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Abstract

When dilute atomic gases are cooled down to a fraction above absolute
zero, we observe the formation of Bose-Einstein condensates. In this state, all
particles behave identically, and display quantum behaviour on a macroscopic
scale. By weakly coupling two such condensates within a double-well poten-
tial trap (a bosonic Josephson junction), we may observe dynamical systems
of atomic oscillations between the condensates, collectively known as the
Josephson Effects. In this report, we discuss the Josephson relations, which
define these oscillations, and observe how such dynamics may be caused by
an initial imbalance in atomic population, or by a phase difference between
the two condensates. By altering the magnitude of the potential barrier sepa-
rating the condensates, we observe two distinct Josephson Effects: Josephson
oscillations, and macroscopic quantum self-trapping. We also qualitatively
compare these simulated results to experimental data.



Chapter 1

Introduction to Bose-Einstein
Condensates

Throughout this report, we shall be discussing Josephson Effects within di-
lute atomic Bose-Einstein condensates, so first we must discuss the question:
what is a Bose-Einstein condensate? A Bose-Einstein condensate (BEC) is
a state of matter which can only form under very specific conditions of tem-
perature and density. We shall primarily be considering the case of a dilute
atomic gas, for which the temperature required is of the order of 500nK,
5× 10−7 degrees above absolute zero. Other examples of Bose-Einstein con-
densation are superfluid helium and superconductors, although the temper-
atures required here are much higher (around 2.2K). A BEC is a quantum
phenomenon, in which all of the paritcles are indistinguishable from one an-
other, and the particles within the condensate act identically. Due to this
behaviour, they form a macroscopic wave of matter, and they allow us to
observe quantum effects on a macroscopic scale. Before discussing them fur-
ther, we shall first consider some results from quantum theory which are
relevant to the formation of BECs.

1.1 Important Quantum Results

1.1.1 Wave Particle Duality

Classically, waves and particles were considered distinct from one another.
For example, massive bodies such as electrons were described as particles,
each particle discrete from others, with motion completely specified by the
properties of position, velocity, and mass; electromagnetic radiation was de-
scribed as a wave, a continuous transfer of energy, without mass. This inter-
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CHAPTER 1. INTRODUCTION TO BECS 4

pretation is reasonable on a macroscopic scale, but once experiments began
taking place on the atomic (and smaller) scale, where the laws of quantum
mechanics take over, it became apparent that this was not the case. In
the early 20th century, experimental evidence showed that electrons could
diffract (like a wave), whereas light was necessarily transferred in quantised
packages (light particles called photons). Hence, we cannot consider parti-
cles and waves as separate from one another under quantum mechanics; this
is known as wave-particle duality. The position and velocity of a particle
can no longer be known with certainty, but are described by a probability
distribution.

Since we now consider particles as waves, we can ask what the wavelength
of a particle is. In 1924, Louis de Broglie postulated that the wavelength of
an electron could be written as λ = h/p [1], where h is Planck’s constant,
and p is the electron’s momentum. In fact, this is true for all forms of matter,
and the (thermal) de Broglie wavelength is defined as [2]

λT =

(
2πh̄2

mkT

)1/2

, (1.1)

where m is the mass of the particle, T is the temperature, and k, h̄ are
the Boltzmann constant and Planck’s reduced constant respectively. Hence
we can see that the de Broglie wavelength increases inversely proportional
to
√
T ; as the temperature decreases, we see an increase in the particle’s

wavelength. This concept is key to the formation of BECs, and we shall
discuss further the effect of an increasing de Broglie wavelength as T → 0.

1.1.2 The Schrödinger Equation (SE)

Since we can no longer describe a particle by its classical properties of po-
sition and momentum, we need a new way to define it. We introduce the
wavefunction, Ψ(r, t), a complex-valued function (in general), which defines
the probability of finding the particle at position r, at time t, by

P (r, t) = |Ψ(r, t)|2 , (1.2)∫
|Ψ(r, t)|2 d3r = 1. (1.3)

Note that Equation (1.3) gives the normalisation condition; since we are deal-
ing with a probability, we must normalise Ψ such that the total probability
is 1. In 1926, Erwin Scrödinger postulated the Schrödinger Equation (SE) [3]:
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ih̄
∂Ψ(r, t)

∂t
=

(
− h̄2

2m
∇2 + V (r)

)
Ψ(r, t), (1.4)

where h̄ ≈ 1.055 × 10−34 is Planck’s reduced constant. This linear partial
differential equation describes how the wavefunction Ψ evolves through space
and time. The quantity within the brackets on the right hand side of the SE,
called the Hamiltonian operator, Ĥ, defines the total energy of the particle;
when operating on Ψ, (−h̄2/2m)∇2 corresponds the kinetic energy of the
particle, and V (r) to the potential energy.

1.1.3 Bosons and Fermions

We may group all particles in nature into two categories based on their
spin value, an intrinsic property of a particle which is a form of angular
momentum. The two categories are bosons, which have integer spin, and
fermions, which have half integer spin [2]. Quarks and leptons, essentially
the building blocks of matter, are all fermions; for example, an electron is
a type of lepton, while protons and neutrons are both made up of three
quarks. The spin of combined particles is simply added, so for example,
protons and neutrons, consisting of 3 quarks, each with spin 1/2, have toal
spin 1/2 + 1/2 + 1/2 = 3/2, hence are fermions. More generally, as neutral
atoms have equal numbers of protons and electrons, the classification of the
atom depends on the number of neutrons within the nucleus; if there is an
even number of neutrons, the atom has integer spin and is a boson, else it is
a fermion. For this reason, different isotopes of the same element will often
have a different classification. For example, helium has two stable isotopes,
3He and 4He, which have 1 and 2 neutrons respectively; 3He is a fermion,
while 4He is a boson.
The key difference between bosons and fermions is that no two fermions
may occupy the same quantum state, due to the Pauli Exclusion Principle
[4], whereas many bosons may. This property of sharing a quantum state
is hugely important for Bose-Einstein Condensation, and as the name may
suggest, we shall be focussing solely on bosons for the rest of the report.

1.2 Bose-Einstein Condensates (BECs)

Bose-Einstein condensation was first predicted to occur in photons in 1924
by Indian physicist, Satyendra Bose [5]. Later that year, Einstein, whom
Bose had contacted to help publish his results, generalised the phenomenon
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to particles [6]. We shall now consider the underlying idea of why such
condensation should occur, and look at the first experiments which succeeded
in creating them.

