a priori.

The concentration parameter κ is defined over the range 0 ≤ κ <∞. Therefore, a suitable
prior might be a Gamma distribution, with

κ ∼ Ga(a, b)

and prior density

π(κ) =
κa−1 exp{−bκ}

baΓ(a)
, κ ≥ 0 (2.5.2)

where a, b > 0.

We now turn our attention to µ. As we require µ to be a value on the unit circle, the
most plausible prior distribution would be to use a von-Mises distribution itself. Thus,
we might use

µ ∼ vM(m, c)

with prior density

π(µ) =
1

2πI0(c)
exp{c cos(µ−m)}, µ ∈ [−π, π) (2.5.3)

where c ≥ 0 and m ∈ [−π, π).
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Mardia and El-Atoum (1976) provide an alternative prior for µ, given as a uniform distri-
bution on the circle. However, using a von Mises distribution instead allows for varying
certainty regarding the prior mean direction, and using a low concentration parameter
allows for the prior to be similar to a uniform distribution if desired.

2.6 Inference for κ when µ = µ0

We first consider a single parameter problem in which inference is performed on κ when
µ = µ0 is a known quantity.

For simplicity we take µ0 = 0, as this reduces the complexity of the algebra and rotation
to other values of µ0 after analysis is trivial. The likelihood function here is

f(x|κ, µ = 0) ∝ [I0(κ)]−n exp

{
κ

n∑
i=1

cosxi

}
, (2.6.1)

where κ ≥ 0.

Applying Bayes’ Theorem gives the posterior density of κ as, for κ ≥ 0,

π(κ|x, µ = 0) ∝ f(x|κ, µ = 0)π(κ)

∝ [I0(κ)]−n exp

{
κ

n∑
i=1

cosxi

}
κa−1 exp {−bκ}

∝ [I0(κ)]−nκa−1 exp

{
κ

[
n∑
i=1

(cosxi)− b

]}
. (2.6.2)

Unfortunately, this is not the density of a standard distribution. Thus, we will develop
Markov Chain Monte Carlo (MCMC) methods in order to draw realizations from the
posterior density for κ.

The algorithm used is an adaptation of the commonplace Metropolis-Hastings scheme, as
discussed by Gamerman and Lopes (2006). A new value of κ (denoted κ∗) is simulated
from a proposal density q(κ∗|κ) that has the same domain as the posterior. The param-
eters of the proposal distribution are functions of the current value of κ and a tuning
parameter ν, which can be altered to improve the mixing of the chain if necessary. As
κ ≥ 0, it seems sensible to use a Log-Normal distribution as a proposal distribution, that
is

κ∗ ∼ LN
(
log κ, ν2

)
.

The full algorithm is:

1. Initialise the chain at some starting value κ = κ(0) and set j = 1. Note that for the
majority of cases, the initial values are taken to be the prior mean, i.e. κ(0) = a/b.
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2. Simulate a proposed value of κ, denoted κ∗, where

κ∗ ∼ LN
(
log κ(j−1), ν2

)
.

3. Evaluate the acceptance probability α(κ∗|κ(j−1)) = min (1, A), where

A =
π (κ∗|x, µ = 0)

π (κ(j−1)|x, µ = 0)
× κ∗

κ(j−1)
.

(the full conditional for κ is given in Equation (2.8.2)). Note that the Jacobian of
the ratio of the log-Normal proposal distribution is given as a factor that is the ratio
of the proposed value to the current value.

4. Set κ(j) = κ∗ with probability α; otherwise set κ(j) = κ(j−1).

5. Set j := j + 1 and return to step 2.

For the purposes of testing the algorithm, we begin by specifying a prior distribution as
κ ∼ Ga(5, 1), and simulate 100 data points from a vM(0, 5) distribution. Thus, both our
prior and our data suggest that the posterior for κ should be centered around 5. Initially,
ν will be taken as 1.

We run the algorithm for 1000 iterations with initial κ0 = 5. The corresponding diagnostic
plots are given in Figure 2.6.1, and are used to assess the mixing of the posterior density.
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Figure 2.6.1: Trace (left) and autocorrelation (right) plots of posterior κ

12



The traceplot suggests that the Markov chain has reached stationarity and appears to
be hovering around a value of κ = 4.5. However, it appears that the chain is behaving
in a “sticky” manner, i.e. the proposed value κ∗ is unlikely to differ from the previous
iteration. This suggests that the proposal distribution is simulating values too far from
the current κ, and thus the tuning parameter ν should be lowered.

The autocorrelation plot in Figure 2.6.1 suggests that there is significant autocorrelation
up to lag 10. This suggests that taking every 10th realization will probabily lead to an
(almost) un-autocorrelated sample, i.e thin by 10.

After further testing with algorithmic parameters, we re-ran for 10,000 iterations with an
improved proposal distribution tuning parameter ν of 0.1. Unfortunately altering ν leads
to higher levels of autocorrelation, and so thinning by 50 is now required in order to have
a neglible value for the autocorrelation at lag 1 and produce (almost) un-autocorrelated
realizations from the posterior.

