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Abstract

Black holes are an important area of study because as our understanding of what they are
and how they effect the matter around them increases, we can further our understanding
of the universe and how it is shaped. They also provide a valuable test of Einstein’s general
relativity, and can produce a phenomenom known as gravitational lensing, which can help
us view distant galaxies. In this paper we will introduce the Schwarzschild solution in
general relativity and solve it exactly using Jacobi elliptic functions. We will solve the
Schwarzschild metric using an approximate method, and use this to estimate perihelion
precession. We will use approximate methods to solve the de Sitter-Schwarzschild metric
and compare it to the Schwarzschild solution. We will introduce the Reissner-Nordström
metric for charged black holes and use exact methods to solve it with Jacobi elliptic
functions.
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Chapter 1

Introduction

Research into Black Holes has become a huge part of modern physics and astronomy,
but the ideas behind them have been around for centuries. The first idea that there
could exist a body so massive that light could not escape was put forward by a geolo-
gist named Michell in 1783, cotained in a letter to the royal society. Independently, the
famous French mathematician Laplace included the idea in a book which he published,
in 1796. Although these ideas were proposed, they were generally ignored due to lack
of understanding how light could be affected by gravity. This all changed in 1915 when
Einstein released his theory of general relativity, which shows how gravity does influence
the motion of light. Only a few months later Karl Schwarzschild found a solution for the
gravitational field outside of a spherical mass, which is important for the idea of a black
hole. It was not until 1967 that the term black hole was coined by physicist John Wheeler.

Black holes are created when a star runs out of fuel. At this point it will collapse
upon itself into a small dense core, and if this core has a mass greater than approximately
three times the mass of our Sun the force of gravity overwhelms all other forces and pro-
duces a black hole, as described in [2]. This extreme amount of matter packed into a
very small area causes an unescapable gravitational field and the distance from which
nothing may escape is known as the event horizon. At the centre of a black hole there
lies a gravitational singularity. This is a region where the space-time curvature becomes
infinite. This singular point has zero volume, but infinite density.

In general relativity we define particles travelling slower than the speed of light and
particles travelling equal to the speed of light to be known repectively as time-like and
null. There also exists particles which travel faster than the speed of light, known as
space-like, but we shall not be considering them in this report. The main metrics for
describing black holes are Schwarzschild, Reissner-Nordström and Kerr, with other varia-
tions on these available. In this report we will only be considering exact solutions for the
Schwarzschild and Reissner-Nordström metrics due to time restraints. If an unfortunate
observer crossed the event horizon of a Schwarzschild black hole there is nothing they
could possibly do to escape, however we shall see that the Reissner-Nordström metric
theoretically allows for inter-universal travel through black holes.

In this project we will be using Einstein’s general theory of relativity to describe the
behaviour of a particle outside a black hole. General relativity states that space and time
are not seperate, and can be used together to create space-time. This space-time consists
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of three physical dimensions and a fourth time dimension, and allows for curved space, as
shown in figure 1.1. Black holes and the bending of light are often used as tests to prove
general relativity in the science community. However due to their nature, black holes are
extremely difficult to observe as they do not omit light, x-rays or other electromagnetic
radiation. This means that conventional telescopes and detectors cannot directly find
them. Instead, scientists look for matter behaving as we would expect it to around a
black hole. If a cloud of matter or a star, passes near enough to a black hole, it will draw
the matter inward in a process known as accretion.

Figure 1.1: A diagram indicating how space-time bends with respect to different celestial
bodies.
Image credit: Adam Apollo, http://scienceblogs.com/startswithabang/2012/05/10/why-youll-never-escape-from-a/

Knowing how objects orbit and behave around black holes is an important part of
identifying and understanding them. Contrary to popular belief, black holes do not suck
in all matter around them, they are celestial masses similar to a star which are capable
of having orbiting bodies which may never pass the event horizon. There are two types
of orbit a particle can have, known as bound or unbound respectively. Bound orbits
remain in a fixed orbit similar to how planets in our solar system orbit the sun. Unbound
orbits come from infinity but never achieve a stable orbit; they either proceed back to
infinity or crash into the singularity. For both bound and unbound orbits we now define
two seperate cases in the regions outside the event horizon and inside the event horizon,
known as orbits of the first and second kind respectively.

Firstly we will then consider the exact solutions to Schwarzschild metric for all differ-
ent orbits defined above. We shall also consider two special cases for the bound time-like
geodesics. We will then consider the approximate solutions to the Schwarzschild and
de Sitter-Schwarzschild metrics, and compare these to the post Newtonian approxima-
tion which we can define from our exact solution. Finally we will look at the Reissner-
Nordström metric, which is similar to the Schwarzschild metric however it allows for
the black hole to have a charge. We will talk about the interesting effects this metric
allows, including two event horizons and travelling between universes through worm holes.

Throughout this report there will be visual representations of the orbits which we find
which have been plotted in Maple.
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Chapter 2

Schwarzschild Solution

2.1 The Schwarzschild Metric

In Einstein’s theory of general relativity, the Schwarzschild solution describes the grav-
itational field around a spherical mass in a vacuum, with zero angular momentum, no
electric charge and without a cosmological constant. The Schwarzschild solution is use-
ful for mathematically predicting how objects behave outside of a black hole. These
are known as ’Schwarzschild black holes’, and are indestinguishable from each other ex-
cept than by their respective mass. Firstly we must define the Schwarzschild metric in
spherical polar coordinates, as seen in [1], which follows as

ds2 = −dτ 2 = −A(r)dt2 +B(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (2.1)

where A(r) = F (r) and B(r) = 1/F (r), and

F (r) = 1− 2M

r
. (2.2)

In this case we have used scaling to set both the gravitational constant and the speed of
light to be equal to one. Using this value for F (r) turns our line element into

dτ 2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)
, (2.3)

where;

• τ is the proper time,

• t is normal time,

• r is the radial coordiante,

• θ is the colatitudal angle,

• φ is the latitudal angle,

• M is the mass of the central object.
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We can see that 2.3 breaks down when

F (r) = 0 i.e. when r = 2M. (2.4)

We call this value of r the Schwarzschild radius, also known as the event horizon, rs. This
is the point where, once passed we can not return.

Using 2.3, and setting θ = π/2 to define motion in a flat plane, which we can do as
the solution is spherically symmetric, we can now aim to find a Lagrangian. Firstly we
must define the two nescessary equations of motion to be

A(r)ṫ = E (2.5)

r2 sin2 θφ̇ = `, (2.6)

where E is equivalent to energy and ` is angular momentum. Thus we can write the
Lagrangian as

L = −1

2
F (r)ṫ2 +

1

2F (r)
ṙ2 +

1

2
r2(θ̇2 + sin2 θφ̇2)

= − E2

2F (r)
+

ṙ2

2F (r)
+

`2

2r2
.

