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Abstract

Neutral atomic hydrogen (HI) comprises most of the gas in our Galaxy, the Milky Way. The
associated 21cm emission line, measured using a radio telescope, allows detection of HI. Using
the radio telescope, SALSA, data has been collected and hence used to identify properties of
observed HI gas clouds in the Galaxy. These properties are used to derive a rotation curve for the
Galaxy, showing the relationship between Galactic radius and rotational velocity of the clouds,
in the Galactic plane. From this rotation curve models of the distribution of the gravitating mass
in the Galaxy can be derived. The rotation of the gas outside of the Galactic plane is also of
interest and can be deduced from 21cm observations. Using the observations smaller movements
are also examined, such as the random turbulent motions within HI gas clouds which are rotating
around the Galactic centre.
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Chapter 1

The Milky Way

This report is concerned with gathering data about our own galaxy, the Milky Way, and using
this data to infer properties about it. The Galaxy contains about 10! visible stars and that
most of these lie in a flattened, roughly axisymmetric, disc-like structure known as the Galactic
disc. The radius of this disc is given to be of order 10 kpc. To describe a position in the Galaxy
we use the Galactic coordinate system, (I, b), where [ is the Galactic longitude and b the Galactic
latitude, shown in Figure 1.1. This system is centered at the Sun. The longitude is measured
counterclockwise from the Galactic centre, where [ = 0°. When b = 0° we are said to be in the
Galactic plane. The Galactic centre thus lies on the line of sight (I,b) = (0°,0°).

Figure 1.1: Illustration of the Galactic coordinate system, showing longitude and latitude coordinates,
(I,b). C indicates the position of the Galactic centre, and S the position of the Sun. (Horellou and
Johansson, 2013, Fig 1.1).

The distance between the Sun and the Galactic centre is denoted Ry. The current estimate is
Ry = 8.5+ 1 kpc, (Binney and Tremaine, 1987), this is the so-called solar radius. The stars
in the Galactic disc travel in approximately circular orbits around the Galactic centre. The
circular velocity of the Sun, denoted Vj, has current estimate Vi = 220 & 15 km/s, (Binney and
Tremaine, 1987). We adopt these values.

When making observations in the Galactic plane it is convenient to split this into four quadrants.
These are shown, along with the assumed Galactic constants Ry and V}, in Figure 1.2.

A detailed artist’s impression showing the currently believed structure of the Milky Way is shown
in Figure 1.3. We see the flat Galactic disc in the Galactic plane. We also note the shape taken
by the stars in spiral arms around the Galactic centre.
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Figure 1.2: Schematic showing the Galactic plane, b = 0°. C indicates the position of the Galactic
centre and S the position of the Sun. Quadrant labels are shown as well as astronomical constants Ry
and Vj.
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Figure 1.3: Annotated artist’s impression of the Milky Way. Obtained from solarsystem.nasa.gov.



Chapter 2

Potential Theory

We start with Newton’s law of universal gravitation, (Cohen and Whitman, 1999), which
states that: “Any two bodies in the universe attract each other with a force that is directly
proportional to the product of their masses and inversely proportional to the square of the
distance between them.” This gives

mims

F=G (2.1)

Y

r2
where

e F'is the force between the masses,
e (G is the gravitational constant,
e m;, for {i € 1,2}, are the respective masses, and

e 1 is the distance between the centers of the masses.

Here we calculate the force F(x) on a unit mass, at position x, that is generated by the
gravitational attraction of a distribution of mass p(x), as outlined by Binney and Tremaine
(1987). F(x) can be obtained by summing over all the small contributions of the overall force
from each small element of the volume, §°x’, located at x’. Applying this using Newton’s law of
gravitation we obtain

. / 1 53+ r_

|x/ — x|? a |x’—x|2_ |x/

which when summed over all small elements becomes
/
_ / 3./

Defining the gravitational potential, ®(x), to be

—G/ d3 /
|X’—X|
1 x —x
\V4 —
(|X’—X|) X — x|’

v/ x _X| — V3, (2.2)

and noting that

we can write
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An expression for the gravitational force on a mass in terms of the gravitational potential.

Within a spherically symmetric system, Newton’s second theorem can be applied (Binney
and Tremaine, 1987, p.34). This states that: “The gravitational force on a body that lies
outside a closed spherical shell of matter is the same as it would be if all the shell’s matter were
concentrated at a point at its centre.”

Using this and the law of universal gravitation we have that the directional force, F, of a
gravitational attraction on a unit test mass at radius R is determined by the mass interior to R,
given by

GM(R) . dd

F(R) =~ 8 = ——er. (2.3)

using Eq. (2.2).
For particle of mass m at radius R to be in orbit around a central mass with distribution

M(R) at speed V(R), we require that the sizes of the centrifugal force and the gravitational
force be in balance. Hence we have

|Centrifugal Force| = |Gravitational Force|
mV?(R) _ GM(R)m
R B R?
GM(R) dd
2 — — R—. 2.4
S (2.4)

Using this equation we can relate the rotational velocity of an orbiting mass in the galaxy to
its distance from the Galactic centre, if we know either the gravitational potential or mass
distribution.

From the general result obtained in Eq. (2.2) the following useful relations involving the gravitational
potential can also be derived, (Binney and Tremaine, 1987).

Poisson’s Equation, this relates the potential to the density, p, and is given by
V20 = 47Gp. (2.5)
Laplace’s Equation, this is a special case of Poisson’s equation, with p = 0, and is given by

V20 = 0. (2.6)



Chapter 3

Data Collection

3.1 Hydrogen, the 21cm Line and the Doppler Shift

Most of the gas in the Galaxy is atomic hydrogen. Neutral atomic hydrogen, HI, emits radiation
at a wavelength of A = 2lcm, this arises because the proton and the electron both poses
a spin and a magnetic moment; if the spins change from being parallel to anti-parallel a
photon with 2lem wavelength is emitted (Tayler, 1993). This wavelength corresponds to a
frequency of approximately 1420 MHz and was first detected by Ewen and Purcell (1951). This
electromagnetic energy can easily pass through the Earth’s atmosphere and hence be observed
with little interference using a radio telescope.

When observations are made in a specific direction the radiation does not all appear at 21cm.
This is due to Doppler shifts arising because the gas cloud as a whole is moving towards or away
from us, hence shifting the observed frequency. Therefore using knowledge of the Doppler shift
the velocity of the observed cloud in the given direction can be calculated.

3.2 SALSA - ‘Such a Lovely Small Antenna’

SALSA is a small antenna (2.3m in diameter) situated at the Onsala Space Observatory, which
is located 45 km south of Gothenburg in Sweden, shown in Figure 3.1. There are two observing
antennas which are used separately, also shown in Figure 3.1. These are used to observe the
spectral line from neutral hydrogen corresponding to the 21cm wavelength and hence to calculate
the velocity of observed Galactic clouds from the Doppler shift.
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Figure 3.1: Left: Map showing the location of the Onsala Space Observatory - obtained from Google
Maps. Right: Photograph of the two SALSA telescopes - obtained from the SALSA website.
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Controlling SALSA over the Internet I made observations of the HI clouds in the Galaxy. To
do this you first access the SALSA computer remotely and run the program Q-Radio. The
‘Frequency/Gain’ should be controlled to adjust the associated ‘Power’ to be approximately
30%, this represents the value needed for the specific receiver used for SALSA The “Power”
is continuously changing as the antenna moves and therefore needs to be adjusted for each
observation. A position is then specified, in Galactic longitude and latitude (I,b), and this is
then found and tracked by SALSA; using the live webcam you can see the antenna moving
to the specified position. Once the position is being tracked you can make an observation. I
observed on the specified line of sight (LOS) for 30 seconds per observation, a strong signal
is recorded after only 10 seconds however observing for a longer time reduces the background
noise; 30 seconds gives a spectrum with minimal noise and without taking a long time to observe.

Observations have been taken in the Galactic plane (b = 0°) for 0° <1 < 210° with 5° increments
in [. Owing to the location of Onsala I could not observe at any other Galactic longitudes since
these are never visible. Observations have also been made for fixed longitude, [ = 80°, and
—30° < b < 30°, with 2° increments in b. For each LOS between 3 and 5 observations were
made to enable me to find averages in analysis, as well as uncertainty. Details of the dates of all
observations are shown in Appendix A.