When using a Metropolis-Hastings scheme, if the intial value of of the chain is unlikely
in the posterior, there will be a number of realizations recorded before the chain reaches
stationarity. These realizations are often discarded as they can distort belief regarding the
posterior distribution, especially with few iterations. The discarding of such realizations
is known as “burn-in”, and can consist of 100 realizations or so. Nothing of interest arises
with respect to such values for the remainder of the report, and so this method will be
performed automatically without further mention.

Updated diagnostic plots are provided in Figure 2.6.2.
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Figure 2.6.2: Diagnostic plots of posterior κ, thinned

The Figure shows very good mixing in κ with very low autocorrelation.

Satisfied with our posterior realizations, kernel density estimation in R is used to plot the
posterior probability density for κ, presented in Figure 2.6.3.
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The prior is included for comparison, as well as equitailed 95% confidence intervals (CI)
for both distributions. These summary statistics, a priori and a posteriori respectively,
are

E(κ) = 5, 95%CI = (1.623, 10.242)

and

E(κ) = 4.49, 95%CI = (3.467, 5.653).

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

k

D
en

si
ty

Prior
Mean and 95% CI
Posterior
Mean and 95% CI

Figure 2.6.3: Prior and posterior κ densities, with means and 95% CIs

The density for the posterior is more concentrated than the prior, suggesting the data has
been informative. The summary statistics support that certainty about κ has increased
in the posterior, noted by a 74% reduction in the width of the 95% CI.

2.7 Inference for µ when κ = κ0

As with the previous section, we again monitor one parameter in the posterior; however,
the parameter of interest in now µ, and so we set κ = κ0, a known value.
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The full conditional distribution for µ with fixed κ0 is

π(µ|x, κ = κ0) ∝ f(x|µ, κ = κ0)π(µ)

∝ exp

{
κ0

n∑
i=1

cos(xi − µ)

}
exp{c cos(µ−m)}

∝ exp

{
κ0

n∑
i=1

cos(xi − µ) + c cos(µ−m)

}
, µ ∈ [−π, π). (2.7.1)

Mardia and El-Atoum (1976) claim that this posterior density takes the form of a von
Mises distribution; however, this may not be immediately apparent, and so will be shown
here. Assume that the posterior density is a vM(M,K) distribution, and this takes the
form

π(µ|x, κ = κ0) ∝ exp {K cos(x−M)}

up to proportionality. Thus, the problem reduces to finding K,M such that

κ0

n∑
i=1

cos(xi − µ) + c cos(µ−m) = K cos(µ−M) (2.7.2)

where K,M satisfy the conditions of a von Mises distribution, i.e. K ≥ 0 and −π ≤M <
π.

We begin by considering the trigonometric identity

cos(a− b) = cos a cos b+ sin a sin b

and introduce notation such that

dc =
n∑
i=1

cosxi, ds =
n∑
i=1

sinxi.

Thus, the left hand side of Equation (2.7.2) becomes

κ0

n∑
i=1

cos(xi − µ) + c cos(µ−m)

= κ0 [dc cosµ+ ds sinµ] + c [cosµ cosm+ sinµ sinm]

= [κ0dc + c cosm] cosµ+ [κ0ds + c sinm] sinµ. (2.7.3)

Expanding the right hand side of Equation (2.7.3) and comparing the coefficients of cosµ
and sinµ, we recover a pair simulataneous equations in K and M , namely

K cosM = κ0dc + c cosm, K sinM = κ0ds + c sinm.
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By squaring both equations and noting that cosM2+sinM2 = 1 for all allowable M gives

K =
√

(κ0dc + c cosm)2 + (κ0ds + c sinm)2

and so we obtain

M = arctan

(
κ0ds + c sinm

κ0dc + c cosm

)
.

Thus, our posterior distribution for µ is given as

π(µ|x, κ = κ0) =
1

2πK
exp {K cos(µ−M)} , µ ∈ [−π, π) (2.7.4)

where M ∈ [−π, π) and K ≥ 0.

Consider the case with 30 data points simulated from a vM (π/3, κ = 3) distribution and
a prior distribution µ ∼ vM (π/3, 1). After simulation and calculation, the posterior
parameters are

M = 1.075 and K = 79.44,

and so the posterior distribution is

µ|κ = 3,x ∼ vM(1.075, 79.44). (2.7.5)

Figure 2.7.1: Prior and posterior µ with 95% CIs

Summary statistics for the prior and posterior density of µ are

E(µ) = 1.047, 95%CI = (−0.411, 2.506)
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and
E(µ|κ = 3,x) = 1.075, 95%CI = (0.836, 1.314)

respectively.

An 84% reduction in the width of the confidence interval suggests that the data has been
highly informative in the posterior. The mean of the data is 1.076, and so our posterior
mean is significantly closer to the mean of the data than the prior mean.

