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Abstract

Stochastic differential equations can be used to model many continuous time processes.
We examine how these can be exploited in a financial context by considering the stock
price process. Fischer Black and Myron Scholes proposed a model of this phenomenon
in 1973, assuming that an asset’s price follows a geometric Brownian motion. The latter
has an analytically tractable stochastic differential equation, which is not the case for
many diffusion processes describing financial models. Therefore we consider the Euler-
Maruyama discretisation to extend the applicability of our work. We focus on parameter
inference within the Bayesian school of thought: simulation from intractable posterior
distributions is performed via the Markov chain Monte Carlo method. The discretisation
accuracy is then assessed against the analytic solution. The developed model could be
applied to sophisticated financial processes, including exotic path-dependent options.
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Chapter 1

Introduction

1.1 Contextual Environment

The stock price process (SPP) refers to price fluctuations of securities occurring on
the stock market. Given the sophistication of its underlying environment the SPP is a
highly-complex process, and we only scratch the surface of its non-mathematical con-
text.

Stock markets are equivalent to money-generating vehicles where business shares are
sold to investors [12](p.10). Traders (or professionals) sell securities and ensure market
equilibrium by maintaining prices for stocks in lower demand, sometimes selling shares
to themselves. A firm’s occurrence on the exchange, or ‘going public’, marks a milestone
in its development and is a sign of substantial growth. The market has a number of
unusual properties. Firstly, a company has little if no direct benefit from changes in its
share price. All trading profits are received by shareholders who then determine future
re-investment. Secondly, the stock price of a company may change dramatically within
a matter of minutes, making no impact on the worth of its assets or capital. These
fluctuations are driven by investor demand and traders’ (sometimes subjective) percep-
tion of the business value. Therefore, it is only plausible to examine this process from a
Bayesian point of view.

Mathematically, we describe the SPP by Itô stochastic differential equations (SDEs)
as outlined in the famous Black-Scholes (B-S) model [2](p.644). Assuming geometric
Brownian motion (GBM) as a model for stock, the B-S theory allows to price European
Vanilla-style options. As the associated SDE can be solved analytically we consider it
as a starting point for our Bayesian analysis to follow. Within that context, the pro-
cess parameters require empirical and theoretical information – the likelihood and prior
distributions of the mean rate of return µ and volatility σ2 = 1/τ . From this we derive
parameter posterior distributions up to proportionality. We then proceed with simula-
tion – a Markov chain Monte Carlo (MCMC) scheme is developed and applied to the
analytic solution. A particular choice of prior leads to a tractable full conditional dis-
tribution (FCD) of µ, enabling us to simulate from it directly. However, the τ posterior
density has a non-standard form, requiring a Metropolis-Hastings update.
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We then consider inference under the Euler-Maruyama (E-M) discretisation with a time
increment given by the observation intervals. The analytic solution availability enables
us to assess and verify the discretisation accuracy. For processes other than the SPP,
this approximation may be crude unless the data are observed frequently in time. Thus,
we consider a Bayesian imputation scheme where observed low frequency data are aug-
mented by k − 1 latent values between each pair of observations. We develop two
approaches for updating the inter-observation latent path: a simple single-site scheme
updating latent values one at a time, and a block updating scheme.

The structure of this report is as follows. Chapter 1 has introduced the contextual back-
ground of our research. Chapter 2 outlines the necessary theoretical base and Chapter
3 describes the Bayesian framework to be used in parameter inference. Chapter 4 is the
core of this study, outlining the results of our simulation with applications of MCMC to
real and synthetic data. Chapter 5 concludes this study and describes future directions
to be taken.
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Chapter 2

Theoretical Background

2.1 Brownian Motion

Definition 2.1
Standard Brownian Motion {Wt, t ≥ 0} is a continuous-time, continuous-value
stochastic process characterized by the following properties.

1. Wt has continuous trajectories, W0 = 0.

2. For all times 0 = t0 < t1 < t2 < ∞, the increments of BM are independent and
stationary:

Wt1 −Wt0 ⊥⊥ Wt2 −Wt1 . (2.1)

3. For all times 0 = t0 < t1 < ∞, the non-overlapping increments have a Gaussian
density:

Wt1 −Wt0 ∼ N(0, t1 − t0). (2.2)

From equation (2.2) one may obtain the conditional distributions of Wt, which can be
used to simulate its trajectories at discrete times.

1. The distribution of Wt conditional on the process initial value is

Wt|W0 = 0 ∼ N(0, t). (2.3)

2. The distribution of {Wt|Ws = ws, s < t} is obtained by noting that Wt = Wt −
Ws +Ws, and therefore

Wt|Ws = ws ∼ N(ws, t− s). (2.4)

Figure 2.1 shows trajectories of standard BM for different values of the time increment
∆t. As ∆t decreases it is apparent that the process is not differentiable in analytic sense.
Notice that Wt may be interpreted as a random walk, as proposed by Ross [9](p.631).
For example, suppose Xt is a random walk taking a step of a size ∆x each ∆t time units,
with an equal probability of moving to the right as to the left. Also consider

Yi =

{
1, P r(Yi = 1) = 0.5,
−1, P r(Yi = −1) = 0.5.
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Figure 2.1: Plots of standard BM trajectories.

Therefore,

Xt = ∆x(Y∆t + Y2∆t . . .+ Yn∆t), n =
t

∆t
, (2.5)

and

E[Xt] = 0, V ar(Xt) =
t(∆x)2

∆t
.

As n increases (or ∆t decreases) the central limit theorem implies that

Xt ∼ N

(
0,

t(∆x)2

∆t

)
. (2.6)

Allowing ∆x =
√
∆t, such that ∆x → 0 as ∆t → 0,

Xt ∼ N(0, t) as ∆t → 0. (2.7)

Therefore, as ∆x and ∆t to tend to 0 Xt tends to BM Wt implying that Xt is a
continuous-value function [9] (p.632).

2.2 Itô Stochastic Processes

In order to formulate the SPP as a stochastic differential equation (analogous to the
Black-Scholes model, Section 2.3), we consider the Itô stochastic processes. For {Xt, t ≥
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0}, define f(t) as a time-dependent stochastic process satisfying the Riemann integral
as follows [1](p.335): ∫ b

a

E(f 2(t))dt < ∞, (2.8)

f(t) = f(t,Xt), t ∈ [a, b] . (2.9)

Given that (2.9) exists, assume

a = t1 < t2 < . . . < tk+1 = b ∈ [a, b],

∆t = ti+1 − ti =
(b− a)

k
,

∆Wti = Wti+1
−Wti .

Under these conditions, the Itô stochastic integral of f is defined as∫ b

a

f(t)dWt = lim
k→∞

k∑
i=1

f(ti)∆Wti . (2.10)

Here, limk→∞ denotes the mean square convergence [1](p.336), such that if I =
∫ b

a
f(t)dWt.

Then
lim
k→∞

Fk = I ⇒ lim
k→∞

E[(Fk − I)2] = 0.