(2.7)

If a particle has non-zero mass at rest, its motion follows a time-like geodesic. If we
choose the derivatives in 2.7 to be with respect to proper time, we can see that L = −1/2.
For a particle with zero rest mass, for instance light particles, the motion follows a null
geodesic relating to dτ 2 = 0, giving L = 0. Thus we can now rearrange 2.7 to be

ṙ2 = E2 − `2F (r)

r2
+ 2LF (r). (2.8)

where

L =

{
−1

2
if particle has non-zero rest mass
0 if particle has zero rest mass

(2.9)

To help solve these equations we now introduce a new variable

u =
1

r
(2.10)

Upon differentiation we find

ṙ = − u̇

u2
, (2.11)

and, using the chain rule, we can see

u̇ =
du

dφ

dφ

dτ
. (2.12)

(2.13)
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We have already seen from 2.6 with θ = π/2 that θ̇ = `u2. Therefore we get,

u̇ = `u2
du

dφ
(2.14)

and

ṙ = −`du

dφ
. (2.15)

Substituting these results into 2.7 and rearranging gives us

(
du

dφ

)2

=
E2 + 2L

`2
− u2 + 2Mu3 − 4ML

`2
u. (2.16)

This equation determines the geometry of the geodesics and we will use 2.16 to search for
an exact solution in terms of Jacobi elliptical functions. We can now differentiate 2.16
with respect to φ to give a more workable second order differential equation,

d2u

dφ2
+ u = 3Mu2 − 2ML

`2
. (2.17)

2.2 Exact Solutions to the Schwarzschild Metric

2.2.1 Time-Like Geodesics - Bound Orbits

Firstly we will consider bound orbits of a time-like particle. These occur when E2 < 1
and L = −1

2
. A bound orbit is one which has always been in the gravitational field of a

mass, and without outside influence cannot escape its attraction. To search for an exact
solution we use information provided by [4] and rewrite 2.16 as(

du

dφ

)2

= f(u) (2.18)

where

f(u) = 2Mu3 − u2 +
2M

`2
u+

E2 − 1

`2

= 2M(u− u1)(u− u2)(u− u3)
(2.19)

Where u1, u2, u3 are the solutions to the cubic equation, with u1 < u2 < u3. If these are
real we can write,

u1 + u2 + u3 =
1

2M
,

u1u2u3 =
(1− E2)

2M`2
,

u1u2 + u1u3 + u2u3 =
1

`2
.

(2.20)

At perihelion we have du/dφ = 0, therefore f(u) = 0. We can see from 2.19 that f(u) > 0
thus all roots are real, with u2, u3 > 0 and u2 corresponds to the value at perihelion. There
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is a possibility for two of the roots to be a complex conjugate pair, but we shall not be
considering that particular case in this report.

We will now consider orbits of the first and second kind for distinct, real values of
0 < u1 ≤ u2 ≤ u3. We are interested in case where all three roots are distinct, however
these conditions allow for cases with repeated roots which we will examine closer later.
Orbits of the first kind exist when u1 ≤ u ≤ u2, ie an orbit which oscillates between to
values of r1 = u−11 and r2 = u−12 . Orbits of the second kind occur for u ≥ u3, ie an orbit
which starts at an aphelion position r3 = u−13 and plummets into the singularity at r = 0.

We shall now write the three roots as

u1 =
1

l
(1− ε)

u2 =
1

l
(1 + ε)

u3 =
1

2M
− 2

l
,

(2.21)

where l is a positive constant known as the latus rectum, eccentricity exists in the range
0 ≤ ε < 1 and u3 is assigned as so to fulfil the conditions of 2.21.
It is important to note that due to the ordering of 0 < u1 < u2 < u3 we require

1

2M
− 2

l
≥ 1

l
(1 + ε) or l ≥ 2M(3 + ε). (2.22)

Now we define µ = M/l to get the inequality

µ ≤ 1

2(3 + ε)
or 1− 6µ− 2µε ≥ 0 (2.23)

If we compare

f(u) = 2M(u− 1

l
(1− ε))(u− 1

l
(1 + ε))(u− 1

2M
− 2

l
) (2.24)

with 2.20, we get the relations

M

`2
=

1

l2
[l −M(3 + ε2)] and

1− E2

`2
=

1

l3
(l − 4M)(1− ε2). (2.25)

We can rewrite these in terms of µ giving,

1

`2
=

1

lM
[1− µ(3 + ε2)] and

1− E2

`2
=

1

l2
(1− 4µ)(1− ε2) (2.26)

Looking at the relations we can see that

µ < (3 + ε2)−1 and µ <
1

4
. (2.27)

We are now able to make the substitution

u =
1

l
(1 + ε cosχ), (2.28)
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where χ is a new variable known as the relativistic anomaly. We can see that at aphelion
χ = π and at perihelion χ = 0.

Now upon substitution of 2.28 into 2.19 we find(
dχ

dφ

)2

= [(1− 6µ+ 2µε)− 4µε cos2(
1

2
χ)] (2.29)

We can rewrite this as

±dχ

dφ
= (1− 6µ+ 2µε)

1
2 (1− k2cos2(1

2
χ)) (2.30)

where

k2 =
4µε

1− 6µ+ 2µε
. (2.31)

From 2.24 we can see that

k2 ≤ 1 and 1− 6µ+ 2µε > 0. (2.32)

Due to this we can write the solution for φ in terms of the Jacobi elliptic integral

F (ψ, k) =

∫ ψ

0

1√
(1− k2 sin2 y)

dy (2.33)

where ψ = 1
2
(π − χ). Therefore we can write

φ =
2

(1− 6µ+ 2µε)
1
2

F (
1

2
π − 1

2
χ, k) (2.34)

where the origin of φ is at aphelion where χ = π.

Now we shall look at orbits of the second kind. As previously stated these orbits have
their aphelion at u−13 and procede to the singularity at r = 0. We need to note that since
u1 + u2 + u3 = 1/2M and u1 + u2 > 0 then u3 > 1/2M , meaning that all these orbits
start outside the event horizon. To obtain these orbits we firstly make the substitution

u =

(
1

2M
− 2

l

)
+

(
1

2M
− 3 + ε

l

)
tan2(

1

2
ξ) (2.35)

where previously we used 2.28. We can see that

u = u3 =
1

2M
− 2

l
when ξ = 0

and

u→∞ as ξ → π.

(2.36)

Substitution of 2.36 into 2.19 gives(
dξ

dφ

)2

= (1− 6µ+ 2µε)(1− k2 sin2(
1

2
ξ)) (2.37)

where k2 has the same definition as for orbits of the first kind. Again this solution can
be expressed using the Jacobi elliptic function we saw in 2.33 . Thus we can write

φ =
2

(1− 6µ+ 2µε)
1
2

F (
1

2
ξ, k). (2.38)

We can see an example of this orbit iin Figure 2.1.
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Figure 2.1: A bound orbit with l = 5, ε = 1/2 and M = 1/6. The red line shows the orbit of
the first kind, which does a large orbit of the black hole from its aphelion distance, followed by
a smaller orbit where it achieves its perihelion distance, at r = 10 and r = 10/3 respectively.
The green line shows the orbit of the second kind which plummets into the black hole from
its aphelion distance of r = 5/13. The blue line indicates the perihelion distance at r = 3.
Distances have been scaled in terms of the Schwarzschild radius.