The observation data are in the form of “.FITS’ files which were analysed using Matlab with
the manual and program provided by Dahlin (2013) used as a guide. Emission spectra were
obtained for each observation, one example is shown in Figure 3.2.
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Figure 3.2: Observed emission spectrum for (I,b) = (60°,0°) showing two peaks corresponding to two
clouds emitting 21cm radiation.

Using Dahlin’s program Gaussian curves were fitted to observed peaks, as shown in Figure 3.3.
We note that any negative “Antenna Temperature” readings were assumed to be ‘noise’ and are
hence ignored.
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Figure 3.3: Observed emission spectrum for (I,b) = (60°,0°) with two fitted Gaussians.
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From each Gaussian we obtained three pieces of information, shown in Table 3.1. The ‘Antenna
Temperature’ tells us the strength/intensity of the signal. The ‘Velocity’ is the observed clouds
velocity along the LOS, this is called the radial velocity. The ‘Standard Deviation’ is a measure
of the width of the Gaussian caused by random motions inside the clouds.

Antenna Temperature [K] | Velocity [km/s|] | Standard Deviation [km/s]
Gaussian 1 71.1 10.3 18.0
Gaussian 2 21.8 -65.8 14.8

Table 3.1: Observed parameters for fitted Gaussians for the spectrum for (1,b) = (60°,0°), shown in
Figure 3.3.

This information has been obtained for each peak in all observed spectra as well as averages
and standard deviations found for the multiple observations on each LOS. For constant latitude,
b = 0°, and varied longitude, 0° < [ < 210°, all values can be found in Appendix B. Similarly
for constant longitude, [ = 80°, and varied latitude, —30° < b < 30°, all values can be found in
Appendix C. This information will be used in analysis.

For comparison we now look at a spectrum found by McClure-Griffiths et al. (2009) in the
Parkes Galactic All-Sky Survey (GASS). GASS is the most sensitive, highest angular resolution
survey of Galactic HI emission ever made in the southern sky.
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Figure 3.4: Both spectra are observed from the LOS with (I,b) = (30°,0°). Left: My observed
spectrum from SALSA. Right: Spectrum from the Parkes GASS.

The Parkes telescope has a diameter of 64m, compared to SALSAs 2.3m: thus we see the
spectrum from the GASS has considerably higher spectral resolution and also receives a much
stronger signal with observed temperature up to 100 K whereas the SALSA spectrum has weaker
intensity, less than 50 K. Therefore peaks are much more clearly defined on the GASS spectrum.
However for the location of observed peaks the spectra show a close resemblance. We observe a
peak at the left at approximately V' = —20 km/s, a double peak at approximately V' = 40 km/s
and further peaks identifiable for larger V. This is true for both spectra.
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Rotation Curves

Using SALSA we observed the radial velocities of hydrogen clouds at a range of Galactic
positions. For this analysis only spectra observed in the Galactic plane, b = 0°, are analysed.
We now obtain the rotation curve, thus showing the relationship between the distance from the
Galactic centre and the rotational velocity. To do this we follow the procedure laid out in the
manual provided by SALSA, (Horellou and Johansson, 2013).

4.1 Preliminary Calculations

In this section some general results are derived for the whole Galactic plane. Using these the
observed radial velocity (V}), and Galactic longitude and latitude (/,b) are converted into a
circular velocity (V') and a Galactic radius (R), within the Galactic plane. To do this we make
use of the geometry of the Galaxy, shown in Figure 4.1.

Figure 4.1: The geometry of the Galaxy for a gas cloud observed in the Galactic plane. Where S is
the Sun, C' is the Galactic centre and M is the position of the observed cloud. Distances shown are
Ry, R and r and velocities shown are Vy, V and V,.. Angles of interest are labeled a — d and [, where [
is the Galactic longitudinal coordinate. Reproduced from Horellou and Johansson (2013).

Note that: the values, Vj = 220 km/s and Ry = 8.5 kpc, are assumed to be known; the distance,
r, between the Sun, S, and the observed cloud, M, is unknown; and the following formulae have
been derived using a schematic for Quadrant I of the Galaxy, however they hold everywhere in
the Galactic plane.
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4.1.1 Rotational Velocity

A cloud’s radial velocity is measured on the LOS and is hence the difference between its rotational
velocity and the velocity of the Sun, both projected onto the LOS. Using Figure 4.1, we obtain

V. =V cos(d) — Vysin(c). (4.1)
Using the upper most triangle we see that
(0—-0)4+90+c=180 = c=I,
from the triangle CMT we have
a+b+90=180 = b=90—a,
and the right angle the line C'M makes with V' gives
b+d=90 = d=90—-0=90—- (90 —a) = a.
Hence Eq. (4.1) becomes
V, =V cos(a) — Vysin(l). (4.2)

Looking at the triangles CMT and C'ST we define the distance CT' in two equivalent ways,
given respectively by CT = Rcos(a) and CT = Rysin(l), therefore

cos(a) = % sin(7).

Hence substituting this into Eq. (4.2) we obtain
R
V, = VEO sin(l) — Vg sin(1),

yielding the following general formula for the rotational velocity

V= R {VT + Vosin(l)]

=R | sm) (4:3)

4.1.2 Galactic Radius

The distance of a cloud from the Galactic centre, R, can be obtained by applying the cosine rule
to the triangle C'SM, remembering that the distance SM is of length r, giving

R = \/7“2 + R — 2r Ry cos(l). (4.4)
Note that Eq. (4.4) can be rearranged to give a formula for the distance between us and the

cloud, . Also note that we take only the positive square root since R is a distance and must be
positive.

10
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4.2 Rotation Curve Inside The Solar Radius

In this section we derive the rotation curve from observations of the 1st Galactic Quadrant
(0° <1 <90°) and for clouds which are inside the solar radius, R < Ry.

Multiple peaks in Figure 3.2 show that several clouds may exist along one LOS. This can also be
seen in Figure 4.1 as any LOS crosses many circular orbits. We assume that the largest observed
radial velocity, the furthest right in the spectrum, V; 45, comes from a cloud at the tangential
point (7"), where we observe the whole velocity vector along the LOS. Only clouds assumed to
be at the tangent points will be used to derive V(R). This gives a simplified schematic of the
geometry of the Galaxy, shown in Figure 4.2.

Figure 4.2: The geometry of the Galaxy for a gas cloud at the tangential point, T', with distances and
angles of interest defined as in Figure 4.1. Notice here that V, and V are both directed on the LOS.
Reproduced from Horellou and Johansson (2013).

From inspection of triangle C'ST
R = Rysin(]). (4.5)

Alternatively this can be found by noting, also using triangle C'ST, that r = Rycos((), and
substituting this into Eq. (4.4) for the same result. This expression for R simplifies Eq. (4.3),
giving the rotational velocity of a cloud at the tangential point

V' = Vi maz + Vosin(l). (4.6)

Using the data from the observed spectrum in Figure 3.3 as an example, first V;. 4, is identified
from the spectrum, shown in Figure 4.3.
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Figure 4.3: Reproduced Figure 3.3 with maximum velocity peak indicated.
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Therefore for this observed cloud, from Egs. (4.5) and (4.6), we have
R =85sin(60) =74 kpc and V =10.3 4+ 220sin(60) = 200.8 km/s.

This observed cloud is 7.4 kpc from the Galactic centre and is orbiting the centre with rotational
velocity 200.8 km/s.

For each LOS we have multiple observations of V, ,q., therefore we can find the mean and
standard deviation of these observations and use these to find a confidence interval for our
observed circular velocity.

For example at (I,b) = (60°,0°) we have
Vimaz = 128 km/s  and  SD(V, n4r) = 3.4 km/s.
A 95% confidence interval for V; .4, is given by ‘_/r,max £ 1.96 X SD(V;. ez ), therefore we have
Vimaz = 12.8 £ 6.7 km/s.

Now applying Eq. (4.6) to the lower and upper values for V;. .., as well as the average we obtain
a 95% confidence interval for V. For (I,b) = (60°,0°) we have

V =203.3 + 6.8 km/s.

The rotation curve, derived from all observations, is shown in Figure 4.4. The plotted points
are the average velocities of the multiple observations of V; ., along each LOS.

200 . . .« .
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Figure 4.4: Rotation curve for all observations of V;. 4, inside the solar radius.

We can see that for R > 3 kpc we have an approximately flat rotation curve, with V' ~ 200km//s.
The points at small radii do not follow this form of the rotation curve, this is likely to be because
lines of sight close to the Galactic centre look through many more clouds making it difficult to
select the V, at the tangent point. It follows that the observed maximum peaks in the spectra
may not come from clouds at tangential points, making our transformation formulae inaccurate.
For this reason all points with R < 3 kpc are removed for all further analysis.