Following this, an Itô SDE satisfied by a stochastic process {Xt, t ≥ 0} driven by Brow-
nian motion is defined as

dXt = α(Xt, θ)dt+
√

β(Xt, θ)dWt, (2.11)

where α is the drift and β is the diffusion coefficient (stochastic term). Both α and β
depend on Xt and a parameter (vector) θ; dWt is an increment of standard Brownian
motion. Integrating both sides of dXt we obtain

Xt = x0 +

∫ t

0

α(Xτ , θ)dτ +

∫ t

0

√
β(Xτ , θ)dWτ , (2.12)

where x0 is the initial value. The second and third terms of the Xt right hand side
are deterministic and stochastic integrals respectively- removing the latter will make
Xt an ordinary differential equation. Finally, in order to derive SDEs satisfied by a
transformation of Itô process, we define the Itô chain rule:

dG(Xt) =

(
α(Xt)Gx(Xt) +

1

2
β(Xt)Gxx(Xt)

)
dt+Gx(Xt)

√
β(Xt) dWt. (2.13)

Here, Gx(Xt) denotes the derivative of Xt with respect to x; similarly, Gxx(Xt) is the
double-derivative. This result will be used in Section 2.3 to solve the Black-Scholes SDE.
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Figure 2.2: Generalised Brownian Motion

2.2.1 Generalised Brownian Motion as an SDE

Consider a generalised BM {Xt, t ≥ 0}, whose SDE is defined as

dXt = adt+ bdWt, X0 = x0, (2.14)

Xt = x0 + at+ bWt, x0, a, b ∈ R .

This implies the following properties of Xt:

1. X0 = x0.

2. The increments of {Xt, t ≥ 0} are stationary and independent.

3. Xt ∼ N(x0 + at, tb2).

As before, the conditional distribution Xt|Xs = xs is:

Xt = Xt −Xs +Xs = Xs + a(t− s) + b(Wt −Ws), therefore

Xt|Xs = xs ∼ N(xs + a(t− s), b2(t− s)).

Figure 2.2 illustrates the behaviour of Xt under changes in b (a is fixed at zero). Larger
b values cause trajectories to become more volatile due to an increase in the stochastic
increment Wt. Two issues prohibit this form of BM from being used directly in our
model. Firstly, Xt is defined on the entire real line which conflicts with the SPP data
support. Crucially, the interval distribution ofXt is homogeneous which is unsatisfactory
in our case. This motivates the use of geometric BM, defined in the next Section.

2.3 Black-Scholes Model

The Black-Scholes (B-S) model was first published in 1973, in a paper ‘The Pricing of
Options and Corporate Liabilities’ [2](p.644). It described a model for the stock market
and a method of pricing Vanilla-style options via SDEs. The authors, Myron Black and
Fischer Scholes, proposed that in order to reduce risk of an option, an investor should
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buy and sell its underlying asset- which is known as delta hedging. Although not without
imperfections, the B-S model is still recognised as one of the most popular for pricing
securities. Again, we will only consider the tip of the econometric iceberg that their
work is, in particular the geometric BM representation of the SPP.

Definition 2.2
We define {St, t ≥ 0} as geometric Brownian motion (GBM) with parameters µ
and σ2, if St depends continuously on time t and the following assumptions hold for all
times 0 ≤ t0 < t1 < t2 < ∞:

1. S0 > 0.

2. Ratios defined over non-overlapping time intervals are independent:

St2

St1

⊥⊥ St1

St0

.

3. The process ratios follow a Log-normal distribution

St1

St0

∼ LN

((
µ− σ2

2

)
∆t, σ2∆t

)
, ∆t = t1 − t0. (2.15)

2.3.1 Geometric Brownian Motion as an SDE

Consider the task of formulating geometric Brownian motion as an (SDE). It can be
shown that St = eXt is a geometric BM, where

Xt = x0 +

(
µ− σ2

2

)
t+ σWt. (2.16)

Section 2.2.1 gives the SDE satisfied by Xt as

dXt =

(
µ− σ2

2

)
dt+ σdWt. (2.17)

Hence, we derive an SDE for St by applying Itô formula with G(t, x) = ex. Let

Gt =
∂G(t, x)

∂t
and Gx =

∂G(t, x)

∂x
.

Thus,
Gt(t,Xt) = 0 , Gx(t,Xt) = eXt , Gxx(t,Xt) = eXt .

Applying Itô formula produces

dSt = d
(
eXt
)

=

([
µ− σ2

2

]
eXt +

1

2
σ2eXt

)
dt+ σeXt dWt,

⇒ d
(
eXt
)

= µeXt dt+ σeXt dWt . (2.18)
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Writing St = eXt leads to the SDE for geometric Brownian motion:

dSt = µSt dt+ σSt dWt. (2.19)

Note that we may solve this SDE explicitly, obtaining a closed-form expression for St.
To perform this, apply Itô formula with G(t, x) = log(x) and define

Gt(t, St) = 0 , Gx(t, St) =
1

St

, Gxx(t, St) = − 1

S2
t

.

Therefore,

d(log(St)) =

(
µSt

1

St

− 1

2
S2
t

σ2

S2
t

)
dt+ σSt

1

St

dWt

=

(
µ− 1

2
σ2

)
dt+ σ dWt . (2.20)

Integrating both sides of (2.20) produces∫ t

0

d (log(Sτ )) =

∫ t

0

(
µ− 1

2
σ2

)
dτ +

∫ t

0

σ dWτ ,

⇒ log

(
St

S0

)
=

(
µ− 1

2
σ2

)
t+ σWt,

⇒ St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
. (2.21)

Hence, when formulated as an SDE the Black-Scholes model of the SPP has a tractable
analytic solution.

In what follows we consider the logarithmic transformation of the stock price ratios.
This has the advantage of using Gaussian density within the MCMC sampler. It also
leads to a more comprehensive understanding about the growth and decline of prices on
the stable scale that the transformation allows.

Suppose that stock prices are observed every ∆t time units. Therefore, by equation
(2.21) the price ratios follow a Log-normal distribution:

St = S0 exp

{(
µ− 1

2
σ2

)
∆t+ σWt

}
. (2.22)

Suppose we have a set of data {st0 , st1 , . . . stn}, and thus define the log-ratios xti and a
data vector x = (xt1 , xt2 , . . . xtn)

T as a realisation of

Xti = log

(
Sti

Sti−1

)
∼ N

{(
µ− σ2

2

)
∆t, σ2∆t

}
.

This result enables the convenience of the Gaussian density within data likelihood, which
we make an extensive use of within Bayesian inference in Chapters 3 and 4.
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Figure 2.3: GBM (black) and E-M (red) trajectories, t = 50, µ = 0.1, σ = 0.1.

2.4 Euler-Maruyama Discretisation

Although the SPP has a luxury of a closed-form solution to its underlying SDE, many
financial processes are analytically intractable, an example of which is the stochastic
volatility model. We, therefore, consider approximation methods, namely the Euler-
Maruyama (E-M) discretisation.

Assume an SDE dXt and the task of evaluating its integral on [0, T ], where

dXt = a(t,Xt)dt+ b(t,Xt)dWt, 0 = t0 < t1 < . . . < tn = T.

