
Extensions of Modules
MMath Project Dissertation

Student:
David Robertson

Supervisor:
Prof. Peter Jørgensen

School of Mathematics
and Statistics

Newcastle University
1st May 2014

Abstract

A module is an algebraic structure which simultaneously generalises the idea of a
vector space and an Abelian group. Two or more modules may be combined in
a specific way to form larger modules called extensions. There are often many
ways to do this, resulting in different extensions—how can we classify them?

Given two modules to extend, it is difficult to produce a list of all possible
extensions. However, an object called ‘Ext’ can provide such a list! We introduce
the appropriate language from category theory to describe Ext. The project
concludes by demonstrating the equivalence between extension lists and Ext.

Contents

1 Modules 1
1.1 Introduction . 1

1.1.1 Examples . 2
1.1.2 Motivation . 4

1.2 Working with modules . 4
1.2.1 Sub- and quotient modules 4
1.2.2 Homomorphisms . 6
1.2.3 Kernel, image and cokernel 7
1.2.4 Direct products and sums 9

1.3 Extensions of Modules . 12
1.3.1 Sequences and extensions 12
1.3.2 Diagrams and equivalent extensions 14
1.3.3 The set of equivalence classes 17

2 Category Theory 19
2.1 Introduction . 19

2.1.1 Categories . 19
2.1.2 Functors . 21
2.1.3 Bifunctors . 22

2.2 More categorical tools . 24
2.2.1 Pullbacks and pushouts 24
2.2.2 Natural transformations 27

3 Extensions and the bifunctor Ext 29
3.1 The bifunctor E . 29

3.1.1 Technical Lemmas . 29
3.1.2 Induced maps . 31
3.1.3 Bifunctorality . 32

3.2 The bifunctor Ext . 32
3.2.1 Projective presentations 32
3.2.2 The Ext groups . 33
3.2.3 Induced maps . 34
3.2.4 Bifunctorality . 36

3.3 The natural equivalence . 36
3.4 Conclusion and further reading 38

4 Bibliography 40

Chapter 1

Modules

We introduce modules, giving their definition and some examples. Next we
investigate how to form sub-, quotient and product modules. This will give us a
method to combine two small modules into one larger structure. The rest of the
chapter is concerned with distinguishing between such combinations.

We follow the path laid out by Hilton and Stammbach [3], using much of their
notation and terminology.

1.1 Introduction
We’re familiar with the idea of rings, vector spaces, and groups. Our rings will al-

ways contain a mul-
tiplicative identity
1. Their multiplic-
ation need not be
commutative.

Each consists
of a set of elements and a way to combine two elements. Ring elements may be
added and multiplied; vectors may be added; and group elements may be either
added or multiplied, depending on how we think of the group in question.

Each structure is inherently different. For example, groups consist of a single
operation whereas rings and vector spaces have two operations. Even then, in a
ring we multiply pairs of ring elements; in a vector space we multiply a single
vector by a scalar.

Modules are a generalisation encompassing all three of these structures. In truth, modules
only generalise
Abelian groups.

At
first sight, their definition resembles that of a vector space.

Definition 1.1. Let Λ be a ring. A (left) Λ-module is an Abelian group (𝑀,+)
equipped with a binary operation

· : Λ ×𝑀 → 𝑀

satisfying the following axioms for all elements 𝑎, 𝑏 ∈ 𝑀 and 𝜆, 𝜆′ ∈ Λ.

M1. (𝜆+ 𝜆′)𝑎 = 𝜆𝑎+ 𝜆′𝑎 These axioms ensure
that the scaling
operation behaves as
a ring action.

M2. (𝜆𝜆′)𝑎 = 𝜆(𝜆′𝑎)
M3. 1Λ𝑎 = 𝑎

M4. 𝜆(𝑎+ 𝑏) = 𝜆𝑎+ 𝜆𝑏

Using the word ‘resembles’ is putting it politely! This is a carbon copy of the
definition of a vector space except for one word: ring. Accordingly, we may think
of modules as being vector spaces, but with scalars belonging to a ring instead of
a field. This radically changes the properties of our ‘scalars’—they are no longer
guaranteed to be invertible, and need not commute with one another. Let us see
some examples.

2 CHAPTER 1. MODULES

1.1.1 Examples
Example 1.2 (Choosing the ring). Let 𝑀 be a Λ-module.

1. Choose Λ to be a field, 𝐾 say. Then (as noted above) the definition becomes
that of a vector space over 𝐾.

2. Choose 𝑀 to be the ring itself, Λ. We may do so because rings form Abelian
groups under their addition. If we define scaling by

𝜆 · 𝑎⏟ ⏞
module scaling

= 𝜆 * 𝑎⏟ ⏞
ring multiplication

we obtain the so-called left regular module of Λ. (Each of the module
axioms follows from the ring axioms.) Note that there’s no distinction
between ‘𝜆’ and ‘𝑎’ any more, as both elements lie in the same ring.

3. If we choose Λ = Z, then we have no choice in how to define our scaling.
The module axioms ensure that

2𝑎 = (1 + 1)𝑎
= 1𝑎+ 1𝑎 (by M1)
= 𝑎+ 𝑎. (by M3)

In a non-Abelian
group, we would say
power rather than
multiple.

More generally, 𝑛𝑎 must be the sum of 𝑛 copies of 𝑎 (i.e. the 𝑛th multiple
of 𝑎) for any positive integer 𝑛. We are also forced to take 0𝑎 = 0 and
(−𝑛)𝑎 = −(𝑛𝑎) due to proposition 1.3 (to follow shortly). The scaling
operation is determined the moment we declare 𝑀 to be a Z-module! It’s
straightforward to check that axioms M1 to M4 are satisfied by this scaling.
There are two different structures in play: a group (𝑀,+) and the associated
Z-module (𝑀,+, ·). Each structure entails the other: we can form the Z-
module from the group as above; for the other way round, simply forget
about the scaling operation.
The scaling merely produces multiples of group elements without adding
any additional structure to the group. Hence we may think of Abelian
groups and Z-modules as being the same.

4. For any ring Λ we can equip the trivial group 0 with the trivial scaling
𝜆0 = 0. This is the trivial or zero Λ-module.

As promised, we now show that zero and negative scalars act as we might
expect them to.

Proposition 1.3 (Scaling by zero and negatives). In any Λ-module 𝑀 , 0𝑎 = 0
and (−𝜆)𝑎 = −(𝜆𝑎).

Proof. Since 0Λ is the additive identity of Λ, we have 0Λ + 0Λ = 0Λ. Then
(0Λ + 0Λ)𝑎 = 0Λ𝑎, meaning 0Λ𝑎 + 0Λ𝑎 = 0Λ𝑎 (by M1.) We don’t know which
group element 0Λ𝑎 is, but we do know that it has an inverse. Adding this inverse
to both sides yields 0Λ𝑎 = 0𝑀 .

We also have that 𝜆+(−𝜆) = 0Λ. Invoking M1 again, we see that 𝜆𝑎+(−𝜆)𝑎 =
0Λ𝑎 = 0𝑀 . Adding the inverse element −(𝜆𝑎) to both sides allows us to conclude
that (−𝜆)𝑎 = −(𝜆𝑎).

1.1. INTRODUCTION 3

This result means that the integers Z don’t ‘have enough room’ to give us
anything other than Abelian groups when we form Z-modules.

* * *

The importance of Λ is huge: different choices of rings yield very different
structures. At the same time, it is possible to view the same Abelian group 𝑀 as
a module over different rings.

Example 1.4 (Same group, different rings). Let 𝑀 be a vector space over a field
𝐾. We can already view 𝑀 as a 𝐾-module.

1. Let 𝑇 be a linear transformation of 𝑀 . We may view 𝑀 as a module over
the polynomial ring Λ = 𝐾[𝑇] if we equip it with the scaling

On the left, 𝑇𝑛 is
a placeholder to
attach coefficients
to; on the right, 𝑇𝑛

stands for repeated
application of 𝑇 .

(𝑐𝑛𝑇 𝑛 + · · · + 𝑐1𝑇 + 𝑐0)𝑎 = 𝑐𝑛𝑇
𝑛(𝑎) + · · · + 𝑐1𝑇 (𝑎) + 𝑐0𝑎.

For a concrete example, choose the vector space 𝑀 = R2 over 𝐾 = R and
let 𝑇 be (given by) the matrix 𝑇 = (2 0

0 1). Choose the point 𝑎 = (1
1) and

polynomials 𝑝1(𝑇) = 𝑇 2 + 1, 𝑝2(𝑇) = 𝑇 − 2. Then we may compute the
scaling 𝑝2(𝑝1𝑎).

𝑝1𝑎 =
(︃

2 0
0 1

)︃2 (︃1
1

)︃
+ 1

(︃
1
1

)︃
=
(︃

4
1

)︃
+
(︃

1
1

)︃
=
(︃

5
2

)︃

𝑝2(𝑝1𝑎) =
(︃

2 0
0 1

)︃(︃
5
2

)︃
− 2

(︃
5
2

)︃
=
(︃

10
2

)︃
−
(︃

10
4

)︃
=
(︃

0
−2

)︃

The polynomial product is 𝑝2𝑝1(𝑇) = (𝑇 − 2)(𝑇 2 + 1) = 𝑇 3 − 2𝑇 2 + 𝑇 − 2.
The resulting polynomial may also be used to scale a, giving

(𝑝1𝑝2)(𝑎) =
(︃

2 0
0 1

)︃3 (︃1
1

)︃
− 2

(︃
2 0
0 1

)︃2 (︃1
1

)︃
+
(︃

2 0
0 1

)︃(︃
1
1

)︃
− 2

(︃
1
1

)︃

=
(︃

8
1

)︃
− 2

(︃
4
1

)︃
+
(︃

2
1

)︃
−
(︃

2
2

)︃
=
(︃

0
−2

)︃
.

We see that (𝑝1𝑝2)(𝑎) = 𝑝1(𝑝2𝑎) = (0
−2). This is no coincidence: the result

is guaranteed because of axiom M2.

2. Let Λ = 𝒯 be the set of all linear transformations of 𝑀 . Let us add
transformations 𝑇1, 𝑇2 ∈ 𝒯 pointwise and ‘multiply’ transformations by
composing them.

(𝑇1 + 𝑇2)(𝑎) = 𝑇1(𝑎) + 𝑇2(𝑎)
(𝑇1 ∘ 𝑇2)(𝑎) = 𝑇1(𝑇2(𝑎))

Together, 𝒯 and these operations form a ring. We can view our original
vector space𝑀 as a 𝒯 -module by defining the scaling 𝑇𝑎 to be the evaluation
𝑇 (𝑎).

3. This construction also works if we choose our set of transformations Λ to
be a subring of 𝒯 .

4 CHAPTER 1. MODULES

1.1.2 Motivation
In this text, we investigate modules to develop their properties and structure,
rather than using them to make deductions about other objects. With that said,
let us mention a few reasons why modules are worth studying.

Multitasking Because modules describe pre-existing structures (rings, Abelian
groups, vector spaces), we may investigate all of these objects at once with one
theory. Further, the higher-level viewpoint of module theory lets us determine
how these objects are different. For example, every vector space has a basis, but
only certain Abelian groups—those which are called ‘free Abelian’—have bases.
Module theory can provide an explanation for why differences such as these occur.

Representation Theory Groups (and modules, as we shall see later) can be
described by means of a presentation 𝐺 = ⟨𝑋 | 𝑅⟩. From practical experience,
we know that presentations can be awkward to work with. A formal example of
this is the word problem, one of Max Dehn’s three group decision problems. [1]

GivenEach 𝑥𝑖 ∈ 𝑋 and
𝜖𝑖 ∈ {±1}

a finite presentation 𝐺 = ⟨𝑋 | 𝑅⟩ of a group 𝐺 and a word
𝑤 = 𝑥𝜖1𝑖1 . . . 𝑥

𝜖𝑛
𝑖𝑛 , decide whether or not 𝑤 = 1 in 𝐺.

This problem was shown to be undecidable by Novikov in [5]. ‘Undecidable’
means that no algorithm exists which is capable of correctly answering ‘Yes’ or
‘No’ for all possible input presentations.

It can be useful to have alternative ways to represent group elements. In
representation theory, group elements are represented by linear transformations
of a given vector space. We have seen how sets of linear transformations can form
rings. By studying modules over this ring, we can also study the represented
group, and vice versa.