Figure 4.5 shows the associated 95% confidence intervals for the remaining observations. We
note that this is the confidence associated with observational values only, not the systematic
errors associated with the assumptions made in analysis. Error bars are all reasonably small
in magnitude. This shows the Gaussian peaks for multiple observations all gave consistently
similar values of observed radial velocities and hence a small standard deviation.

12
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Figure 4.5: Reduced rotation curve with 95% confidence error bars over laid.

From these findings we conclude that the detected HI clouds follow an approximately constant
rotation curve, shown in Figure 4.6. This is V(R) = 207+4 km/s, where 207 km /s is the average
of all observed V', and the confidence interval is the average width of the intervals associated
with each observation. For comparison, the flat rotation given by Sofue (2013) is V/(R) = 20046
km/s.
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Figure 4.6: Equivalent points shown as in Figure 4.5 with average rotational velocity indicated, solid
red line, and associated 95% confidence interval, dotted red line.

4.3 Rotation Curve Beyond The Solar Radius

In this section we will attempt to use the data to derive the rotation curve for Quadrants II
and III (90° < I < 270°). The data collected includes only observations up to 210° Galactic
longitude. In these two Quadrants the LOS can never be at a tangential point to the observed
cloud, shown in Figure 4.7. Therefore Eqgs. (4.5) and (4.6) do not hold here.

Therefore we return to Egs. (4.3) and (4.4). By inspection of Eq. (4.4) we see that R cannot
be determined without knowing the value for r and without R we cannot use Eq. (4.3) to find
V. To proceed we assume a flat rotation curve with fixed V' = 207 km/s, the average of our
previous observations.

Therefore rearranging Eq. (4.3) for R we obtain

V Rysin(l)

AL LD ith V=207 km/s. A7
Vo + Vosin(l) m/s (47)

13
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Figure 4.7: The geometry of the Galaxy for a gas cloud observed beyond the solar radius, with all
labels defined as in Figure 4.1. Reproduced from Sofue (2013).

We use Eq. 4.7 for observations from Quadrants II and III. Again we plot only for maximum
velocity peaks from our observed spectra. Doing this allows us to analyse if our assumption of
constant velocity is reasonable.

Plotting these points along with the observed values from inside the solar radius we obtain
the rotation curve shown in Figure 4.8. Again these are found using the average of multiple
observations for V; .., along each LOS.
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Figure 4.8: Rotation curve with error bars for Quadrant I, black. Projected values for R for constant
rotational velocity, blue.
We would expect our projected values for R to be

e greater than 8.5 kpc, since we are looking outside the solar radius,
e not much greater than 15 kpc, since the Galactic radius is of order 10 kpc,

e approximately evenly spaced, since observations were taken at linearly increasing longitudinal
values.

We also note that Eq. (4.7) gives R — 0 as [ — 180°. Hence for [ ~ 180° we obtain innaccurate
values for R, removing any points that give unrealistic projections for R we obtain a new,
reduced, rotation curve, shown in Figure 4.9.

The points for R > Ry have been forced to lie on the line V' = 207 km/s. We therefore cannot

weight their positions heavily in analysis compared to those for Quadrant I. This is detailed in
Section 5.4.1.

14
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Figure 4.9: Reduced rotation curve for only realistic observations. Inside solar radius observations
shown in black, beyond solar radius observations shown in blue.

4.4 Discussion

Throughout this analysis assumptions have been made in order to construct the rotation curve,

o for R < Ry it was assumed that V., came from a cloud at the tangential point. This
gave the distance R, hence analysis could only be done for one peak per spectrum giving
a fixed R for each [,

e for R > Ry it was assumed that all observations had constant rotational velocity, thus
allowing derivation of each clouds Galactic radius. This could be applied to all observed
Gaussians from each spectrum however results give less information as there can be no
variation in rotational velocity. Note that we checked this assumption was reasonable by
only using V;. jqe peaks.

It would be possible to use data from all observed Gaussians if the distance r» was known, enabling
use of Eq. (4.4) to find R and hence Eq. (4.3) to find V. The distance r can be measured directly
by trigonometric (parallax) method or by measurements of the star’s luminosity, discussed by
Sofue (2013). It is not possible for these measurements to be made using SALSA. In order to
construct a full rotation curve for the whole Galactic plane, observations such as these would be
necessary.

15



Chapter 5

Models of Mass Distribution

In this section we discuss different models for how the mass is distributed throughout the Milky
Way. Using the forms for given mass distributions, or their gravitational potentials, a rotation
curve for the distribution can be derived by use of Eq. (2.4). The form of the rotation curve is
fitted, using non-linear modelling in Matlab, to observed data points giving the best estimates
for any unknown parameters in the model.

We fit non-linear models using the data points shown in Figure 4.6, with appropriate weightings
given to each observation using the size of the confidence intervals shown in Figure 4.5, weightings
are given by the reciprocal of the interval width. This is done in order to minimise the distance
between the data points and the line given by the model.

5.1 The Bulge Model

The simplest model of the mass distribution is that the gravitating mass is contained within a
central sphere at the Galactic centre, hence the mass of the observed clouds is assumed to be
negligible in comparison. This allows us to assume that the rotation of the clouds is affected
only by the central mass.

Since we are assuming the observed cloud to be outside the Galactic centre we can use Newton’s

second theorem to model all mass in the central bulge as a point mass and hence directly apply
Eq. (2.4), which gives

Vi(R) = : (5.1)

where
e V,(R) is the rotational velocity due to the bulge,
e R is the distance from the Galactic centre, and

e M, is the mass of the bulge.

5.1.1 Fitting to Data

Applying Eq. (5.1) as the required form of the rotation curve we use our observations to estimate
the value of the unknown parameter M, which gives a rotation curve of the best possible fit to
our points. We have measured V' in km/s and R in kpc, and for comparative purposes we seek
the value of M), to be measured in solar masses (M,). Therefore we must use a value for G that

16



CHAPTER 5. MODELS OF MASS DISTRIBUTION

makes Eq. (5.1) dimensionally consistent.

Taking Eq. (5.1) dimensionally, with our required dimensions, we obtain
km? x s72 = [G] x My x kpc™*
therefore we require
[G] = km* s M' kpc.
We have
G =6.67x 107" m3 kg™ s72
= G =6.67x 10" (0.001km)? (3.24 x 10"*kpc) (5.03 x 1073 M) ™" s72
= G =430x10"%km® s> M7 kpc. (5.2)

Applying the form of Eq. (5.1), with the value for G from Eq. (5.2), as a non-linear model for
our observed points we obtain the rotation curve shown in Figure 5.1. This is given by
G M,

Vi(R) = 5 with M, = 4.19 x 10" M.
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Figure 5.1: Rotation curve for bulge model overlaid on observed points for inside the solar radius.

The estimate for M, is of the same order of magnitude as the equivalent estimate given by Sofue
(2013) of M, = 1.80 x 10 M.

Despite giving a reasonable estimate for M, we can see in Figure 5.1 that the curve does not
give a very close fit to our data points. The curve also does not show the constant rotational
velocity that we believe the Galaxy to have; the velocity drops off rapidly as we increase the
distance from the Galactic centre, this is called Keplerian drop off. We therefore conclude that
all mass is not contained only in a central bulge.

5.2 The Exponential Disc Model

We know that most of the stars in the Galaxy lie in a Galactic disc, therefore we assume a
disc-like distribution for the mass. Kalberla and Dedes (2008) show that the distribution of
HI in an exponential disc gives a reasonable fit to properties observed in the Milky Way for
increasing values of R. This is shown in Figure 5.2.

In both plots in Figure 5.2 we see an exponential fit follows closely the observations for large R.

We note that it would not have been possible to reproduce these plots with our observed data
as we have no observations for larger values of R.