Approximated values of Xt, {y0 < y1 < . . . < yn, yi ≡ yti}, are evaluated at their
respective time points [10](p.4). Under this setup, the discretisation of Xt is as follows:

y0 = x0,

yi+1 = yi + a(ti, Yi)∆ti+1 + b(ti, yi)∆Wi+1,

∆ti+1 = ti+1 − ti, ∆Wi = Z
√

∆ti, Z ∼ N(0, 1). (2.23)

Therefore, the E-M method generates an approximation of the solution to dXt as a set
of values {y0, . . . , yi}, which depends on random Z the quantities [10](p.5).

The following example verifies that the discretisation can be satisfactory for small ∆t.
Consider generating synthetic data from the Black-Scholes model with parameters

µ = 0.1, σ = 0.1, t = 50.

We derive the E-M approximation and overlay the resulting trajectories, assessing ac-
curacy against the analytic solution. Figure 2.3 shows simulation results fordifferent ∆t
values. Note that the approximation is reasonable for unit interval times, and as ∆t
decreases the two trajectories become almost identical. We perform equivalent analysis
for the Bayesian parameter inference as the main subject of the next Chapter.
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Chapter 3

Bayesian Inference

3.1 Introduction

In this Chapter we describe Bayesian inference for the parameters governing the SPP.
Initially, we outline fundamental principles of the Bayesian approach and derive param-
eter posterior distributions. We then introduce the Markov chain Monte Carlo (MCMC)
sampling method and describe our scheme using the analytic solution. An equivalent
algorithm is developed based on the E-M discretisation. Furthermore, we introduce
imputation within the E-M scheme tackling the inaccuracy issue associated with low
observation frequency.

Definition 3.1
Bayes theorem allows combining information from empirical studies with prior expert
knowledge to build inferences about underlying data parameters. For this, assume an
expert-elicited prior distribution for parameter (vector) θ with an associated density
π(θ), and a set of observations x = {x1, x2, . . . , xn} with a joint density f(x|θ). We
define the likelihood as

L(θ|x) = f(x|θ). (3.1)

Then, by Bayes’ theorem the posterior distribution of θ|x is:

π(θ|x) = π(θ)f(x|θ)
f(x)

∝ π(θ)f(x|θ). (3.2)

In other words,

‘the posterior is proportional to the prior times the likelihood’.

Here only the kernel forms of π(θ), L(x|θ) and π(θ|x) are considered, as computation
of the posterior proportionality constant f(x) can be difficult. This is well-suited to
MCMC simulation due to its requirement of the equilibrium density form only (further
discussed in the next Section).

Consider now a geometric BM corresponding to the SPP, governed by the mean rate of
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return µ and precision τ = σ−2. Recalling that xti = log(sti/sti−1
) with a corresponding

Gaussian density, we define the model likelihood as:

L(µ, τ |x) =
n∏

i=1

√
τ

2π
exp

{
− τ

2∆t

(
xti −

(
µ− 1

2τ

)
∆t

)2
}

=
( τ

2π

)n
2
exp

{
n∑

i=1

(
xti −

(
µ− 1

2τ

)
∆t

)2
}

∝ τ
n
2 exp

{
n∑

i=1

(
xti −

(
µ− 1

2τ

)
∆t

)2
}
. (3.3)

We assign µ and τ (theoretical) prior distributions satisfying their data support and
variability:

π(µ) ≡ N(a, 1/b) and π(τ) ≡ Ga(g, h). (3.4)

As µ and τ are assumed to be independent apriori their joint prior distribution is the
product of marginals:

π(µ, τ) = π(µ)π(τ)

=
1√
2πb2

exp

{
−b(µ− a)2

2

}
hgτ g−1e−hτ

Γ(g)

=
hg

Γ(g)
√
2πb2

τ g−1 exp

{
−b(µ− a)2

2
hτ

}
∝ τ g−1 exp

{
−b(µ− a)2

2
hτ

}
. (3.5)

Therefore, by Bayes theorem

π(µ, τ |x) ∝ π(µ)π(τ)L(µ, τ |x)

∝ τ g−1 exp

{
−b(µ− a)2

2
hτ +

n∑
i=1

(
xti −

(
µ− 1

2τ

)
∆t

)2
}
. (3.6)

The full conditional distribution of µ is of a standard form:

µ|τ,x ∼ N

(
2ab+ 2nxτ + n∆t

2(b+ n∆tτ)
,

1

b+ n∆tτ

)
. (3.7)

However, the joint parameter density (3.6) and full conditional posterior of τ are unavail-
able, thus simulation from them is non-trivial. We, therefore, proceed by considering
the design of an MCMC scheme.

3.2 Markov Chain Monte Carlo

3.2.1 Background

Markov chain Monte Carlo (MCMC) is arguably the most essential tool in Bayesian
statistics. It was developed soon after the ordinary Monte Carlo method (a framework of
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repeated sampling via computer simulation) by Stanislaw Ulam and Nicholas Metropolis
in 1946. Despite its glamorous connotations, this method has little to do with the
destination – Metropolis came up with a code name after the casino where Ulam’s uncle
was gambling. Its initial use was in the Manhattan Project of building nuclear weapons
for World War 2. Metropolis simulated thermodynamic equilibrium by implementing a
particular algorithm until convergence. This led to a discovery that MCMC requires only
some Markov chain with the same equilibrium distribution- the normalising constant
f(x) becomes redundant. This method was called the Metropolis algorithm, which
Hastings generalised in 1970, obtaining the modern form of the Metropolis-Hastings
(M-H) algorithm [3](p.3).
Later, the Gibbs sampler was introduced by Geman and Geman [7](p.721) describing
a special case of M-H under the availability of the full conditional distribution. Gelfand
and Smith made the wider Bayesian community aware of the Gibbs sampler, which up to
that time had been known only in spatial statistics circles. ‘It was rapidly realised that
most Bayesian inference could be done by MCMC- and very little without it’ [3](p.3).

3.2.2 Metropolis-Hastings Algorithm

Key to M-H algorithm is the M-H update. Suppose the target distribution of the
MCMC π(·|x) is known up to a proportionality constant. Therefore, π(·|x) is a non-
negative function that could be integrated (summed in a discrete case) to a finite, non-
zero value. The M-H update proceeds as follows:

1. Given a Markov chain with the current state θ, draw a proposed move to ϕ from
its conditional probability density q(ϕ|θ).

2. Calculate the Hastings ratio:

r(ϕ, θ) =
π(ϕ|x)q(θ|ϕ)
π(θ|x)q(ϕ|θ)

. (3.8)

3. Accept the proposed move ϕ with probability

α(ϕ, θ) = min{1, r(ϕ, θ)}. (3.9)

Therefore, a M-H update makes a proposal move to the new state ϕ with probability
α(ϕ, θ) [3](p.22-25).