1.2.1 Underlying Concept

As discussed earlier, the thermal form of the de Broglie wavelength tells us
that λdB of a particle increases proportionally with 1/

√
T , with T the tem-

perature. So as T decreases, λdB increases. Define a length D as the typical
distance between atoms within a dilute atomic gas [7]. At normal human
temperatures, of order 300K, the de Broglie wavelength is much smaller than
D; the atoms have more kinetic energy (note that temperature is a measure
of the average kinetic energy of particles in a system), and hence occupy a
range of different quantum energy states. However, if we decrease the tem-
perature such that λdB increases to be of the same order of magnitude as
D, then the “wavepackets” of the atoms, the area of space over which they
are distributed by their wavefunction Ψ, begin to overlap. The temperature
when λdB = D is the critical temperature, TC , as it is at about this point
that we see the beginnings of Bose-Einstein condensation.
For atomic gases, we are now dealing with very low temperatures, T � 1K,
and so the atoms have very little kinetic energy, and as T decreases further,
more and more of the atoms fall into the ground energy state. It is at this
stage that the distinction between bosons and fermions becomes important;
because we are dealing with bosons, the atoms may occupy the same quan-
tum state. By decreasing the temperature further still, we arrive in the region
of true Bose-Einstein condensation, where λdB > D. The temperature is now
so low that almost all atoms are in the ground state, and as the wavelengths
are now greater than the distance between atoms, their wavepackets overlap
significantly, and the atoms become indistinguishable from one another. The
sharing of the ground energy state, and the indistinguishability of the atoms
is what causes all of the atoms in the condensate to behave identically, and
hence for the condensate as a whole to demonstrate quantum behaviour on
a much larger scale than normal.

1.2.2 Experimental Observation

The first gaseous BEC was created in 1995 by Eric Cornell and Carl Wie-
man at the JILA lab at the University of Colorado; they cooled a trapped
gas of around 2000 rubidium-87 atoms to around 2× 10−7K [8]. Only a few
months later, Wolfgang Ketterle and his team at MIT succeeded in creat-
ing a condensate of sodium-23 atoms containing hundreds of thousands of
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atoms [9], allowing a more detailed study of the behaviour of the conden-
sate. For their work, the three shared the Nobel prize for Physics in 2001.
Figure (1.1) shows the velocity distribution of the atoms after expanding
for 1/20 of a second. The figure shows the distribution before condensation
(left), just after (middle), and after further evaporative cooling has taken
place (right). We can clearly see the well-defined peak in the centre of the
image after condensation (sharper at the lower temperature), which repre-
sents particles with almost zero velocity. As there is a very high number of
particles with close-to-zero velocity (and hence kinetic energy), intially all
held near to the centre of the trap, this corresponds to a very high density
of particles which have remained very close to the centre of the trap; this
is the condensate. This is in stark contrast to the shot before condensation
has occurred; although there is still a marginally higher density in the cen-
tre, there is a much more even distribution of velocities (and hence of atoms).

Figure 1.1: The velocity distribution (corresponding to how far the atoms
have moved) of trapped rubidium-87 atoms in a condensate at: T > TC),
T ≈ TC (middle), T < TC (right). The colour corresponds to the number of
atoms at each velocity, from red (fewest) to white (most) [10].

The gap of 70 years between Bose’s and Einstein’s predictions, and the
physical formation of BECs, was largely due to the problem of lowering the
temperature to the miniscule values required. The liquefaction of helium was
achieved in 1914 , before Bose had even made his serendipitous discovery;
in 1938, Fritz London attributed the phenomenon of superfluidity in liquid
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helium to Bose-Einstein condensation, and predicted the critical temperature
of superfluidity with remarkable accuracy [11]. However, it was not until 1992
that laser cooling allowed experiments to get below 1K [12] to create a pure,
dilute gaseous BEC. Both the Cornell/Wieman and Ketterle experiments
used a combination of laser cooling, followed by evaporative cooling (allowing
the atoms with the highest energy to escape the trap in order to lower the
average energy) to attain their condensates.

1.3 The Gross-Pitaevskii Equation (GPE)

The fundamental equation for modelling BECs, which will be used through-
out this report, is the Gross-Pitaevskii equation (GPE), named after Eugene
P. Gross, and Lev P. Pitaevskii. It describes how the wavefunction Ψ of a
condensate evolves through time [13], and can be written:

ih̄
∂Ψ(r, t)

∂t
=

(
− h̄2

2m
∇2 + V (r) + g|Ψ(r, t)|2

)
Ψ(r, t). (1.5)

So the left-hand side of the GPE describes the time-evolution of the sys-
tem, while the quantity in brackets on the right-hand side again describes
the Hamiltonian operator, Ĥ, of the system. The GPE is also known as the
Non-Linear Schrödinger Equation, and we can see that it is simply a gener-
alisation of the SE discussed earlier. In the GPE, the ∇2Ψ term corresponds
the kinetic energy, and the V term corresponds to the external potential as
in the SE; the key difference between the equations is that the SE describes
the time-evolution of a single particle, whereas the GPE describes the evo-
lution of many particles in a system. The g|Ψ|2 term, absent from the SE,
describes the interactions between particles within a system, and it is this
term that gives rise to the inherent non-linearity of the GPE. The coefficient
g is a characteristic of the system, which defines how strong the effective
interactions between particles are; if g > 0, these interactions are repulsive,
if g < 0 they are attractive. If we set g = 0, the case with no interactions
between particles, we recover the Schrödinger Equation. In this report, we
shall consider only the repulsive case of g > 0.
The GPE is an excellent model for studying BECs, as it can accurately
model their characteristics, whilst also being computaionally inexpensive. It
is a relatively poor model for other systems such as superfluid helium, due
to their relatively strong long-range inter-particle interactions, and it also
fails to take into account finite temperature effects (i.e. being above absolute
zero). However, given the dilute nature and exceedingly low temperatures of
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typical BECs, these effects are negligible, and so the GPE provides a good
model.
In this report, we shall be considering the GPE in one dimension only; that
is Ψ = Ψ(x, t), and ∇2 = ∂2/∂x2, and henceforth we shall drop the x and
t dependence from Ψ unless explicitly required. Thus the 1D GPE we are
considering is given by

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ VΨ + g|Ψ|2Ψ. (1.6)

1.4 The Dimensionless GPE

Because we are dealing with a quantum phenomenon, many quantities in-
volved are very small, and it is inconvenient to work in terms of coefficients
such as h̄ all the time. It is also computationally inefficient; h̄ for example,
is of the order 10−34, and this can affect the precision of numerical compu-
tations. Hence it is convenient to define a new set of dimensionless variables
to work with [7]:

Ψ = Ψ∞Ψ′ (1.7)

x = ξx′ (1.8)

t =
h̄

µ
t′ (1.9)

V = µV ′ (1.10)

where Ψ∞, the wavefunction a long way from the boundary in an infinite
potential well (explained in the next subsection), n∞ = |Ψ∞|2, and µ, the
chemical potential of the system, are all dimensional constants. We also de-
fine the “healing length”, ξ = h̄/

√
mgn∞, the dimensional constant in the x

transformation. ξ corresponds to the distance required by a condensate in
an infinite potential well to reach its asymptotic value, and will be discussed
more in Chapter 3. By substituting these transformations into the 1D GPE,
we find:

i
∂Ψ′

∂t′
= −1

2

∂2Ψ′

∂x′2
+ V ′Ψ′ + |Ψ′|2Ψ′, (1.11)

from which we subsequently drop the primes. Note that all units shown on
graphs are in these dimensionless units, unless stated otherwise.