Homological Algebra Modules are the primary type of structure in homo-
logical algebra. Weibel introduces the subject in [7] as “a tool used to prove
non-constructive existence theorems in algebra (and in algebraic topology)” which
allows us to determine when “various kinds of constructions [. . .] are possible.”
After emerging from parts of topology in the 1940s, it became a valuable field in
its own right, and today is used in a variety of different parts of mathematics.

1.2 Working with modules
Most mathematical structures we’re familiar with have some notion of being
broken down into smaller components. Often we can perform some kind of
identification of elements to yield a quotient structure. Finally, we can usually
combine two or more structures as building blocks, to form some kind of product.
Modules are no exception!

1.2.1 Sub- and quotient modules
Submodules are defined as we might expect them to be: a subset that is itself a
module when it inherits the operations of its parent.

1.2. WORKING WITH MODULES 5

Definition 1.5. Note that submod-
ules are necessarily
subgroups, since
they must con-
tain 0𝑎 = 0 and
(−1)𝑎 = −𝑎.

Let 𝑀 be a Λ-module. A subset 𝑀 ′ ⊆ 𝑀 is called a submodule
(also over Λ) if it is closed under addition and scaling. That is, 𝑎+ 𝑏 ∈ 𝑀 ′ and
𝜆𝑎 ∈ 𝑀 ′ for every 𝜆 ∈ Λ, 𝑎, 𝑏 ∈ 𝑀 ′.

Just like groups, rings and vector spaces, there are always at least two
submodules of a given module 𝑀 . Over the appropriate ring, the zero module is
the trivial submodule of 𝑀 . Additionally, we can always view 𝑀 as an ‘improper’
submodule of itself.

Quotient modules are also defined as we might expect: by imprinting the
parent module’s structure onto a collection of cosets.

Definition 1.6 (Quotient module). Let 𝑀 ′ be a submodule of a Λ-module 𝑀 .
The quotient module 𝑀/𝑀 ′ (also over Λ) has as its underlying group the quotient
group 𝑀/𝑀 ′. Scaling is defined by is defined by 𝜆(𝑚+𝑀 ′) = (𝜆𝑚) +𝑀 ′.

Details. We can always form the group quotient 𝑀/𝑀 ′, because any subgroup
𝑀 ′ is normal in 𝑀 . This is because conjugation does nothing in an Abelian
group:

𝑔 + ℎ− 𝑔 = 𝑔 − 𝑔 + ℎ = ℎ

Thus 𝑀/𝑀 ′ is closed under addition.
Before proceeding, we should check that scaling is well-defined. Let 𝑚1 and

𝑚2 represent the same coset. Then 𝑚1 = 𝑚2 + 𝑚′ for some 𝑚′ ∈ 𝑀 ′. Hence
𝜆(𝑚1 + 𝑀 ′) = (𝜆𝑚2 + 𝜆𝑚′) + 𝑀 ′ = 𝜆(𝑚2 + 𝑀 ′) + (𝜆𝑚′) + 𝑀 ′ = 𝜆(𝑚2 + 𝑀 ′).
The last equality follows from the fact that 𝜆𝑚′ ∈ 𝑀 ′ since 𝑀 ′ is closed under
scaling.

We should also confirm that the scaling satisfies the module axioms. In short,
each axiom holds in the quotient because it holds in the original group 𝑀 .

M1. (𝜆1 + 𝜆2)(𝑚′ +𝑀 ′) = (𝜆1 + 𝜆2)(𝑚′) +𝑀 ′

= 𝜆1𝑚
′ + 𝜆2𝑚

′ +𝑀 ′ (by M1 in 𝑀)
= (𝜆1𝑚

′ +𝑀 ′) + (𝜆2𝑚
′ +𝑀 ′)

M2. (𝜆1𝜆2)(𝑚′ +𝑀 ′) = (𝜆1𝜆2)𝑚′ +𝑀 ′

= 𝜆1(𝜆2𝑚
′) +𝑀 ′ (by M2 in 𝑀)

= 𝜆1(𝜆2𝑚
′ +𝑀 ′)

M3. 1(𝑚′ +𝑀 ′) = 1𝑚′ +𝑀 ′

= 𝑚′ +𝑀 ′ (by M3 in 𝑀)

M4. 𝜆(𝑚′
1 +𝑀 ′ +𝑚′

2 +𝑀 ′) = 𝜆(𝑚′
1 +𝑚′

2 +𝑀 ′)
= 𝜆(𝑚′

1 +𝑚′
2) +𝑀 ′

= (𝜆𝑚′
1 + 𝜆𝑚′

2) +𝑀 ′ (by M4 in 𝑀)
= 𝜆(𝑚′

1 +𝑀 ′) + 𝜆(𝑚′
2 +𝑀 ′)

Example 1.7. Let us illustrate both sub- and quotient modules at once with
some concrete examples.

1. The group of integers Z has 10Z = {10𝑧 : 𝑧 ∈ Z} as a subgroup. The
quotient Z/10Z gives us Z10, the integers modulo ten.

6 CHAPTER 1. MODULES

0

0
10
20
30

-1-2. . .

31 . . .

1

1
11
21

2

2
12
22

3

3
13
23

4

4
14
24

5

5
15
25

6

6
16
26

7

7
17
27

8

8
18
28

9

9
19
29

Z/10Z ∼= Z10

𝑧 = −4
𝑧 = −3
𝑧 = −2
𝑧 = −1
𝑧 = 0

𝑧 𝑧

R3

R2 ⊕ 0
∼= R

Figure 1.1: Illustrations of two quotient modules in example 1.7. On the left,
we factor out 10Z by folding all the rows on top of each other. On the right, we
factor out R2 ⊕ 0 by compressing each of the planes down to a point.

2. The vector space R3 has R × R × {0} = {(𝑥, 𝑦, 0) : 𝑥, 𝑦 ∈ R} as a subspace.
The quotient space we obtain is isomorphic to R.

3. Let Λ = ℳ2(R) be the ring of real 2 × 2 matrices, and view Λ as a module
over itself. Consider the subset 𝑆 = {(𝑎 0

𝑏 0) : 𝑎, 𝑏 ∈ R} of matrices with
zeroes in the right column. This is a submodule of Λ since it is closed under
addition and scaling (multiplication on the left).

Note that we choose
scalars—that is,
matrices—from the
entirety of Λ, not
just the subset 𝑆.

(︃
𝑎 0
𝑏 0

)︃
+
(︃
𝑎′ 0
𝑏′ 0

)︃
=
(︃
𝑎+ 𝑎′ 0
𝑏+ 𝑏′ 0

)︃
∈ 𝑆 (1.1a)(︃

𝑎 𝑏
𝑐 𝑑

)︃(︃
𝑎′ 0
𝑐′ 0

)︃
=
(︃
𝑎𝑎′ + 𝑏𝑐′ 0
𝑐𝑎′ + 𝑑𝑐′ 0

)︃
∈ 𝑆 (1.1b)

Thus we can make Λ/𝑆 into a quotient module; we compute this quotient
in example 1.14. Note that products of the opposite order to (1.1b) need
not lie in 𝑆. For instance:(︃

1 0
1 0

)︃(︃
1 1
1 1

)︃
=
(︃

1 1
1 1

)︃
̸∈ 𝑆

This means we cannot make the set of cosets Λ/𝑆 into a quotient ring.

1.2.2 Homomorphisms
We now provide the appropriate notion of homomorphism—‘structure-preserving
map’—for modules.

Definition 1.8.We typically just
say ‘homomorphism’
when it’s clear that
we’re working with
modules over a given
ring.

Let 𝑀 and 𝑁 be modules over the same ring Λ. A Λ-module
homomorphism is a map 𝑓 : 𝑀 → 𝑁 satisfying

1. 𝜙(𝑎+ 𝑏) = 𝜙(𝑎) + 𝜙(𝑏)
2. 𝜙(𝜆𝑎) = 𝜆𝜙(𝑎)

for every 𝑎, 𝑏 ∈ 𝑀 and every 𝜆 ∈ Λ.

In other words, a module homomorphism is an ordinary group homomorphism
between the underlying groups 𝑀 and 𝑁 which additionally respects the scaling
provided by Λ.

1.2. WORKING WITH MODULES 7

Example 1.9 (Noteworthy homomorphisms). Let us mention a few special
homomorphisms that exist for all choices of ring Λ. Let 𝑀 and 𝑁 be Λ-modules
and let 𝑀 ′ be a submodule of 𝑀 .

1. The identity homomorphism (in fact isomorphism) Id𝑀 : 𝑀 → 𝑀 maps 𝑚
to 𝑚.

2. The zero homomorphism 0𝑀𝑁 : 𝑀 → 𝑁 maps every element 𝑚 to 0𝑁 . We often drop the
subscripts on zero
maps if there’s no
need to highlight
the domain or codo-
main.

3. The inclusion 𝜄 : 𝑀 ′ → 𝑀 of a submodule 𝑀 ′ into 𝑀 is a homomorphism.

4. The canonical projection 𝜋 : 𝑀 → 𝑀/𝑀 ′ onto a quotient maps elements 𝑚
to their cosets 𝑚+𝑀 ′. All such maps are homomorphisms.

The idea of an isomorphism carries through to modules easily.

Definition 1.10. Let 𝜙 : 𝑀 → 𝑁 be a Λ-module homomorphism. We call 𝜙 an
isomorphism if it is additionally a bijection (i.e. invertible). We write 𝑀 ∼= 𝑁 to
denote the existence of an isomorphism 𝑀 → 𝑁 .

1.2.3 Kernel, image and cokernel
Yet more notions from algebra have their place in module theory.

Definition 1.11 (Kernel and image). To any Λ-module homomorphism 𝜙 : 𝑀 →
𝑁 there are two associated Λ-modules: the kernel ker𝜙 = {𝑚 ∈ 𝑀 : 𝜙(𝑚) = 0}
and the image Im𝜙 = {𝜙(𝑚) : 𝑚 ∈ 𝑀}.

Details. Group theory tells us that these two sets are subgroups of 𝑀 and 𝑁
respectively. To see that the kernel is closed under scaling, let 𝑚 ∈ ker𝜙. Then
𝜙(𝜆𝑚) = 𝜆𝜙(𝑚) = 𝜆0 = 0, so 𝜆𝑚 ∈ ker𝜙. For the image, a scaling of an image
element 𝜙(𝑚) looks like 𝜆𝜙(𝑚) = 𝜙(𝜆𝑚) ∈ Im𝜙.

The kernel and the image are related as modules in the same way they are for
groups, vector spaces and rings. This is summarised in the following theorem.

Theorem 1.12 (First isomorphism theorem: modules). Let 𝜙 : 𝑀 → 𝑁 be a
Λ-module homomorphism. The quotient 𝑀/ ker𝜙 is isomorphic to Im𝜙.

Proof. Let 𝜃 : 𝑀/ ker𝜙 → Im𝜙 be given by

𝜃(𝑚+ ker𝜙) = 𝜙(𝑚).

The proof of this theorem for groups establishes that 𝜃 is both well-defined and a
group isomorphism; we just need to determine how 𝜃 interacts with scaling. We
compute

𝜃(𝜆[𝑚+ ker𝜙]) = 𝜃(𝜆𝑚+ ker𝜙) = 𝜙(𝜆𝑚) = 𝜆𝜙(𝑚) = 𝜆𝜃(𝑚+ ker𝜙).

Hence 𝜃 is an isomorphism of modules.

Corollary 1.13. For any Λ-module 𝑀 , 𝑀/0 ∼= 𝑀 and 𝑀/𝑀 ∼= 0.

Proof. Apply the theorem to the identity and zero homomorphisms Id𝑀 and
0𝑀𝑁 .

8 CHAPTER 1. MODULES

We now use this result to identify a quotient module from a previous example,
by identifying a suitable homomorphism that does the hard work for us.