The above can be seen as a special case of a more general algorithm, that successively
updates the components of θ = (θ1, θ2, . . . , θp)

T . In particular, a proposed value θ(j) is
obtained from π(θ(j−1)) by (successive) component-wise transitions using a M-H step:

• θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , . . . , θ
(j−1)
p ,x)

• θ
(j)
2 ∼ π(θ2|θ(j)1 , θ

(j−1)
3 , . . . , θ

(j−1)
p ,x)

...
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• θ
(j)
p ∼ π(θ1|θ(j)1 , . . . , θ

(j)
p−1,x)

This is analogous to the original form of the Metropolis algorithm, which used component-
wise transitions between successive draws from the proposal distributions qi(ϕi|θ(j−1)

i )
(ϕi is the parameter of interest). In the case of Gibbs sampler, the proposal distribution
is the FCD (which is available), therefore the acceptance probability is 1.

3.2.3 MCMC Using the Analytic Solution

Here we outline the design of an MCMC scheme simulating the SPP parameter posterior
distribution based on the analytic solution. Recall that the full conditional posterior of µ
is available, therefore we shall use a Gibbs sampler. However, the FCD of τ is non-trivial,
demanding a M-H update and a suitable proposal distribution. Assume the proposed
value of precision takes the form τ ∗ = τ (j−1)w, where w is a random variable defined on
the positive real line. In particular,

τ ∗ = τ (j−1)w, w ∼ LN(0, v2) ⇒ log(w) ∼ N(0, v2). (3.10)

Therefore,

log(τ ∗) = log(τ (j−1)) + log(w) ⇒ log(τ ∗) ∼ N(log(τ (j−1)), v2). (3.11)

Recall that

µ|τ,x ∼ N

(
2ab+ 2nxτ + n∆t

2(b+ n∆tτ)
,

1

b+ n∆tτ

)
. (3.12)

Then the M-H algorithm is as follows.

1. Set j = 1. Initialise µ and τ within their distribution support, normally at prior
means. Therefore,

µ(0) = a, τ (0) = g/h.

2. Draw µ(j) from (3.12).

3. Draw τ ∗ from the M-H update.

• By Equation (3.10), τ ∗ = τ (j−1)w, where w ∼ LN(0, v2).

• Therefore, log(τ ∗) ∼ N(log(τ (j−1)), v2) and

q(log(τ ∗)| log(τ (j−1))) =
1√

(2πv2)
exp

{
−(log(τ ∗)− log(τ (j−1)))2

2v2

}
∝ exp

{
−(log(τ ∗)− log(τ (j−1)))2

2v2

}
. (3.13)

• We only require the proposal density up to proportionality as the normalising
constants will cancel in the M-H ratio.
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• Evaluate the acceptance probability α(τ ∗|τ (j−1)):

α(τ ∗|τ (j−1)) = min

{
1,

π(τ ∗|µ(j),x)

π(τ (j−1)|µ(j),x)
× q(τ (j−1)|τ ∗)

q(τ ∗|τ (j−1))

}
= min

{
1,

π(τ ∗|µ(j),x)

π(τ (j−1)|µ(j),x)
× τ ∗

τ (j−1)

}
. (3.14)

• Accept τ ∗ = τ (j) with probability α(τ ∗|τ (j−1)), and retain the previous chain
value otherwise.

4. Set j → j + 1 and return to Step 2.

Note that V ar(log(τ ∗)) = v2 is likely to be unknown and would demand tuning. The
next Chapter illustrates how this can be implemented within a practical application of
the above scheme. However, we will now outline an equivalent sampling method of the
SPP model based on the E-M discretisation.

3.3 MCMC Using the Euler-Maruyama Discretisa-

tion

Recalling Equation (2.23), let

∆St = µSt∆t+ σSt∆Wt, therefore (3.15)

St+∆t|St = st ∼ N(st + µst∆t, σ2S2
t∆t). (3.16)

Define the data vector of (n + 1) stock price observations as s = (st0 , st1 , . . . stn)
T ,

‘measured’ at equally spaced time intervals ∆t = ti+1 − ti.
In order to reduce the computational burden associated with the St density we employ
its linear transformation instead. Define x = (x1, x2, . . . , xn)

T , where

xi =
Sti − Sti−1

Sti−1

√
∆t

∼ N(µ
√
∆t, 1/τ). (3.17)

We may derive the parameter likelihood by multiplying over the observations as follows:

L(µ, τ |x) ∝ τ
n
2 exp

{
−τ

2

n∑
i=1

(
xi − µ

√
∆t
)2}

∝ τ
n
2 exp

{
−τ

2

n∑
i=1

(
[xi − x] + [x− µ

√
∆t]
)2}

∝ τ
n
2 exp

{
−nτ

2

(
s2 +

(
x− µ

√
∆t
)2)}

. (3.18)

To proceed with Bayesian analysis, we assign µ and τ the following prior distributions
(independent apriori):

µ ∼ N(a, 1/b), τ ∼ Ga(g, h). (3.19)
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Therefore, by Bayes’ theorem

π(µ, τ |x) ∝ π(µ, τ)L(µ, τ |x)

∝
√

b

2π
exp

{
−b(µ− a)2

2

}
hgτ g−1 exp{−τh}

G(g)
×

× τ
n
2 exp

{
−nτ

2

(
s2 +

(
x− µ

√
∆t
)2)}

∝ τ
n
2
+g−1 exp

−τh− b(µ− a)2

2
−

nτ
(
s2 + (x− µ

√
∆t)2

)
2

 .(3.20)

The posterior conditional distribution of τ is now trivially derived:

π(τ |µ,x) ∝ τ
n
2
+g−1 exp

−τ

h+
n
(
s2 + (x− µ

√
∆t)2

)
2

 , thus (3.21)

τ |µ,x ∼ Ga

(
n

2
+ g, h+

n

2

(
s2 +

(
x− µ

√
∆t
)2))

, (3.22)

where s2 is the sample variance. For the full conditional of µ:

π(µ|τ,x) ∝ exp

−b(µ− a)2

2
−

nτ
(
x− µ

√
∆t
)2

2


∝ exp

{
−bµ2 − 2abµ+ a2b+ nτx2 − 2nτµx

√
∆t+ µ2nτ∆t

2

}

∝ exp

−

(
µ2(b+ nτ∆t)− 2µ

(
ab+ nτx

√
∆t
)
+ c
)

2


∝ exp

−(b+ nτ∆t)

2

µ2 −
2µ
(
ab+ nτx

√
∆t
)

b+ nτ∆t
+ c

 . (3.23)

Therefore,

µ|τ,x ∼ N

(
ab+ xnτ

√
∆t

b+ nτ∆t
,

1

b+ nτ∆t

)
. (3.24)

Both parameters now have trivial posterior densities, therefore enabling the use of a
Gibbs sampler (only) which is less burdensome to compute. We proceed as follows:

1. Initialise µ(0) and τ (0) at their prior means.

2. At iteration h:

• Draw µ(h) ∼ π(µ|τ (h−1),x) from (3.3).
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• Draw τ (h) ∼ π(τ |µ(h),x) from (3.22).