Chapter 2

Josephson Effects

2.1 What Are Josephson Effects?

The term “Josephson Effects” cumulatively describes a set of macroscopic
quantum phenomena, most commonly used to refer to a supercurrent (a cur-
rent that flows indefinitely, without dissipation) flowing across a Josephson
junction, which consists of two superconductors separated by a thin insulat-
ing barrier. It involves a flow of particles which tunnel through the barrier
(impossible classically), when a difference in chemical potential is applied
across the system. The effect is named after Brian David Josephson, who
in 1962 predicted the equations for current and voltage across this barrier
[14]. The effects were first discovered experimentally the following year, by
Philip Anderson and John Rowell [15]. Josephson received the Nobel prize in
physics in 1973 for this work. The Josephson effect has several applications,
the most widely used of which is the superconducting quantum interference
device (SQUID), which is a very sensitive magnetometer, used for a variety
of purposes in engineering [16].

Analogous results have been discovered in both superfluid helium [17],
and in dilute trapped Bose-Einstein condensates [18-21]. BECs in particu-
lar, when held in an optical trap, offer the opportunity to investigate some
dynamical regimes not possible with superconductors or superfluids, in part
due to the very low concentration of particles. They are also much more
controllable than superfluids or superconductors; by simply altering the ge-
ometry of the trap in real time, one can observe several different effects with
a single sample. Rather than a physical barrier, a potential barrier is in-
troduced to split the condensate into two distinct parts. The dynamics of
these systems are caused by two competing energy terms: EJ is the Joseph-
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son coupling energy, which dictates the tunnelling through the barrier; EC
describes the interactions between particles within a single condensate [22].

In order to intiate Josephson dynamics, an imbalance of some sort must
be introduced between the two condensates. This can involve a population
imbalance, in which one condensate contains a higher proportion of the par-
ticles than the other; an imbalance in chemical potential between the wells;
or a difference in phase between the two condensates.

2.2 Origin of the Josephson Relations

Considering a condensate in a double well potential, we can view this con-
densate as two separate, interacting condensates. We can therefore write the
wavefunction Ψ(x, t) as a superposition of two states,

Ψ(x, t) = ψ1(t)Φ1(x) + ψ2(t)Φ2(x), (2.1)

where Φ1 and Φ2 are the time-independent eigenstates for the spearated con-
denstates. This is an approximation, as the nonlinear interaction term in the
GPE affects such a superposition. However, since we are considering only a
weakly linked pair of condensates, the density within the tunnelling region
is low, and hence interactions are negligible. The dimensionless governing
equations for two interacting condensates inside a double-well potential are
given by [18]:

i
∂ψ1(x, t)

∂t
= (E0

1 + U1|ψ1|2)ψ1(x, t)− κψ2(x, t), (2.2)

i
∂ψ2(x, t)

∂t
= (E0

2 + U2|ψ2|2)ψ2(x, t)− κψ1(x, t). (2.3)

The terms E0
i , Ui, and κ denote respectively the zero point energy of each

condensate, the atomic self-interaction energies, and the amplitude of tun-
nelling between the condensates. To maintain consistency with the earlier
derivation of the dimensionless GPE, these three energy terms are also di-
mensionless. To derive the Josephson relations, we first apply the Madelung
Transformation:

ψi(x, t) =
√
Ni(x, t) e

iθi(x,t), (2.4)

where Ni(x, t) = |ψi|2 is the atom density of the condensate, and θi(x, t)
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represents the arbitrary phase, defined as

θi = arctan

(
=(ψi)

<(ψi)

)
. (2.5)

The phase of a single condensate does not have have any real physical effect;
however, a difference in phase between two interacting condensates is of huge
importance, as it can initiate Josephson effects.
Differentiating equation 2.2, the chain rule gives us

i
∂
√
N1

∂t
eiθ1 −

√
N1

∂θ1
∂t

eiθ1 =
(
E0

1

√
N1 + U1N1

)
eiθ1 − κ

√
N2e

iθ2

Rearranging, and applying eiθ = cos θ + i sin θ, we can separate real and
imaginary parts to give

∂N1

∂t
= −2κ sin(θ2 − θ1), (2.6)

∂θ1
∂t

= κ

√
N2

N1

cos(θ2 − θ1)− (E0
1 + U1N1) (2.7)

Analagously, by differentiating 2.3, we find

∂N2

∂t
= 2κ sin(θ2 − θ1), (2.8)

∂θ2
∂t

= κ

√
N1

N2

cos(θ2 − θ1)− (E0
2 + U2N2) (2.9)

Now introduce the variables

z(t) =
N1 −N2

NT

, (2.10)

φ = θ2 − θ1, (2.11)

where NT = N1 +N2; z(t) is the fractional difference in atomic population of
the two condensates, and φ is the relative difference in phase. By subtract-
ing (2.6) - (2.8), and (2.9) - (2.7), we can find expressions for dz/dt and dφ/dt:

dz

dt
= −4κ

√
N1N2 sinφ

NT
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dφ

dt
= (E0

1 − E0
2) + κ

(√
N1

N2

−
√
N2

N1

)
cosφ+ (U1N1 − U2N2)

By noting that we can rewrite
√
N1N2 as 1

2
NT

√
1− z2, and that for small

z, U1 ≈ U2 = U , and by rescaling time (dimensionlessly) by 2κt → t, these
equations become

dz

dt
= −
√

1− z2 sinφ (2.12)

dφ

dt
= ∆E +

z√
1− z2

cosφ+ Λz. (2.13)

These are the Josephson relations, with the dimensionless constants ∆E and
Λ defined as

∆E =
E0

1 − E0
2

2κ
, (2.14)

Λ =
UNT

2κ
(2.15)

Primarily, this report focusses on values of z � 1, within a symmetric double-
well trap, hence the difference in zero point energies is negligible, ∆E ≈ 0.
Of much greater importance is the second parameter, Λ, which essentially
describes the ratio between the atomic self-interaction energies of the conden-
sates, U , and the tunnelling amplitude, κ. Going back to the self-interaction
and coupling energy terms discussed in Chapter (2.1), by setting EC = UNT

and EJ = 2κ, we can define Λ as the ratio between these two terms,

Λ =
EC
EJ

. (2.16)

It is the value of this constant which dictates the dynamics of the Josephson
effects within the condensates.

2.3 Selected Josephson Effects

We can separate the dynamical systems described by the Josephson relations
into two primary regimes, based on the value of Λ: the critical value of Λ is
defined as [19]
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ΛC = 2

(
1 +

√
1− z(0)2 cos[φ(0)]

z(0)2

)
, (2.17)

which can be derived from the Hamiltonian of the system and the constraint
of energy conservation. If Λ < ΛC , then the tunnelling effects dominate the
intra-condensate interactions, and we see Josephson oscillations, as demon-
strated in Figure 2.1 (a), (b).