Example 1.14. In example 1.7.3 we viewed the ring 𝑀2(R) as a module over
itself and considered the quotient module 𝑀2(R)/𝑆, where 𝑆 was the submodule
𝑆 = {(𝑎 0

𝑏 0) : 𝑎, 𝑏 ∈ R}. To see what this quotient looks like, consider the
homomorphism 𝜙 : 𝑀2(R) → 𝑀2(R) which puts zeros in the left column:

𝜙

(︃
𝑎 𝑏
𝑐 𝑑

)︃
=
(︃

0 𝑏
0 𝑑

)︃

This really is a homomorphism, since addition is preserved:

𝜙

[︃(︃
𝑎 𝑏
𝑐 𝑑

)︃
+
(︃
𝑎′ 𝑏′

𝑐′ 𝑑′

)︃]︃
= 𝜙

(︃
𝑎+ 𝑎′ 𝑏+ 𝑏′

𝑐+ 𝑐′ 𝑑+ 𝑑′

)︃
=
(︃

0 𝑏+ 𝑏′

0 𝑑+ 𝑑′

)︃

𝜙

(︃
𝑎 𝑏
𝑐 𝑑

)︃
+ 𝜙

(︃
𝑎′ 𝑏′

𝑐′ 𝑑′

)︃
=
(︃

0 𝑏
0 𝑑

)︃
+
(︃

0 𝑏′

0 𝑑′

)︃
=
(︃

0 𝑏+ 𝑏′

0 𝑑+ 𝑑′

)︃

and scaling is preserved:

𝜙

[︃(︃
𝑎 𝑏
𝑐 𝑑

)︃(︃
𝑎′ 𝑏′

𝑐′ 𝑑′

)︃]︃
= 𝜙

(︃
𝑎𝑎′ + 𝑏𝑐′ 𝑎𝑏′ + 𝑏𝑑′

𝑐𝑎′ + 𝑑𝑐′ 𝑐𝑏′ + 𝑑𝑑′

)︃
=
(︃

0 𝑎𝑏′ + 𝑏𝑑′

0 𝑐𝑏′ + 𝑑𝑑′

)︃
(︃
𝑎 𝑏
𝑐 𝑑

)︃
𝜙

(︃
𝑎′ 𝑏′

𝑐′ 𝑑′

)︃
=
(︃
𝑎 𝑏
𝑐 𝑑

)︃(︃
0 𝑏′

0 𝑑′

)︃
=
(︃

0 𝑎𝑏′ + 𝑏𝑑′

0 𝑐𝑏′ + 𝑑𝑑′

)︃
.

The map switch-
ing left and right
columns provides an
isomorphism from
Im𝜙 to 𝑆.

The kernel and image are ker𝜙 = {(𝑎 0
𝑐 0) : 𝑎, 𝑐 ∈ R} = 𝑆 and Im𝜙 = {(0 𝑏

0 𝑑) :
𝑏, 𝑑 ∈ R}. Thus we can immediately conclude that 𝑀2(R)/𝑆 ∼= Im𝜙. In fact,
Im𝜙 is isomorphic to 𝑆, so 𝑀2(R)/𝑆 ∼= 𝑆.

* * *

Now we introduce the cokernel, which is an example of a ‘dual’ or ‘opposite’
construction.

Definition 1.15. Let 𝜙 : 𝑀 → 𝑁 be a Λ-module homomorphism. The cokernel
of 𝜙 is defined to be the quotient coker𝜙 = 𝑁/ Im𝜙.

Example 1.16. Let us return to example 1.9, illustrating the kernels, images
and cokernels of each homomorphism.

Homomorphism Kernel Image Cokernel
Id𝑀 : 𝑀 → 𝑀 0 𝑀 𝑀/𝑀 ∼= 0

0𝑀𝑁 : 𝑀 → 𝑁 𝑀 0 𝑁/0 ∼= 𝑁

𝜄 : 𝑀 ′→ 𝑀 0 𝑀 ′ 𝑀/𝑀 ′

𝜋 : 𝑀 → 𝑀/𝑀 ′ 𝑀 ′ 𝑀/𝑀 ′ 𝑀/𝑀 ′

𝑀/𝑀 ′
∼= 0

Mac Lane gives a
formal treatment
of duality in [4, sec.
II.1]

The cokernel is said to be ‘dual’ to the kernel. This means that the cokernel
is (in some sense) a mirror image of the kernel, and has properties which mirror
those of the kernel. Here is an example of a mirrored property: compare the
following proposition to the result that ker𝜙 = 0 if and only if 𝜙 is injective.

1.2. WORKING WITH MODULES 9

Proposition 1.17 (Cokernel measures surjectivity). Let 𝜙 : 𝑀 → 𝑁 be a
homomorphism of Λ-modules. Then 𝜙 is surjective if and only if coker𝜙 = 0 is
the trivial Λ-module.

Proof. The cokernel is 𝑁/ Im𝜙. Supposing that 𝜙 is surjective means that
Im𝜙 = 𝑁 . Then coker𝜙 = 𝑁/𝑁 ∼= 0. In the other direction, suppose that
𝑁/ Im𝜙 is trivial. Then the quotient’s underlying set has size one, so it must
consist of a single coset 𝑁/ Im𝜙 = {Im𝜙}. But 𝑁 is equal to the union of all of
these cosets, so 𝑁 = Im𝜙; that is, 𝜙 is surjective.

In short, the cokernel ‘detects’ whether or not a map is surjective. But
‘measures’ is a better choice of word: if we use the cokernel to see if a map is
surjective, we get more than a binary ‘Yes’ or ‘No’ response. e.g. 𝐾 = Z𝑝 for 𝑝

prime.
To give a somewhat

contrived example, let 𝐾 be a finite field and define maps

𝑓 : 𝐾 → 𝐾2 : 𝑘 ↦→ (𝑘, 0),
𝑔 : 𝐾 → 𝐾3 : 𝑘 ↦→ (𝑘, 0, 0).

Each of these maps is a linear transformation between 𝐾-vector spaces. These
maps are similar in that they both embed 𝐾 into the first coordinate of their
codomain. Their cokernels are different, however: we have coker 𝑓 ∼= 𝐾 (the
second coordinate) and coker 𝑔 ∼= 𝐾2 (the last two coordinates). The fact that
𝐾2 is a larger set than 𝐾 is reflects the observation that 𝑔 is ‘further from being
surjective’ than 𝑓 is.

1.2.4 Direct products and sums
We describe two methods of constructing larger modules from smaller building
blocks. The two structures are similar, but differ in important respects. We begin
with the direct product, which is slightly easier to define.

Definition 1.18. Let 𝐴 and 𝐵 be Λ-modules. The direct product 𝐴×𝐵 is the
Cartesian product of sets 𝐴×𝐵 equipped with entrywise operations

(𝑎, 𝑏) + (𝑎′, 𝑏′) = (𝑎+ 𝑎′, 𝑏+ 𝑏′),
𝜆(𝑎, 𝑏) = (𝜆𝑎, 𝜆𝑏).

Details. Each axiom (the Abelian group axioms and M1–M4) holds for the
product because it holds in both of the factors 𝐴 and 𝐵. The zero element is
0 = (0𝐴, 0𝐵) and negatives are given by −(𝑎, 𝑏) = (−𝑎,−𝑏).

As is often the case, there is nothing special about the number two—the direct
product can be formed from any number of modules. If we wish, we can construct
uncountably large products.

Definition 1.19 (Arbitrary direct product). Formally, a 𝐽-tuple
is defined as a map
from 𝐽 to a certain
set. The map takes
𝑗 to the 𝑗th entry
𝑎𝑗 .

Let {𝐴𝑗}𝑗∈𝐽 be a family of Λ-
modules. The direct product ∏︀𝑗∈𝐽 𝐴𝑗 has as its ground set the Cartesian product∏︀
𝑗∈𝐽 𝐴𝑗. This is the set of all 𝐽-tuples (𝑎𝑗)𝑗∈𝐽 , where each entry 𝑎𝑗 belongs to

𝐴𝑗.)
The product is equipped with entrywise operations:

(𝑎𝑗) + (𝑎′
𝑗) = (𝑎𝑗 + 𝑎′

𝑗),
𝜆(𝑎𝑗) = (𝜆𝑎𝑗).

10 CHAPTER 1. MODULES

It is straightforward to verify that ∏︀𝐴𝑗 is a module. By making a slight
alteration, we obtain the closely related object known as the direct sum.
Definition 1.20 (Arbitrary direct sum). Let {𝐴𝑗}𝑗∈𝐽 be a family of Λ-modules.
The direct sum ⨁︀

𝑗∈𝐽 𝐴𝑗 is the submodule of the direct product ∏︀𝑗∈𝐽 𝐴𝑗 , consisting
of tuples (𝑎𝑗)𝑗∈𝐽 whose entries are zero almost everywhere. That is, (𝑎𝑗)𝑗∈𝐽 belongs
to the direct sum if all but a finite number of entries 𝑎𝑗 are zero.
Details. We verify that ⨁︀𝐴𝑗 is closed under addition and scaling. Let (𝑎𝑗) and
(𝑏𝑗) both belong to the direct sum, and suppose they have 𝑚 and 𝑛 non-zero
entries respectively. Then their sum (𝑎𝑗 + 𝑏𝑗) has at most 𝑚+ 𝑛 non-zero entries.

As for scaling: when we multiply by 𝜆, we cannot turn a zero entry into a
non-zero entry because 𝜆0 = 0. Thus (𝜆𝑎𝑗) has at most the same number of
non-zero entries as (𝑎𝑗).

* * *

There is a very good reason why we distinguish these two modules. While
they appear similar—indeed, they are identical when we have a finite index set
𝐽—these objects interact differently with homomorphisms. In short, products
are nice to map into and sums are nice to map out of.

Let us be more specific. Suppose we have a family {𝐴𝑗} of Λ-modules, and
suppose we have two familiesWhere all three

families are indexed
by 𝐽 .

of homomorphisms {𝜙𝑗 : 𝐴𝑗 → 𝐵} and {𝜓𝑗 : 𝐶 →
𝐴𝑗}. We may combine (or ‘extend’) these families into a single map using the
direct product and sum.

The second family is easier to extend. Define Ψ: 𝐶 → ∏︀
𝐴𝑗 by mapping an

element 𝑐 under all of the homomorphisms 𝜓𝑗 at once and recording the results
in a tuple.

Ψ(𝑐) = (𝜓𝑗(𝑐))𝑗∈𝐽
For example, if 𝐽 = N we would calculate each 𝜓𝑛(𝑐) and store the result in the 𝑛th
coordinate of a sequence, producing (𝜓1(𝑐), 𝜓2(𝑐), 𝜓3(𝑐), . . .). It is straightforward
to check that Ψ is a homomorphism (it follows from the fact that each 𝜓𝑗 is a
homomorphism.)

The direct product is associated with a family of homomorphisms {𝜋𝑖 :
∏︀
𝐴𝑗 →

𝐴𝑖}𝑖∈𝐽 known as projections. These simply pick out the 𝑗th coordinate from a
given tuple. In symbols,

𝜋𝑖((𝑎𝑗)𝑗∈𝐽) = 𝑎𝑖.

We can express the fact that Ψ extends the family {𝜓𝑗} by writing

𝜋𝑖Ψ = 𝜓𝑖 for all 𝑖 ∈ 𝐽 . (1.2)

If we try to extend the other family {𝜙𝑗 : 𝐴𝑗 → 𝐵} in a similar manner, we
encounter a problem. Let us again use 𝐽 = N as an example. We would like an
extension Φ: ∏︀𝐴𝑗 → 𝐵 to be a homomorphism which maps an element of the
product in the following manner.

Φ(𝑎1, 𝑎2, 𝑎3, . . .) = Φ

⎛⎜⎜⎜⎝
(𝑎1, 0, 0, . . .)

+ (0, 𝑎2, 0, . . .)
+ (0, 0, 𝑎3, . . .)
+ ...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Φ(𝑎1, 0, 0, . . .)

+ Φ(0, 𝑎2, 0, . . .)
+ Φ(0, 0, 𝑎3, . . .)
+ ...

⎞⎟⎟⎟⎠
= 𝜙1(𝑎1) + 𝜙2(𝑎2) + 𝜙3(𝑎3) + · · · =

∞∑︁
𝑗=1

𝜙𝑗(𝑎𝑗)

1.2. WORKING WITH MODULES 11

The second equality should hold because Φ should be a homomorphism. As for
the third equality, we would like Φ to act as 𝜙𝑗 if all but the 𝑗th coordinate is
empty.

Unfortunately this ‘definition’ of Φ does not work, because the final result
is an infinite sum. In general, this has no meaning in a group. For instance,
consider the expression

∞∑︁
𝑗=1

1 = 1 + 1 + 1 + · · ·

in Z𝑛 = {0, 1, 2, . . . , 𝑛 − 1}, the integers modulo 𝑛. Which of the 𝑛 elements
should we declare the sum’s value to be? No choice makes sense!