2.2.2 Time-Like Geodesics - Special Cases of Bound Orbits

We will now consider two special cases for the time-like geodesics, as demonstrated in
[5]. The first case, (a), is when ε = 0. This leads to a circular orbit of the first kind with
constant radius rc = l and an orbit of the second kind plunging into the singularity.

The second case, (b), is when 2µ(3 + ε) = 1 which leads to the orbit asymptotically
approaching its perihelion distance r2 and circling around it an infinite number of times
before evenutally the orbit of the second kind plunges into the singularity.

Case (a): Firstly we will search for orbits of the first kind. Setting ε = 0 we find that
we have a repeated root, u1 = u2 = uc, which gives us a critical radius at rc = l and we
see µ = M/rc. We must now rewrite our equations for angular momentum and energy
as,

1

`2
=

1− 3M/rc
rcM

and
E2

`2
=

(2M/rc − 1)2

rcM
. (2.39)

If we now rewrite the first equation as

r2c −
`2

M
rc + 3`2 = 0 (2.40)

we see that an orbit with zero eccentricity must have one of the two roots,

rc =
`2

2M

[
1±

(
1− 12M2/`2

) 1
2

]
, (2.41)
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and that no circular orbits is possible if

`

M
< 2
√

3. (2.42)

We now take the minimum allowed value of `/M = 2
√

3 and see that,

rc = 6M and E2 =
8

9
. (2.43)

This value of rc is the largest unstable orbit. Smaller values for `/M give us larger values
for rc, in the region 6M < rc < ∞, which results in a stable orbits. Orbits provided by
`/M > 2

√
3 result in unstable orbits in the region 3M ≤ rc ≤ 6M .

Now we will search for orbits of the second kind. From 2.31 we can see that k = 0
when ε = 0, therefore we integrate 2.29 to find

χ = (1− 6µ)1/2(φ− φ0), (2.44)

where φ0 is a constant of integration. Substituting this into 2.35 we find that our solution
takes the form

u =
1

l
+

(
1

2M
− 3

l

)
sec2

[
1

2
(1− 6µ)1/2(φ− φ0)

]
. (2.45)

Despite ε being zero, this orbit of the second kind is not a circle! It starts at aphelion in
the range 3M ≤ r3 ≤ 6M where φ = φ0, and arrives at the singuarity, r = 0, when

φ− φ0 = π/(1− 6µ)1/2. (2.46)

We can see an example of this orbit in Figure 2.2.

We can see from 2.44 we must consider the case when ε = 0 and µ = 1/6. In this case
all three roots of f(u) = 0 coincide and u1 = u2 = 1/6M . We now write 2.19 as(

du

dφ

)2

= 2M

(
1− 1

6M

)3

, (2.47)

which can be solved to give a solution as

u =
1

6M
+

2

M(φ− φ2
0)
. (2.48)

We can see an example of this orbit in Figure 2.3.
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Figure 2.2: A bound orbit with l = 3/2, ε = 0 and M = 3/14. The circular red line shows the
orbit of the first kind, which orbits the black hole an infinite number of times from a distance
rc = 9/7. The spiralling red line shows the orbit of the second kind which plummets into the
black hole from its aphelion distance of r ≈ 1. The dashed blue line indicates the event horizon
at a distance rs = 3/7. Distances have been scaled in terms of the Schwarzschild radius.

Figure 2.3: A bound orbit with µ = 1/6, ε = 0 and M = 3/14. The dashed circular red line
shows the smallest stable orbit at a distance rc = 9/7. The spiralling red line shows the orbit of
the second kind which plummets into the black hole from its stable orbit. The dashed blue line
indicates the event horizon at a distance rs = 3/7. This plot is very similar to figure 2.2, with
the difference that the direction of the orbit is reversed. Distances have been scaled in terms of
the Schwarzschild radius.
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Case (b): Again, we will initially search for orbits of the first kind. In this case we
have the repeated root at u2 = u3. Substituting 2µ(3 + ε) = 1 into 2.21 we find

r2 =
l

1 + ε
= 2M

3 + ε

1 + ε
and r1 = 2M

3 + ε

1− ε
, (2.49)

where r1 and r2 are, respectively, our perihelion and aphelion distances. From this it
follows that the range for perihelion is restricted to

4M ≤ r2 < 6M. (2.50)

Using 2.26 we find the relations

`2

M2
= 4

(3 + ε)2

(3− ε)(1 + ε)
and 1− E2 =

1− ε2

9− ε2
. (2.51)

The elliptic modulus, k, becomes 1 and we therefore return to 2.29 to find(
dχ

dφ

)2

= 4µε sin2(
1

2
χ), (2.52)

which can be written as

dχ

dφ
= −2(µε)

1
2 sin(

1

2
χ), (2.53)

where we chose the negative sign so that φ increases when χ decreases from its aphelion
value π. We now integrate 2.53 to give the solution

φ = − 1
√
µε

ln

[
tan

(
1

4
χ

)]
. (2.54)

We see that φ→∞ when χ→ 0. This shows that as perihelion is approached the orbit
spirals around the circle at r2 an inifinte number of times.

We will now search for the orbit of the second kind. We cannot obtain this solution
by simply setting µ = 1/2(3 + ε) in 2.37 as the coefficient tan2 (χ/2) vanishes. We must
consider this case from the very beginning. Firstly we note that when 2µ(3 + ε) = 1 our
three roots are

u1 =
1− ε
l

and u2 = u3 =
1 + ε

l
, (2.55)

and the substitution suggested is

u =
1

l

[
1 + ε+ 2ε tan2

(
1

4
ξ

)]
. (2.56)

We can see that, by this substitution,

u = u2 = u3 =
1 + ε

l
when ξ = 0, and u→∞ when ξ = π. (2.57)

Using our substitution from 2.56 in 2.19 gives(
dχ

dφ

)2

= 4µε sin2(
1

2
χ) (2.58)
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which is the exact same solution as for orbits of the first kind. We therefore write our
solution as

φ = − 1
√
µε

ln

[
tan

(
1

4
χ

)]
. (2.59)

We see that, φ = 0 when ξ = π and r → 0; and φ → ∞ as ξ → 0 and aphelion is
approached at r = l/(1 + ε). This means the orbit approaches the aphelion by spiralling
around it an infinite number of times. This is the same orbits of the first kind, only their
perihelion is now the aphelion for orbits of the second kind. We can see an example of
this orbit in Figure 2.4.

Figure 2.4: A bound orbit with µ = 3/2, ε = 1/2 and M = 3/14. The orbit of the first kind
approaches the circle at its perihelion distance, r = 1, asymptotically and spirals around it an
infinite number of times. The orbit of the second kind then spirals into the singularity after
spiralling around. The red line shows the orbit of the second kind which plummets into the
black hole from r = 1. The dashed blue line indicates the event horizon at a distance rs = 3/7.
Distances have been scaled in terms of the Schwarzschild radius.