3. Let h := h+ 1 and go to Step 2.

3.4 Imputation via Euler-Maruyama Discretisation

In this section, we examine the effect of data imputation within Euler-Maruyama dis-
cretisation on parameter inference. Our analysis in Chapter 4 will illustrate that using
observations at integer times provides a fairly consistent estimation of the µ posterior,
given the particular underlying process. However, this approximation may be poten-
tially unsatisfactory in practice, especially for the distribution of τ . To overcome this
we consider data imputation using the following method. Suppose an interval (i, i+ 1],
partitioned in k equally-spaced sub-intervals:

i = ti,0 < ti,1 < . . . ti,k = i+ 1, such that ti,j − ti,j−1 = ∆t =
1

k
. (3.25)

We introduce k − 1 ‘latent’ time points between every pair of observations (st, st+1).
Therefore,

s = (s0, s1, . . . , sn)
T , (3.26)

Sl =
(
St0,1 , St0,2 , . . . , St0,k−1

, St1,1 , . . . St1,k−1
, . . . , Stn−1,k−1

)
,

Ŝ =
(
s0, St0,1 , St0,2 , . . . , St0,k−1

, s1, St1,1 , St1,2 , . . . St1,k−1
, s2, . . . , Stn−1,k−1

, sn
)T

,

where Sl denotes a vector of n(k − 1) latent quantities and Ŝ is a vector combining
(n + 1) observed and n(k − 1) latent data points. Under Bayesian analysis, the
unobserved quantities are equivalent to unknown parameters, such as µ and τ , therefore
require a distribution. As µ and τ are independent apriori, the (overall) joint conditional
posterior density is

π(Sl, µ, τ |s) ∝ π(µ)π(τ)
n−1∏
i=0

k−1∏
j=0

π
(
Sti,j+1

|Sti,j , µ, τ
)
, (3.27)

where Ŝti,j denotes the approximate value of Ŝ with Ŝti,0 ≡ sti . Therefore, the conditional
distributions of the latent observations will be proportional to (3.27). There are many
possible ways to update such latent parameters, and in the next two sections we will
look at the single-site and block updating mechanisms. Note that the full conditional
distributions of µ and τ are tractable with forms analogous to (3.22) and (3.24).

3.4.1 Single-site Updating

In order to simulate the latent data and SPP parameters, we define a Gibbs sampler as
follows:

1. Initialise all unknown quantities, let ∆t = 1/k.
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2. At iteration h:

• Draw µ(h) ∼ π(µ|τ (h−1), Ŝ(h−1)).

• Draw τ (h) ∼ π(τ |µ(h), Ŝ(h−1)).

• Define a block as two consecutive observations and (k − 1) latent values be-
tween them obtaining a vector of size (k+1): {si, Ŝti,1 , Ŝti,2 , . . . , Ŝti,k−1

, si+1}.

• Propose Ŝti,j ∼ N
(

1
2

(
Ŝ
(h)
ti,j−1

+ Ŝ
(h−1)
ti,j+1

)
,∆tŜ2

ti,j−1
/(2τ (h))

)
[6](p.180).

• Accept with probability α(Ŝ∗
ti,j

|Ŝ(h−1)
ti,j ):

α = min

1,
π
(
Ŝ∗
ti,j

|Ŝ(h)
ti,j−1

, Ŝ
(h−1)
ti,j+1

, µ(h), τ (h)
)
q
(
Ŝ
(h−1)
ti,j |Ŝ(h)

ti,j−1
, Ŝ

(h−1)
ti,j+1

, µ(h), τ (h)
)

π
(
Ŝ
(h−1)
ti,j |Ŝ(h)

ti,j−1
, Ŝ

(h−1)
ti,j+1

, µ(h), τ (h)
)
q
(
Ŝ∗
ti,j |Ŝ

(h)
ti,j−1

, Ŝ
(h−1)
ti,j+1

, µ(h), τ (h)
)
 .

• Define Ŝ
(h)
ti,j = Ŝ∗

ti,j
with probability α(Ŝ∗

ti,j
|Ŝ(h−1)

ti,j ) and Ŝ
(h−1)
ti,j otherwise.

3. Let h := h+ 1 and go to Step 2.

Therefore, each of the proposed Ŝ∗
ti,j

latent quantities depend on their immediate neigh-
bour points. Note that the posterior distribution of τ will be heavily influenced by
imputation: both the mean and variance of π(τ |µ,x) will change simultaneously with
latent observations. The influence on µ is be less apparent as only the posterior mean
is under the direct impact of imputation. Indeed, our simulation results in Chapter 4
show little sensitivity of π(µ|τ, Ŝ) to an increase in k.

3.4.2 Block Updating

Instead of updating latent values one by one, these will now be considered as a block
within two consecutive observations, and updated in a single procedure. The update
algorithm is as follows:

1. Initialise all unknown quantities.

2. At iteration h,

• Draw µ(h) ∼ π(µ|τ (h−1), Ŝ(h−1)).

• Draw τ (h) ∼ π(τ |µ(h), Ŝ(h−1)).

• Define a block as before: {si, Ŝti,1 , Ŝti,2 , . . . , Ŝti,k−1
, si+1}. Here, we use the

same proposal distribution for Ŝ∗
ti,j

as for the observations. Update the latent
block as follows:

Ŝ∗
ti,1

∼ N

(
si + µsi∆t,

s2i∆t

τ

)
, j = 1.

Ŝ∗
ti,j

∼ N

(
Ŝ∗
ti,j−1

+ µŜ∗
ti,j−1

∆t,
(̂S∗

ti,j−1
)2∆t

τ

)
, j = 2, 3, . . . , k − 1.
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3. Define the M-H acceptance ratio as:

A =

∏k
j=1 π

(
Ŝ∗
ti,j

|Ŝ∗
ti,j−1

, µ(h), τ (h)
)∏k−1

j=1 q
(
Ŝ
(h−1)
ti,j |Ŝ(h−1)

ti,j−1
, µ(h), τ (h)

)
∏k

j=1 π
(
Ŝ
(h−1)
ti,j |Ŝ(h−1)

ti,j−1
, µ(h), τ (h)

)∏k−1
j=1 q

(
Ŝ∗
ti,j |Ŝ∗

ti,j−1
, µ(h), τ (h)

)
=

π(si+1|Ŝ∗
ti,j−1

, µ(h), τ (h))

π(si+1|Ŝ(h−1)
ti,k−1

, µ(h), τ (h)).

4. Accept the latent block with probability α(Ŝ∗
ti,j

|Ŝ(h−1)
ti,j ) = min{1, A}, and retain

the previous block otherwise.

5. Let h := h+ 1 and go to Step 2.

Having outlined the technicalities of sampling procedures, we now apply our MCMC
schemes to both real and synthetic data.
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Chapter 4

Applications

4.1 Inference Using the Analytic Solution

To begin, we outline results of our MCMC sampling based on the analytic solution to
the SPP. In order to verify model validity and tune v, we perform a ‘pilot run’ using
synthetically generated data. The latter is simulated using the stock price formula from
the B-S model with µ = 0.1, τ = 100,∆t = 0.1 and maximum observation time T = 50.
The prior distributions of µ and τ are:

µ ∼ N(0, 100), τ ∼ Ga(10, 0.1). (4.1)

We implement the scheme for a short run of 2000 iterations in order to assess mixing
under different v values. Figure 4.1 includes time series and autocorrelation plots of the
τ chain. Observe that if v is too small the chain becomes ‘cold’- it accepts the majority
of values but explores the sample space slowly and does not converge. Similarly, if
v is too large convergence is not achieved as well: the chain becomes ‘hot’ rejecting
too many values and moving in ‘leaps’. Observing the autocorrelation pattern of the
proposal mechanism, a variance that is too small leads to non-independent draws. For
larger values, these values have an oscillating behaviour and may increase for a large
lag. Through trial and error it was estimated that the approximate optimal value for v
is 0.12, also leading to minimal autocorrelation.