To avoid this problem, we must restrict Φ to be defined on a smaller module
for which the infinite sum ∑︀

𝜙𝑗(𝑎𝑗) always makes sense. But since we have no
prior information on how addition works in 𝐵, we must take drastic action. We
require that our tuples (𝑎𝑗) belong to the direct sum ⨁︀

𝐴𝑗, so that they are zero
almost everywhere.

In some sense, we
are forcing our
‘series’ to ‘converge’.

Then all except for a finite number of summands 𝜙𝑗(𝑎𝑗) are
zero, and ∑︀𝜙𝑗(𝑎𝑗) collapses to a finite sum.

In summary, we may extend the maps {𝜙𝑗} into Φ⨁︀𝐴𝑗 → 𝐶, defined by

Φ((𝑎𝑗)𝑗∈𝐽) =
∑︁
𝑗∈𝐽

𝜙𝑗(𝑎𝑗).

Again, it is straightforward to check that Ψ is a homomorphism.
Like the product, the direct sum is associated with a family of homomorphisms

{𝜄𝑖 : 𝐴𝑖 → ⨁︀
𝐴𝑗}𝑖∈𝐽 . Each map 𝜄𝑖 (known as an injection) maps an element of 𝐴𝑖

into the 𝑖th coordinate of an otherwise empty tuple. Symbolically, 𝜄𝑖(𝑎𝑖) = (𝑏𝑗)𝑗∈𝐽 ,
where 𝑏𝑖 = 𝑎𝑖 and all other 𝑏𝑗 are zero. This allows us to state the extension
property analogous to (1.2) as The similarity of

(1.2) and (1.2’) is
another instance
of a dual or mirror
property; the direct
product and sum are
dual to each other.

Φ𝜄𝑖 = 𝜙𝑖 for all 𝑖 ∈ 𝐽 . (1.2’)

* * *

The usefulness of these extended homomorphisms Ψ and Φ is twofold. Firstly,
they exist, allowing us to extend homomorphisms in the first place. Secondly,
they are unique: if the projections 𝜋𝑖 and injections 𝜄𝑖 are given to us, there is
only one way to construct Ψ and Φ which satisfy (1.2) and (1.2’). Indeed, these
two equations characterise the direct product and sum, respectively.

For the most part, we will only require finite products and sums. We use a
kind of matrix notation in such cases, writing

Φ = (𝜙1, . . . , 𝜙𝑛) and Ψ =

⎛⎜⎜⎝
𝜓1
...
𝜓𝑛

⎞⎟⎟⎠
for the homomorphisms out of the sum and into the product, respectively. E.g.

(︂
𝛼
𝛽

)︂
𝛾 =

(︂
𝛼𝛾
𝛽𝛾

)︂
,

(𝛼, 𝛽)
(︂
𝛾
𝛿

)︂
= 𝛼𝛾+𝛽𝛿.

This
is particularly useful since the composition of maps Φ ∘ Ψ is given by the matrix
product ΦΨ = ∑︀𝑛

𝑖=1 𝜙𝑖𝜓𝑖.

12 CHAPTER 1. MODULES

1.3 Extensions of Modules
Choose any pair of Λ-modules 𝐴 and 𝐵 and combine them to form the direct
sum 𝐸 = 𝐴⊕𝐵. This contains 𝐵 as a submodule, though it is disguised in the
form 𝐵 ∼= 0 ⊕𝐵. The corresponding quotient module

𝐴⊕𝐵

0 ⊕𝐵

is isomorphic to 𝐴. We can think of 𝐸 as consisting of copies of 𝐴, one for each
element of 𝐵. Each copy looks like 𝐴⊕ {𝑏}.

We embedded 𝐵
into 𝐸 above by
using the map
𝜄 : 𝑏 ↦→ (0, 𝑏).

The module 𝐸 is said to extend 𝐴 by 𝐵. More generally, any module 𝐸
for which 𝐸/𝐵 ∼= 𝐴 (after 𝐵 has been suitably embedded into 𝐸) is called an
extension of 𝐴 by 𝐵.

The direct sum always provides such an extension; are there other ways to
extend one module by another? If so, how should we decide if one extension is
the same as another—do we require any information other than 𝐴, 𝐵, and 𝐸?

1.3.1 Sequences and extensions
Before we tackle these questions, let us introduce some notation and terminology
to describe and work with extensions. We begin with exact sequences.

Definition 1.21 (Exact sequence). A sequence is (formally) a list of Λ-module
homomorphisms 𝜙1, 𝜙2, . . . , 𝜙𝑛 where each map 𝜙𝑖 maps 𝐴𝑖 to 𝐴𝑖+1. We often
write this as a chain of arrows

𝐴1 𝐴2 𝐴3 𝐴𝑛 𝐴𝑛+1.
𝜙1 𝜙2

𝜙𝑛

The sequence above is said to be exact at 𝐴𝑖 if ker𝜙𝑖+1 = Im𝜙𝑖 (which implies
𝜙𝑖+1 ∘ 𝜙𝑖 = 0). If the sequence is exact at each of 𝐴2, 𝐴3, . . . 𝐴𝑛, we say that the
sequence itself is exact.

The zero module has a lot of influence over an exact sequence: it forces
neighbouring homomorphisms to have certain properties.

Proposition 1.22 (Zeroes in exact sequences). Let 𝜙 : 𝐴 → 𝐵 be a Λ-module
homomorphism and let 0 denote the zero module (over Λ).

1. The sequence 0 → 𝐴
𝜙−→ 𝐵 is exact if and only if 𝜙 is injective.

2. The sequence 𝐴 𝜙−→ 𝐵 → 0 is exact if and only if 𝜙 is surjective.

Proof. 1. The only homomorphism out of the zero module is the map which
takes 0 to 0𝐴. So the sequence is exact if and only if ker𝜙 = {0𝐴}, i.e. if
and only if 𝜙 is injective.

2. Similarly, the only homomorphism mapping into the zero module has to
map all elements to zero, so its kernel is 𝐵. The sequence if exact if and
only if Im𝜙 is equal to this kernel, i.e. Im𝜙 = 𝐵. But this is the same as
saying that 𝜙 is surjective.

1.3. EXTENSIONS OF MODULES 13

We will be particularly interested in ‘short exact sequences’. These are exact
sequences which look like

0 𝐵 𝐸 𝐴 0.𝜅 𝜈 (1.3)

Applying the first isomorphism theorem, we see that 𝐸/ ker 𝜈 = Im 𝜈. But we
know that Im 𝜈 = 𝐴 (as 𝜈 is surjective) and that ker 𝜈 = Im 𝜅. Hence 𝐸/ Im 𝜅 ∼= 𝐴.
But since 𝜅 is injective, Im 𝜅 ∼= 𝐵. So 𝐸 contains a copy of 𝐵 as a submodule;
factoring this out yields a copy of 𝐴. This is just a roundabout way of saying 𝐸
is an extension of 𝐴 by 𝐵.

Caution! It’s tempting to replace Im 𝜅 by 𝐵 in the last equation, which would
then read “𝐸/𝐵 ∼= 𝐴.” However, the quotient 𝐸/𝐵 doesn’t strictly exist unless
𝐵 is a subset of 𝐸: it is the image of 𝐵 that is factored out, not 𝐵 itself.

For example, take 𝜅 : Z → Z to be multiplication by 2. This would produce
the quotient 𝐴 = Z/2Z ∼= Z2. But if we replaced the symbol 2Z with Z, we would
conclude Z/Z ∼= Z2, which is misleading at best.

This shows we can produce an extension from a short exact sequence. Is there
a correspondence in the other direction? Suppose we have modules for which
𝐸/𝐵 ∼= 𝐴. Then there are two associated homomorphisms. Firstly, there is
the inclusion map 𝜄 : 𝐵 →˓ 𝐸 which simply takes 𝑏 to 𝑏; secondly, there is the
projection 𝜋 : 𝐸 → 𝐴 which maps elements 𝑒 to the image of the coset 𝑒+𝐵 in
𝐴. Computing the following sets

ker𝜋 = {𝑒 : 𝑒+𝐵 is the zero coset} = {𝑒 : 𝑒 ∈ 𝐵} = 𝐵

Im 𝜄 = {𝜄(𝑏) = 𝑏 : 𝑏 ∈ 𝐵} = 𝐵,

we see that ker𝜋 = Im 𝜄. Since the projection is surjective and the inclusion is
injective, we may form the short exact sequence below.

0 𝐵 𝐸 𝐴 0𝜄 𝜋

* * *

Hopefully this discussion illustrates that the idea of an extension and of a
short exact sequence are roughly equivalent. However, the sequence contains
more information (the homomorphisms 𝜅, 𝜈) than the statement 𝐸/𝐵 ∼= 𝐴. With
this in mind we make the following definition.
Definition 1.23. Let 𝐴 and 𝐵 be Λ-modules. An extension of 𝐴 by 𝐵 is a short
exact sequence 0 → 𝐵

𝜅−→ 𝐸
𝜈−→ 𝐴 → 0. We may refer to an extension by using

one of its homomorphisms (𝜅 or 𝜈 in this case), or by its central module (𝐸) if
the choice of homomorphisms is understood.
Example 1.24. We turn to Abelian groups to provide some examples.

1. As we mentioned earlier, the direct sum 𝐴⊕𝐵 is an extension of 𝐴 by 𝐵
since we can form the short exact sequence

0 𝐵 𝐴⊕𝐵 𝐴 0.𝜄𝐵 𝜋𝐴

The injection 𝜄𝐵 maps 𝐵 into the second coordinate, and the projection 𝜋𝐴
extracts 𝐴 from the first coordinate. Note that this construction works for
any ring Λ (not just Z).

14 CHAPTER 1. MODULES

2. Consider the map 𝜅 : Z → Z⊕Z given by 𝜅(𝑧) = (2𝑧, 0). This is an injection,
so we have the left part of a short exact sequence. To continue this to the
right, define 𝜈 : Z ⊕ Z → Z2 ⊕ Z by 𝜈(𝑎, 𝑏) = (𝑎 mod 2, 𝑏). We can easily
check that ker 𝜈 = Im 𝜅, giving us the extension

0 Z Z ⊕ Z Z2 ⊕ Z 0.𝜅 𝜈

3. We discussed how given any quotient 𝐸/𝐵 we can always form an extension
using the canonical projection 𝜋 and inclusion 𝜄. We illustrate the example
of R/Z by bending the real line R into a spiral.

−1 0 1 2

R ⊃ Z R/Z

𝜋

𝜋

The corresponding sequence is

0 Z R R/Z 0.𝜄 𝜋

4. We can construct two extensions of Z2 by itself, using the two groups of
order four. The first uses the direct sum (the Klein vier group); the second
uses the integers modulo four.

0 Z2 Z2 ⊕ Z2 Z2 0

0 Z2 Z4 Z2 0

𝜄1 𝜋2

×2 mod 2

The two extensions Z2 ⊕ Z2 and Z4 are non-isomorphic groups, since the
latter is cyclic but the first is not. This would suggest that these extensions
are not the same.

1.3.2 Diagrams and equivalent extensions
To compare extensions we will need to compare their homomorphisms. Things
aren’t too complicated at the moment, since we only have two maps and one
equation (ker 𝜈 = Im 𝜅). But later we’ll be working with many maps and many
equations relating them.

At the very least,
it’s useful to have a
schematic telling us
where maps go to
and from!

To make life a little easier, we introduce commutative diagrams. These are a
means to visually represent relationships between a collection of maps.

Definition 1.25 (Commutative diagram). A diagram is (formally) a directed
graph. Vertices represent modules and arrows represent maps between modules—
usually homomorphisms. Here are two examples.

𝑃 𝑌 𝐴

𝑅 𝑆 𝐵 𝑋

𝜋 𝜎

𝛼

𝛽 𝜙

𝜌 𝜓

1.3. EXTENSIONS OF MODULES 15

We say that a diagram commutes (or is commutative) if all paths between
the same start and end point correspond to the same composition of maps. For
example, the triangle above commutes if 𝜌𝜋 = 𝜎 and the square commutes if
𝜙𝛼 = 𝜓𝛽. In principle, we need to check all possible paths to see if a diagram
commutes. However, it is usually sufficient to break a diagram into simpler shapes
(e.g. triangles or squares) and check that each shape commutes.

Arrows are often drawn with decorations to signify that its map has certain
properties. We will use the following notation.