17



CHAPTER 5. MODELS OF MASS DISTRIBUTION

mean surface densities mean volume densities
[T i ' ' ' P
total disk 1F : total disk
f\’“"' south NN south
T NS fit —— fit ——
“ 1000 ¢ RN —~ .
£ 1 — wlgo [ L] I
iy S Wolfire 13 0.1
..9 ' >
> ; S o001}
5 I! o 0
c 100 | o
© 3
[=%

g - 0001}
5 E
=
w

10 ¢ 0.0001 |

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
R (kpc) R (kpe)

Figure 5.2: Left: Derived mean surface densities of the HI gas perpendicular to the disc (red).
Dotted blue and green lines show observations from the northern and southern part of the Milky Way
Respectively. Other lines show observations published by others. The straight black lines shows an
exponential fit to the observations. Right: Derived average mid-plane volume density of the HI gas
(red). Dotted blue and green lines show average volume density for the northern and southern parts
of the Milk Way respectively. The straight black lines shows an exponential fit to the observations.
(Kalberla and Dedes, 2008, Fig. 3 and 5.)

5.2.1 Derivation

Here we seek the gravitational potential for an exponential disc in order to apply Eq. (2.4). We
follow the steps given by Binney and Tremaine (1987). We start with finding a gravitational
potential which satisfies Laplace’s equation, Eq. (2.6). Since we are assuming an axis-symmetric
disc @ has no dependence on ¢, it follows that & = ®(R, z), and Laplace’s equation becomes

Lo (p8), 20,
R OR\ OR 02?2
Choosing
(R, z) = J(R) - Z(z),
by separation of variables, we obtain

11 d(dJ)Z L &7,

J(R) R dR\''dR -

AR

where k is an arbitrary real or complex number. Hence we have

— —kZ=0 5.3
dz? ’ (5:3)
1d [ dJ\
- - =0. 4
RdR(RdR>+kJ 0 (5.4)
We integrate Eq. (5.3) immediately to obtain
Z(z) = Sexp(tkz), (5.5)

where S is an arbitrary constant. In order to solve Eq. (5.4) we simplify using the substitution
u = kR. Once simplified we obtain

1d <uﬂ) + () =0, (5.6)
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The solution of interest, to Eq. (5.6), is the one that remains finite at u = 0 (R = 0). This is
written in the form of the cylindrical Bessel function of order zero, Jy(u) = Jo(kR) and hence
gives solutions to Laplace’s equation

Oy (R, z) = exp(Lkz)Jo(kR). (5.7)

We require Laplace’s equation to be satisfied for all z # 0, this is outside the disc where the
mass is contained , and Poisson’s equation, Eq. (2.5), to be satisfied when z = 0, since there is
mass contained in the disc.

We now consider the function
Or(R, z) = exp(—k|z|) Jo(kR), (5.8)

where k is real and positive. We note &5, — 0 when |z| — oo and also &, — 0 as R — oo since
Jo(u) — 0 as u — oo. Therefore @y, satisfies all conditions for it to be the potential generated by
an isolated density distribution. Furthermore, for z > 0, ®; coincides with ®_, and for z < 0,
®,. coincides with @, both given in Eq. (5.7). Therefore ® satisfies Laplace everywhere except
in the plane z = 0, therefore the gradient of ®; suffers a discontinuity at z = 0. Binney and
Tremaine (1987) show that

S(R) = g Jo (k) (5.9)

where Y is the surface density that generates the discontinuity.

We now use Eqgs. (5.8) and (5.9) to find the potential generated by a disc of arbitrary surface
density X(R). If we find a function S(k) such that

S(R) = / " S(k)S(R) dk = —ﬁ " S(k)Jo(kR)k d (5.10)
then we have
O(R, 2) = /OO S(k)®W(R, ) dk — /oo S(k)Jo(kR) exp(—k|z|) dk. (5.11)

Hankel transforms express any given function f(R) as the sum of an infinite number of Bessel
functions of the first kind J,(kR). The Hankel transform is defined as: if

o) = [ HR)IRR dR
0
then g is called the Hankel transform of f, and the inverse transform is given by
FB) = [ o), (kR)E d.
0

Hence Eq. (5.10) states that S(k) is the Hankel transform of f(R) = —27GX. Therefore we
obtain

S(k) = —27G / h Jo(kR)S(R)R dR. (5.12)
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For an exponential disc we set X(R) = X, exp(—R/R;), where ¥ is the surface mass density of
the disc and R, is the scale radius of the disc. Therefore, from Eq. (5.12), we obtain S(k) for
an exponential disc. This is given by

2
S(k) = _M (5.13)

[1+ (szd)Q}%

where the integral was calculated with help of formula 6.623.2 of Gradshteyn and Ryzhik (1965).
We then obtain the potential by substituting Eq. (5.13) into Eq. (5.11), giving

®(R, 2) = —27GS.R? / JolkR) exp(=kl2)) (5.14)

0 [1+ (kRy)%]

Setting z = 0 in Eq. (5.14), for the Galactic plane and using formula 6.552.1 of Gradshteyn and
Ryzhik (1965) and formula 9.6.27 of Abramowitz and Stegun (2012) we obtain the potential

o0~ s ()6 () 1 () ()] e

where I,, and K, are modified Bessel functions. Differentiating Eq. (5.15) with respect to R and
substituting into Eq. (2.4) we obtain the rotational velocity for an exponential disc, shown by
Freeman (1970) to be

Va(R)* = Wszg_Z [[0 <2—Zd) Ko (2—}];> — 1 (2%6;) K, (2—2)1 . (5.16)

5.2.2 Fitting to Data

We now use Eq. (5.16) as the form of the rotation curve in order to estimate the two unknown
parameters, the scale radius, Ry, and the surface mass density, ¥4, using the data to fit a
non-linear model. We will seek Ry to be measured in kpc and ¥y to be measured in Mgkpe ™2

This gives the following dimensional version of Eq. (5.16)

e\ 2
<_m> = [G] x Mgkpe ™ x kpe® x kpe ™' = [G] =km® s7? M_' kpe.
S

Therefore we use the same value for the gravitational constant here as we did for the bulge
model, specified in Eq. (5.2). The fitted model for Eq. (5.16) is shown in Figure 5.3 and the
estimated rotation curve is given by

- el o () ) () ()

with Ry = 3.32 kpc and ¥4 = 1.32 x 108 Mgkpe 2.

We see in Figure 5.3 that the estimated rotation curve follows the observations much more closely
than the bulge model. We also note that estimates given by Sofue (2013) for R, and ¥, are 3.50
kpc and 8.44 x 10° Mgkpc ™2 respectively, which are of equivalent orders of magnitude to our
estimates. However, similarly to the bulge model, we observe a Keplerian drop off in rotational
velocity as R increases.
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Figure 5.3: Rotation curve for disc model overlaid on observed points for inside the solar radius.
Bulge curve also shown for reference.

5.3 The Halo Model

The previously obtained rotation curves do not remain flat as R increases and will always show
Keplerian dropoff. In order for a flat rotation curve to be observed the presence of large amounts
of unseen matter is widely believed. This dark matter is expected to be in the form of a spherical
halo component (Kent, 1986). The extra unseen matter provides gravity allowing the observable
matter to orbit at a faster rotational velocity, whilst still remaining in the galaxy, as R increases.

5.3.1 Derivation
The form of a halo density profile, (Kent, 1986), is given by

p(R) = #, (5.17)
where py is the central density and h is the core radius. We note that p(R = 0) and %p(R =0)
are both finite making this a desirable density profile.

We use the following to relate the density profile to the mass profile
M(R) = [ o(R) av. (5.15)

hence substituting Eq. (5.17) into Eq. (5.18), with appropriate limits for a spherically symmetric
halo, we obtain

R 2w T
) = [ [ e asisar
R /2
R
_ 2

) R h2
At poh 1—— | dR’
o /0 ( h? + R’Z)
4mpoh*R [1 - (%) arctan (%)] : (5.19)

Substituting Eq. (5.19) into Eq. (2.4) we have

V(R) = Gﬂgp”) = 471G poh? [1 - (%) arctan (%)} : (5.20)
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As R increases V tends to a constant, giving a flat rotational velocity at R = oo, which we
denote V... Therefore we have

lim V(R) = /4rGpoh? = V. (5.21)

R—o0

Hence combining Eqs. (5.20) and (5.21) we obtain an equation for the rotational velocity for a
mass distribution of a halo, given by

1) = Vo1 = (Jctn (1) 52)

5.3.2 Fitting to Data

We now use Eq. (5.22) as the required form of rotation curve and the observed points as a means
to estimate the value of the unknown parameter h, measured in kpc. Since V., is defined to
be the rotational velocity at R = oo we take this to be 207 km/s. This is the average of our
observed points, as we are looking for a constant rotation curve as R increases.

We see that Eq. (5.22) is dimensionally consistent since we are inputting both V}, and V, to be
measured in km /s, also that the dimensions of h and R, measured in kpc, immediately cancel out.