Having tuned the chain, we perform a longer run of 20,000 iterations, the output of
which is displayed in Figure 4.2. The chain is mixing well for both variables and appears
to be in equilibrium. The sample space is explored efficiently and with little divergence
from the posterior mean. Figure 4.3 shows prior (red) and posterior (black) distributions
of µ and τ . Starting with µ, we conclude that the MCMC has been informative. The
prior mean has shifted from 0 to 0.1 (data mean) and there is a dramatic decrease in
variance, so much so it was not reasonable to overlay the plots. Regarding τ , its mean
is consistent with the theoretical prior value, and there is also a significant reduction in
variance. Additionally, the independence between µ and τ is verified by plotting them
against each other- Figure 4.4 indicates about (very) little linear relationship.
To finalize this section, we assess the 95% credible regions of µ and τ - refer to Tables
4.1 and 4.2. The behaviour of these regions will be observed under changes in ∆t and
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Figure 4.1: MCMC chain mixing and autocorrelation plots under different v.
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Figure 4.2: Run of the MCMC scheme based on the analytic solution, 20,000 iterations.
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µ T = 1 T = 10 T = 100
∆t = 1 (-0.17, 0.25) (0.05, 0.17) (0.09, 0.13)
∆t = 0.1 (0.05, 0.33) (0.07, 0.19) (0.08, 0.12)
∆t = 0.01 (0.02, 0.39) (0.02, 0.15) (0.07, 0.11)

Table 4.1: 95% credible intervals for µ.

τ T = 1 T = 10 T = 100
∆t = 1 (48.20, 178.91) (60.57, 185.63) (90.44, 153.33)
∆t = 0.1 (62.35, 185.63) (90.22, 153.51) (85.32, 102.02)
∆t = 0.01 (90.91, 153.10) (85.41, 101.89) (94.57, 100.35)

Table 4.2: 95% credible intervals for τ .
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T - time step and observation time length respectively. Let ci,j denote a cell in row i,
column j. Starting with µ, it should come to a no surprise that as T increases and ∆t
decreases the regions become narrower. Intriguingly, the regions in c1,3, c2,3 and c3,3 are
similar despite a significant difference in the data amount (by a scale of 10 successively).
Recall that µ is the mean interest rate of the SPP. Thus, a better understanding about
µ is obtained by looking at a longer time period- focusing on the slope of a processes’
trajectory rather than the variability. Conversely, to examine τ credible regions consider
the diagonal entries of Table 4.2: c3,1, c2,2 and c3,1 have the same number of data points
(100), as do c3,2 and c3,2 (1000) and so on. Within these entries the regions are very
similar. This implies that we achieve a better prediction about τ by looking at as many
fluctuations within a given time period as possible (the slope becomes of secondary
importance). This result is apparent throughout our simulation study, as sections to
follow illustrate.

4.1.1 A Real Data Example

Having verified the validity of our MCMC scheme we will now use if for real data
inference. Consider the daily closing prices of the Standard & Poor’s 500 (S&P500)
index. Standard & Poor’s is an American financial services company producing financial
analysis on stocks and bonds. S&P500 is an index of 500 U.S. leading companies (market
cap in excess of $4 billion) whose stock is listed on New York Stock Exchange (NYSE) or
National Association of Securities Dealers Automated Quotations (NASDAQ). Figures
4.5 (a) and (b) show trajectories of S&P500 daily closing prices the daily returns (ratio
between prices at two consecutive days) respectively.

To proceed with Bayesian inference we assign µ and τ the following prior distributions:

µ ∼ N(0, 100), τ ∼ Ga(10, 0.1). (4.2)

For prior and posterior distributions of µ and τ refer to Figure 4.6, whose behaviour
corresponds to the earlier results. The posterior mean values of µ and τ are now consis-
tent with those of the data set, and there is a dramatic reduction in variance. Plots (c)
and (d) show the MCMC output for µ and τ . Observe that the chains are mixing well
for both parameters (as indicated by Figure 4.5 (c) and (d)), thus the sample space is
explored efficiently and convergence is achieved.

4.2 Euler-Maruyama Discretisation

In this section we employ the E-M discretisation within MCMC sampling. The avail-
ability of the analytic solution enables to assess (and verify) its accuracy, allowing to
employ this approximation to diffusions with intractable SDEs.
Recalling the Equation (2.23), the E-M method approximates a solution to an SDE
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Figure 4.5: S&P500 data, times series plots and MCMC output.
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Figure 4.7: Trace plots from the analytic (black) and E-M (red) schemes.

dXt = a(t,Xt)dt+ b(t,Xt)dWt defined on [0, T ], 0 = t0 < t1 < . . . tn = T as follows:

y0 = x0,

yi+1 = yi + a(ti, Yi)∆ti+1 + b(ti, yi)∆Wi+1,

∆Wi = zi
√
∆ti, zi ∼ N(0, 1).

Now assume a Geometric Brownian Motion SDE,

dSt = µStdt+ σStdWt.

For notation ease, we shall further refer to the MCMC scheme using the analytic solution
to the B-S equation as the ‘analytic scheme’, and that based on discretisation- ‘E-
M scheme’. Figure 4.7 overlays realisations from the two samplers, from whom it is
evident that the E-M scheme provides an accurate approximation to the process. The E-
M trace has a marginally greater variation along the sample space implying an increase
in variance (especially within τ), as shown by plots (d)-(f). However, the chains are
mixing well and convergence is achieved. Indeed, the E-M chain explores the sample
space more efficiently due to a higher acceptance rate than the analytic scheme.

Figure 4.8 shows trace plots from the E-M model for different ∆t plotted within the
same y-limits. For µ (plots (a)-(c)), the obtained results are consistent with those in
Section 4.1. Realisations exhibit similar variation along the plot showing little sensitivity
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Figure 4.8: Traceplots of µ and τ posterior realisations from the E-M discretisation. Red
line indicates the mean of times series.
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Figure 4.9: ‘Analytic’ (black) and E-M (red) posterior densities.

to changes in ∆t. There is also little change in the posterior mean value, as indicated
by red lines. Therefore, the posterior distribution of µ predicts the mean rate of return
with similar certainty regardless the amount of provided data (for a fixed time horizon).
The posterior of τ is more sensitive to a decrease in observation frequency. We follow
a dramatic growth in variance, and increasing ∆t beyond 0.1 has a significant negative
impact on the posterior mean estimation which diverges from the ‘actual’ value of 0.25.