Dotted arrows typ-
ically denote maps
which we construct
for ourselves, i.e.
maps which are not
given to us.

Inclusion Injection Surjection Identity map Map of interest

Hence we write 𝐵 𝜅
� 𝐸

𝜈
� 𝐴 for an extension 𝐸 of 𝐴 by 𝐵.

With diagrams at our disposal, we are now ready to declare when two exten-
sions are equivalent.

Definition 1.26 (Equivalent extensions). Let 𝐵
𝜇
� 𝐸

𝜖
� 𝐴 and 𝐵

𝜇′

� 𝐸 ′ 𝜖′

� 𝐴
be two extensions of 𝐴 by 𝐵. The extensions are said to be equivalent if there is
a homomorphism 𝜃 : 𝐸 → 𝐸 ′ making the following diagram commute.

Here ‘the diagram
commutes’ means
𝜈 = 𝜈′𝜃 and 𝜃𝜅 = 𝜅′.

𝐵 𝐸 𝐴

𝐵 𝐸 ′ 𝐴

𝜅 𝜈

𝜃

𝜅′ 𝜈′

In short, two extensions are equivalent if there is a nice homomorphism 𝜃
between their central modules. By ‘nice’, we mean that 𝜃 makes the two extensions
compatible with one another. For example, 𝜃 allows us to form a new extension
𝐵

𝜅
� 𝐸

𝜈′𝜃
� 𝐴 using parts of both extensions.

If the homomorphism 𝜃 exists, it must be an isomorphism. We can prove this
fact directly, but we prove it as a corollary of a more general statement.

Lemma 1.27 (Short sequence lemma). Let 𝐴′ 𝜇
� 𝐴

𝜖
� 𝐴′′ and 𝐵′ 𝜇

� 𝐵
𝜖
� 𝐵′′

be two short exact sequences. Suppose there exist homomorphisms 𝛼, 𝛼′ and 𝛼′′

which make the following diagram commute.

𝐴′ 𝐴 𝐴′′

𝐵′ 𝐵 𝐵′′

𝜇

𝛼′

𝜖

𝛼 𝛼′′

𝜇′
𝜖′

If any two of the three homomorphisms 𝛼′, 𝛼 and 𝛼′′ are isomorphisms, then the
third is an isomorphism too.

There are three distinct cases to be dealt with. We only prove one case directly
(the one which shows 𝜃 must be an isomorphism). The proofs of the other two
are very similar and involve exactly the same type of argument.

Proof. This type of proof
is called a ‘diagram
chase’—for reasons
that should soon
become clear!

Every map in the diagram is a homomorphism. To prove that 𝛼 is an
isomorphism, we just need to show it is a bijection. We demonstrate injectivity
by demonstrating that the map has a trivial kernel.

Suppose that 𝛼′ and 𝛼′′ are isomorphisms. We want to show that 𝛼 is also an
isomorphism.

16 CHAPTER 1. MODULES

Injectivity Let 𝑎 ∈ ker𝛼 be given. We want to show that 𝑎 must be 0.

An =⇒ arrow
means that a substi-
tution is being made
on that line.

Since... we know... such that/
so then...

𝛼𝑎 = 0 𝜖′𝛼𝑎 = 0
The right square commutes 𝛼′′𝜖 = 𝜖′𝛼 =⇒ 𝛼′′𝜖𝑎 = 0
𝛼′′ is injective 𝜖𝑎 = 0
ker 𝜖 = Im𝜇 ∃𝑎′ ∈ 𝐴′ 𝑎 = 𝜇𝑎′

𝛼𝑎 = 0 𝛼𝜇𝑎′ = 0
The left square commutes 𝜇′𝛼′ = 𝛼𝜇 =⇒ 𝜇′𝛼′𝑎′ = 0
𝜇′ is injective 𝛼′𝑎′ = 0
𝛼′ is injective 𝑎′ = 0

𝑎 = 𝜇𝑎′ 𝑎 = 0

Surjectivity Choose any 𝑏 ∈ 𝐵. We want to find an element 𝑎 for which
𝛼𝑎 = 𝑏. Begin by moving to the right, into 𝐵′′.

Since... we know... such that/
so then...

𝛼′′ is surjective ∃𝑎′′ ∈ 𝐴′′ 𝜖′𝑏 = 𝛼′′𝑎′′

𝜖 is surjective ∃𝑎 ∈ 𝐴 𝜖′𝑏 = 𝛼′′𝜖𝑎
The right square commutes 𝛼′′𝜖 = 𝜖′𝛼 =⇒ 𝜖′𝑏 = 𝜖′𝛼𝑎

𝜖′ is a homomorphism 𝜖′(𝑏− 𝛼𝑎) = 0
ker 𝜖′ = Im𝜇′ ∃𝑏′ ∈ 𝐵′ 𝑏− 𝛼𝑎 = 𝜇′𝑏′

𝛼′ is surjective ∃𝑎′ ∈ 𝐴′ 𝑏− 𝛼𝑎 = 𝜇′𝛼′𝑎′

The left square commutes 𝜇′𝛼′ = 𝛼𝜇 =⇒ 𝑏− 𝛼𝑎 = 𝛼𝜇𝑎′

𝑏 = 𝛼(𝑎+ 𝜇𝑎′)

Corollary 1.28. If there is a homomorphism 𝜃 : 𝐸 → 𝐸 ′ which makes two
extensions equivalent, then 𝜃 must be an isomorphism.

Proof. The identity maps Id𝐴 and Id𝐵 are isomorphisms.

Example 1.29 (Equivalent or not?). Let us conclude this section by providing
some examples.

1. Consider the following extensions of Abelian groups, where the surjections
are given by 𝜈(𝑧) = 𝑧 mod 3 and 𝜈 ′(𝑧) = 2𝑧 mod 3.

Z Z Z3

Z Z Z3

×3

∃𝜃?

𝜈

×3 𝜈′

Suppose there exists a homomorphism 𝜃 making the diagram commute.
Then the left square tells us that 𝜃(3𝑧) = 3𝑧 for every integer 𝑧. But then
3𝜃(𝑧) = 3𝑧, and hence 𝜃 is the identity map IdZ.

1.3. EXTENSIONS OF MODULES 17

However, this fails to make the right square commute. The top path takes
𝑧 to 𝑧 mod 3; the bottom path takes 𝑧 to 2𝜃(𝑧) mod 3 = 2𝑧 mod 3. But
these results are different when 𝑧 ̸≡ 0 (mod 3), so the extensions must be
inequivalent.

2. In example 1.24.2 we had the following two extensions.

Z2 Z2 ⊕ Z2 Z2

Z2 Z4 Z2

𝜄1 𝜋2

∃𝜃?

×2 mod 2

The groups Z2 ⊕ Z2 and Z4 are not isomorphic; the latter is cyclic, but the
former is not. So the extensions can’t possibly be equivalent.

3. An extension 𝐸 of 𝐴 and 𝐵 is said to (be) split if it is equivalent to the
extension 𝐵 � 𝐵 ⊕ 𝐴 � 𝐴 (equipped with the canonical injection and
projection maps).
If 𝐾 is a field, then all extensions of 𝐾-modules (𝐾-vector spaces) split.
We sketch a proof for finite-dimensional spaces.

𝐵 𝐸 𝐴

𝐵 𝐴⊕𝐵 𝐴

𝜅 𝜈

𝜃

𝜄𝐵 𝜋𝐴

Choose bases {𝑏1, . . . , 𝑏𝑛} and {𝑎1, . . . , 𝑎𝑚} of 𝐴 and 𝐵 respectively. Also
choose preimages 𝑒1, . . . , 𝑒𝑚 of the basis elements for 𝐴 such that 𝜈(𝑒𝑗) = 𝑎𝑗 .
Then the set 𝑋 = {𝜅(𝑏1), . . . , 𝜅(𝑏𝑛), 𝑒1, . . . , 𝑒𝑚} can be shown to be a basis
for 𝐸. Hence we can uniquely represent vectors in 𝐸 as a list of scalars
𝛽1, . . . , 𝛽𝑛, 𝛼1, . . . 𝛼𝑛 which corresponds to the element 𝑒 = ∑︀

𝛽𝑖𝜅(𝑏𝑖) +∑︀
𝛼𝑗𝑒𝑗.

We can define the homomorphism 𝜃 : 𝐸 → 𝐴⊕𝐵 by

𝜃(𝛽1, . . . , 𝛽𝑛, 𝛼1, . . . 𝛼𝑛) =
(︁
(𝛼1, . . . , 𝛼𝑚), (𝛽1, . . . , 𝛽𝑚)

)︁
(which essentially just reorders the scalars). We can check that 𝜃 is a
homomorphism and makes the diagram commute. Hence any extension of
vector spaces splits to form the direct sum.

1.3.3 The set of equivalence classes
Now we can tell different extensions apart, we would like to produce a list of all
extensions for given modules 𝐴 and 𝐵. First, a proposition:

Proposition 1.30. Here we use 𝐸 to
stand for both the
central module and
the entire extension.

Let 𝐸 and 𝐸 ′ be two equivalent extensions of 𝐴 by 𝐵. Let
∼ denote equivalence of extensions, so that 𝐸 ∼ 𝐸 ′. Then ∼ is an equivalence
relation.

Proof. There are three properties to demonstrate. Each is illustrated by a diagram
in figure 1.2.

18 CHAPTER 1. MODULES

𝐵 𝐸 𝐴

𝐵 𝐸 𝐴

𝜅 𝜈

𝜅 𝜈

𝐵 𝐸 𝐴

𝐵 𝐸 ′ 𝐴

𝜅 𝜈

𝜃

𝜅′ 𝜈′

𝜃−1

𝐵 𝐸 𝐴

𝐵 𝐸 ′ 𝐴

𝐵 𝐸 ′′ 𝐴

𝜅 𝜈

𝜃

𝜅′ 𝜈′

𝜃′

𝜅′′ 𝜈′′

Figure 1.2: Diagrams used in proposition 1.30 to show that ∼ is an equivalence
relation. Left to right: the diagrams for reflexivity, symmetry, and transitivity.

Reflexivity Any extension is equivalent to itself—choose 𝜃 = Id𝐸.

Symmetry If 𝐸 ∼ 𝐸 ′, then there is a homomorphism 𝜃 : 𝐸 → 𝐸 ′ which makes
𝐸 equivalent to 𝐸 ′. We showed that 𝜃 must be an isomorphism, so its
inverse 𝜃−1 : 𝐸 ′ → 𝐸 exists. But then 𝜃−1 makes 𝐸 ′ equivalent to 𝐸.

Transitivity If 𝐸 ∼ 𝐸 ′ and 𝐸 ′ ∼ 𝐸 ′′, then we have two commutative diagrams.
Gluing these together, we obtain one big commutative square (since each
of the four smaller squares commute). Thus 𝐸 ∼ 𝐸 ′′, via the composition
𝜃𝜃′.

Now we really can use the phrase ‘equivalent extensions’ with a clear conscience.
More importantly, we can group together extensions into equivalence classes.

Definition 1.31 (Set of equivalence classes). Let 𝐴 and 𝐵 be Λ-modules and let
𝐸 be an extension. The equivalence class of 𝐸 is the set [𝐸] = {extensions 𝐸 ′ :
𝐸 ′ ∼ 𝐸}. The set of all such classes is denoted by 𝐸(𝐴,𝐵).

Ultimately, 𝐸(𝐴,𝐵) is the object we’re trying to construct. To do this directly,
we’d have to consider every possible way to to make an extension of 𝐴 by 𝐵; then
decide which equivalence class each extension belongs to—no small feat.

It turns out to be easier to work with a closely related object called Ext(𝐴,𝐵).
In the rest of this project, we construct Ext(𝐴,𝐵) and prove that it is equivalent
to 𝐸(𝐴,𝐵).

Chapter 2

Category Theory

Category theory is a framework for working with collections of mathematical
objects that share a given type. The field was created in Eilenberg and Mac
Lane’s 1945 paper [2] as a generalisation of ideas they used in topology. In their
own words, category theory “contribute[d] to the current trend towards uniform
treatment of different mathematical disciplines.”

Our interest in the subject is motivated by Ext. In this chapter, we develop
the technical background needed to fully define and understand Ext.