2.2.3 Time-Like Geodesics - Unbound Orbits

Now we will consider unbound orbits of a time-like particle, as done by [6]. These occur
when E2 > 1 and L = −1/2. If E2 > 1 we find that the term (E2 − 1)/`2 is constant,
indicating that the equation f(u) = 0 must allow a negative root. In this case we will
take u1 < 0 , u2, u3 > 0 and u1 < 0 < u2 < u3. As all three roots are real and two of
them are positive, we must again distinguish between orbits of the first and second kind.
We find that orbits of the first kind are restricted to 0 < u ≤ u2 and orbits of the second
kind are restricted to u ≥ u3. Similar to bound orbits there is a possibility of imaginary
roots, which we will not be considering in this report.
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Once again we will shall continue to express the roots in terms of an eccentricity ε ,
with the difference from bound orbits being that ε ≥ 1. Therefore we may write

u1 = −1

l
(ε− 1), u2 =

1

l
(ε+ 1) and u3 =

1

2M
− 2

l
. (2.60)

The inequality,

1− 6µ− 2µε > 0, (2.61)

still applies, as it is assumed only wih regards to the ordering of the roots: u1 < u2 < u3.
We can see that the relations 2.26 continue to hold, with the exception that ε ≥ 1. We
may therefore write,

1

`2
=

1

lM
[1− µ(3 + ε2)] and

E2 − 1

`2
=

1

l2
(1− 4µ)(ε2 − 1). (2.62)

Since `2 > 0 and E2 − 1 ≥ 0 we can see,

1− µ(3 + ε2) > 0 and µ ≤ 1

4
. (2.63)

As before we shall now use the substitution,

u =
1

l
(1 + ε cosχ). (2.64)

However, since ε ≥ 1 we find,

u = 0 when χ = cos−1(−ε−1) = χ∞. (2.65)

Despite of that, the perihelion passage still occurs at χ = 0. We therefore find the range
of χ to be,

0 ≤ χ < χ∞ = cos−1(−ε−1). (2.66)

Despite these restrictions on the range of χ, our solution takes a form similar to that
found in the previous section. Once again using Jacobi elliptic functions with the same
elliptic modulus, k. Thus we find a solution for φ in the form,

φ =
2

(1− 6µ+ 2µε)
1
2

[
K(k)− F (

1

2
π − 1

2
χ, k)

]
, (2.67)

where K(k) denotes the complete elliptic integral,

K(k) =

∫ π
2

0

1√
(1− k2 sin2 y)

dy. (2.68)

We can see an example of this orbit in Figure 2.5.
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Figure 2.5: A unbound orbit for a time-likel geodesic with l = 5/2, e = 3/2 and M = 3/14.
The test particle comes in from infinity towards the black hole, it is then bent around it and
continues to infinity in the opposite direction to which it approached. Distances have been
scaled in terms of the Schwarzschild radius.

2.2.4 Null Geodesics - Bound Orbits

We saw earlier that for a particle which has zero rest mass, ie light, we must set the
Lagrangian in 2.7 equal to zero. Using [7] we our Lagrangian becomes,

0 = − E2

2F (r)
+

ṙ2

2F (r)
+

`2

2r2
,

=
E2

1− 2M/r
− ṙ2

1− 2M/r
− `2

r2
.

(2.69)

Working through as before we can rewrite 2.69 as,(
du

dφ

)2

= 2Mu3 − u2 +
1

D2
= f(u), (2.70)

where D = `/E denotes the impact parameter. This is defined as the perpendicular
distance between the path of an object and the center of the gravitational field created
by the object which the object is orbiting.

Once again we assume that all roots are real we get the relations,

u1 + u2 + u3 =
1

2M

u1u2u3 = − 1

2MD2

(2.71)

We can clearly see that f(u) = 0 must allow for a negative root, with the two remaining
roots being either real or a complex conjugate pair. This case is true for both the bound
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and unbound orbits. However, the bound where the two positive real roots correspond
results in a special case, which are known as the critical orbits.

Examining the derivative of 2.70,

6Mu2 − 2u = f ′(u) = 0, (2.72)

gives us a critical root of u = 1/3M . Upon subtitution back into 2.70 we can see that
this root occurs if D2 = 27M2. Using the conditions we have previously set, we can see
that the three roots of 2.70 are,

u1 = − 1

6M
, u2 = u3 =

1

3M
and D = (3

√
3)M. (2.73)

We can see that because du/dφ vanishes for u = 1/3M and D = (3
√

3)M , non-stable
circular orbits of radius 3M are allowed.

To better get a grasp of the orbits, we will now consider the full equation for this case,(
du

dφ

)2

= 2M

(
u+

1

6M

)(
u− 1

3M

)2

. (2.74)

To find the orbits of the first kind for null geodesics we note that the above equation is
satisfied by the following substitution, as seen in [7] ,

u =
1

6M
+

1

2M
tanh2(

1

2
(φ− φ0)), (2.75)

where φ0 is a constant of integration. If we choose this constant to be

tanh2(
1

2
φ0) =

1

3
, (2.76)

then we see

u = 0 and r →∞ when φ = 0. (2.77)

However we also see that,

u =
1

3M
when φ→∞. (2.78)

This tells us that for a particle with zero rest mass approaching from infinity, with im-
pact parameter as specified, advances asymptotically towards a circle of radius 3M , by
spiralling around it.

Now we shall search for a solution for orbits of the second kind, which orbit around
r = 3M before diving into the singularity. To find these solutions we must again use a
subsitution in equation 2.70,

u =
1

3M
+

1

2M
tan2(

1

2
ξ). (2.79)
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Upon rearrangement we reduce the equation to(
dξ

dφ

)2

= sin2(
1

2
ξ). (2.80)

Taking the square root and integrating gives us,∫
1

sin(1
2
ξ)

= 2 ln

(
sin

(
ξ

4

))
− 2 ln

(
cos

(
ξ

4

))
= 2 ln

(
tan

(
ξ

4

))
,

(2.81)

which can be rearranged to give

ξ = 4 arctan(e(
φ
2
)). (2.82)

Substituting 2.82 into 2.79 and rearranging using the trigonometric identity tan(2θ) =
2 tan(θ)/(1− tan2(θ)) we obtain,

u =
1

3M
+

2eφ

M(eφ − 1)2
. (2.83)

We can see that for this orbit,

u→∞ and r → 0 when φ→ 0 (2.84)

and

u→ 1

3M
as φ→∞, (2.85)

provided the attributes stated in 2.73 are applied. We may consider the solution in 2.83,
with the sign reversed, as a continuation of 2.75. We show an example of this orbit in
Figure 2.6.
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Figure 2.6: All figures (a),(b) and (c) use the roots specified in 2.73, as well as the mass
M = 1. (a) shows the bound orbit of the first kind for a test particle, which comes in from
infinity and ends up spiralling around the critial radius r = 3M . (b) shows the bound orbit of
the second kind for a test particle, which starts orbiting the black hole at radius r = 3M before
eventually plunging into the singularity. It is important to note that in (b) the sign of 2.83 has
been reversed as to indicate a particle moving towards the singularity, not away from it. (c)
shows the combined effect of test particle which initially approaches from infinity, circles around
the unstable orbit of the black hole at radius r = 3M , eventually passes the event horizon and
spiralls to the singularity. It is interesting to note that the direction of motion for (b) is opposite
to that of (a). Distances have been scaled in terms of the Schwarzschild radius.
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2.2.5 Null Geodesics - Unbound Orbits

As for the bound orbits of null geodesics the Lagrangian must be equal to zero. However,
we will now consider the the case where all three roots of f(u) = 0 are real and the two
positive roots are distinct. In this case we will take u1 < 0 , u2, u3 > 0 and u1 < u2 < u3.