Figure 4.9 shows overlaid densities for the posterior distributions of µ and τ for the two
samplers. As one would expect, the discretisation is closest to the ‘actual’ curves when
the time step is minimal. However, plots (a)-(c) also suggest that in the case of µ the
approximation is efficient for ∆t as large as 1, beneficial when the deployed algorithm is
highly time-consuming or observations- scarce. Regarding τ , the approximation becomes
increasingly inefficient after ∆t grows beyond 0.1. This, again, corresponds to the earlier
results. To conclude, refer to Figure 4.10 showing overlaid densities of µ and τ on
single plots. Whilst for µ no surprising results are found, the impact of low observation
frequency is now evident for τ , as we observe significant deterioration in estimation
accuracy. In particular, there is a positive drift of the posterior mean and an increase
in variability.

Having verified the validity of the E-M model, we now apply the discretisation to the
S&P500 data set. Figure 4.11 illustrates chain mixing and densities for the two models.
Plots (a) and (b) compare the analytic (black) and E-M (red) samplers, performed
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Figure 4.10: Overlaid densities of posterior distributions. Solid line- analytic sampler,
dashed line- E-M sampler. Black: ∆t = 0.01, Red: ∆t = 0.1, Blue: ∆t = 1.

on daily-observed data (for 10,000 iterations). Assuming 252 working days in a year,
∆t = 1/252 ≈ 0.004. Plot (a) indicates that the approximation is algorithm is efficient
for the µ posterior, as chain mixing is superior to that of the analytic sampler. However,
in terms of τ , we observe poor mixing. In order to optimise this, the data set is thinned
by 3 and fed into the samplers, with a subsequent improvement in chain mixing for both
parameters (refer to Figure 4.12). This is particularly evident in the case of τ where the
sample space is now explored fairly efficiently. Note, that the mean values on both data
sets are consistent, thus thinning has not biased our conclusions.

4.3 EM Imputation Sampler

In this section, we examine the effect of data imputation within Euler-Maruyama dis-
cretisation on parameter estimation. Although previous analysis has shown that using
observations at integer times provides consistent estimation of the µ posterior, this ap-
proximation is potentially unsatisfactory in practice, especially for τ .

We employ the algorithm structure defined in Section 3.4. As before, firstly we verify
model validity by performing a pilot run using synthetic ‘observations’ s. We generate
s from the B-S model with µ = 0.1 , σ = 0.2 thus τ = 25, and define parameter priors:

µ ∼ N(a, 1/b), τ ∼ Ga(g, h),

k = 2, a = 0, b = 0.01, g = 0.1, h = 0.1. (4.3)

Figure 4.13 shows posterior densities for the two parameters from the pilot run. Recall
that k = 2 is equivalent to dividing the interval between two consecutive observations
in two by imputing 1 latent variable, therefore ∆t = 0.5. We note that π(µ|τ, s) and
π(τ |µ, s) means (indicated in red) are fairly consistent with their prior values (0.1 and 25
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Figure 4.11: Trace plots of the analytic (black) and E-M (red) schemes using the S&P500
data. Plots (a) and (b) illustrate the first 5000 simulated values to highlight the mixing
pattern.
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Figure 4.12: Trace plots of the analytic (black) and E-M (red) schemes using thinned
S&P500 data, first 5000 observations.
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Figure 4.13: Posterior densities from the imputation E-M sampler, k = 2.
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Figure 4.14: Chain mixing for imputation E-M sampler, k = 2, red indicates posterior
mean values.

respectively). Referring to Figure 4.14, it is evident that the chain mixing is satisfactory
for both variables as well. For µ, the sample space is explored efficiently with little
variation along the plot, and the posterior mean is consistent with the true value that
produced the data. For τ , the parameter space is also explored well but there is larger
posterior uncertainty about the mean. This should not come to a surprise as recalling
results from Section 4.1, the credible interval for τ is highly sensitive to the amount of
provided data. Thus, a small k (i.e. 2) produces a discretisation that is rather crude.

Having verified that the imputation scheme is valid, we implement this algorithm for
a longer run of 10,000 iterations. Figures 4.15 and 4.16 include densities for µ and τ
(respectively) for k = 2, 4, 5 and 8 (cyan lines on trace plots indicate posterior means,
red lines indicate prior means and blue- the 95% density regions). Starting with µ, the
imputed E-M sampler is mixing well and has negligible autocorrelation for all k. The
posterior means are fairly consistent with the prior value of 0.1 and are well within
the 95% density region. Intriguingly, increasing frequency of data imputation does not
significantly improve the posterior mean accuracy, whilst being computationally heavy.
We note a decrease in posterior variance, although (again) this difference in negligible
when k = 5 and 8 are compared. Looking at the τ plots in Figure 4.16, the sample space
exploration deteriorates as k reaches 5, and the chain becomes ‘cold’ as k = 8. This
occurs in parallel to an increase in autocorrelation and degradation in posterior density
shape. In contrast, the posterior means are consistent with true values that produced
the data for all k. Thus, for computational ease and optimal mixing use k = 4 or 5.
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Our next step is to compare the ‘latent data’ (further called ‘imputation E-M’)
sampler using k = 2, 4, 5, 8 with the former E-M algorithm with ∆t = 1 (thus k = 1).
This should indicate whether the introduction of latent variables has a positive impact
on parameter estimation accuracy. For results, refer to Figure 4.17 showing density plots
for both schemes, with overlaid prior mean values of µ and τ in red, blue lines indicate
the 95% density regions. We again note that data imputation causes little improvement
of µ density, although does offer some reduction in variability. Referring to τ , the
consistency between the prior and posterior means is now optimised, thus employing
latent variables improves the reliability of simulated results. We also obtain a significant
reduction in variance. Figure 4.18 illustrates chain mixing for the two algorithms, with
an indication of the posterior mean value in cyan. Again, the posterior mean of µ
appears to be unaffected by an increase in imputation volume, whereas increasing the
value of k leads to a noise reduction in τ posterior. On the other hand, smaller ks
lead to higher acceptance rates within the algorithm, thus more efficient chain mixing.
It appears optimal to choose k = 4 or 5, which satisfies the requirement of posterior
variance reduction, chain mixing and computational efficiency.

We are now in a position to compare the efficiency of our 3 samplers. Figure 4.19
illustrates the densities for each of the schemes for different k values, from which it is
evident that imputation improves parameter estimation. For both µ and τ , the analytic
and imputation E-M posterior distributions (indicated in black and cyan respectively)
match very closely for k = 2 and are almost identical for k ≥ 4. The former E-M
algorithm seems to be inferior in this case. For τ , there is a greater discrepancy between
the analytic and imputed E-M samplers when k = 2, however taking k = 4 is sufficient
to allow consistent estimation.

It is useful to analyse the effect of increasing k on chain mixing. From the above analysis
it is evident that under conditions of single latent value updating, the mixing worsens as
k grows. In particular, the correlation between algorithm draws increases simultaneously
with k. This is especially the case for τ posterior due to the strong dependence between
Sl and τ . Indeed, according to Eraker (2001) convergence of the Gibbs sampler worsens
as ∆t gets small, and does not converge at all as ∆t → 0 [6] (p.182). Nevertheless, it
is also evident that the introduction of latent variables improves the consistency of the
E-M algorithm with the analytic distribution (Figure 4.19). A possible solution to the
convergence problem is described by Elerian et al. in the paper ‘Likelihood Inference
for Discretely Observed Nonlinear Diffusions’ [5](p.971). It is proposed that the latent
variables are updated in blocks between two consecutive observations, and the next
section outlines the method and results of such a procedure.