Figure 2.7.1 shows that efficiently plotting von Mises distributions with such a large
concentration parameters can be problematic, simply due to the magnitudinal relationship
between the distribution and the unit circle.

2.8 Bayesian inference on two parameters

The joint posterior density for (µ, κ) is

π(µ, κ|x) ∝ π(µ, κ)f(x|µ, κ)

∝ π(µ)π(κ)f(x|µ, κ)

as µ ⊥⊥ κ a priori. Therefore, for κ ≥ 0 and µ ∈ [−π, π),

π(µ, κ|x) ∝ ec cos(µ−m)κa−1e−bκI0(κ)−n exp

{
κ

n∑
i=1

cos(xi − µ)

}

∝ I0(κ)−nκa−1 exp

{
κ

[
n∑
i=1

cos(xi − µ)− b

]
+ c cos(µ−m)

}
.

(2.8.1)

This distribution is non-standard and analysis is not conjugate. Therefore, in order to
generate realisations from the distribution, we will employ Markov chain Monte Carlo
(MCMC) methods.

The full conditional distributions for µ and κ are

π(µ|x, κ) ∝ exp

{
κ

[
n∑
i=1

cos(xi − µ)

]
+ c cos(µ−m)

}
(2.8.2)

and

π(κ|x, µ) ∝ I0(κ)−nκa−1 exp

{
κ

[
n∑
i=1

cos(xi − µ)− b

]}
(2.8.3)

respectively. As expected, Equation (2.8.2) takes the form of Equation (2.6.2), with
unknown µ, and equation (2.8.3) takes the form of equation (2.7.1) with unknown κ.
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Thus, we can perform a Metropolis within Gibbs scheme, taking a Gibbs step for µ and
using a Metropolis-Hastings step for κ.

The full algorithm is:

1. Initialise the chain at some starting values (µ = µ(0), κ = κ(0)) and set j = 1. Note
that for the majority of cases, the initial values are taken to be the prior means, i.e.
µ(0) = m,κ(0) = a/b.

2. Simulate a value of µ(j)

µ(j) ∼ vM(M,K)

where

M = arctan

(
κ(j−1)ds + c sinm

κ(j−1)dc + c cosm

)
, K =

√
(κ(j−1)dc + c cosm)2 + (κ(j−1)ds + c sinm)2

3. Simulate a proposed value of κ, denoted κ∗, where

κ∗ ∼ LN
(
log κ(j−1), ν

)
and ν denotes the tuning parameter for κ, fixed for each iteration of the algorithm
but can be altered by the user when assessing the mixing of the chain.

4. Evaluate the acceptance probability α(κ∗|κ(j−1)) = min (1, A), where

A =
π
(
κ∗|x, µ(j)

)
π (κ(j−1)|x, µ(j))

× κ∗

κ(j−1)

(the full conditional for κ is given in Equation (2.8.2)). Note that the Jacobian of
the ratio of the log-Normal proposal distribution is given as a factor that is the ratio
of the proposed value to the current value.

5. Set κ(j) = κ∗ with probability α; otherwise set κ(j) = κ(j−1).

6. Set j := j + 1 and return to step 2.

This algorithm produces realizations from the joint posterior for µ and κ.

Consider the ratio of full conditionals given in step 4. For large data sets, computation of
I0(κ)−n creates values close to 0; on the other hand, the exponentials can give extremely
large values. Thus, in practice, it is computationally beneficial to work on the log-scale,
and so the log acceptance probability becomes α′ = min (0, A′), where

A′ = −n log

[
I0(κ

∗)

I0(κ(j−1))

]
+ a log

(
κ∗

κ(j−1)

)
+
(
κ∗ − κ(j−1)

) [ n∑
i=1

cos(xi − µ)− b

]
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Let us illustrate the algorithm. The data are a random sample of 20 values simulated
from a vM(−π/2, 2) distribution. The prior distributions are taken as

µ ∼ vM
(
−π

3
, 1
)
, κ ∼ Ga(3, 2) (2.8.4)

independently. Let our tuning parameter ν be 0.1, based on our findings in Section
2.6. We provisionally run the algorithm for 1000 iterations. The subsequent diagnostic
plots in Figure 2.9.1 suggest that thinning by around 40 is required in order to produce
un-autocorrelated results.
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Figure 2.8.1: Diagnostic plots for posterior parameters, unthinned

As in Section 2.6, the diagnostic plots suggest that thinning is required. Thus after
further experimentation we re-run our algorithm for 10, 000 iterations, but now thinning
our realizations by 40. Updated diagnostic plots are given in Figure 2.8.2, which suggest
that realizations from the joint posterior are now (almost) un-autocorrelated.
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Figure 2.8.2: Diagnostic plots for posterior parameters, thinned

Posterior realizations now appear to be un-autocorrelated. Summary statistics for the
posterior distribution are