Using [8] we shall now define the roots as,

u1 =
P − 2M −Q

4MP
, u2 =

1

P
and u3 =

P − 2M +Q

4MP
. (2.86)

P denotes the perihelion distance and Q is a constant which will be identified shortly.
Note that the sums of these roots is 1/2M and the ordering requires

Q+ P − 6M > 0. (2.87)

Next, we use

f(u) = 2M(u− u1)(u− u2)(u− u3), (2.88)

with the three roots defined as above, to obtain

Q2 = (P − 2M)(P + 6M) and
1

D2
=

1

8MP 3
(Q2 − (P − 2M)2). (2.89)

Combining these two relations helps simplify the second, giving

D2 =
P 3

P − 2M
. (2.90)

We may also combine 2.87 and 2.89 to give

(P − 2M)(P + 6M) > (P − 6M)2, (2.91)

which simplifies to,

P > 3M. (2.92)

From 2.90 we can obtain the inequality

D > (3
√

3)M = Dc (2.93)

This means that we are only now considering orbits which have the impact parameter
above the critical value and are entirely outside of the circle r = 2M .

To start searching for orbits of the first kind we we make the substitution, provided
by chandresakhar,

u− 1

P
= −Q− P + 6M

8MP
(1 + cosχ), (2.94)

from which it follows that

u+
Q− P + 2M

4MP
=
Q− P + 6M

8MP
(1− cosχ). (2.95)
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By this substitution,

u =
1

P
when χ = π

and

u = 0 and r →∞ when sin2(
1

2
χ) =

Q− P + 2M

Q− P + 6M
= sin2(

1

2
χ∞)

(2.96)

Substitution of 2.94 and 2.95 into 2.70 gives(
dχ

dφ

)2

=
Q

P
(1− k2 sin2(

1

2
χ)), (2.97)

where

k2 =
1

2Q
(Q− P + 6M). (2.98)

Once again we can express a solution for φ in terms of Jacobi elliptic functions,

φ = 2

(
P

Q

) 1
2

[K(k)− F (
1

2
χ, k)]. (2.99)

Using the relations in 2.96 we can show the asymptotic value of φ as r →∞ is,

φ∞ = 2

(
P

Q

) 1
2

[K(k)− F (
1

2
χ∞, k)]. (2.100)

To search for orbits of the second kind we use another substitution, as done by [8],

u =
1

P
+
Q+ P − 6M

4MP
sec2(

1

2
χ). (2.101)

We repeat the previous process done for 2.94. We can see that,

u is at aphelion when u = u3 =
1

4MP
(Q+ P − 2M) and χ = 0, (2.102)

and

u→∞ and r → 0 when χ = π. (2.103)

Substitution 2.101 reduces to the same form as 2.97, with the same value of k2. Thus we
may write our solution as

φ = 2

(
P

Q

) 1
2

[F (
1

2
χ, k)], (2.104)

where the origin of the particle is at aphelion. We can see an example of this orbit in
Figure 2.7.
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Figure 2.7: A unbound orbit for a null geodesic with P = 1, Q ≈ 0.76 and M = 3/14. The test
particle comes in from infinity towards the black hole in a straight line, it is then bent around
it and continues straight to infinity in the opposite direction to which it approached. We notice
that this orbit is very similar to that seen in figure 2.5 for unbound time-like particles, however
as these are null geodesics the orbit is straight when it does not feel the immediate effects of
the black hole. Distances have been scaled in terms of the Schwarzschild radius.
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Chapter 3

Approximate Solutions and
Perihelion Precession

3.1 Schwarzschild Solution

In this section we will consider how a planet precesses around our sun with regards to
Einstein’s theory of General Relativity. This is possible as, to a decent approximation,
the sun can be considered to be spherical, meaning that Schwarzschild geometry will give
an effective approximate solution. We have already seen that the Schwarzschild solution
can be solved exactly, however approximate methods are a powerful tool which can be
used for more advanced metrics, therefore I have included the approximate solution for
Schwarzschild to demonstrate this, as seen in [9].

As we are dealing with massive planets we take L = −1
2

in 2.17, giving us

d2u

dφ2
+ u =

3M

u

2

+
ML

`2
. (3.1)

From observsational evidence it is clear that the motion of the closest planets are near
to being circular. We know that a circular orbit has constant radius, so for our case we
want to set our radius to have a slight correction due to general relativity. We will take

u =
M

`2
[1 + εf (φ)] (3.2)

for a function f(φ) and constant eccentricity ε. Due to our orbit being almost circular
we require |εf(φ)| � 1. Substituting 3.2 into 3.1, and cancelling down, gives

f ′′ +

(
1− 6M2

`2

)
f =

3M2

`2ε
(3.3)

Now if we let ω2 = 1− 6M2/`2 we can see that

f(φ) ∝ cos(ωφ) (3.4)

Now we consider an elliptical orbit in Newtonian physics; we call r− the point of
closest approach and r+ the point of furthest approach. We can now define a semi-major
axis a as

r− + r+ = 2a. (3.5)
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The eccentricity of an ellipse indicates how circular it is. If ε = 0 then we have a circular
orbit. We can now define eccentricity as

r+ − r− = 2aε. (3.6)

From equation 3.2 we can see

1

r−
=
M

`2
(1 + ε) (3.7)

1

r+
=
M

`2
(1− ε) (3.8)

and thus using 3.5 to 3.8 we deduce that

r+ = a(1− ε), (3.9)

r− = a(1 + ε), (3.10)

M

`2
=

1

a(1− ε2)
. (3.11)

Returning to general relativity we can see that f(φ) ∝ cos(ωφ) and not just cos(φ).
This means the orbits are not periodical in 2π. From this we can find the change in φ
per revolution.

∆φ =
2π

ω
− 2π = 2π

(
1− 6M

a(1− ε2)

)− 1
2

− 2π

≈ 2π

(
1 +

3M

a(1− ε2)

)
− 2π

(3.12)

If we use u1 and u2 from 2.21 along with 3.9 and 3.10, we can show

1

l
=

1

2

(
1

r1
+

1

r2

)
(3.13)

and

1

l
=

1

a (1− ε2)
. (3.14)

Upon substitution of 3.14 into 3.12 we find

∆φ = 6π
M

l
= 6π

M

a(1− ε2)
. (3.15)

Using 3.14 our approximate solution now becomes

u =
1

l
[1 + ε cos(ωφ)] (3.16)

We can see an example of this orbit in Figure 3.1.