Figure 2.1: The different regimes due to different population imbalances: (a)
Λ� ΛC ; (b) Λ < ΛC ; (c) Λ→ Λ−C ; (d) Λ = ΛC ; and (e) Λ > ΛC [19].

Here, we see that the population imbalance, z(t) oscillates about zero,
between maxima and minima of ±z(0), where z(0) is the initial poulation
imbalance. If the reverse is true, with Λ > ΛC , then we see instead macro-
scopic quantum self trapping, shown in Figure ?? (e). In this case, z(t)
still oscillates, but it no longer oscillates about zero; the condensate with the
largest initial population remains the larger. Figure 2.1 (c) shows the case
Λ→ ΛC from below; the population difference still oscillates about zero, but
the shape of oscillations are no longer the smooth, sinusoidal shape as in cases
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(a) and (b), indicating the increasing effect of the atomic self-interaction en-
ergy term, EC . Figure 2.1 (d) shows the special case of Λ = ΛC ; we can
see that there are no oscillations whatsoever in this case, instead the pop-
ulation is critically damped, and so tends exponentially to zero. We shall
now examine the two main cases in more detail: Josephson oscillations, and
macroscopic quantum self-trapping.

2.3.1 Josephson Oscillations (JO)

Let us first consider the case of Josephson oscillations; when Λ is suitably
small, we see oscillations in both population and phase differences, about a
mean value of zero. We can derive this oscillatory behaviour analytically, by
taking the Josephson relations derived in Section 2.1, and taking the second
time derivative:

d2z

dt2
= 2κ

d

dt
[−
√

1− z2 sinφ].

Note that the factor of 2κ appears because we are differentiating with respect
to t for a second time; the transformation 2κt→ t implies that d/dt→ 2κt,
d2/dt2 → (2κ)2. Calculating this derivative gives us the second order ODE:

d2z

dt2
= −2κ(Λ + 1)z.

Similarly, we can derive

d2φ

dt2
= −2κ

(
Λ√

1− z2
sinφ+

1

2

√
1− z2 sin 2φ

)
. (2.18)

As opposed to our ODE for z, here we have non-linear terms, which makes
finding a solution more difficult. However, for “small” values of z, φ, we can
linearise this: z2 ≈ 0, sinφ ≈ φ. Hence, we obtain:

d2φ

dt2
= −2κ(Λ + 1)φ (2.19)

From these ODEs, we can obtain solutions for z(t) and φ(t):

z(t) = zmax cos
(

2κ
√

Λ + 1 t+ α
)
, (2.20)

φ(t) = φmax sin
(

2κ
√

Λ + 1 t+ α
)
, (2.21)
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where zmax and φmax are the maximum population and phase differences,
and the value of α depends upon the initial conditions z(0) and φ(0). Hence
we expect to see oscillations in both z(t) and φ(t), with frequency ω, where

ω =
(

2κ
√

Λ + 1
)

=
√
ECEJ + E2

J (2.22)

The definition of “small” values of z, φ is somewhat arbitrary: in my results,
zmax is no larger than 0.06, and hence linearisation is reasonable; whereas I
observed phase differences of over 0.7π, well outside the values normally con-
sidered appropriate for linearisation, which still followed such an oscillatory
solution.

2.3.2 Macroscopic Quantum Self Trapping (MQST)

If we instead look at the case in which Λ > ΛC , we see drastically different
behaviour in both population and phase differences. The most dramatic
change is in φ(t), the phase difference. If we consider again the 2nd order
PDE for φ:

d2φ

dt2
= −2κ

(
Λ√

1− z2
sinφ+

1

2

√
1− z2 sin 2φ

)
,

although we are still considering small z, we can no longer linearise the
sinφ, sin 2φ terms; rather than oscillating, the phase increases continually
in the self-trapping regime, known as a “running” phase. The population
difference, z(t) still exhibits oscillatory behaviour, as d2z/dt2 = −2κ(Λ + 1)z
without any linearisation in φ, but rather than oscillating between positive
and negative, now whichever well has the higher initial population retains it.
This is due primarily to the decrease in the tunnelling energy term, EJ ; in
this regime, far fewer atoms have the energy to tunnel through the potential
barrier, and so we see only smaller oscillations in z(t) which never reach zero.

2.4 Results

Plots of my results for both regimes are shown in Figure 2.2, with the time
evolution of z(t) (top) and φ(t) (bottom) for Josephson oscillations shown on
the left, and corresponding plots for MQST on the right. Figure 2.3 shows
the experimental solutions obtained by Albiez, Gati et al [20], and, although
the parameters used are different, we can see a good qualitative agreement
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between the experimental plots, and my simulated results.

Figure 2.2: Population (top) and phase difference (bottom) plots for Joseph-
son oscillations (left) and macroscopic quantum self-trapping (right) regimes.

Figure 2.3: Population (top) and phase difference (bottom) plots for Joseph-
son oscillations (left) and macroscopic quantum self-trapping (right) regimes
from experimental results [ref]. Solid lines represent numerically integrated
GPE solution, points show experimental data [20].
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For the Josephson oscillations regime, we can see the expected oscillations
in both the population and phase differences, about an average value of zero,
as predicted by the sinusoidal form of z and φ.
In contrast, the MQST plots show the oscillations in z confined to positive
values, as quantum tunnelling is effectively blocked off. The phase plots show
the running phase characteristic to MQST, as the phase continually increases
with time (in my graph of the self-trapping phase, φ is constantly increasing,
but has been bounded within [−π, π], which is why it jumps from π to −π).

The main difference between my results and those from the Albiez ex-
periment is the amplitude of oscillation; this is due to the methodology of
initiating the different Josephson effects. The method used by Albiez et al
was to alter the initial population imbalance; below a critical value, z(0) < zC
to observe Josephson oscillations, or above, z(0) > zC for MQST. This
method necessarily requires a large population imbalance for self-trapping.
My method involved altering the self-interaction and tunnelling, EC and EJ ,
by increasing the height of the potential barrier which separates the two con-
densates, which has very little imact on the value of z(0). We shall discuss
this method in more detail in Chapter 4.



Chapter 3

Numerics

Having derived the dimensionless Gross-Pitaevskii Equation, we now need to
introduce some numerical methods in order to create simulations of how a
condensate would evolve. We require numerical schemes in order to simulate
the two derivative terms, ∂2ψ/∂x2, and ∂ψ/∂t. The first two subsections
discuss the methods used to approximate these two terms.