E(µ|x) = −1.558, 95%CI = (−1.574,−1.541)

and
E(κ|x) = 1.541, 95%CI = (0.716, 2.366)

The mean angle of the simulated data is −1.58, whilst the prior mean is π/3 ≈ −1.047,
again suggesting that the data has been highly informative. The posterior mean of κ is
closer to the prior mean of 1.5 than the data distribution concentration 2, although this
value is plausible as it lies within the 95% confidence interval. This conflicts with our
findings in Section 2.6, and further investigation shows that the difference is due to a
lower prior variance in this instance.
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Figure 2.8.3: Prior and posterior densities for µ and κ

Figure 2.8.3 demonstrates characteristics that are similar to those in Figures 2.6.3 and
2.7.1.

2.9 Vanishing directions of homing pigeons

As discussed in the introduction, one of the predominant uses for circular statistics is the
study of ecological systems, e.g. animal migration. A dataset provided by Schmidt-Koenig
(1975) gives the vanishing directions of 15 homing pigeons, released approximately 16km
Northwest of their loft. The term vanishing refers to the point at which the pigeon is no
longer visable from the origin (the location of release). The vanishing directions of the
pigeons are presented in Figure 2.9.1.
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Figure 2.9.1: Geographical directions and corresponding angular values of vanishing di-
rections of pigeons

As the directions are originally given as angles in degrees, a basic transformation has
been applied; additionally, South has been set to be the middle of our range, i.e. South
corresponds to a direction of 0.

We require appropriate prior distributions for µ and κ. Unfortunately, an expert opinion
was not readily available for elicitation, and so prior parameters have been chosen based on
limited personal knowledge of the subject. As the pigeons were released Northwest of their
loft, it seems sensible to have a prior mean in the direction of their loft, i.e. Southeast;
this direction is represented by an angle of −π/4 within our framework. However, my
knowledge of animal migration is limited, and so we use a low concentration parameter,
taken to be 1/10. Thus our prior distribution for µ is

µ ∼ vM

(
−π

4
,

1

10

)
. (2.9.1)

Regarding concentration, it seems intuitive that each homing pigeon is likely to use the
same method to “home”. Thus I believe the concentration should be high, and by graph-
ical assessment of various von Mises densities I suggest that a prior mean E(κ) = 15
is appropriate. However, my knowledge regarding the vanishing directions of pigeons is
limited, and so we will use a prior density with a large variance in order to account for
the lack of certainty. The decided prior distribution is

κ ∼ Ga(1.5, 0.1). (2.9.2)

We can now perform our Bayesian analysis for the two unknown parameters, as discussed
in Section 2.8. Several trial runs were performed and assessment of subsequent diagnostic
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plots (omitted) suggest that observing every 80th reailzation only produce realizations
with desirable characteristics.

The conditional posterior kernel density estimates for κ and µ are presented in Figures
2.10.2 and 2.10.3, alongside the priors and 95% equi-tailed confidence intervals.
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Figure 2.9.2: Prior and posterior µ density estimates with 95% CIs
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Figure 2.9.3: Prior and posterior κ density estimates with 95% CIs

The summary statistics for µ a posteriori are
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E(µ|x) = −0.141, 95%CI = (−0.310, 0.028).

These values suggest that the pigeons begin their journey home by heading South to
begin with, before (presumably) heading East to arrive home. This disagrees with my
prior distribution, although posterior analysis has been dominated by the data available.
Note that the prior and posterior 95% CIs do not even overlap, and so the assumption
that pigeons fly directly towards their target is likely to be wrong.

The summary statistics for κ a posteriori are

E(κ|x) = 1.87, 95%CI = (0.717, 3.02),

suggesting that the direction of flight of one pigeon is similar to the next. This value
is somewhat surprisingly low however and does not support the assumption that each
pigeon uses an identical method to home.
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Chapter 3

Spherical Data and the von
Mises-Fisher Distribution

3.1 Simulation

A method for generating X ∼ vMFp(µ, κ) is discussed by Ulrich (1984) where a rejection
algorithm is used, which is of a similar form to the case for two dimensions. However,
one caveat is that the algorithm provided requires first the simulation of the spherical
uniform distribution, i.e. when κ = 0 in the von Mises-Fisher distribution. Fortunately,
as we are dealing with spheres of radius 1 and centered at the origin, this is rather simple,
and consists of simulating a p-length vector of N(0, 1) random variables and returning
the normalised vector.

A decade after the original publication of the algorithm, Wood (1994) stated that the
algorithm specified by Ulrich does not work, without giving specific reasons. He provided
an altered specification of the algorithm as:

1. Calculate

b =

√
4κ2 + (p− 1)2 − 2κ

p− 1
, x0 =

1− b
1 + b

, c = κx0 + (p− 1) log
(
1− x20

)
2. Generate

Z ∼ Beta

(
m− 1

2
,
m− 1

2

)
, U ∼ U(0, 1)

3. Calculate

W =
1− (1 + b)Z

1− (1− b)Z

4. If κW + (p− 1) log(1− x0W )− c < logU then reject simulations and return to step
1.

5. Generate
V ∼ SU(p− 1)

and return
XT =

(
W,
[√

1−W 2V T
])
.