4.3.1 E-M Block Imputation Sampler

In order to overcome the autocorrelation and computational inefficiency issues we now
consider a block E-M scheme. Figure 4.20 includes chain mixing, autocorrelation and
density plots for the block E-M scheme with k = 5, implemented for 10,000 iterations.
Examining the posterior of µ we observe a good sample space exploration by the chain,
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Figure 4.15: Posterior densities of µ using imputation E-M sampler, cyan- posterior
mean value, red- prior mean values, blue- 95% density regions.
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Figure 4.16: Posterior densities of τ using imputation E-M sampler, cyan- posterior
mean value, red- prior mean values, blue- 95% density regions.

34



−0.1 0.1 0.3

0
2

4
6

8
(a) Mu, k=1

−0.2 0.0 0.2

0
2

4
6

8

(b) Mu, k=2

−0.1 0.1 0.3

0
2

4
6

8

(c) Mu, k=4

−0.1 0.1 0.2 0.3

0
2

4
6

8

(d) Mu, k=8

0 20 40 60

0.
00

0.
02

0.
04

(e) Tau, k=1

0 20 40 60

0.
00

0.
02

0.
04

(f) Tau, k=2

0 20 40 60
0.

00
0.

02
0.

04

(g) Tau, k=4

0 20 40 60

0.
00

0.
02

0.
04

(h) Tau, k=8

Figure 4.17: Density plots for original and imputation E-M schemes. Red indicates prior
mean values, blue- 95% density regions.
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Figure 4.18: Chain mixing for two E-M schemes. Plots (a) and (e) are equivalent to the
original (no imputation) E-M scheme. Cyan indicates true parameter mean.
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Figure 4.19: Sampler posterior densities for µ and τ , black indicates analytic scheme,
red- original E-M, cyan- imputation E-M.
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Figure 4.20: Block E-M scheme with k = 5, cyan indicates prior mean values.
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and thus efficient mixing. The posterior density plot is centered close to the true mean
(that produced the data) and the autocorrelation values are insignificant. Referring to
τ , the chain mixing is adequate and the density is centered around the prior mean as
well. However, autocorrelation values are high up to lag 40 indicating that draws from
the posterior distribution are not independent.

Figure 4.21 includes analogous plots for k = 8 and 15, which indicate that increasing
the imputation volume improves posterior mean estimation and leads to a decrease in
variance for both parameters. However, as k increases, the chain mixing and autocor-
relation pattern for τ deteriorate, therefore again presenting a dilemma of bias versus
variance.

Figure 4.22 allows to compare the single-site and block E-M samplers for k = 5, from
which we conclude that the two update mechanisms lead to (almost) identical posterior
density estimation. Moreover, the single-site update sampler is superior for τ due to
lower autocorrelation, whereas the block scheme is less time-consuming.

Finally, referring to Figure 4.23 we compare the densities generated by the block, single-
site E-M and analytic samplers. We observe very little difference between the three
schemes, especially in terms of µ. The accuracy obtained by k = 5 and k = 8 is
equivalent, therefore µ does not require a large volume of imputation to be estimated
efficiently. For τ , the block update is marginally more accurate when k = 8, and is also
less time-consuming to implement than the single-site update. Thus, if the error cost
of τ outweighs that of time one should choose a larger imputation volume due to an
improved accuracy, and vice versa. Figure 4.24 illustrates the downfall of our current
Block update mechanism. The Markov chain associated with the latent data vector
{Sti,1 , Sti,2 , . . . , Sti,k−1

} is only dependent on (or initialised at) its preceding observed
value si, not the future si+1. Therefore, the discrepancy between the imputed Sti,k−1

and
observed si+1 will cause sampler inefficiency. This problem is targeted by introducing
a Brownian bridge- Brownian motion conditioned to start at si and finish at si+1

[4](p.305). This requires a suitable proposal density satisfying this dependence- such
is outlined by Elerian et al. [5](p.969-970). The latent data values are drawn from a
Gaussian density Sti,j , Si+1|Sti,j−1

which can be constructed by approximating the joint
density of Sti.j and Si+1 as(

Sti,j

Si+1

)
∼ N2

((
Sti,j−1

+ µi∆t

Sti,j−1
+ µi(i− ti,j−1)∆t

)
,

( ∆t
τ

∆t
τ

∆t
τ

(i−ti,j−1)∆t

τ

))
. (4.4)

We then condition on Si+1 = si+1 to give Sti,j |Sti,j−1
, si+1 which can be sampled recur-

sively. In fact, this a modified diffusion bridge – one of four Brownian bridge types
proposed by Durham and Gallant [4](p.304). It has been shown that such type of sam-
pling leads to a higher acceptance probability of imputed data (and subsequently, the
process parameters), lowering computational cost and posterior autocorrelation. Pursu-
ing the latter is intuitive in order to improve our current mechanisms, however (regret-
fully) is external to the current investigation.
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Figure 4.21: Block E-M scheme, k=8 and 15, cyan indicates prior mean values.
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Figure 4.22: Comparison of Block and single-site (imputation) E-M schemes, k=5 and
15, cyan indicates prior mean values.
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Figure 4.23: Densities for three schemes. Black indicates analytic, cyan- single-site E-M
and red- block E-M schemes.
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Chapter 5

Summary

In practice, transition densities for many diffusion processes are unavailable in a closed
form or are too burdensome to derive. The availability of the analytic solution to the
SPP problem has allowed us to construct an ‘exact’ MCMC scheme and use it to evalu-
ate the effectiveness of Euler-Maruyama discretisation in the context of simulation. The
latter has shown to be sufficiently accurate to be used in practice, given that data are
observed with medium-high frequency. When this is not satisfied we proposed a method
of data imputation within an E-M sampler, using single-site and block updating. Again,
these have shown to be sufficiently accurate leading to a marked improvement in τ es-
timation.

Two problems remain: the computational burden associated with data imputation and
high posterior correlation of τ sampler paths. One would typically be faced with a
choice between strong bias and autocorrelation, respectively caused by sampling error
and non-independent draws of the latent variables. This indeed is unfortunate, as block
updating should lead to optimised estimation and computation process. This issue can
be overcome employing a Gaussian density proposal conditioning on the observation
value preceding the latent block. This creates a ‘Brownian bridge’ of the imputed data
ensuring that the proposed variables are consistent with ‘observed’ values [4](p.204).
Durham and Gallant also introduce methods for ‘acceleration’ of Monte Carlo integra-
tion. Such include bias and variance reduction techniques, substantially optimising the
computational efficiency [4](p.302).

Another possible issue of the current block update model is that the size of the latent
value vector (k − 1) is fixed. Trivially, the proposed blocks always connect in the same
place, ‘which can foster dependencies in the MCMC sweeps’ [5](p.971). Overcoming
the consequent posterior τ autocorrelation is to transform k from scalar to a variable
quantity that follows a Poisson distribution with rate λ. The above methods would be
the next and exciting steps for our research, however are beyond the scope of this report.
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