3.1 Numerical Methods

3.1.1 The Central Difference Approximation

The Central Difference Approximation is a method for calculating the second
derivative of a function f(x) at a point xi to accuracy of O[h2], where h is
the distance between adjacent x points [23]. To derive this result, we start
by taking the forward and backward differences of f(x) at xi. This involves
taking the Taylor series of f about xi + h/2 for the forward difference, and
about xi − h/2 for the backward difference:

fi+ 1
2

= f

(
xi +

h

2

)
= f(xi)+

h

2
f ′(xi)+

(
h
2

)2
2!

f ′′(xi)+

(
h
2

)3
3!

f ′′′(xi)+ ...; (3.1)

fi− 1
2

= f(xi −
h

2
) = f(xi)−

h

2
f ′(xi) +

(
h
2

)2
2!

f ′′(xi)−
(
h
2

)3
3!

f ′′′(xi) + .... (3.2)

By subtracting (1)− (2), we see that

f ′(xi) =
fi+ 1

2
− fi− 1

2

h
+O[h3] (3.3)

19
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Now let g(x) = f ′(x), and substitute into (3):

f ′′i = g′i ≈
gi+ 1

2
− gi− 1

2

h
=

fi+1−fi
h
− fi−fi−1

h

h
=
fi+1 − 2fi + fi−1

h2

This gives us the result

d2f

dx2

∣∣∣∣
x=xi

=
f(xi+1)− 2f(xi) + f(xi−1)

h2
+O[h3] (3.4)

However, because we are using this approximation at N different points,
where N˜(1/h), the error becomes of O[h3/h] = O[h2].

3.1.2 Runge-Kutta 4th Order Method

In order to implement the time evolution of my numerical simulation, I used
the 4th Order Runge Kutta Method, which as the name may suggest, is
accurate to O[δ4], where δ is the step between successive time points [23]. It
works in a similar manner to Euler’s method, but, as opposed to making a
single straight line approximation to a curve over a single timestep, the RK4
method simply uses this approximation as an initial guess, and then improves
upon it by taking two further estimates at the midpoint of the timestep, and
another at the end. Supposing we are approximating a first order ODE:

dy

dt
= f(y, t), (3.5)

with initial conditions y(0) = y0, t(0) = t0. Then over a timestep of size δ,
the approximation of the next step yi+1 is given by

yi+1 = yi +
δ

6
(k1 + 2k2 + 2k3 + k4), (3.6)

where the kj which give the different approximations are defined by

k1 = f(ti, yi) (3.7)

k2 = f

(
ti +

δ

2
, yi +

δ

2
k1

)
(3.8)

k3 = f

(
ti +

δ

2
, yi +

δ

2
k2

)
(3.9)

k4 = f(ti + δ, yi + δk3) (3.10)
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The weighting of the different kj in the approximation of yi+1 are calculated in
order to cancel terms in the Taylor series expansion to ensure the high order
error term associated with this method. By using the RK4 method alongside
the Central Difference Approximation in nested ‘for loops’ in Fortran, I was
able to create a grid of t vs x, in which the full form of the wavefunction for
each timestep would be calculated across the x-range, before updating each
point of the wavefunction in time. It should also be noted that, for a stable
solution, the Central Difference Approximation requires that the ratio

r =
δ

h2
<

1

2
, (3.11)

else the solution diverges.

3.1.3 Imaginary Time Propagation

Before attempting to run a simulation of the Gross-Pitaevskii Equation, one
should first obtain the ground state of the condensate for the geometry of
the system. A simple and reliable way to do this is by initially propagating
through imaginary time [24]; that is, transform

δ → −iδ. (3.12)

By directly integrating the Schrödinger equation:

i
∂Ψ

∂t
= ĤΨ, (3.13)

we obtain

Ψ(x, t+ δ) = Ψ(x, t)e−iĤδ (3.14)

We can write the wavefunction Ψ(x, t) as a superposition of eigenstates,
Φn(x), with corresponding amplitudes ψn(t) and eigenenergies En(t), that
is,

Ψ(x, t) =
∑
n

ψn(t)Φn(x). (3.15)

By combining Equations 3.14 and 3.15, and applying transformation 3.12,
we obtain

Ψ(x, t+ δ) =
∑
n

ψn(t)Φn(x)e−Enδ. (3.16)
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Hence, the larger the energy of the eigenstate, the more quickly it decays,
and so as t increases, the eigenstate with the lowest energy, the ground
state, dominates the solution. Thus, by starting with an initial guess at
the equilibrium solution, and by renormalising the wavefunction after each
timestep (in order to account for the decay of the ground state solution), we
can equilibrate to the ground state of the system. We can generalise this
approach to other Schrödinger-like equations, including the GPE.

3.2 Equilibrium Solutions

3.2.1 Infinite Potential Well

The most simple version of the GPE we shall discuss is that of the infinite
potential well. In this geometry, the condensate is contained entirely within
a well, with zero potential inside, and infinite potential outside. This re-
quires that we set the condensate at the boundaries of the well to have zero
density, as we must have continuity, and the condensate cannot have density
in the infinite potential outside the well. One might expect that having an
equal (zero) potential throughout the well would produce an entirely equally
distributed condensate; however, these zero boundaries mean that this is
not quite the case. Instead, the condensate “heals” form the zero boundary
conditions to its asymptotic value n∞. The distance required for the conden-
sate to reach this value is the healing length, ξ, which we introduced in the
derivation of the dimensionless GPE. In order to observe this healing length
properly, the well must be much larger than ξ itself; my well is set over the
range [-30, 30], and is shown below in Figure 3.1.
As well as my numerical solution, Figure 3.1 also shows the analytic solution
to the GPE in a zero-potential infinite well [7]:

ψ = ψ∞ tanh(x), (3.17)

shown by the blue points. By examining the subgraph, we can see that
the analytic solution overlies my numeric solution very well. It should also
be noted that decreasing the discretisation units, h and δ, did not give an
improved convergence with the analytic tanh soultion.
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Figure 3.1: Plot of the ground state of the GPE within an infinite potential
well: simulated solution (red line), analytical tanh solution (blue points).
Window plot shows the solution close to the boundary, as the condensate
“heals”.

3.2.2 Harmonic Trap

The next step in simulating the GPE is to add in a potential within the
infinite well; initially I added a simple harmonic trap, that is, V = 1

2
Ω2x2.

The potential increases away from the midpoint x = 0, and rather than an
approximately constant density as in the infinite well, the condensate forms a
Gaussian-like curve, with its peak at zero. The potentials and atom densities
for two different values of Ω are shown in Figure 3.2. We can see that using
a higher value of Ω (blue line) has the effect of “tightening” the trap; the
potential increases more rapidly, and the condensate is contained within a
smaller x-range, with a slightly higher peak density.
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Figure 3.2: Plots showing the potential V (x) of a simple harmonic trap (left),
and atomic density n(x) of the trapped condensate (right) for Ω = 2.0 (red
line) and Ω = 2.2 (blue line).

In order to ascertain that my code was working correctly before attempt-
ing to simulate the Josephson effect, I simulated a simple harmonic step: this
involves running imaginary time propagation with the harmonic potential set
slightly higher than normal (in this case 1

2
(1.1Ω)2x2), and then, on the switch

to real time propagation, dropping back to the standard harmonic potential,
1
2
Ω2x2. This causes the condensate to oscillate between the equilibrium solu-

tions for the two different potentials without any damping. To demonstrate
this effect, Figure 3.3 shows the oscillating density of the midpoint of the
well, as well as the total energy of the condensate (we will consider energy
in more detail at the end of this section).