2.1 Introduction
Rather than turtles,
it’s sets all the way
down!

Today, most common mathematical objects are formally defined in terms of
sets. For instance, consider a group 𝐺. We ask that 𝐺 be a set equipped with a
binary operation. This is a function from 𝐺×𝐺 to 𝐺. Such a function is defined
as a subset of (𝐺×𝐺) ×𝐺. But a product 𝐴×𝐵 is defined as a set of ordered
pairs, and an ordered pair (𝑎, 𝑏) may even be defined as the set {{𝑎}, {𝑎, 𝑏}}!

Usually ‘Zermelo-
Fraenkel’ set theory.

By building everything out of sets, we have come to use set theory as the
formal foundations of mathematics (at least for the time being). Category theory
is a different framework for mathematics. It takes a top-down view, instead of the
bottom-up perspective of set theory. Rather than worry about how to construct
or describe different objects, we focus on the connections between them.

We continue to use Hilton and Stammbach’s terminology and notation, though
there are others in use. Mac Lane provides a translation dictionary in [4, p. 249].

2.1.1 Categories
Let us begin by defining what a category should be.

Definition 2.1 (Category). A category 𝒞 consists of three pieces of data:

1. We say ‘class’ rather
than ‘set’ to avoid
problems like the
set of all sets—see
Potter’s discussion
in [6, app. C].

A class of objects 𝐴,𝐵,𝐶 . . .

2. A class of morphisms 𝛼, 𝛽, 𝛾, . . .

3. A means to compose two morphisms to obtain a third morphism.

Each morphism 𝛼 is associated with two objects: a domain 𝐴 and codomain
𝐵, say. For shorthand, we write 𝛼 : 𝐴 → 𝐵. Given a 𝐴 and 𝐵, there may be only

20 CHAPTER 2. CATEGORY THEORY

one morphism 𝐴 → 𝐵, there may be multiple such morphisms, or there may be
none whatsoever.

There are some further restrictions (axioms):

1. For each object 𝐴 there is an identity morphism 1𝐴 such that 1𝐴𝜙 = 𝜙 and
𝜓1𝐴 = 𝜓 for all 𝜙 : 𝐶 → 𝐴 and 𝜓 : 𝐴 → 𝐵.

2. We may compose morphisms only if their (co)domains are compatible.
For example, if we have morphisms 𝛼 : 𝐴 → 𝐵 and 𝛽 : 𝐵 → 𝐶, then the
composition 𝛽𝛼 : 𝐴 → 𝐶 exists, but 𝛼𝛽 does not (unless 𝐶 = 𝐴).

3. Composition is associative. For any three compatible morphisms 𝛼, 𝛽, 𝛾,
we require that (𝛼𝛽)𝛾 = 𝛼(𝛽𝛾). Hence we need not use brackets in compos-
itions.

Compare to how
the information in a
group (𝐺, ·) is given
by the operation ·,
not the set of sym-
bols 𝐺.

Note how all the information about the category is held in the morphisms—
specifically, in the composition rule. Thus we must be careful when comparing
morphisms. Two morphisms 𝛼 and 𝛽 can be equal only if they share their domain
and codomain. For instance, each of the four modulus functions

|·| : R → R, |·| : R → C, |·| : C → R and |·| : C → C

are distinct morphisms, despite representing the ‘same’ function.

Example 2.2. We list categories which will be important for our purposes, as
well as a few illustrative examples. For a more exhaustive list, see [4, p. 293]. We
will mostly be working in the categories Λ-Mod of Λ-modules and Ab of abelian
groups.

Category Objects Morphisms
Set Sets Functions
Grp Groups Group homomorphisms
Λ-Mod (left) Λ-modules Λ-module homomorphisms
Ab = Z-Mod Abelian groups Group homomorphisms
K-Vect = K-Mod Vector spaces over 𝐾 Linear transformations
Top Topological spaces Continuous maps

In each of these examples the morphisms are functions and the identity
morphisms 1𝑋 are the identity maps Id𝑋 . Further, morphism composition is
function composition (which we know to be associative).

e.g. 𝑋 = N,Z,R
where ≤ has its
usual meaning; or
𝑋 = {subsets of N}
with ⊆ instead of ≤.

Note that morphisms need not resemble functions at all! For instance, let
(𝑋,≤) be a partially ordered set. We can turn this into a category by

∙ taking objects to be elements 𝑥, 𝑦, 𝑧, . . . of 𝑋.

∙ having precisely one morphism 𝜙 : 𝑥 → 𝑦 if 𝑥 ≤ 𝑦, or else no such morphism
from 𝑥 to 𝑦.

Then a composition of morphisms 𝜓𝜙 : 𝑥 → 𝑦 → 𝑧 corresponds to the property
that if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑦 ≤ 𝑧 (transitivity). Identity morphisms 1𝑥 exist
because we require that 𝑥 ≤ 𝑥 (reflexivity).

2.1. INTRODUCTION 21

2.1.2 Functors
In most of the examples we have mentioned, categories consist of mathematical
structures and structure-preserving maps between them. But a category is a type
of mathematical structure itself, so how should we define a structure-preserving
map between categories?

Definition 2.3. A functor 𝐹 from a category 𝒞 to a category 𝒟 (written 𝐹 : 𝒞 →
𝒟) is a rule which provides:

1. Brackets may be
omitted, so that
𝐹 (𝐶) = 𝐹𝐶 and
𝐹 (𝛾) = 𝐹𝛾.

an object 𝐹 (𝐶) in 𝒟 for every object 𝐶 ∈ 𝒞;

2. a morphism 𝐹 (𝛾) : 𝐹 (𝐶) → 𝐹 (𝐶 ′) in 𝒟 for every morphism 𝛾 : 𝐶 → 𝐶 ′.
The result 𝐹 (𝛾) is called an induced morphism.

Functors are required to send identities to identities, so that 𝐹 (1𝐶) = 1𝐹 (𝐶).
Additionally, a functor must behave like a homomorphism if we give it composable
morphisms. We allow functors to reverse the order of composition, meaning that

𝐹 (𝛾𝛾′) = 𝐹 (𝛾)𝐹 (𝛾′) for all composable 𝛾, 𝛾′, (2.1a)
or 𝐹 (𝛾𝛾′) = 𝐹 (𝛾′)𝐹 (𝛾) for all composable 𝛾, 𝛾′. (2.1b)

Note that is it pos-
sible that a functor
is co- and contravari-
ant simultaneously.

If 𝐹 satisfies (2.1a) (resp. (2.1b)) it is said to be covariant (resp. contravariant).
In this case we may write 𝛾* (resp. 𝛾*) for the induced morphism 𝐹 (𝛾).

* * *

Commutative diagrams can also be constructed in categories, where we use
objects as vertices and morphisms as arrows. Functors are useful because they
map a commuting diagram (i.e. a system of morphism equations) in one category
to a commuting diagram in another. Take a square, for instance.

𝑌 𝐴 𝐹 (𝑌) 𝐹 (𝐴)

𝐵 𝑋 𝐹 (𝐵) 𝐹 (𝑋)

𝛼

𝛽 𝜙

𝐹 (𝛼)

𝐹 (𝛽) 𝐹 (𝜙)

𝜓 𝐹 (𝜓)

𝐹

(If 𝐹 is contravariant, the arrows on the right-hand diagram become reversed.)

Example 2.4. We describe two trivial functors and one not-so-trivial functor.

1. Every category has an identity functor Id𝒞 : 𝒞 → 𝒞 which maps an object
to itself and a morphism to itself.

2. Many categories’ objects are sets embellished with additional structure—
forgetful functors 𝑈 simply forget about this structure. Take Grp (groups
and homomorphisms) for example. The functor 𝑈 : Grp → Set maps groups
(𝐺, ·) to their underlying set 𝐺. Homomorphisms 𝜙 : 𝐺 → 𝐻 are unaltered
by 𝑈 ; though we think of 𝑈(𝜙) as an ordinary map between sets rather
than a homomorphism.

3. Let𝐺 be a group and consider all possible quotient groups of𝐺. The Abelian-
isation of 𝐺, denoted by Ab(𝐺), is the largest of these quotients which is
Abelian. We can construct an Abelianisation functor Ab: Grp → Ab by
modifying homomorphisms accordingly. If 𝑓 : 𝐺 → 𝐻 is a homomorphism,
then Ab(𝑓) : Ab(𝐺) → Ab(𝐻) maps a coset [𝑔] to [𝑓(𝑔)].

22 CHAPTER 2. CATEGORY THEORY

These three functors are all covariant. We close this section by introducing
an important pair of functors—one covariant, the other contravariant.

Example 2.5 (The Hom functors).Often a category’s
morphisms are ho-
momorphisms, hence
the name ‘Hom’.

The hom-set Hom(𝐴,𝐵) is the set of morph-
isms 𝜙 : 𝐴 → 𝐵 in some given category 𝒞. For example, take 𝒞 = Ab and 𝐴 = Z.
A (homo)morphism 𝜙 : Z → 𝐵 is completely determined by 𝜙(1), which we may
choose to be any element in 𝐵. So Hom(Z, 𝐵) is in bijective correspondance with
𝐵.

To make Hom into a functor, we must define how to create its induced
morphisms. We do so by a kind of partial evaluation. Fix 𝐴 and choose a
morphism 𝛽 : 𝐵 → 𝐵′. We define the induced morphism 𝛽* by

Note that 𝛽* accepts
𝜙 as an argument,
whereas the original
morphism 𝛽 com-
poses with 𝜙.

𝛽* = Hom(𝐴, 𝛽) : Hom(𝐴,𝐵) → Hom(𝐴,𝐵′)
𝜙 ↦→ 𝛽 ∘ 𝜙.

To check that this gives us a functor, we must verify two conditions. First, if
𝛽 = 1𝐵 we see that (1𝐵)* maps morphisms 𝜙 to 1𝐵 ∘ 𝜙 = 𝜙. Hence (1𝐵)* is the
identity map on Hom(𝐴,𝐵). Secondly, let 𝛽′ : 𝐵′ → 𝐵′′ be a second morphism.
Then the induced morphisms compose according to

𝛽′
𝛽(𝜙) = 𝛽′

*(𝛽 ∘ 𝜙) = 𝛽′ ∘ (𝛽 ∘ 𝜙)
and (𝛽′𝛽)*(𝜙) = (𝛽′ ∘ 𝛽) ∘ 𝜙.

Strictly speaking,
the fact that Hom
gives us sets (rather
than ‘classes’) is an
axiom of category
theory.

We observe that 𝛽′
𝛽 = (𝛽′𝛽)*, since composition of morphisms is associative.

This means that Hom(𝐴,−) : 𝒞 → Set is a covariant functor, given any fixed
choice of object 𝐴.

On the other hand, suppose we fix 𝐵 and work with a homomorphism 𝛼 : 𝐴′ →
𝐴. We define 𝛼* by

𝛼* = Hom(𝛼,𝐵) : Hom(𝐴,𝐵) → Hom(𝐴′, 𝐵)
𝜙 ↦→ 𝜙 ∘ 𝛼.

Once again 1*
𝐴 becomes the identity map on Hom(𝐴,𝐵), sending 𝜙 to 𝜙 ∘ 1𝐴 = 𝜙.

The behaviour of a composition is slightly different, however. Let 𝛼′ : 𝐴′′ → 𝐴′

be a second morphism; then we have

𝛼′*𝛼*(𝜙) = 𝛼′*(𝜙 ∘ 𝛼) = (𝜙 ∘ 𝛼) ∘ 𝛼′

and (𝛼𝛼′)*(𝜙) = 𝜙 ∘ (𝛼 ∘ 𝛼′).

This time we see that 𝛼′*𝛼* = (𝛼𝛼′)*—the composition order reverses. This
means that Hom(−, 𝐵) : 𝒞 → Set is a contravariant functor.

2.1.3 Bifunctors
The hom-sets give us two different Hom functors: one acting on the left, and
one acting on the right. The fact that these two functors are separated like this
suggests that we might be able to combine them into one big functor. First we
explain how to combine categories.

Definition 2.6. Let 𝒞 and 𝒟 be two categories. The product category 𝒞 × 𝒟
consists of:

2.1. INTRODUCTION 23

∙ Objects: ordered pairs (𝐶,𝐷) of objects 𝐶,𝐷 of 𝒞 and 𝒟, respectively.

∙ Morphisms: ordered pairs of morphisms (𝛾, 𝛿) where 𝛾, 𝛿 are morphisms in
𝒞 and 𝒟, respectively.