We can use 3.15 to find the perihelion precession of the orbit shown in figure 2.3,
where l = 6, ε = 1/2 and M = 1/6. Therefore,

∆φ =
π

6
= 30◦. (3.17)
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Figure 3.1: An approximate bound orbit with l = 6, ε = 1/2 and M = 1/6. The red
line indicates the orbit of a test particle with aphelion at r = 12 and perihelion at r = 4,
with the latter indicated by the dashed blue line. Distances have been scaled in terms of the
Schwarzschild radius.

3.2 de Sitter - Schwarzschild Metric

When Albert Einstein created his theory of general relativity he found it predicts that
the universe must either expand or contract which differed from his view that it was
static. This led to him introducing a constant which would halt this expansion, known
as the cosmological constant, Λ. When Hubble discovered that the universe was indeed
expanding, apparently proving that Einstein was wrong, Einstein called the cosmological
constant his greatest mistake.

However, recent research into dark energy, a theorised form of energy which makes
up ≈ 68% of our universe and causes expansion, has been linked with the cosmologi-
cal constant, suggesting that dark energy has a constant energy density throughout the
universe. This happened in the 1990s when observational evidence from a supernova 7
billion light years away suggested that the expansion of the universe was slower than it
is today. This surprised researchers as they believed the expansion of the universe was
slowing down due to the effect of gravity, however the observational evidence suggested
the opposite.

The cosmological constant was combined with the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric, which is is an exact solution of general relativity, to create the
Lamda-CDM model which is commonly known as the standard model due to its simplicity
and the precise accuracy with which it agrees with observations. However, in this section
we will be considering a slightly modified version of the previously seen Schwarzschild
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metric in 2.1, known as the de Sitter - Schwarzschild Metric. F (r) now takes the form

F (r) = 1− 2M

r
− Λr2

3
, (3.18)

where Λ is the cosmological constant. We will reuse the definitions for energy and angular
momentum from 2.5 and 2.6. Our Lagrangian remains the same, thus we may use the
substitutions 2.10 - 2.15 in 2.7, which retains the conditions described in 2.9. Upon
substitution we find(

du

dφ

)2

=
E2 + 2L

`2
− u2 + 2Mu3 − 4ML

`2
u+

Λ

3

(
1− 2L

`2u2

)
. (3.19)

We can now differentiate 3.19 with respect to φ, giving us

d2u

dφ2
+ u = 3Mu2 − 2ML

`2
+

2

3`2
ΛL

u3
. (3.20)

We are now going to search for an approximate solution using a similar method to
that in section 2.2. This will give us an idea of how much a large body precesses around a
mass when there is a cosmological constant present. Taking L = −1/2 for a large bodies,
we see that 3.20 takes the form

d2u

dφ2
+ u = 3Mu2 +

M

`2
− 1

3`2
Λ

u3
. (3.21)

We may use the same assumption from 3.2,

u =
M

`2
[1 + εf (φ)] . (3.22)

Substituting 3.2 into 3.21 gives

f ′′ +

(
1− 6M2

`2
− `6Λ

M4

)
f =

3M2

`2ε
− `6Λ

3M4
. (3.23)

We can see that due to the right hand side being constant, this gives us a solution in the
form

f(φ) ∝ cos(ωφ), (3.24)

where

ω2 = 1− 6M2

`2
− `6Λ

M4
. (3.25)

Using 3.5 to 3.11 we can see that

∆φ =
2π

ω
− 2π = 2π

(
1− 6M

a(1− ε2)
− a3 (1− ε2)3 Λ

M

)− 1
2

− 2π,

≈ 2π

(
1 +

3M

a(1− ε2)
+
a3 (1− ε2)3 Λ

2M

)
− 2π.

(3.26)
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Substituting 3.14 into 3.26 we find,

∆φ =
6M

l
+
l3Λ

M
. (3.27)

Our solution now takes the form

u =
1

l
[1 + ε cos(ωφ)], (3.28)

where

ω2 = 1− 6M

l
− l3Λ

M
. (3.29)

Research suggests that Λ is a very small value around 2 x 10−35s−2, therefore a plot
of the orbits for the de Sitter - Schwarzschild solution look very similar to that of the
Schwarzschild solution. Over a significant amount of time there would be a noticeable
difference between them, however for a plot see figure 3.1.

3.3 The Post Newtonian Approximation

We will use [10] to find the approximate change in angle for our exact solution. We can
use (

dχ

dφ

)2

= [(1− 6µ+ 2µε)− 4µε cos2(
1

2
χ)] (3.30)

to find the first order correction to the orbits in Newtonian mechanics, known as Keplerian
orbits. We note that µ = M/l is realistically an extrememly small number, taking a value
around 2x10−6. Therefore if we expand 3.30 we find

−dφ = dχ (1 + 3µ+ µε cosχ) , (3.31)

which can be integrated to give

−φ = (1 + 3µ)χ+ µε sinχ+ constant. (3.32)

Therefore we see that the change in φ for one complete revolution, where χ changed
by 2π, is 2π(1 + 3µ). The advance in perihelion is therefore

∆φ = 6π
M

l
= 6π

M

a(1− ε2)
, (3.33)

where we have used 3.14 to remove the latus rectum. We note that 2.35 is exactly the
same as 3.15.
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Chapter 4

The Reissner-Nordström Solution

The Reissner-Nordström metric is a spherically symmetric solution for the coupled equa-
tions of Einstein and of Maxwell. This metric represents a black hole with the usual mass
M , but includes a charge Q∗, as described in [11]. Since it is unlikely for a large body to
possess a net charge, charged black holes are likely to be outside what is observationally
possible. However the Reissner-Nordström solution is of interest due to the fact it has
two event horizons, an external event horizon similar to a standard black hole, and an
internal event horizon known as a Cauchy horizon. It is theorised that due to these two
horizons, it is possible to pass into another universe through something known as a worm
hole.

The Reissner-Nordström metric follows as,

ds2 =

(
1− 2M

r
+
Q2
∗
r2

)
dt2 −

(
1− 2M

r
+
Q2
∗
r2

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)
. (4.1)

This is similar to 2.3 only our F (r) from 2.2 now becomes

F (r) = 1− 2M

r
+
Q2
∗
r2
. (4.2)

Once again we set φ = π/2 which gives us the same Lagrangian as 2.7. Working through
similar to 2.7 to 2.15, with L = −1/2 for time-like particles, we obtain the geodesic
equation(

du

dφ

)2

= −Q2
∗u

4 + 2Mu3 − u2
(

1 +
Q2
∗
`2

)
+

2M

`2
u− 1− E2

`2
= f(u). (4.3)

By setting L = 0 we find an equation for the null geodesics to be(
du

dφ

)2

= −Q2
∗u

4 + 2Mu3 − u2 +
1

D2
= f(u), (4.4)

where D = `/E is once again our impact parameter.