It follows that X is a p-length vector and has a von Mises-Fisher distribution with mean
direction (1, 0, . . . , 0)T and concentration parameter κ ≥ 0.
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One feature currently missing from the simulation algorithm is the concept of rotating
the final modal direction. This is required to simulate von Mises-Fisher distributions with
µ 6= (1, 0, 0, . . . , 0), and is crucial in order to implement the Bayesian algorithm we are
leading towards. The easiest method to alter the mean direction of simulation is to apply
rotation by angles. Two possible methods are:

• to use the corresponding rotation matrix on the simulated value of X; or

• to identify the corresponding α, β angular values of the X values simulated, and to
add the desired angles to each draw individually, before transforming back.

We will apporach the problem using the latter method, largely due to having previously
created functions that easily transforms the points on the unit sphere between Cartesian
and Spherical coordinate systems, and so incorporation into the algorithm through R was
convenient.

3.2 Visual representation of the von Mises-Fisher dis-

tribution

A graphical demonstration of simulations of the von Mises-Fisher distribution is presented
in Figure 3.2.1. Considered first is the case where α = β = 0 (no rotation applied), and
so the mean direction is µ = (1, 0, 0). Three simulations are given, to demonstrate the
effect of increasing κ.
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Figure 3.2.1: Simulations of von Mises-Fisher distributions with mean direction µ =
(1, 0, 0)T

As desired, the points become increasingly clustered around the point (1, 0, 0) as our con-
centration parameter κ increases. Note that for κ = 1, the points do tend to towards the
expected mean direction (noting the significant absence of points located near (−1, 0, 0),
the antimode), despite initially appearing evenly distributed.

3.3 Discussion of priors

A discussion of prior distributions is given by Mardia and El-Atoum (1976). As µ is
required to take a value on the surface of the unit sphere it is logical that the von Mises-
Fisher distribution itself is suggested as a prior. Also, conjugacy between the prior and
posterior for µ was seen in two dimensions (see Equation (2.8.6)). Therefore, we adopt
the prior

µ ∼ vMFp(m, c), (3.3.1)

where ||m|| ∈ Sp and c ≥ 0 are hyperparameters to be elicited.
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As with the two dimensional von Mises distribution, the concentration parameter κ re-
mains a scalar with condition κ ≥ 0. Thus, we continue to assume a Gamma prior for κ
(given in Equation (2.6.1)).

3.4 The posterior distribution

The likelihood function for a random sample of n points x1,x2, . . . ,xn from a vMFp(µ, κ)
distribution is

f(X|µ, κ) =
n∏
i=1

{(κ
2

)p/2−1 1

Γ(p/2)Ip/2−1(κ)
exp{κµTxi}

}
=

[(κ
2

)p/2−1
Γ(p/2)−1Ip/2−1(κ)−1

]n
exp

{
nκµT x̄

}
, (3.4.1)

where ||x|| ∈ Sp. Applying Bayes’ Theorem gives the joint posterior for density µ and κ
as

π(µ, κ|X) ∝ f(X|µ, κ)π(µ, κ)

∝ f(X|µ, κ)π(µ)π(κ)

∝
[
κp/2−1Ip/2−1(κ)−1

]n
exp

{
nκµT x̄

}
exp{cmTµ}κa−1e−bκ

∝ Ip/2−1(κ)−nκn(p/2−1)+a−1 exp
{[
nκx̄T + cmT

]
µ− bκ

}
(3.4.2)

where ||µ|| ∈ Sp and κ ≥ 0.

The full conditional distribution of µ is

π(µ|X, κ) ∝ exp
{[
nκx̄T + cmT

]
µ
}

∝ exp{KMTµ} (3.4.3)

where

K = ||nκx̄+ cm||, M =
nκx̄+ cm

K
(3.4.4)

for K ≥ 0 and M ∈ Sp. This is the density of a von-Mises Fisher distribution up to
proportionality, and so

µ|κ,X ∼ vMFp(M,K)

Likewise the full conditional distribution for κ is

π(κ|µ, X) ∝ Ip/2−1(κ)−nκn(p/2−1)+a−1 exp
{(
nµT x̄− b

)
κ
}
, κ ≥ 0. (3.4.5)

As for two dimensions (see Equation 2.8.3), this distribution is non-standard and so
simulation of realizations requires MCMC methods.
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3.5 Metropolis-Hastings algorithm

We now consider the implementation of a Metropolis-Hastings algorithm in order to gen-
erate realizations of our full posterior distribution. As discussed in the previous section,
the full conditional distribution of µ has a known distribution, and therefore we can use
a Gibbs update this parameter. However, for κ, we must generate a proposed value and
use a Metropolis-Hastings algorithm to accecpt or reject the proposed value. The detailed
algorithm is as follows:

(1) Initialize the algorithm at j = 1. Set (µ(0), κ(0)) to some initial starting value,
potentially the prior means.