Applying the form of Eq. (5.22) as a non-linear model for our observed points we obtain the
rotation curve shown in Figure 5.4 and the estimated rotation curve, given by

h
Vi(R) = Vm\/l — (ﬁ) arctan (%), with Vo, =207 km/s and h = —0.22 kpc.
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Figure 5.4: Rotation curve for halo model overlaid on observed points for inside the solar radius.
Previous model curves also shown for reference.

We can see in Figure 5.4 that the fitted line for the model both follows the points closely and
gives the required flat rotation curve. However the value for the radius of the halo, h is clearly
unrealistic for a distance. Comparing with the estimated value given by Sofue (2013) which is
12.0 kpc we see this value is more realistic. However it is clear that some contribution from the
mass of a halo must be necessary in order to produce a flat rotation curve.

5.4 Combined Model

We now assume that the Galaxy is composed of all three of the components we have, a central
bulge, an exponential disc and a dark matter halo. Hence the total rotational velocity is found
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by summing the squares of the individual corresponding velocities and modelling them together.
This is given by

V(R) = \/Vy(R)? + Va(R)? + Vi(R)?, (5.23)

with the three velocity components as defined respectively in Egs. (5.1), (5.16) and (5.22). A
schematic for the Galactic structure is shown in Figure 5.5.

Figure 5.5: Schematic showing three components of the Galaxy. The central Galactic position, C,
and the Sun, S, are shown.

5.4.1 Fitting to Data

As previously we use Eq. (5.23) to estimate the unknown parameters based on our observations.
Here there are four parameters to be estimated, M,, ¥4, Rq, and h. Applying the given equation
as a non-linear model we obtain the rotation curve shown in Figure 5.6.
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Figure 5.6: Rotation curve for combined model overlaid on observed points for inside the solar radius.
Previous curves also shown for reference.

The estimated parameters given by this rotation curve are
M, =—142x 10" My, ¥;=13.94x10° kpc > My, Rgq=269kpc, h=0.00kpc.

The rotation curve does follow the points well and give a constant rotation curve as R increases.
However the estimate for M, is now showing an unrealistic negative value to give the closest fit.

In order to see the discrepancy between these parameter estimates and Sofue’s parameter

estimates we plot Sofue’s rotation curve compared with our combined curve, this is shown
in Figure 5.7.
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Figure 5.7: Combined model rotation curve compared with rotation curve obtained by Sofue (2013).

In Figure 5.7 we can see our fitted curve begins increasing where Sofue’s curve is decreasing.
The first two of our observation points are causing the fit to have this form. Hence we conclude
that these observations must not have fulfilled the necessary assumptions when the data was
transformed as they are not following the rotation found by Sofue. Removing these points and
refitting the model gives the rotation curve shown in Figure 5.8.
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Figure 5.8: Combined model rotation curve, for reduced data, compared with curve by Sofue (2013).

The parameter estimates given by the new model, without the first two data points, are
M, =3.26 x 10" My, 4=4.27x10%kpc > My, Ry=12.30kpc, h=23.87 kpc.

These estimates are of the same orders of magnitude as Sofue’s however our rotation curve does
not tend to a constant rotational velocity as we require, seen in Figure 5.8. The curve is shown
to increase as R increases beyond the solar radius.

This problem is due to the fact that our observations are limited to within the solar radius.
We have no observations to influence our model for larger values of R. We now add to our
observations to include the points shown in Figure 4.9 for R > Rjy. These extra points, beyond
the solar radius, are weighted to be of equal weight to the smallest weight from the points from
Quadrant I. This prevents these new observations overwhelming the data from Quadrant I but
gives them some significance in the model.

The Final Model

Fitting a new non-linear model through all the points, using Eq. (5.23), we obtain the rotation
curve shown in Figure 5.9. This new curve closely follows Sofue’s for all values of R. A comparison
of parameter estimates for the final model, and all previous models, is shown in Table 5.1.
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Figure 5.9: Combined model rotation curve for reduced data inside the solar radius, including
projected observations for R > Ry, compared with rotation curve obtained by Sofue (2013). Error
bars for Quadrant I points are omitted.

Parameter

My, (Mo) | Bq (Mekpe™) | Ra (kpe) h (kpc)

Bulge 4.19 x 10 - - -

Disc - 1.32 x 10° 3.32 -
Halo - - - —0.22

Model | Combined 1 || —1.42 x 10*° 3.94 x 10% 2.69 0.00

Combined 2 || 3.26 x 10" 4.27 x 108 12.30 23.87
Final 1.86 x 1010 7.22 x 108 4.13 15.48
Sofue 1.80 x 1010 8.44 x 10® 3.50 12.00

Table 5.1: Summary of all parameter estimates obtained from non-linear modelling using observed
data points. Compared with parameter estimates given by Sofue (2013).

From inspection of Table 5.1 and Figures 5.1 - 5.9 we conclude that the “Final Model” shows
the best fit to the observations, the closest fit in comparison to Sofue’s curve and the closest
four estimates for the parameters compared to Sofue’s. The “Final Model” is made up of three
contributions towards the mass distribution, the bulge, disc and halo. In Figure 5.10 we can see
how the three contributions combine to make the final model, these have been plotted for both
“Final Model” and Sofue’s model for comparison.

The two breakdowns, shown in Figure 5.10, follow a very similar pattern, as we expect given
the similarities in parameter estimates. It is also clearly shown how the contributions from the
dark matter halo are contributing to a constant rotational velocity for increasing values of R.

The final rotation curve gives a close fit to the data points observed using SALSA, and also
matches closely the rotation curve and parameters estimated by Sofue (2013). The fact that
these results replicate Sofue’s reasonably closely is both impressive and surprising. Our data
consisted of observations made only using HI observation with a small radio telescope, SALSA,
over a period of less than a month. Contrastingly the data used in Sofue’s analysis, shown in
Figure 5.11, were collected over at least 31 years using 8 different data collection methods.
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Figure 5.10: Left: Plot showing how my final combination model is made by the sums of the three
components based on derived estimates. Right: Equivalent plot showing breakdown of Sofue’s rotation
curve using his estimates of model parameters.
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Figure 5.11: Compiled data points from different sources. Details given by Sofue (2013, Fig. 5.).
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Chapter 6

HI Gas Distribution in the Milky Way

We now analyse where the observed HI gas lies in the Galactic plane, therefore we continue
analysis of only data for b = 0°. In our previous analysis we have only used the data from the
maximum velocity peaks in our spectra. Now we will take into account all peaks and hence look
at all data collected for the Galactic plane. We have confirmed that a good estimate of rotation
is to have a constant rotational velocity. Hence for ease of calculation, in this section, we assume
a constant rotational velocity of V' = 1{) and remember that we have observed V, and [ for each
HI cloud, seen as spectral peaks.

6.1 Preliminary Calculations

Using known V,. and [, and the assumption of constant rotational velocity we can simplify
Eq. (4.3) and rearrange for R in terms of known quantities, obtaining

R VoRo sin(1)

= s (6.1)

This can be applied to all observations to find the distance of each observed cloud from the
Galactic centre. In order to create a map of the gas position we convert R and [ for each of our
observations to be r and 6; where r is the distance from us to the observed cloud and 6 is the
polar angle, shown in Figure 6.1.

1

Figure 6.1: Illustration of conversion from Galactic longitude coordinate, [, to polar coordinate 6.
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Clearly, by inspection of Figure 6.1 we have
0 =1+ 270°. (6.2)

From Eq. (4.4) we can rearrange for r, this gives us two possible solutions, r = r, and r = r_,
given by

ry = j:\/R2 — R2sin®(1) + Ry cos(l). (6.3)

We require that r > 0 as it is a distance. Therefore beyond the solar radius (I > 90°) there is
only one positive solution, 7, since cos(l) < 0. However within the solar radius there can be two
positive solutions. The two possible values for r can be seen in Figure 4.1, these are the point
M and the point further away, where our LOS crosses the inner circle a second time. Further
analysis is needed to determine which of these values is correct. For our analysis we will use
both possible values and highlight where choices can be made.

Finally in order to create the map we must convert our polar coordinates (r,#), to cartesian
coordinates, (x,y) as follows

x=rcosf and y=rsind+ Ry, (6.4)

we note that the shift for the y coordinate is to place the Galactic centre at the origin.