We now define ∆ to be

∆ = r2F (r) = r2 − 2Mr +Q2
∗, (4.5)
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where the two roots of ∆ = 0 are,

r+ = M +
√

(M2 −Q2
∗) and r− = M −

√
(M2 −Q2

∗). (4.6)

These roots are real and distanct provided M2 > Q2
∗. We can see that

∆ > 0 for r > r+ and 0 < r < r−, and ∆ < 0 for r− < r < r+. (4.7)

The physical interpretation of these roots follows as; r+ is an event horizon similar
to that of the standard Schwarzschild radius r = 2M , and r− is a horizon of a different
type, known as the Cauchy horizon. For an observer who passed through the horizon of a
charged black hole, at r+, there are an infinite range of experiences and possibilities to be
had, compared to an unfortunate observer who passed the corresponding event horizon
for a black hole in Schwarzschild geometry, whose only option appears to be desolation
at the singularity.

We must now distinguish three regions,

A : 0 < r < r−; B : r− < r < r+ and C : r > r+. (4.8)

Region A is inside the Cauchy horizon, this is what we previously called a worm hole.
Region B is in between the event horizon and the Cauchy horizon, this area is the same
as for a Schwarzschild black hole. Region C is the area outside of the event horizon,
more commonly known as the Universe. Each of the three regions has a parallel re-
gion, A′, B′ and C ′, which are obtained by applying a transformation which reverses the
light-cone structure. A′ represents a similar worm hole leading to B′ in a similar way to
A. B′ represents a white hole which is the opposite of a black hole, nothing from the
outside universe can pass its event horizon, although it behaves like any other mass in
Schwarzschild geometery capable of having orbits. C ′ is a parallel universe, coexisting
next to the universe C.

An observer who had already passed r = r+ and followed a path across the surface
r = r− would witness a flash containing a panorama of the entire history of the external
universe. However, this flash would be extremely blue shifted as dt/dτ = −∞ for r = r−.
Once the observer passed back through the Cauchy horizon into B′ they would witness
a flash containing the entire future of their previous universe C1. The observer is now
in white hole, which fortunately allows them to escape at r = r+. At this boundary
the observer would once again witness a flash containing the entire history of their new
universe C2. In Figure 4.1 we give a pictoral indication of how this process would work.
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Figure 4.1: A Penrose diagram showing the maximum analytic extension of Reissner-
Nordström space-time. The diagram can be extended to inifinity in either direction, with
this just being a small section, to ensure that all geodesics can continue both in the past and
future directions. I have labelled my universes C1 and C2 to highlight that they are different.
This is because an observer which travels from C1 to C2, as the blue line indicates, can not
enter their own universe once r = r+ has been passed, without re-entering a different worm hole
and hoping to end up back in C1. This is not to be advised.

4.1 The Null Geodesics

We will now use [12] consider orbits for null particles, ie when L = 0. We can see that
4.4 always allows for two real roots when the quartic equation f(u) = 0. One root will
be negative and has no physical significance, and one will be positive which occurs for
r < r−. We will only be interested in cases where the two remaining roots are real. We
let the value of the impact parameter, D, which allows f(u) = 0 to have a double root
to be known as Dc.

For all values of D > Dc we have orbits of both first and second kind, similar to
Schwarzschild space-time. Orbits of the first kind will be entirely outside of the event
horizon, come from +∞ and return to +∞ after a perihelion passage. Orbits of the
second kind have two turning points, one outside the event horizon (r = r+) and one
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inside the Cauchy horizon (r < r−).

For values of D < Dc we see that f(u) = 0 allowes only one real root, therefore orbits
coming for +∞ will cross both horizons and have a turning point for r < r− meaning
that all thes orbits miss the singularity at r = 0. This turning point does not indicate
that the orbit returns upon itself back into the area r− < r < r+, but instead travels
through A→ B′ → C2.

Using 4.4,

f(u) = −Q2
∗u

4 + 2Mu3 − u2 +
1

D2
= 0, (4.9)

we differentiate to find

f ′(u) = −2u
(
2Q2
∗u

2 − 3Mu3 + 1
)

= 0. (4.10)

We see that u = 0 is a root, however we are more interested in the roots

u =
3M

4Q2
∗

[
1±

(
1− 8Q2

∗
9M2

) 1
2

]
. (4.11)

The larger of these roots maximises f(u) and we know the double root we search for must
occur at a minimum. This gives us a critical value of u,

u = uc =
3M

4Q2
∗

[
1−

(
1− 8Q2

∗
9M2

) 1
2

]
, (4.12)

and the corresponding value of r is

rc =
3

2

[
1 +

(
1− 8Q2

∗
9M2

) 1
2

]
. (4.13)

At this radius, rc, the geodesics allow unstable circular orbits.

Substituting 4.13 into 4.4 results in a critical impact parameter, Dc, which follows as

Dc =
r2c√
∆c

where ∆c = r2c − 2Mrc +Q2
∗ = Mrc −Q2

∗. (4.14)

If we now set D = Dc in 4.4 we find

f(u) = (u− uc)2
[
−Q2

∗u
2 + 2u(M −Q∗2uc) + uc(M −Q2

∗uc)
]
, (4.15)

and therefore our solution for φ is given as

φ = ±
∫ [
−Q2

∗u
2 + 2u(M −Q∗2uc) + uc(M −Q2

∗uc)
]− 1

2
du

u− uc
. (4.16)

Using a substitution, given in [12],

ξ = (u− uc)−1 , (4.17)
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reduces 4.16 to

φ = ∓
∫

dξ

(−Q2
∗ + bξ + cξ2)

, (4.18)

where

b = 2
(
M − 2Q2

∗uc
)

and c = uc
(
3M − 4Q2

∗uc
)
. (4.19)

We therefore integrate 4.18 to obtain our solution

∓φ =


1√
c

ln
[
2 (c (−Q2

∗ + bξ + cξ2))
1
2 + 2cξ + b

]
for c > 0,

− 1√
−c sin−1

[
2cξ+b

(4Q2
∗c+b

2)
1
2

]
for c < 0.

(4.20)

This solution describes both orbits of the first and second kind, however they only
exist in the ranges:

∞ > r > rc, 0 ≤ u ≤ uc and − u−1c > ξ > −∞, (4.21)

for orbits of the first kind, and

rc > r > rmin, uc < u ≤ umax and ∞ > ξ > ξmin, (4.22)

for orbits of the second kind. Where ξmin = (umin − uc)−1 and umax = 1/rmin, and rmin is
the positive root of the equation

uc
(
M −Q2

∗uc
)
r2 + 2

(
M −Q2

∗uc
)
r −Q2

∗ = 0. (4.23)

Therefore

rmin = −rc +

√
Mr2c

M −Q2
∗uc

. (4.24)

We can see an example of this orbit in Figure 4.2.
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Figure 4.2: Orbits of the first and second kind for a null test particle in Reissner-Nordström
space time. We have set M = 2 and Q∗ = 0.8, giving us a positive value for c and our impact
parameter Dc ≈ 10.1. We therefore use the logarithmic equation for φ. We can see that the
particle originally comes in from infinity, and orbits the black hole an infinite number of times
at the critical distance rc ≈ 5.8. It then changes direction and orbits towards the singularity
passing through the event horizon at r = 3.83 and eventually terminates just as it hits the
cauchy horizon at r = 0.16. It does not go to the singularity at r = 0. Distances have been
scaled in terms of the Schwarzschild radius.