(2) Generate a proposed value κ∗ ∼ LN
(
log
(
κ(j−1)

)
, ν2
)
, where ν is a tuning parameter

chosen by the user.

(3) Calculate the acceptance probability α(κ∗, κ(j−1)) = min (1, A), where

A =
π(κ∗|x,µ(j−1))

π(κ(j−1)|x,µ(j−1))
× q(κ(j−1)|κ∗)
q(κ∗|κ(j−1))

=
Ip/2−1(κ

∗)−n(κ∗)n(p/2−1)+a−1 exp
{
nκ∗(µ(j−1))T x̄− bκ∗

}
Ip/2−1(κ(j−1))−n(κ(j−1))n(p/2−1)+a−1 exp {n(κ(j−1))(µ(j−1))T x̄− b(κ(j−1))}

×
(

κ∗

κ(j−1)

)
=

[
Ip/2−1(κ

∗)

Ip/2−1(κ(j−1))

]−n(
κ∗

κ(j−1)

)n(p/2−1)+a
exp

{
n(κ∗ − κ(j−1))(µ(j−1))T x̄− b(κ∗ − κ(j−1))

}
(4) Set κ(j) = κ∗ with probability α(κ∗, κ(j−1)), otherwise set κ(j) = κ(j−1).

(5) Generate µ(j) ∼ vMF (M,K), where

M =
nκ(j)x̄T + cm

K
, K = ||nκ(j)x̄T + cm||.

(6) Set j := j + 1 and return to step (2).

We now illustrate the algorithm above using test data consisting of a random sample of
40 data points simulated from a vMF3(µ = [0.7071, 0.5, 0.5] , κ = 20) distribution (where
the mean direction is a result of rotation by α = β = π/4). The data are illustrated in
Figure 3.5.1.
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Figure 3.5.1: 40 simulated points from a vMF3(µ = [0.7071, 0.5, 0.5] , κ = 20) distribution

We take our prior distributions to be

µ ∼ vMF3(m = (0, 0, 1)T , c = 50), κ ∼ Ga(5, 1/4).

We run our algorithm initially for 1,000 iterations. Investigation using diagnostic plots
(omitted) into the effect of the magnitude of the tuning parameter ν suggests that, for
higher dimenisons, a reduction to ν = 0.05 is more appropriate than the previous value
of 0.1.

Traceplots and autocorrelation plots for the posterior parameters are provided in Figure
3.5.2.
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Figure 3.5.2: Trace (left) and autocorrelation (right) plots for posterior realizations, un-
thinned

Each element of µ appears to be mixing well, and require no thinning. In addition, the
mean of the simulated data (green), the posterior mean (blue) and the prior direction (red)
has been highlighted; however, the posterior mean and the mean of the simulated data
are so similar that it is difficult to tell the difference graphically. This suggests that the
data has been highly informative, which is to be expected due to the high concentration
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of the data and the relatively low certainty placed on prior µ.

The autocorrelation plot for κ reveals that realizations are autocorrelated up to a6pproximately
lag 30, and thus we need to thin our realizations in order to produce suitable posterior
draws. Additionally the traceplot appears to be “snaking”, which again suggests succes-
sive draws are correlated.

The previous algorithm specifications (unthinned) result in an effective sample size of
4.3 for κ and so the level of thinning required can be estimated as 1000/4.3 ≈ 233.
Experimentation with algorithmic parameters suggest that thinning by 250 is required to
produce un-autocorrelated result, a significantly higher level of thinning than suggested
by the autocorrelation plot in Figure 3.5.2.
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Figure 3.5.3: Diagnostic Plots for posterior κ, thinned

The updated diagnostic plots for κ are given in Figure 3.5.3, once thinning by 250 has
been applied. The autocorrelation now has desirable characteristics, with neglible auto-
correlation at lag 1, and the traceplot suggests that the chain is centered on a value close
to the prior mean. The effective sample size of posterior realizations of κ is now 10, 000
and so realizations are (almost) un-autocorrelated.
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Figure 3.5.4: Comparison of the data, prior and posterior means of µ

Figure 3.5.4 shows that the posterior of µ has been dominated by the data rather than
the prior. We calculate the Euclidean distances in Sp of the data and prior means to the
posterior mean as

||E(µ|x)− x̄|| = 0.008, ||E(µ|x)− E(µ)|| = 0.971,

demonstrating that the posterior has been formed with heavy weighting from data infor-
mation, and less from the prior.