Figure 3.3: Time-evolution of the density at the midpoint of a condensate
(left) and energy (right) in a simple harmonic trap after a small perturbation
in the potential.

In these figures, t < 0 corresponds to the equilibration stage during “imag-
inary time propagation”, and show the convergence of density and energy to
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a constant, equilibrium value. Once running in real time, the density of the
midpoint of the condesate oscillates perfectly, without damping, whilst the
energy remains at a constant value, after an initial jump. This was a good
sign that my code was working correctly. The idea of energy conservation
will be further discussed at the end of this section.

3.2.3 Double-well Trap

In order to create the Josephson effect, I needed to split my condensate from
the harmonic trap into two separate, interacting parts. To do this, I added a
potential barrier in the form of a Gaussian term onto my harmonic potential:

V =
1

2
Ω2x2 + V0e

−x2

2 (3.18)

For my master calculations, I used a value of V0 = 1.5, as this created a
significant barrier in the middle of the condensate, splitting it into two parts,
whilst also still allowing quantum tunnelling of atoms through the barrier.
The equilibrium density solution, and potential for V0 = 1.5 is shown below
in Figure 3.4. Altering the value of V0 will be discussed in more detail in the
Numerical Analysis section.

Figure 3.4: Plot showing the potential V (x) of a doublewell (blue line), and
atomic density N(x) of the condensate within (red line).
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3.3 Creating Imbalance in the Condensates

In order to initiate the Josephson effect, I first needed to imprint my con-
densates with an imbalance between the left and right wells. Initially I intro-
duced a population imbalance by adding a linear imbalance to the external
potential during imaginary time propagation, which led to an equilibrium
solution with a non-zero z(0). At the switch to real time propagation, I then
removed this imbalance to leave a symmetric trap:

VIm =
1

2
Ωx2 + V0e

−x2

2 + γx, (3.19)

VRe =
1

2
Ωx2 + V0e

−x2

2 . (3.20)

Figure 3.5 shows how the potential changes in the transition from imaginary
to real time propagation.

Figure 3.5: The transition from asymmetric potential in imaginary time
propagation (left), to the symmetric potential in real time (right).

The plot of the equilibrium solution under the imbalanced potential (i.e.
the distribution of the condensate at the beginning of real time propagation)
is shown in Figure 3.6.
The alternative method I used was to imprint an initial phase imbalance onto
the condensates, by multiplying the left well by a constant eiθ, while leaving
the right well unchanged. This made no difference during imaginary time
propagation (when we are, in practice, considering a real-valued equation),
but once running in real time, this imbalance in phase created the oscillations
predicted by the Josephson relations. We shall discuss the results from both
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methods in Chapter 4.

Figure 3.6: Initial profile (after imaginary time propagation) of the atomic
density within the doublewell, using potential parameters Ω = 2, V0 =
1.5, γ = 0.5.

3.4 Numerical Issues

3.4.1 The Phase Jump Problem

Calculating the phase difference between the two condensates turned out to
be non-straightforward, in large part due to the jump in phase which occurs
at ±π. Recalling that the phase is defined as θ = arctan(=(ψ)/<(ψ)), and
the range of arctan is (−π/2, π/2), so by calculating the phase difference
φ = θ2 − θ1, φ is therefore defined on the range (−π, π). Figure (3.7) (left)
shows a typical plot of the phase of the wavefunction against its position
in the trap. One can see that the phase follows a trend within the range
−7 < x < 7, and appears random elsewhwere. This is due to the distribu-
tion of the wavefunction within the trap; the condensate only exists within
the range [−7.0, 7.0], and hence the only meaningful phase values are those
which fall within this range. Figure (3.7) (right) shows the phase plot for
this range, along with the analytic arctan solution.
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Figure 3.7: Plot of how the phase of the condensate varies across the trap; full
range of well (left), and within the range [-7.0, 7.0] where the condensate is
non-zero. Red points show simulated values, blue dashed line gives analytic
arctan solution.

Initially, I calculated θ1 and θ2, the phases in the left and right wells
respectively, by averaging the phase value, over [−6.0,−2.0] for θ1, and over
[2.0, 6.0] for θ1. I chose these regions specifically because they were well
within the range in which the phase followed the arctan solution, whilst also
avoiding the region around zero where the gradient is steeper. By subtract-
ing φ = θ2 − θ1, I was able to plot how the phase difference between the two
condensates changed with time, and this initial plot is shown in Figure 3.8.

Figure 3.8: Time-evolution of phase difference using average phase values for
θ1,2: simulated values (rep points), analytic solution (blue dashed line).
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Although the general trend is correct, as shown by the fitted solution (us-
ing the same period of oscillation as calculated for the population difference),
one can see that there are many anomalous points which do not fit the trend.
Since several of the anomalies appeared to occur near minima and maxima
of the oscillations, I looked at how the phase changed in snapshots over small
timesteps around the first minimum, as shown in Figure 3.9. These snap-
shots show how the phase can jump by 2π at the boundary value of −π, and
display how the position of the phase jump changes over time .

Figure 3.9: Snapshots of the phase of the condensate changes with position

Whilst defining θ1, θ2 as the average values across a range of points, it
was particularly difficult to overcome this issue of phase jump, as the jump
occurs at a different x-value each time, making it hard to know when to
implement a correction of 2π. Instead, I solved the issue by defining θ1, θ2
as the phase at a single point, at the values x = −4.0, x = 4.0 respectively.
This is not a perfect solution, as we lose some accuracy in the values of the
phases. However, for the Josephson effect, we are only interested in φ, the
difference in phase between the two condensates, and the trend it displays
through time. Thus, as long as we define φ consistently, the trend should
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not be noticeably affected, even if the exact value is not quite the same as
the integrated average. Also, by taking the phase at ±4.0, we are taking
the midpoint of the region used initially, and hence should find a reasonable
approximation of φ. By defining φ in this way, and adding a compensatory
factor of 2π to θ1 in the case when θ2 had made the jump from −π to π, but
θ1 had not, I was able to produce clear oscillations, shown in Figure 3.10.

Figure 3.10: Time-evolution of phase difference using single point values for
θ1,2: simulated values (red solid line), analytic solution (blue dashed line).

3.4.2 Energy Drift

Ideally, when running a simulation of the time evolution of the condensates
to observe the Josephson effect, all oscillations in population, phase, etc.,
would be perfect sinusoids, with constant period and amplitude. However,
in many of my simulations, I discovered that as time increased, there would
be some discrepancies in amplitude, generally in the form of weak damping.
To investigate the cause of this damping effect, I plotted how energy of the
system evolved with time. The dimensionless energy functional (in units of
, E(ψ), is given by [25]

E(ψ) =

∫ [
1

2

∣∣∣∣∂ψ∂x
∣∣∣∣2 + V |ψ|2 +

1

2
|ψ|4

]
dx (3.21)
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Unlike in the case of the simple harmonic trap in Section (3.6), I found that
the energy of the system did not remain completely constant, or even oscil-
late continuously about a fixed value. Instead, I discovered a small amount
of energy drift within the system; that is, after the initial energy jump at the
start of real time propagation, the value of E(ψ) gradually increased with
time. In order to correct this, I investigated how decreasing the values of δ
and h within the RK4 timestep and CDA methods discussed in Chapter 3
would affect this energy drift. The results are shown in Figure 3.11.