∙ Composition: composition occurs elementwise, so that (𝛾, 𝛿)(𝛾′, 𝛿′) =
(𝛾𝛾′, 𝛿𝛿′) whenever the two compositions exist in 𝒞 and 𝒟.

Details. Identity morphisms are given by 1(𝐶,𝐷) = (1𝐶 , 1𝐷). The composition is
associative because it inherits the associativity of 𝒞 in the left entry and 𝒟 in the
right entry.

The corresponding notion of a ‘combined functor’ follows from this category.
Such functors are given their own name.

Definition 2.7. There’s nothing
special about the
number two: we may
define tri- and multi-
functors analogously.

A bifunctor is a functor 𝐹 : 𝒞 × 𝒟 → ℰ from a product of
categories to a category.

Bifunctors may be contra- or covariant in each argument independently. In the
discussion to follow, we work only with covariant functors—though everything we
describe applies to contravariant functors and mixed co/contravariant bifunctors.
(This is permissible since it is possible to view any functor as a covariant functor
by using ‘opposite categories’.)

Bifunctors can be specialised to form ordinary single-argument functors. This
is done in the same manner as for Hom: by making a partial evaluation that
fixes one of the arguments. On the left, we can make 𝐹 (𝐶,−) into a functor
by mapping a morphism 𝛿 : 𝐷 → 𝐷′ to 𝛿* = 𝐹 (1𝐶 , 𝛿). On the right, 𝐹 (−, 𝐷)
becomes a functor when we map 𝛾 : 𝐶 → 𝐶 ′ to 𝛾* = 𝐹 (𝛾, 1𝐷). The properties
required for these restrictions to be functors all follow from the properties of the
original bifunctor 𝐹 .

This process doesn’t just give us two functors: we obtain two families of
functors: {𝐹 (𝐶,−)}𝐶∈𝒞 and {𝐹 (−, 𝐷)}𝐷∈𝒟. What about the opposite process—
given two families of functors, under what circumstances can they be merged to
form a single bifunctor?

Lemma 2.8 (Bifunctor from two functors). See exercise III.2.7
of [3] for more de-
tails.

Let 𝐹 : 𝒞 × 𝒟 → ℰ be a rule taking
pairs of objects (𝐶,𝐷) to an object 𝐹 (𝐶,𝐷), and let 𝐹 (𝐶,−) and 𝐹 (−, 𝐷) be
functors for all choices of 𝐶 and 𝐷.

The only way to make 𝐹 into a bifunctor is to define 𝐹 (𝛾, 𝛿) = 𝛾*𝛿*, and this
works if and only if 𝛾* and 𝛿* commute for all morphisms 𝛾 : 𝐶 → 𝐶 ′, 𝛿 : 𝐷 → 𝐷′.

𝐹 (𝐶,𝐷) 𝐹 (𝐶,𝐷′)

𝐹 (𝐶 ′, 𝐷) 𝐹 (𝐶 ′, 𝐷′)

𝛿*

𝛾* 𝛾*

𝛿*

Proof. Suppose there is some definition of 𝐹 (𝛾, 𝛿) making 𝐹 a bifunctor. By
rewriting a pair of morphisms as a composition, we conclude that

𝐹 (𝛾, 𝛿) = 𝐹 [(𝛾, 1𝐷) ∘ (1𝐶 , 𝛿)] = 𝐹 (𝛾, 1𝐷)𝐹 (1𝐶 , 𝛾) = 𝛾*𝛿*.

But we also have that

𝐹 (𝛾, 𝛿) = 𝐹 [(1𝐶 , 𝛿) ∘ (𝛾, 1𝐷)] = 𝐹 (1𝐶 , 𝛾)𝐹 (𝛾, 1𝐷) = 𝛿*𝛾*,

24 CHAPTER 2. CATEGORY THEORY

hence it is necessary that 𝐹 (𝛾, 𝛿) = 𝛾*𝛿* = 𝛿*𝛾*.
To see that this is sufficient, let us try defining the induced map by 𝐹 (𝛾, 𝛿) =

𝛾*𝛿*. There are two properties to check. Firstly, the identity morphism (1𝐶 , 1𝐷)
must induce the identity morphism 1(𝐶,𝐷). Observe that

𝐹 (1𝐶 , 1𝐷) = 1𝐶*1𝐷*

= 𝐹 (1𝐶 , 𝐷)𝐹 (𝐶, 1𝐷)
= 1𝐹 (𝐶,𝐷)1𝐹 (𝐶,𝐷) (Partial evaluations are functors)
= 1𝐹 (𝐶,𝐷)

Hence the identity induces the identity.
We must also check how 𝐹 applies to a composition. We compute

𝐹 (𝛾𝛾′, 𝛿𝛿′) = (𝛾𝛾′)*(𝛿𝛿′)*

= 𝛾*𝛾
′
*𝛿*𝛿

′
* (Partial evaluations are functors)

= 𝛾*𝛿*𝛾
′
*𝛿

′
* (Commutativity of induced maps)

= 𝐹 (𝛾, 𝛿)𝐹 (𝛾′, 𝛿′).

Thus we have made 𝐹 into a bifunctor.

Now we confirm that Hom is a bifunctor.

Proposition 2.9. Hom(−,−) is a bifunctor in any category. It is contravariant
in its first argument and covariant in its second argument.

Proof. By the previous lemma, we need only to examine whether or not the in-
duced morphisms 𝛼* and 𝛽* commute. Let 𝜙 : 𝐴 → 𝐵 be a morphism. Computing
directly from our definitions of induced morphisms, we have

𝛼*𝛽*(𝜙) = 𝛼*(𝛽 ∘ 𝜙) = (𝛽 ∘ 𝜙) ∘ 𝛼
and 𝛽*𝛼

(𝜙) = 𝛽(𝜙 ∘ 𝛼) = 𝛽 ∘ (𝜙 ∘ 𝛼).

Since morphism composition is associative, we see that 𝛼*𝛽* = 𝛽*𝛼
*.

2.2 More categorical tools
We shall show later how 𝐸(−,−) and Ext(−,−) are bifunctors. The construction
of Ext’s induced morphisms will require some further machinery. We also need
to define how functors may relate to one another, so that we can compare 𝐸 and
Ext.

2.2.1 Pullbacks and pushouts
Pullbacks and pushouts are devices used to ‘fill out’ a commutative square.
Suppose we have two fixed morphisms 𝜙 and 𝜓 which share their codomain 𝑋.
Can we find a pair of morphisms 𝛼, 𝛽 making the following square commute?

That is: can we find
morphisms such that
𝜙𝛼 = 𝜓𝛽?

𝑌 𝐴

𝐵 𝑋

𝛼

𝛽 𝜙

𝜓

(2.2)

2.2. MORE CATEGORICAL TOOLS 25

If we were working in Λ-Mod or Grp for instance, we could choose 𝑌 freely
and take 𝛼 and 𝛽 to be zero homomorphisms. But this is cheating—is there a
best choice of 𝛼 and 𝛽? Let us specify what we would like ‘best’ to mean.

Definition 2.10 (Pullback). The condition that
there must exist
a unique 𝜂 or 𝜃 is
known as the pull-
back/pushout prop-
erty.

Suppose that (2.2) commutes. The pair (𝛼, 𝛽) is a
pullback of (𝜙, 𝜓) if for any pair of morphisms (𝛼′, 𝛽′) with 𝜙𝛼′ = 𝜓𝛽′ there is
a unique morphism 𝜂 such that 𝛼′ = 𝛼𝜂 and 𝛽′ = 𝛽𝜂. (We call 𝜂 a connecting
morphism.)

This question has a dual counterpart: given 𝛼 and 𝛽, is there a best choice of
morphisms 𝜙, 𝜓 making the square commute?

Definition 2.11 (Pushout). Suppose that (2.2) commutes. The pair (𝜙, 𝜓) is
a pushout of (𝛼, 𝛽) if for any pair of morphisms (𝜙′, 𝜓′) with 𝜙′𝛼 = 𝜓′𝛽 there is
a unique morphism 𝜃 : 𝑋 → 𝑋 ′ such that 𝜙′ = 𝜃𝜙 and 𝜓′ = 𝜃𝜓. (We call 𝜃 a
connecting morphism.)

In other words, if
another commutat-
ive square can be
made of the two
given edges, it can
be ‘glued onto’ the
pullback/pushout
square.

𝑌 ′

𝑌 𝐴

𝐵 𝑋

∃!𝜂

𝛼′

𝛽′ 𝛼

𝛽 𝜙

𝜓

𝑌 𝐴

𝐵 𝑋

𝑋 ′

𝛼

𝛽 𝜙
𝜙′

𝜓

𝜓′

∃!𝜃

Pullback Pushout

(2.3)

Pullbacks need not exist in a given category. However, if a pullback does exist
it must be unique up to isomorphism. Briefly, we can use the pullback property
to construct two morphisms from each of the pullbacks into the other. Then we
may use the uniqueness condition to deduce that these morphisms are each others’
inverses. The same idea shows that pushouts are unique up to isomorphism (if
they exist).

Remark 2.12. It follows from the uniqueness condition on 𝜂 that

(𝛼𝜂 = 𝛼𝜂′ and 𝛽𝜂 = 𝛽𝜂′) =⇒ 𝜂 = 𝜂′.

This may be rewritten as(︃
𝛼
𝛽

)︃
𝜂 =

(︃
𝛼
𝛽

)︃
𝜂′ =⇒ 𝜂 = 𝜂′.

Hence the uniqueness condition for the pullback implies that (𝛼𝛽) may be cancelled
from the left of a morphism equation. For the pushout, the dual result is that
(𝜙, 𝜓) must be right-cancellable.

In Λ-Mod, these statements are equivalent to (𝛼𝛽) being injective and (𝜙, 𝜓)
being surjective. See [3, proposition I.6.1, I.6.2] for the details.

Let us now prove that these objects exist in Λ-Mod by constructing an explicit
example. We continue to use the notation of (2.3).

26 CHAPTER 2. CATEGORY THEORY

Proposition 2.13 (Constructing a pullback and pushout). The set 𝑌 = {(𝑎, 𝑏) :
𝜙(𝑎) = 𝜓(𝑏)} is a pullback of (𝜙, 𝜓) when equipped with the projections 𝛼 = 𝜋𝐴,
𝛽 = 𝜋𝐵 (restricted to 𝑌).

Let 𝑁 = Im(𝛼
−𝛽) = {(𝛼(𝑦),−𝛽(𝑦)) : 𝑦 ∈ 𝑌 }. Then the quotient module

𝑋 = (𝐴⊕𝐵)/𝑁 is a pushout of (𝛼, 𝛽). The associated homomorphisms are the
inclusion maps 𝜙 = 𝜄𝐴, 𝜓 = 𝜄𝐵 (modified to map into the quotient).

Proof. First note that 𝑌 really is a module as it is the kernel of the homomorph-
ism (𝜙,−𝜓) out of the direct sum. The homomorphisms 𝛼 and 𝛽 make the
square commute, since 𝜙𝛼(𝑎, 𝑏) = 𝜙(𝑎) = 𝜓(𝑏) = 𝜓𝛽(𝑎, 𝑏). Let a connecting
homomorphism be given by 𝜂(𝑦) = (𝑎𝑦, 𝑏𝑦). To ensure 𝛼𝜂 = 𝛼′ we must take
𝑎𝑦 = 𝛼′(𝑦); similarly 𝑏𝑦 = 𝛽′(𝑦). This uniquely determines 𝜂.

𝑌 𝐴

𝐴⊕𝐵

𝐵 𝑋

𝛼

𝛽

𝜄

𝜙

𝜋𝐴

𝜋𝐵

𝜓

𝑌 𝐴

𝐴⊕𝐵

𝐵 𝑋

𝛼

𝛽

𝜄𝐴

𝜙

𝜋𝜄𝐵

𝜓

Pullback Pushout

(2.4)

For the pushout, note that 𝑁 = Im(𝛼
−𝛽) is the image of a homomorphism and

thus may be factored out of of the direct sum.Strictly speak-
ing 𝜙(𝑎) is the
coset (𝑎, 0) + 𝑁 ,
and similarly for
𝜓(𝑏) = (0, 𝑏) +𝑁 .