Confidence regions for the prior and the posterior have proved difficult to plot on the
surface of the sphere; however, an accurate measure of spread can be calculated. Taking
an equi-spaced confidence region (CR) around the mean of the density concerned, such
that 100α% of realizations lie within this region, we define a measure of spread r to be
the radius from the mean to one point on the boundary of this region. Thus, densities
with high concentration will have a lower r, and vice versa. We will take α = 0.95 so 95%
CRs will be measured.

The prior and posterior densities have r values calculated as

rprior = 0.347, rposterior = 0.083
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respectively. Thus, our prior 95% CR covers a larger area than the posterior equivalent,
again suggesting posterior certainty has been heavily influenced by the data.
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Figure 3.5.5: Prior and posterior κ with 95% CIs

The summary statistics for κ a posteriori are

E(κ|x) = 22.64, 95%CI = (15.993, 29.296),

showing that our posterior mean is similar to our prior mean of 20.

As with the concentration in two dimensions (see Figures 2.8.3 and 2.9.3), the posterior
density of κ appears to be almost symmetric (with a slight tendency towards postivie
skewness) around the posterior mean, suggesting that a Gamma or Log-normal density
might be a valid approximation for the full conditional distribution in Equation (3.4.5).

3.6 Cosmic rays

Littlefield (1979) states that primary cosmic rays consist of highly charged protons or elec-
trons that travel at velocities almost near the speed of light, with origins somewhere out
in space. As cosmic rays enter the Earth’s magnetic field, they collide with atmospheric
molecules (principally Oxygen and Nitrogen) and produce a large number of secondary
particles in showers. One of these secondary particles is the µ-meson, or muon, whose lo-
cation on arrival on the surface of Earth can be measured by the impact it has on distilled
water.
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Although cosmic rays can have an energy as high as 1019 eV, the data collected by Toyoda
et al.(1965) focuses on cosmic rays in the energy region 1014 to 1017 eV and we shall analyse
this data set; henceforth, these are referred to as the low-level muons. The original data
is given in terms of declination and right-ascension in degrees, and so an appropriate
transformation to our preferred coordinate system is required. The arrival locations are
presented in Figure 3.6.1.

Figure 3.6.1: Arrival locations of low-level muons

Graphical assessment of Figure 3.6.1 suggests that low-level muons can arrive from all di-
rections, although there does appear to a clustering around the lower southern hemisphere
and a relative scarcity of arrivals near the North pole. Rudimentary analysis by Toyoda
et al. suggests that there is a concentration of points with right ascension measurements
in the range 200o to 220o, although variability in terms of declination is not discussed.
This concentration region is also provided in Figure 3.6.1, and the mean direction of the
arrival points is contained within this band, making the conclusions reached by Toyoda
plausible.
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Figure 3.6.2: Explanation of galactic cosmic ray movements

Appropriate prior distributions were elicited through discussions with Dr Andrew Fletcher.
After providing a brief overview of the movements of cosmic rays within the galaxy (pro-
vided in Figure 3.6.2), Dr Fletcher was kind enough to calculate the specific direction
in which he believes cosmic rays would be likely to arrive, given as a declination value
of −29o and a right ascension value of 256o. Regarding concentration of the points, Dr
Fletcher stated that the ratio of points on the hemisphere centered on the mean direction
and the points centered on the antimode is approximately 30 to 1. After graphically
exploring von Mises-Fisher distributions with a variety of concentration parameters, his
beliefs best fit a distribution with concentration parameter 10.

Weighting the prior distributions with appropriate levels of certainty is also required. Dr
Fletcher stated that his certainty in the concentration parameter κ could be represented
by a 5% chance of a ratio greater than 100 to 1. Using the same deduction method as
described above, this ratio appears equivalent to a von Mises-Fisher distribution with
concentration parameter 40. Therefore, our prior distribution for κ satisfies the following
properties:

E(κ) = 10, P r(κ > 40) = 0.05.

Through manipulation of the gamma distribution, this suggests prior parameters of a =
0.031 and b = 0.0031. This implies a high prior variance of 3225.8, suggesting that
information for the posterior distribution for κ will be dominated by the data.

In summary, the prior distribution with independent components is

µ ∼ vMF3

(
m = (0.4848,−0.8486, 0.2116)T , c = 15

)
, κ ∼ Ga(0.031, 0.0031).

Initial testing of our algorithm produced results (diagnostically) comparable to those in
section 3.5 (omitted). Final analysis is subsequently produced by running for 10, 000
iterations with thinning of 500, and a κ tuning parameter of 0.05 (as used previously).
Note that initial values of µ and κ are given as the prior means, i.e. µ0 = m and κ0 = 10.
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Figure 3.6.3: Comparison of data, prior and posterior

Figure 3.6.4: Comparison of data, prior and posterior
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Figure 3.6.3 demonstrates the association of the mean, prior and posterior, and Figure
3.6.4 an alternative view of the same plot with the data removed and the right ascension
confidence interval provided by Toyoda included.