6.2 Data Analysis

Applying Egs. (6.1) to (6.4) to all of the V,. we have observed, at specified [ values, we obtain a
map of the positions of all observed clouds, shown in Figure 6.2.
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Figure 6.2: Map of the positions of observed HI clouds in the Galactic plane. Blue points are those
clouds which only gave a positive solution for . Where both 71 and r_ values gave a positive solution
both sets have been plotted; red for 1 and green for r—_. Galactic longitude values are shown.

In Figure 6.2 we see a hint of the spiral arm formation in the Galactic plane that was shown in
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Figure 1.3. The general shape of two spiral arms is present, possibly the Perseus Arm and the
Sagittarius Arm. Where two positive solutions are obtained it is possible to determine which
of these values is correct by observing again at the given longitude but at varying latitudes. If
the observed cloud is the more distant it is less likely we will continue to observe it at higher
Galactic latitude. This further analysis has not been possible as several more observing sessions
would have been necessary.

A map of the distribution of neutral hydrogen in the Galactic plane was also given by Burton
(1974), shown in Figure 6.3. Here we also see the spiral arm structure of the Milky Way shown
by the areas of highest density.

280°

300° 1

20

Figure 6.3: Distribution of neutral hydrogen densities determined from Dutch and Austrailian surveys.
(Burton, 1974, Fig. 4.9).

The Galactic map, Figure 6.2, has been created based on the assumption of constant rotational
velocity throughout the Galactic plane. However the rotation curve, Figure 5.9, does not have
constant rotational velocity close to the Galactic centre, approximately R < 3 kpc. Therefore
some positions may be inaccurate, however since we cannot determine R without knowing V' we
cannot be certain which these points are.
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Chapter 7

Rotational Velocity out of the (zalactic
Plane

We have, so far, looked only at observations for within the Galactic plane, fixed latitude, b = 0°.
We now look at observations with varied latitude and fixed longitude. This enables us to analyse
how rotational velocity varies related to distance from the Galactic plane.

We make use of the observations for fixed longitude, [ = 80° and for varied latitude —30° <
b < 30°. The choice of observing at fixed [ = 80° was made because observing within the solar
radius allows us to apply Eq. (4.6) to obtain the rotational velocity. Again this is done by using
only the observed maximum velocity peaks, as in Section 4.2. This longitude was also a suitable
choice since we obtained consistently strong spectra at [ = 80° and b = 0° hence it is likely
spectra obtained out of the plane at 80° will continue to be strong.

We note that
e for b > |30°| spectra become too weak for any peaks to be observed,

e 5 readings were taken on each LOS allowing calculation of averages, standard deviations
and confidence intervals, as in Chapter 4,

e we cannot be observing the whole velocity of the cloud on the LOS, assumed by Eq. (4.6),
however since we are looking at only a small variation outside the Galactic plane this will
give a reasonable approximation for V.

7.1 Distance from Galactic Plane Derivation

Using the line ST from Figure 4.2 we obtain the schematic shown in Figure 7.1, where P is the
observed point.

7 U

Figure 7.1: Schematic showing the position of a cloud out of the Galactic plane, P. Z is the distance
from the plane. S shows the Sun’s position and T" shows the tangential point from Figure 4.2. 7/ is the
relabeled value r from Figure 4.2 as it is no longer the distance to the cloud.
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From Figures 7.1 and 4.2 respectively we have
Z =r"tan(b) and 7' = Rgcos(l)  which gives Z = Rycos(l)tan(b), (7.1)

yielding an expression for Z in terms of known quantities.

7.2 Data Analysis

We now apply Egs. (4.6) and (7.1) to the maximum velocity peaks for each of the observed
spectra to find the rotational velocity and Z-distance respectively. We obtain the plot shown in
Figure 7.2.
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Figure 7.2: Observed points for all V; 4, for [ = 80° and —30° < b < 30°. Error bars showing
the associated 95% confidence intervals are over laid for each point. Dotted blue lines show the linear
models fitted to the upper and lower sections using Matlab.

The best fit lines were derived using a linear model in Matlab, using the appropriate standard
deviations for the observations to define weightings, as in Chapter 4. The equations for the two
lines are given by

215.5+5.6Z for Z <0
214.7—2.0Z for Z >0

This gives a drop off in rotational velocity, AV, of 5.6km s~ /kpc for negative Z and 2.0km s~ /kpc
for positive Z. The uncertainty in observations for Z > 0 is considerably larger than the
observations for Z < 0, this may be why the magnitude of the drop off in rotational velocity
is observed to be less. We would expect the drop off to be the same for both above and below
the Galactic plane owing to the assumed symmetry of the Galaxy. We now compare this with
results found elsewhere.

Results are based on different scale heights, hg, for varying R. To calculate this we use the
associated formula, given by Kalberla and Kerp (2009),
R— Ry

©

hr = hgexp < ) where hg = 0.15kpc and Ry = 9.8kpc.

We require the scale height for the associated R where we observe at the tangential point on
the LOS with [ = 80°. Applying Eq. (4.5) we obtain R = 8.4 kpc for [ = 80°. Hence the scale
height is

8.4 —8.5

hg4 = 0.15exp ( 08

) = 0.11kpc.
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Kalberla and Kerp (2009) give AV = 1.3km s™'/hg. Therefore their estimate for the drop off
in rotational velocity is

AV = 1.3km s~'/0.11kpc = 11.8km s~ /kpc.

Levine et al. (2008) give AV = 2.2km s ' /hp. Therefore their estimate for the drop off in
rotational velocity is

AV =2.2km s™'/0.11kpc = 20.0km s~ /kpc.

For comparison these estimates have been overlaid with the observed data, shown in Figure 7.3.
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Figure 7.3: Points and confidence intervals equivalent to those shown in Figure 7.2. Red and green
lines show drop off predicted by Kalberla and Kerp (2009) and Levine et al. (2008) respectively.

All three predictions show the velocity dropping off as distance from the Galactic plane increases,
all with different magnitudes. Disagreement on the magnitude is common and discussed further
by Kalberla and Kerp (2009). In order to find AV in terms of a scale height more observing
sessions at other fixed longitudes would be necessary.

Taking a fixed Galactic latitude and observing for varied Galactic longitudes, would enable
us to construct a rotation curve for gas out of the Galactic plane. For example b = —30° gives
a rotation curve for |Z| ~ 0.8 kpc A plot of further rotation curves for different |Z]| is given
by Kalberla and Kerp (2009), shown in Figure 7.4. This reinforces the drop off in rotational
velocity as the distance, Z, increases away from the Galactic plane.

Midplane |

. . . . .
10 20 30 40 50 60
R (kpc)

Figure 7.4: The upper blue curve represents the rotation curve in the Galactic plane. The case
V = 220km/s is plotted for comparison. Other curves (red) show circular velocities for out of the
plane, |Z| =1 to 5 kpc. (Kalberla and Kerp, 2009, Fig. 2).
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Chapter 8

Turbulent Velocities within HI Clouds

As previously mentioned in Section 3.2, we have observed the standard deviation of each fitted
Gaussian giving a measure of the width. The Doppler broadening of a Gaussian profile is caused
by the motion of atoms due to the gas temperature and by the random turbulent motion of the
gas. Lang (1999) gives that the standard deviation of a Gaussian profile, o, showing a Doppler
Shift is given by

Vgﬁm 2/€Tk

where

® U, is the frequency of the emitted radiation - for a 21cm wavelength we have
Vpn = 1.42 x 10° Hz,

c=2.99 x 105 km/s - the speed of light,
e k=1.38x10"2 km? kg s~ 2 K~! - this is Boltzmann’s constant,

T}, is the kinetic temperature of observed atoms - for cold interstellar hydrogen we have
T ~ 100K, (Ferriere, 2001).

M is the mass of a single atom from our observation - for hydrogen atoms we have
M = 1.66 x 10~2"kg,

e V is the turbulent velocity within the gas cloud, we take this to be measured in km/s.

Taking Eq. (8.1) dimensionally we obtain

o] = S_l’

o]? 572 (km2 kg s2 K x K N km2>

- km?s—2 kg 2

this gives the standard deviation of a Gaussian measured in Hz. However, from SALSA, we
observed o measured in km/s. Taking the observed standard deviation .5 to be the sum of the
turbulent and temperature contributions, we have

Oobs = Ov + 0T, (82)

where oy is the contribution from the turbulent velocity and o is from the temperature, noting
we require these components measured in km/s.