Figure 3.11: Time evolution of the energy of the system for different values
of h and δ: h = 0.1, δ = 0.00001 (solid red line); h = 0.05, δ = 0.000001
(dashed green line); h = 0.1, δ = 0.000001 (dotted blue line). Window graph
shows the same plots for real time propagation only.

As we can see the value of energy drift is very small in each case; my intial
parameters of δ = 0.00001, h = 0.1 gives an energy drift of approximately
0.1%, whereas by decreasing both δ and h, this could be lowered to 0.02%.
However, in order to check, I also looked at how the different numerical pa-
rameters h and δ affected the oscillations within the measurements of the
Josephson effect; Figure 3.12 shows the plot of the time-evolution of z(t) for
the three different pairs of (δ, h) values I tried.
All three solutions overlie each other so closely that is hard to distinguish
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them. Due to the negligible effect that decreasing the timestep and x-step
had upon my results, combined with the computaional expense involved with
implementing them, I decided to continue using my initial numerical param-
eters, h = 0.1, δ = 0.00001.

Figure 3.12: Plot of the time-evolution of population difference for the
different values of δx and δt: δx = 0.1, δt = 0.00001 (solid red line);
δx = 0.05, δt = 0.000001 (dashed green line); δx = 0.1, δt = 0.000001 (dotted
blue line).



Chapter 4

Numerical Josephson Effects

In this Chapter, we shall examine the simulations produced by my code, and
analyse them with respect to theoretical results.

4.1 Josephson Oscillations

4.1.1 Initial Population Imbalance

In order to simplify the Josephson relations discussed in Chapter 2, I decided
to look primarily at the case in which the equations could be linearised in
z(t); for this reason, I chose a relatively small potential imbalance of γ = 0.5
to run in imaginary time, which in turn created a small initial population
difference, i.e. |z(t)| << 1. Due to this, we can use the linearised Josephson
relations from Chapter 2:

z(t) = zmax cos (ωt+ φ(0)) , (4.1)

φ(t) = φmax sin (ωt+ φ(0)) , (4.2)

In order to ascertain that the oscillations produced were indeed sinusoidal, I
used the “fit” function on gnuplot to a sine curve of best fit to my data via
the frequency parameter, ω. Recall Equation 2.22:

ω = 2κ
√

Λ + 1 =
√
ECEJ + E2

J

The results are shown in Figure 4.1. The sine wave solution overlies the sim-
ulated values very well; there are small discrepancies in amplitude at minima

33
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and maxima, but the two sets of data oscillate with the same period.

Figure 4.1: Population difference z(t): simulated Josephson population oscil-
lations denoted by red line, analytical cosine wave by blue points (ω = 1.635).

Since, within the Josephson oscillation regime, the population and phase
differences should oscillate with the same frequency, as discussed in Section
2.2, it is useful to plot the time evolution of φ(t). This is shown in Figure 4.2,
with a sine wave of the same frequency, ω = 1.635 overlaying my simulated
values. We can see that the oscillations have a frequency which matches that
of the sine wave, and hence the phase and population differences oscillate
with the same frequency. It is also worth noting that z(t) and φ(t) oscillate
π/2 radians out of phase with one another, which is what we should expect as,
in the Josephson oscillations case, z(t) = cos(ωt+α), and φ(t) = sin(ωt+α).
Another plot of interest is that of z vs φ, shown in Figure 4.3: we have
z(t) = zmax cos (ωt+ φ(0)), φ(t) = φmax sin (ωt+ φ(0)). If we divide z by
zmax, and φ by φmax, then square both expressions, we see

z2

z2max
+

φ2

φ2
max

= cos2(ωt+ φ(0)) + sin2(ωt+ φ(0)). (4.3)

That is, (
z

zmax

)2

+

(
φ

φmax

)2

= 1. (4.4)
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This is the equation of an ellipse.

Figure 4.2: Phase difference, φ(t): simulated Josephson phase oscillations
denoted by red line, analytical sine wave by blue points (ω = 1.635).

Figure 4.3: Plot of z vs φ for Josephson oscillations, exhibiting an elliptical
trajectory.
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Although the plot shown in Figure 4.3 does not quite have the perfect,
full, closed ellipse that the analytics suggest we should see, it captures the
essence of what we expect to see; an ellipse with minimum and maximum z
values of ±zmax, and similarly for φ at ±φmax.

4.1.2 Initial Phase Imbalance

As mentioned in Chapter 2, alternatively to starting with an imbalance in
population, we can instead introduce a phase difference between the two con-
densates. In experiments, this can be done by firing a very brief, very tightly
focussed pulse of energy at one condensate, and not at the other. In my sim-
ulations, I simply multiplied the left hand condensate by a coefficient of eiθ,
with θ an adjustable parameter, to introduce an arbitrary phase difference
to the two condensates. By setting my intial phase difference to be equal
to the maximum phase difference observed when starting with a population
imbalance, I was able to confirm that the frequency of Josephson oscillation
was the same in both cases. This provided a good consistency check for my
code; by altering the initial phase difference to its maximum value. The
population and phase differences for V0 = 1.5, φ(0) = 0.7π are shown below
in Figures 4.4 and 4.5.

Figure 4.4: Population difference when applying: φ(0) = 0.7π, z(0) = 0 (red
solid), compared to φ(0) = 0, z(0) = 0.05.
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Figure 4.5: Phase difference when applying: φ(0) = 0.7π, z(0) = 0 (red
solid), compared to φ(0) = 0, z(0) = 0.05.

4.2 Dependendence of Josephson Effects on

Separation Barrier

We shall now look at how changing the height of the potential barrier, V0,
affects the Josephson effect. As Figure 4.6 shows, increasing the coefficient
of the Gaussian term within the external potential increases the barrier be-
tween the two wells. This increase in potential barrier causes the frequency
of Josephson oscillations to change. Increasing V0 causes a decrease in EJ ,
due to the higher energy required for particles to tunnel through the barrier,
and an increase in EC , due to a higher proportion of atoms being held in their
respective well; Figure 4.6 shows that, for V0 = 2.75, although the region of
the condensate is marginally larger than when V0 = 1.5 or 0.25, this does not
compensate for the loss of the central tunnelling area, which relatively few
atoms can now occupy. Within the JO regime, EJ dominates EC (Λ � 1),
and hence

ω = EJ
√

Λ + 1 ≈ EJ . (4.5)
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Figure 4.6: Potentials (top) and densities (bottom) for equilibrium solutions
of doublewells, using different values of V0: V0 = 0.25 (left), V0 = 1.5 (mid-
dle), V0 = 2.75 (right).