Both figures suggest that the posterior mean direction is an almost equal weighted average
of the prior mean and the data. Using the method for measuring spread discussed in
Section 3.5, CR radius values for the prior and the posterior are

rprior = 0.631, rposterior = 0.387,

respectively. This demonstrates that our uncertainty about µ has decreased from prior
to posterior analysis, and so the data has been informative; however, the reduction in r
(38.6%) is by significantly less than for our simulated test data in Section 3.5 (76.1%)
due to the increased spread of the cosmic ray data as compared to the test data (Figure
3.5.1).

Figure 3.6.4 suggests that the posterior mean lies comfortably within the confidence in-
terval provided by Toyoda.

0 5 10 15 20

0
5

10
15

20

k

D
en
si
ty

Prior
Posterior

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

k

D
en
si
ty

Figure 3.6.5: Prior and posterior κ density estimates, with 95% CIs

Figure 3.6.5 provides a kernel density estimate of our posterior for κ compared with the
prior. As our prior has a significantly higher variance than our posterior, the original plot
of comparison is not appropriate for graphical analysis of the posterior, and so a close-up
has also been provided.

Again, we can see the distinctive “almost” symmetric posterior for κ. Summary statistics
for κ a posteriori are

E(κ|x) = 0.777, 95%CI = (0.462, 1.092).
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Due to a large prior variance, the posterior for κ is dominated by information from the
data. A posterior mean of 0.777 implies that there is little concentration in the arrival
direction of muons.
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Chapter 4

Conclusions and Further Work

MCMC methods have been successfully implemented on the von Mises-Fisher distribution
in both two and three dimensions, and the algorithm in Section 3.5 can be applied in p
dimensions. This suggests that Bayesian analysis on data for geometrical objects in Sp is
perfectly plausible and straightforward to implement.

Informal testing for the von Mises distribution was discussed in Section 2.4. However,
no assessment of the goodness-of-fit is performed on the spherical distribution. Although
frequentist methods are available, they are more complicated than for the case in two
dimensions. Such methods are not explored within this report, as it is focuses rather
on the Bayesian applications to such data sets. However, for completeness in genuine
applications, data should be at least graphically assessed for goodness-of-fit.

Many of spherical data sets considered for use in this project may benefit from modelling
using a mixture of distributions. It appears to be a common trait that realistic data
contains two or more sub-populations, and investigation into label switching and possible
hidden Markov models would be a desirable avenue of exploration.

The investigation into the arrival directions of cosmic rays suggests that, for such celes-
tial interactions as those described in Figures 3.5 and 3.6, distributions on a particular
“ring” of values may be more suited for modelling than distributions focused on a partic-
ular direction. The von Mises-Fisher distribution provides an inadequate model for such
distributions, and further research into the area is required.
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Data

Vanishing Directions of Homing Pigeons

The vanishing directions of 15 homing pigeons, used in Section 2.9. Measurements in
degrees clockwise from North.

085 135 135 140 145 150 150 150
160 285 200 210 220 225 270
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Arrival Directions of Cosmic Rays

The right ascension (RA) and declination angles (Dec) of 148 muon arrival locations.
These measurements are taken within the framework of the widely used equatorial coor-
dinate system.

RAo Deco RAo Deco RAo Deco RAo Deco

315 -66 203 -37 063 -26 234 07
198 -66 216 -41 077 -28 324 16
099 -63 252 -41 167 -21 311 18
050 -63 279 -41 176 -23 293 24
086 -61 288 -41 185 -26 275 20
221 -61 311 -37 194 -23 266 22
000 -52 320 -30 221 -17 207 13
014 -50 342 -23 216 -15 203 16
063 -50 356 -17 230 -15 212 20
176 -52 347 -19 234 -17 198 22
185 -52 347 -12 248 -10 140 13
207 -52 342 -15 279 -17 117 07
221 -52 338 -12 297 -12 117 11
230 -50 329 -17 234 24 086 11
243 -52 293 -26 234 -03 068 11
347 -48 284 -32 185 -03 032 13
342 -43 261 -35 162 -08 014 16
211 -48 252 -21 144 -15 059 16
293 -48 257 -19 144 -19 068 16
284 -48 261 -23 108 -19 068 22
216 -48 261 -28 104 -19 072 24
207 -46 252 -39 086 -19 086 18
144 -48 230 -35 077 -17 104 20
149 -46 230 -32 068 -12 212 18
077 -46 216 -28 063 -06 153 27
041 -46 212 -30 027 04 216 27
027 -46 207 -28 095 00 342 36
014 -46 194 -30 099 -03 338 40
005 -43 158 -35 122 -08 009 -55
041 -32 117 -30 140 -06 230 38
036 -41 099 -32 144 -08 221 36
050 -39 095 -37 171 04 203 38
063 -35 014 -21 176 02 198 42
077 -41 018 -19 185 07 099 31
113 -41 027 -15 198 09 086 38
153 -41 023 -12 216 02 068 36
176 -43 050 -15 216 04 045 36
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