We will hence seek the value of o7, in km/s, enabling us to find the turbulent velocity, oy
of our observed clouds. Starting with Eq. (8.1), we find the width of the Gaussian profile with
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no turbulent velocity, V' = 0, this is o7. Relabeling o, in Eq. (8.1), as o7 g, in order to identify
the temperature component measured in Hz, we have

2
2 . anka
OrH: T T g

=  orpy. = 4.33 x 10° Hz. (8.3)

Also using a result from Lang (1999) we relate observations of frequency, v, to the corresponding
velocity, V', given by

V Vmin Vmax mn
V="Vmn (]- - _) = OT.Hz = Vmn (]- - ) — VUmn <]- - > = Y (Vmax - Vmin) s
C C C

C

which gives

1%
OT Hz = Zm 0T km/s) (84)

where 07 ks is the standard deviation of the Gaussian profile, measured in km/s. Substituting
from Eq. (8.3) into Eq. (8.4) we obtain

01 km/s = 0.91km/s.
Therefore from Eq. (8.2) we have
Oy = Opps — 0.91. (85)

This tells us that 0.91 km/s of the standard deviation from each observed Gaussian is movement
of the gas particles due to their temperature. Hence if there were no turbulence a much sharper
Gaussian peak would be observed. Therefore the remainder of the Gaussian width is due to the
presence of turbulent velocities within the cloud.

Applying Eq. (8.5) to all observed values of o we obtain the plots in Figure 8.1 showing the
turbulent velocity, V;, of each observed cloud. We are assuming all observed gas clouds to be
the same ‘cold’” temperature, T, = 100K.

For observations taken in the Galactic plane, Figure 8.1: [1], [2] and [3], there is a reasonably
constant relationship between V; and position in the plane. For observations out of the Galactic
plane, Figure 8.1: [4], a constant turbulent velocity is clearly observed as distance from the
Galactic plane is increased for both positive and negative values of Z. Both in and out of
the plane we observe the constant turbulent velocity, V; ~ 10 km/s. We hence conclude that
turbulent velocity is approximately constant throughout the Galaxy. Taking averages of all
observations for V; we find constant turbulent velocity V; = 13.843.5km /s, where the confidence
interval is the average of all individual 95% confidence intervals for all observations. Agertz et al.
(2009) quotes V; ~ 10km/s as a general result for disc galaxies, which is in agreement with our
observations.

It is given by Ferriere (2001) that 2lcm emission is observed in both cold (7;=50K—100K)
and warm (7,=6000—10000K) neutral hydrogen. For each temperature we observe a different
turbulent velocity. The range of values are shown in Table 8.1. Assuming a higher temperature
for the gas gives a correspondingly lower value for turbulent velocities. However for a large
range in temperature, 50—10000K, there is a comparatively tiny change in turbulent velocity.
We cannot deduce the T}, of the HI gas therefore it is possible that V; is lower than that shown
in Figure 8.1 for some observed clouds.
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Figure 8.1: Plots showing turbulent velocities of particles in observed HI clouds. Overlaid on each
plot is the average of plotted V; values and 95% confidence interval from the average width of the 95%
error bars shown. [1] shows V; for clouds plotted in Figure 4.6 for Quadrant I. [2] shows V; for all
observed clouds in the Galactic plane with R found by Eq. (6.1). [3] shows V; for the same observations
as [2] plotted by Galactic longitude made by the LOS. [4] show V; for clouds plotted in Figure 7.2 for
varying latitudes.

T, K] o7 [km/s] V, [km/s]
50 0.64 14.12
100 0.91 13.84

6000 7.06 7.69

10000 9.12 5.64

Table 8.1: Table showing the width of a Gaussian, op, for a specified temperature, T} and the
turbulent velocity V; we observe for that temperature.
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Chapter 9

Summary

Neutral hydrogen was traced in the Milky Way by observing the 21cm emission line using a radio
telescope, ‘SALSA’. For each observation multiple peaks are seen showing the 21cm emission
corresponding to hydrogen gas clouds. To these peaks Gaussian curves are fitted, using these
we infer properties about the observation: the intensity of the signal and the radial velocity and
standard deviation of each cloud. Noting that the position of each cloud is known in Galactic
coordinates, (I, b).

For observations made in the Galactic plane, b = 0°, a rotation curve is constructed, using known
radial velocity and Galactic longitude to find rotational velocity and distance from the Galactic
centre. This rotation curve is constructed separately for observations inside and beyond the solar
radius based on different assumptions. The obtained rotation curve is shown in Figure 4.9. From
this we concluded an approximately constant rotational velocity as distance from the Galactic
centre increases, given by V(R) = 207 £ 4 km/s.

Non-linear modelling is used to fit the forms of various mass models to the observed points
allowing us to understand the mass distribution in the Milky Way. Through comparison of a
rotation curve given by Sofue (2013) we concluded the total Galactic mass to be comprised of
mass given by a central bulge, an exponential disc and a dark matter halo; parameters of interest
are given in Table 5.1. The combined masses of these three components give an approximately
flat rotation curve as R increases, shown in Figure 5.10. This shows the existence of dark matter
to be a reasonable explanation in explaining the difference between the expected Keplarian
rotation curve and the approximately flat observed curve.

Assuming a constant rotational velocity throughout the Milky Way allows us to plot the positions
of each observed cloud in the Galactic plane given we know it’s radial velocity and Galactic
longitude. A map of the locations of all observed clouds is shown in Figure 6.2. We see hydrogen
lying in spiral arms in the Galactic plane, as shown in Figure 1.3. It is not possible to create a
full map of the Galaxy using ‘SALSA’ owing to it’s global location.

Analysing observations for —30° < b < 30°, allows examination of how rotational velocity
varies with distance from the Galactic plane. A drop off in rotational velocity is observed,
this is largest for b < 0°, however results for b > 0° are more uncertain. For b < 0° we have
AV = 5.6km s /kpc. We would expect results for both above and below the Galactic plane
to be in agreement, as quoted in other results. The magnitude of the drop off does not show
agreement with other results, with Kalberla and Kerp (2009) and Levine et al. (2008) both
predicting a faster drop off, shown in Figure 7.3. However all results agree that rotational
velocity decreases as distance from the Galactic plane increases.
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The standard deviation of each observed Gaussian gives a measure of the width of the peak. The
broadening of the Gaussian profile is caused by the motion of atoms due to the gas temperature
and by the random turbulent motion of the gas. We find an approximately constant turbulent
velocity for all gas clouds in the Milky Way. For gas of temperature 100K the turbulent velocity
is, V; = 13.84 km/s. As the temperature of the gas increases a larger contribution of the width
comes from the temperature and hence a smaller contribution from turbulence, for our fixed
observed widths.

Further observing sessions would allow us to determine the true location of the uncertain HI
clouds in the Galactic map, Figure 6.2. Also more observing sessions at varied Galactic latitudes
would enable construction of rotation curves for out of the Galactic plane, such as those shown
in Figure 7.4. Finally observing again six months after the original observations would allow us
to observe more of the sky, and hence allow construction of a more detailed rotation curve and
a fuller Milky Way map.
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Observation Date/Time
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Appendix A

b [’]
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80
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80
80
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80
80
80
80
80
80
80
80
80
80
80
80
80

-30
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-4
-2
10
12
14
16
18
20
22
24
26
28
30
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10
20
25
30
35
40
45
50
55
60
65
70
80
85
90
95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

Above are the dates and times of all observations taken using SALSA in order to collect data

for analysis.