4.2 The Time-Like Geodesics

We will now consider the time-like geodesics for the Reissner-Nordström solution, using
[13]. We can see that ∆ in 4.5 is greater than zero in the interval 0 ≤ r < r−, therefore
E2r2 − ∆ will disappear for some value in 0 ≤ r < r−. This leads us to the conclusion
that there is a turning point somewhere within the Cauchy horizon, meaning that the
time-like geodesics do not reach the singularity, similar to the null geodesics. They will
avoid the singularity and end up in other domains, through the same process as seen for
null particles.

Restating 4.3,(
du

dφ

)2

= −Q2
∗u

4 + 2Mu3 − u2
(

1 +
Q2
∗
`2

)
+

2M

`2
u− 1− E2

`2
= f(u), (4.25)

we see that the condition for circular orbits are

f(u) = −Q2
∗u

4 + 2Mu3 − u2
(

1 +
Q2
∗
`2

)
+

2M

`2
u− 1− E2

`2
= 0, (4.26)
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and

f ′(u) = −4Q2
∗u

3 + 6Mu2 − 2u

(
1 +

Q2
∗
`2

)
+

2M

`2
= 0. (4.27)

Using these equations, we can show that the angular momentum ` and energy E of a
circular orbit at radius rc are

`2 =
M −Q2

∗uc
uc (1− 3Muc + 2Q2

∗u
2
c)

(4.28)

and

E2 =
(1− 2Muc +Q2

∗u
2
c)

2

1− 3Muc + 2Q2
∗u

2
c

. (4.29)

It is obvious from these equations that we need 1−3Muc+2Q2
∗u

2
c > 0. If we compare this

inequality to 4.10 we can that the radius for an unstable circular orbit of a null geodesic
is the same as the minimum radius for a time-like circular orbit. When E and ` have the
values from 4.28 and 4.29, which are appropriate for a circular orbit of radius rc = 1/uc,
the equation 4.3 becomes

f(u) = (u− uc)2
[
−Q2

∗u
2 + 2u(M −Q∗2uc) + uc

(
M −Q2

∗uc −
M

`2u2c

)]
. (4.30)

We see that, besides the obvious circular orbits at rc = 1/uc, we get orbits of the second
kind determined by

φ = ±
∫ [
−Q2

∗u
2 + 2u(M −Q∗2uc) + uc

(
M −Q2

∗uc −
M

`2u2c

)]− 1
2 du

u− uc
. (4.31)

This is very similar to equation 4.16 so once again we use the substitution

ξ = (u− uc)−1 , (4.32)

we arrive at the same solution,

∓φ =


1√
c

ln
[
2 (c (−Q2

∗ + bξ + cξ2))
1
2 + 2cξ + b

]
for c > 0,

− 1√
−c sin−1

[
2cξ+b

(4Q2
∗c+b

2)
1
2

]
for c < 0.

(4.33)

with the slight differences in that,

b = 2
(
M − 2Q2

∗uc
)

and c = uc

(
3M − 4Q2

∗uc −
M

`2u2c

)
. (4.34)

We can see an example of this orbit in Figure 4.3.
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Figure 4.3: The stable orbit for time-like particles with M = 1 and Q∗ = 0.8. The circular
red line at rc = 6.67 indicates the stable orbit of the first kind. The spiralling red line indicates
the orbit of the second kind, which starts at r = 4, passes through the event horizon at r = 1.6
and terminates just after passing the Cauchy horizon at r = 0.4, indicated repectively by the
dashed black, green and blue lines. Distances have been scaled in terms of the Schwarzschild
radius.

We can now search for the minimum radius for a stable orbit. We know that this
occurs at a point of inflection of f(u), therefore we differentiate 4.26 twice, giving us

f ′′(u) = −12Q2
∗u

2 + 12Mu− 2

(
1 +

Q2
∗
`2

)
= 0. (4.35)

Substituting 4.28 into this equation to eliminate `2 and rearranging, gives

4Q4
∗u

3
c − 9MQ2

∗u
2
c + 6M2uc −M = 0, (4.36)

which can be rewritten as,

r3c − 6Mr2c + 9Q2
∗rc − 4

Q4
∗

M
= 0. (4.37)

We can see that if we choose Q∗ = 0 in 4.37, we get that rc = 6M which agrees with
Schwarzchild geometry.
When all three of 4.26, 4.27 and 4.37 are satisfied we find that 4.3 takes the form(

du

dφ

)2

= (u− uc)3
(
2M − 3Q2

∗uc −Q2
∗u
)
, (4.38)

and our solution takes the form

u = uc +
2 (M − 2Q2

∗uc)

(M − 2Q2
∗uc)

2 (φ− φ0)2 +Q2
∗
. (4.39)

We can see an example of this orbit in Figure 4.4.
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Figure 4.4: The last time-like unstable orbit with M = 1 and Q∗ = 0.8. The solid red line
indicates our orbit which approaches from our dashed red line at rc = 4.89, which indicates the
last stable orbit. It passes through the event horizon at r = 1.6 and eventually terminates just
inside the Cauchy horizon at r = 0.4, indicated repectively by the dashed green and blue lines.
Distances have been scaled in terms of the Schwarzschild radius.
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Chapter 5

Conclusion

In this report we used Einstein’s general theory of relativity to describe the behaviour of
a particle outside a black hole. We found the exact solutions for orbits of the first and
second kind, for the bound and unbound orbits, of time-like and null particles using the
Schwarzschild metric. We then considered the approximate solutions to the Schwarzschild
and the de Sitter-Schwarzschild metrics, and used the post Newtonian approximation to
compare these to our exact solution. Finally we discussed the Reissner-Nordström metric
and its properties that allow two event horizons and travelling between universes through
worm holes.

If we were to have more time available to continue this report an area of interest
would have been to include a solution to the Kerr and Kerr-Newman metrics. The Kerr
solution allows for a rotating black hole, and the Kerr-Newman solution allows for a ro-
tating, charged black hole. These orbits are of interest as they exhibit an effect known as
frame-dragging, which states that the gravitational field of the body is not only depen-
dent on its mass, but also on its rotation. These effects were one of the the main focus
points for the gravity probe B experiment, which was also a a fantastic test of general
relativity.

Another direction we could take if more time were available would be to look into
orbiting bodies made of multiple particles, instead of the single point particles which
have been considered in this report. For this we would be required to created a computer
simulation in a program like Fortran. With this we could simulate bodies ranging from
organic life all the way up to galaxies. It would be interesting to see how bodies such
as stars are pulled apart by black holes, and make comparisons between the simulation
and observational evidence. An example of this observational evidence happened in 2011
when Sagittarius A*, a super massive black hole believed to be at the centre of the Milky
Way (as seen in [14]), stretching out a gas cloud known as G2.
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