So increasing the height of the separation barrier V0 decreases the tun-
nelling energy, and hence causes the frequency of Josephson oscillations to
decrease. This effect is shown in Figure 4.7, for which I used the “fit” func-
tion on GnuPlot to estimate ω for a range of values of V0.

Figure 4.7: Frequency change with varying height of potential barrier, V0, in
the Josephson oscillations regime
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The figure shows that, as expected, increasing the height of the separation
barrier, V0, causes the frequency of oscillations to decrease. The main region
of interest from this plot is V0 ≥ 1; if V0 < 1, the barrier is not large enough
to separate the condensate into two effectively. It should be noted that, as
V0 increases, Λ also increases, since EJ decreases and EC increases. However,
because ω = EJ

√
Λ + 1, the decreasing EJ term outside the square root has

a larger effect on ω than the increasing Λ inside the root. The non-linearity
of the graph arises from the increasing competition between EC and EJ ;
however, it is the decrease in tunnelling energy that dictates the behaviour
of ω, and we can see that as we approach V0 ≈ 2.7, ω decreases ever more
rapidly towards zero; the oscillations become faster. At this point, we are
entering the critical region, in which EC and EJ are of similar magnitude,
causing the unusual-looking oscillations displayed in Figure 2.1 (c). Unfor-
tunately, my numerics were not precise enough to reproduce this solution;
however, by increasing the height of the barrier to V0 = 2.75, I was able to
observe macroscopoic quantum self-trapping, which we shall discuss in the
next section.

Figure 4.8: Time evolution of z(t) for different values of V0; V0 = 0.5 (green
dashed); V0 = 1.5 (red solid); V0 = 2.5 (blue dash-dot)

Figure 4.8 shows how the population imbalance changes in three specific
cases: V0 = 0.5 (green), V0 = 1.5 (red), and V0 = 2.5 (blue). All three fall
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within the Josephson oscillations regime, as we can see from z(t) oscillating
about zero. However, as well as a small change in amplitude of oscillations,
we see that the period of oscillation nearly doubles between potentials of
V0 = 0.5 and V0 = 2.5.

4.3 Macroscopic Quantum Self Trapping

So far we have considered only the Josephson oscillations effect, in which the
population difference and phase difference both oscillate about zero. How-
ever, if we increase the potential barrier further, to values of V0 ≥ 2.75, we see
instead macroscpic quantum self trapping. This is what we would expect, as
by increasing V0, we are raising the potential through which the atoms have
to tunnel. This decreases the Josephson coupling energy, EJ , and increases
the atomic self-interaction energy, EC , and so the value of Λ increases. Fig-
ures 4.9 and 4.10 shows the behaviour of population and phase differences
under such a regime.

Figure 4.9: Time-evolution of population difference for V0 = 2.75, within the
self-trapping regime.

Although the oscillations for z(t) are imperfect, they display the char-
acteristic behaviour of self-trapping, notably that the changes in population
difference no longer oscillate between the two condensates, but instead the
condensate with the higher initial population retains more of the atoms. We
can also observe the “running” phase; for the purposes of this graph it is
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bounded by [−π, π], but in reality the phase increases continually, rather
than resetting each 2π-phase jump.

Figure 4.10: Time-evolution of phase difference for V0 = 2.75, within the
self-trapping regime.

Figure 4.11: Plot of z vs φ: upper trajectory shows solution for z(0) > 0,
lower trajectory shows solution for z(0) < 0.
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As before, we can plot z vs φ, which is shown in Figure 4.11. Unlike in
the case of Josephson oscillations, we instead see two distinct open trajec-
tories, which correspond to the non-oscillatory running phase. The upper
trajectory shows the solution for initial population imbalance z(0) > 0 (us-
ing initial potential imbalance γ = 0.5), the lower trajectory the solution
for negative population imbalance, z(0) < 0 (γ = −0.5). The trajectories
remain approximately the same after each phase jump, which reflects the
the oscillations in population difference, but, as expected for MQST, neither
trajectory crosses the z-axis.
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Summary and Future Work

5.1 Summary

We have seen that the results produced from my simulations match both
numerical and experimental results produced by others produced by others,
in both the Josephson oscillations and macroscopic quantum self-trapping
schemes. This can be summarised neatly by Figure 5.1, which shows the plots
of z vs. φ, for my simulated results (left), and for the Albiez experimental
data (right).

Figure 5.1: Plots of population difference vs. phase difference for simulated
results (left) and experimental data (right). Left: Josephson oscillations (red
solid line), MQST (blue dashed line); Right: Josephson oscillations (black
points), MQST (white points) [20].

We have see that my results have good agreement in trend with Josephson
effects observed experimentally, despite the different parameters used. We
have a closed (almost) elliptical solution in the case of the JO case, reflecting

43
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its oscillatory phase and population differences, whereas in the MQST case,
we have an open trajectory, which reflects its characteristic running phase.
Note that in MQST, the z trajectory remains approximately the same for
each phase loop, corresponding to the oscillatory nature of the population
difference; however, it never crosses the z = 0 axis, again characteristic of
the MQST oscillations.

The key difference between my results and those of the experiment is
the amplitudes for the two different effects; consider the value of zmax. My
results show zmax to be approximately equal for both Josephson oscillations
and MQST, whereas the experimental data puts zmax much higher for MQST.
This is caused by the different methods used to initiate the separate effects;
the experimental data was attained by increasing the initial population dif-
ference z(0) past a critical value, whereas I increased the potential barrier
between the condensates to prohibit tunnelling, which causes only a very
minor alteration to z(0).
In general though, my results display strong qualitative similarities to both
analytical predictions, and experimental data.

5.2 Future Work

Initially, any future work in this topic would include improving my nuemrical
methods; although the issues experienced with energy drift did not appear to
have a noticeable effect on the Josephson effects at |z| � 1, this was no longer
the case for larger values of |z|. This would potentially involve implementing
the Crank-Nicholson method for my timestep, which is not restricted by the
stability condition as the Runge-Kutta 4th Order method is. I would also
investigate higher order schemes for approximating ∂2ψ/∂x2.
Once the numerics were running more smoothly, I would like to investigate
the critical value of Λ in more detail, and ideally to produce plots analogous
to those produced in Figure 2.1 (c, d), for Λ → Λ−C ,Λ = ΛC respectively. I
would also like to alter my parameters, chosen for computational convenience,
to those used in the Albiez experiment, in order to see if I could replicate their
results quantitatively. One study which particularly interested me was that of
J. Thywissen et al [21], which was concerned with the crossover region from
Josephson effects to hydrodynamics, when different potential barriers are
used, specifically a decaying frequency signal observed with higher barriers.
Although this decaying signal is not the same as the damping observed in
my results, it was this which first drew my attention to this paper, and I
would like to study it in more detail, in order to improve my understanding
of Josephson effects within Bose-Einstein condensates.
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