Appendix B

Antenna Temperature [K]

Velocity [km/s]

Standard Deviation [km/s]
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Antenna Temperature [K] Velocity [km/s] Standard Deviation [km/s]
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Above are details of all the data extracted from spectra for observations made in the Galactic
plane.
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Antenna Temperature [K] Velocity [km/s] Standard Deviation [km/s]
[0
g 2 | w 2 | w 2 | w
b [Nl ]} & 1 2 3 4 5 o o 1 2 3 4 5 ] o 1 2 3 4 5 o o
g S =1 >
*
30 80 1] 125 178 169 159 17.1| 16.0 2.1 63 69 55 -60 -54 -6.0 0.6 | 135 133 121 122 87| 120 | 19
28] 80 ] 1] 141 185 163 168 201 | 171 23 54 75 68 53 47 -5.9 12 | 128 174 137 112 77| 126 | 3.5
-26 | 80 1 154 179 184 182 227 18.5 2.6 -4.6 -6.0 -4.8 -5.1 -4.5 -5.0 0.6 | 11.8 147 107 131 7.7 11.6 2.7
24 8] 1174 176 165 199 261| 195 3.9 -36 68 -44 35 44 -4.6 13 114 186 130 115 11.1| 131 | 3.1
22 8] 1162 171 214 191 234 194 3.0 41 54 27 34 34 3.8 1.0 119 140 87 108 91| 109 | 2.2
-20 | 80 1 169 185 20.2 20.7 246 20.2 29 -5.1 -5.5 -3.4 -3.5 -3.6 -4.2 1.0 J13.0 135 99 103 104| 114 1.7
18] 8o | 1] 198 226 277 223 282 241 3.7 49 42 26 37 42 -3.9 09 | 126 108 86 104 11.1)] 107 | 14
16 80 1263 287 343 276 337 301 3.6 38 40 -29 37 -39 3.7 04 | 100 108 84 102 102] 9.9 0.9
-14 | 80 1 324 380 396 298 399 35.9 4.6 -2.9 -3.3 -2.8 -1.9 -3.4 -2.9 0.6 9.0 101 87 67 92 8.8 13
12 80| 1]375 392 424 354 422 393 3.0 28 34 29 -18 -38 2.9 08 | 88 107 92 72 96| 91 1.3
10 80| 1]366 438 469 417 478 433 45 30 31 27 20 37 2.9 0.6 | 100 104 97 76 102] 96 11
8| 8] 1406 494 504 472 570| 489 5.9 30 -30 -28 -1.8 -31 2.7 0.5 106 115 107 85 106]| 104 | 11
6| 8] 1]42 675 622 602 744| 625 9.7 24 20 23 14 27 2.2 05 119 118 113 91 11.4)] 111 | 11
4| 8] 1]608 83 788 745 891| 779 | 122 | 20 -19 -16 -08 -18 -1.6 05 | 126 125 115 100 97| 113 | 13
2] 8] 1]762 1046 978 932 107.4| 959 | 123 | -0.2 0.6 05 -01 -29 -0.6 13 | 106 106 101 103 10.7| 104 | 0.2
2| 8] 2177 263 188 182 262| 214 44 | 457 489 -463 -435 -54.7 | -47.8 | 43 | 327 324 352 343 325| 334 | 1.2
0] s J 1]927 1161 1063 103.3 116.6| 1070 | 9.9 05 -11 13 00 -26 -1.1 1.0 | 110 114 109 106 11.3| 110 | 03
0 80 2 281 36.6 274 250 345 30.3 5.0 -51.0 -53.5 -53.9 -485 -57.2 -52.8 33 |314 313 316 325 31.2| 31.6 0.5
2 | 80 ] 11000 1205 99.8 106.2 110.9| 1075 | 8.6 23 23 25 09 31 2.2 0.8 | 116 120 119 112 11.4)] 116 | 03
2 18| 2]300 381 320 320 313]| 327 31 | 580 -585 -60.2 -535 -60.7 | -58.2 | 2.8 |30.4 302 294 313 30.8]| 304 | 0.7
4 | 80 1]100.7 1069 847 944 972| 96.8 8.2 -34 33 -33 -18 -34 -3.0 0.7 | 135 141 144 118 129| 134 | 1.0
6 80 1 874 90.6 722 848 783 82.7 7.4 -3.3 -3.2 -2.7 -1.6 -3.1 -2.8 0.7 J 126 125 13.0 115 115| 122 0.7
8 | 80 1]623 693 540 717 595]| 634 7.2 27 26 22 07 26 21 09 | 125 123 12.8 108 11.5| 12.0 | 08
10] 80| 1]444 480 402 510 386 445 5.2 26 30 21 -01 25 21 12 | 123 137 130 103 11.7| 122 | 1.3
12 80 1 29.1 359 293 336 270 31.0 3.7 -3.0 -3.5 -2.7 0.0 -2.7 -2.4 14 125 152 124 111 126| 12.8 1.5
14 ] 8| 1226 254 221 231 20| 230 1.4 27 47 21 06 23 2.5 15 | 119 184 131 111 11.2| 131 | 3.0
16 ] 80 1] 194 224 155 174 161 181 2.8 19 31 -1.8 21 32 2.4 0.7 |11.8 144 168 125 134)| 138 | 2.0
18 80 1 166 189 168 139 1338 16.0 2.2 -2.5 -4.7 -1.8 -1.5 -3.1 -2.8 1.3 | 134 190 168 169 123| 15.7 2.8
20] 80 1]130 136 132 116 12.7] 128 0.8 34 46 07 -18 41 2.9 16 | 144 369 156 176 99| 189 | 105
228 1]109 139 99 106 98 11.0 1.7 47 58 01 -11 -50 3.3 25 | 166 225 168 180 13.5| 175 | 3.3
24 80 1 10.4 9.9 9.1 11.2  10.6 10.2 0.8 -3.7 -2.2 -2.7 -3.1 -4.8 -3.3 1.0 | 156 16.8 19.7 219 10.7| 16.9 4.3
26| 8f 1]96 91 88 120 87 9.6 1.4 50 27 -26 20 -45 -3.3 13 151 197 233 197 102| 176 | 5.0
28] 80 1] 98 79 118 70 85 9.0 1.9 60 -10 54 23 37 3.7 21 | 156 361 109 288 33.7| 25.0 | 112
30l 80f 1] 97 80 126 84 105 9.8 1.9 57 22 53 36 -43 -4.2 14 | 150 289 106 157 32.8| 206 | 9.7

Above are details of all the data extracted from spectra for observations made for varying
Galactic latitudes.

41



References

M Abramowitz and I Stegun. Handbook of Mathematical Functions: with Formulas, Graphs,
and Mathematical Tables. Courier Dover Publications, 2012.

O Agertz, G Lake, R Teyssier, B Moore, L. Mayer, and AB Romeo. Large-Scale Galactic
Turbulence: Can Self-Gravity Drive The Observed HI Velocity Dispersions? Monthly Notices
of the Royal Astronomical Society, 392(1):294-308, 2009.

J Binney and S Tremaine. Galactic Dynamics. Princeton University Press, 1987.

WB Burton. The Large-Scale Distribution of Neutral Hydrogen in the Galaxy. In Galactic and
Extra-Galactic Radio Astronomy, pages 82-117. Springer, 1974.

IB Cohen and A Whitman. Isaac Newton. The Principia. Mathematical Principles of Natural
Philosophy. A New Translation. University of California Press, 1999.

D Dahlin. Reducing data from SALSA in Matlab: SalsaSpectrum v1.6. 2013.

H Ewen and E Purcell. Observation of a Line in the Galactic Radio Spectrum. Nature, 168
(4270):356-358, 1951.

KM Ferriere. The Interstellar Environment of our Galaxy. Reviews of Modern Physics, 73(4):
1031, 2001.

KC Freeman. On the Disks of Spiral and SO Galaxies. The Astrophysical Journal, 160:811,
1970.

IS Gradshteyn and IM Ryzhik. Table of Integrals, Series, and Products, volume 6. Academic
Press New York, 1965.

C Horellou and D Johansson. Hands-On Radio Astronomy Mapping the Milky Way. 2013.

P Kalberla and L Dedes. Global Properties of the HI Distribution in the Outer Milky Way.
arXiwv preprint arXww:0804.4831, 2008.

P Kalberla and J Kerp. The HI Distribution of the Milky Way. Annual Review of Astronomy
and Astrophysics, 47:27-61, 2009.

S Kent. Dark Matter in Spiral Galaxies. I - Galaxies with Optical Rotation Curves. The
Astronomical Journal, 91:1301-1327, 1986.

K Lang. Astrophysical Formulae, volume 1. Springer, 1999.

ES Levine, C Heiles, and L Blitz. The Milky Way Rotation Curve and Its Vertical Derivatives:
Inside the Solar Circle. The Astrophysical Journal, 679(2):1288-1298, 2008.

N MecClure-Griffiths, D Pisano, M Calabretta, H Ford, F Lockman, L Staveley-Smith,
P Kalberla, J Bailin, L Dedes, S Janowiecki, et al. GASS: The Parkes Galactic All-Sky
Survey. I. Survey Description, Goals, and Initial Data Release. The Astrophysical Journal
Supplement Series, 181(2):398, 2009.

Y Sofue. Mass Distribution and Rotation Curve in the Galaxy. In Planets, Stars and Stellar
Systems, pages 985-1037. Springer, 2013.

RJ Tayler. Galazies: Structure and Evolution. Cambridge University Press, 1993.

42