Inside the quotient 𝑋, we have
𝜙𝛼(𝑦) = (𝛼(𝑦), 0) = (0, 𝛽(𝑦)) = 𝜓𝛽(𝑦), so the square commutes. A connecting
homomorphism 𝜃 must satisfy 𝜃(𝑎, 0) = 𝜓′(𝑎) and 𝜃(0, 𝑏) = 𝜓′(𝑏), according
to the two triangles in the pushout diagram (2.3). Since we wish 𝜃 to be a
homomorphism, this forces 𝜃(𝑎, 𝑏) = 𝜙′(𝑎) + 𝜓′(𝑏).

We must check that 𝜃 is well-defined. Suppose (𝑎, 𝑏) and (𝑎′, 𝑏′) are equal in 𝑋.
Then (𝑎, 𝑏) − (𝑎′, 𝑏′) = (𝛼(𝑦),−𝛽(𝑦)) for some 𝑦 ∈ 𝑌 . Applying 𝜃 to this equation
yields 𝜃(𝑎, 𝑏) − 𝜃(𝑎′, 𝑏′) = (𝜙𝛼− 𝜓𝛽)(𝑦) = 0. Hence 𝜃(𝑎, 𝑏) = 𝜃(𝑎′, 𝑏′).

We conclude with a lemma on composing two pullbacks or pushouts.

Lemma 2.14 (Composing pullbacks/pushouts). Suppose two pullback/pushout
squares are joined together as shown. Then the composite rectangle is also a
pullback/pushout square.

𝑌 ′ 𝐴′

𝑌 𝐴

𝐵 𝑋

𝑌 𝐴

𝐵 𝑋

𝐵′ 𝑋 ′

𝛼

𝛽

𝛽′

𝑌 𝐴

𝐵 𝑋

𝐵′ 𝑋 ′ 𝑍

𝛼

𝛽

𝛽′

∃!𝜂

∃!𝜃

Pullback Pushout Pushout (annotated)

Proof (pushout). The outer rectangle 𝑌 𝐴𝑋 ′𝐵′ commutes because the two squares
commute. Suppose we have morphisms 𝐴 → 𝑍 and 𝐵′ → 𝑍 such that 𝑌 𝐴𝑍𝐵′

commutes. The pushout property of the upper square gives us a unique morphism
𝜂 : 𝑋 → 𝑍 such that 𝐴 → 𝑋 → 𝑍 = 𝐴 → 𝑍 and 𝐵 → 𝑋 → 𝑍 = 𝐵 → 𝐵′ → 𝑍.

2.2. MORE CATEGORICAL TOOLS 27

Then the pushout property of the lower square gives us a unique morphism
𝜃 : 𝑋 ′ → 𝑍 making all components of the diagram commute. Hence 𝑌 𝐴𝑋 ′𝐵′ is a
pushout of (𝛼, 𝛽′𝛽).

2.2.2 Natural transformations
How can we compare one functor to another? This will depend on how each
functor maps both its objects and its morphisms. Is there a relation which
respects all this information?

Definition 2.15 (Natural transformation). This is sometimes
illustrated as:

𝒞 𝒟

𝐹

𝐺

𝑡

Let 𝐹 and 𝐺 be two functors 𝒞 → 𝒟.
A transformation 𝑡 : 𝐹 ⇒ 𝐺 is a family of morphisms {𝑡𝐶 : 𝐹𝐶 → 𝐺𝐶}𝐶∈𝒞. If
every morphism 𝑡𝐶 is an isomorphism, 𝑡 is called an equivalence. We may write 𝑡
for 𝑡𝐶 if it makes things clearer.

A transformation is natural if the following diagram commutes for all objects
𝐶 and all morphisms 𝛾 : 𝐶 → 𝐶 ′ out of 𝐶.

𝐹𝐶 𝐺𝐶

𝐹𝐶 ′ 𝐺𝐶 ′

𝑡𝐶

𝛾* 𝛾*

𝑡𝐶′

That is, a transformation is natural if it makes no difference whether we transform
before or after applying an induced map.

We may think of a natural transformation as a homomorphism between
functors; then natural equivalences are the analogue of isomorphisms.

Remark 2.16 (Identities, composition and equivalences). Choose a functor 𝐹 in
any category 𝒞. The identity natural transformation 1𝐹 : 𝐹 ⇒ 𝐹 consists of
morphisms which are all identities, speficically (1𝐹)𝐶 = 1𝐶 .

We can represent
this composition as:

𝒞 𝒟

𝐹

𝐻

𝐺

𝑡

𝑠

We may compose transformations 𝑡 : 𝐹 ⇒ 𝐺 and 𝑠 : 𝐺 ⇒ 𝐻 to form 𝑠𝑡 : 𝐹 ⇒
𝐻, whose morphisms are (𝑠𝑡)𝐶 = 𝑠𝐶 ∘ 𝑡𝐶 . It can be shown that a transformation
𝑡 is an equivalence if and only if it has an inverse 𝑠 such that the compositions 𝑡𝑠
and 𝑠𝑡 are both identity transformations.

For a meatier example, see section 3.3 where we create a natural equivalence
between 𝐸 and Ext. In the meantime, we prove a lemma which will be needed
for its construction.

Lemma 2.17 (Natural iff natural in both arguments). Suppose we have bifunctors
𝐹,𝐺 : 𝒞 × 𝒟 → ℰ and a transformation 𝑡 : 𝐹 ⇒ 𝐺 between them. Then 𝑡 is natural
if and only if it is natural in 𝒞 and in 𝒟.

Proof. Consider the following diagram.

𝐹 (𝐶,𝐷) 𝐺(𝐶,𝐷)

𝐹 (𝐶 ′, 𝐷) 𝐺(𝐶 ′, 𝐷)

𝐹 (𝐶 ′, 𝐷′) 𝐺(𝐶 ′, 𝐷′)

𝑡𝐶,𝐷

(𝛾,1)*

(𝛾,𝛿)*

(𝛾,1)*

(𝛾,𝛿)*
𝑡𝐶′,𝐷

(1,𝛿)* (1,𝛿)*

𝑡𝐶′,𝐷′

28 CHAPTER 2. CATEGORY THEORY

‘Natural in 𝐶’ means that for any object 𝐷 ∈ 𝒟 the restricted transformation
𝑡−,𝐷 is natural. If this is the case, the top square commutes. Likewise, ‘natural
in 𝐷’ means that the bottom square commutes. Then the composite rectangle
commutes. But the vertical edges of this rectangle are the same as the dotted
arrows, so the outer square must commute. This means that 𝑡 is natural.

The other direction is easier. If 𝑡 is a natural transformation, any square of
the same form as the outer dotted square commutes. But then we can choose
𝛾 = 1𝐶 and 𝛿 = 1𝐷 to see that the top and bottom squares commute, respectively.
Hence 𝑡 is natural in 𝐶 and in 𝐷.

Chapter 3

Extensions and the bifunctor Ext

We are now equipped with the tools to fully define 𝐸 and Ext. After doing so,
we verify that they are bifunctors. We conclude the project by constructing a
natural equivalence between 𝐸 and Ext.

3.1 The bifunctor E

3.1.1 Technical Lemmas
Both of the following lemmas come in two versions: one for the pullback and one
for the pushout. Hilton and Stammbach prove the pullback versions in [3, section
III.1], so we prove the pushout versions here.

Lemma 3.1 (Extensions from pullback/pushout). If the left square in (3.1) is
a pullback, then ker𝛼 ∼= ker𝜓 and 𝛼 is surjective if 𝜓 is surjective. If the same
square is a pushout, then coker𝛼 ∼= coker𝜓 and 𝜓 is injective if 𝛼 is injective.

𝑌 𝐴 𝐴/ Im𝛼

𝐵 𝑋 𝑋/ Im𝜓

𝛼

𝛽 𝜙

𝜌

𝜃

𝜓 𝜋

(3.1)

Proof (pushout). Let [𝑎] and [𝑥] denote cosets in the two quotient modules. Define
𝜃 by 𝜃[𝑎] = [𝜙(𝑎)]. To see this is well-defined, choose two representatives 𝑎 and 𝑎′

of the same coset. Then 𝑎−𝑎′ = 𝛼(𝑦) for some 𝑦, meaning [𝜙(𝑎)] = [𝜙𝑎′ +𝜙𝛼𝑦] =
[𝜙𝑎′] + [𝜓𝛽(𝑦)] = [𝜙(𝑎′)] (because Im𝜓 is factored out by 𝜋).

Next, 𝜃 is a homomorphism since 𝜃[𝑎+ 𝑎′] = [𝜙(𝑎+ 𝑎′)] = [𝜙(𝑎)] + [𝜙(𝑎′)] =
𝜃[𝑎] + 𝜃[𝑎′]. Recall that 𝜙(𝑎) =

(𝑎, 0) + Im(𝛼
−𝛽)

and 𝜓(𝑏) = (0, 𝑏) +
Im(𝛼

−𝛽).

Without loss of generality (WLOG), let 𝑋 = (𝐴 ⊕ 𝐵)/ Im(𝛼
−𝛽)

be the pushout constructed in proposition 2.13. If [𝑎] belongs to ker 𝜃, we
have 𝜙(𝑎) = (𝑎, 0) is equal in 𝑋 to 𝜓(𝑏) = (0, 𝑏) for some 𝑏 ∈ 𝐵. Then
(𝑎,−𝑏) = (𝛼(𝑦),−𝛽(𝑦)) for some 𝑦 ∈ 𝑌 . In particular, 𝑎 ∈ Im𝛼 means that [𝑎] is
the zero coset. So 𝜃 is injective.

Because 𝜋 and (𝜙, 𝜓) are surjective, their composition (𝜋𝜙, 𝜋𝜓) = (𝜋𝜙, 0) is
surjective too. Thus 𝜋𝜙 is surjective, so any [𝑥] looks like [𝑥] = [𝜙(𝑎)] = 𝜃[𝑎] for
some 𝑎. Hence 𝜃 is surjective. We can restore full

generality by us-
ing the fact that
any two pushouts
are isomorphic via
connecting homo-
morphisms.

Finally, suppose 𝛼 is injective and suppose 𝜓(𝑏) = 0. Use the specific pushout
𝑋, again WLOG. Then (0, 𝑏) ∈ Im(𝛼

−𝛽), so 0 = 𝛼(𝑦) and 𝑏 = 𝛽(𝑦) for some

30 CHAPTER 3. EXTENSIONS AND THE BIFUNCTOR EXT

𝑦 ∈ 𝑌 . But 𝛼 is injective, so 𝑦 = 0 and hence 𝑏 = 0, meaning 𝜓 is injective
also.

Suppose that the bottom row of (3.1) is short exact, i.e. an extension. The
lemma then says that the top row is also an extension. The next lemma works in
the other direction.

Lemma 3.2. Let the following diagram be commutative with exact rows.

𝐵′ 𝐸 ′ 𝐴′

𝐵 𝐸 𝐴

𝜅′

𝛽

𝜈′

𝜃 𝛼

𝜅 𝜈

If 𝐵′ = 𝐵 and 𝛽 = 1𝐵 then the right square is a pullback. If 𝐴′ = 𝐴 and 𝛼 = 1𝐴
then the left square is a pushout.

Proof (pushout). Given any 𝑒 ∈ 𝐸, there is an element 𝑒′ ∈ 𝐸 ′ with 𝜈(𝑒) = 𝜈 ′(𝑒′)
by the surjectivity of 𝜈 ′. Then 𝜈(𝑒) = 𝜈𝜃(𝑒′), meaning 𝑒 − 𝜃(𝑒′) ∈ ker 𝜈. This
means 𝑒 = 𝜃(𝑒′) + 𝜅(𝑏) for some 𝑏 ∈ 𝐵.

𝐵′ 𝐸 ′

𝐵 𝐸

𝑋

𝜅′

𝛽 𝜃
𝛾

𝜅

𝛿

𝜂

Now we demonstrate how the pushout property arises from the diagram. Suppose
we have maps 𝛾 and 𝛿 with 𝛾𝜅′ = 𝛿𝛽. If the two triangles above are to commute,
then 𝜂𝜃(𝑒′) = 𝛾(𝑒′) and 𝜂𝜅(𝑏) = 𝛿(𝑏). Thus if a connecting homomorphism exists,
it must be given by 𝜂(𝑒) = 𝜂(𝜃(𝑒′) + 𝜅(𝑏)) = 𝛾(𝑒′) + 𝛿(𝑏). It’s straightforward to
check that 𝜂 is a homomorphism provided we know 𝜂 is well-defined.

Suppose 𝑒 has two representations 𝑒 = 𝜃(𝑒′
1) + 𝜅(𝑏1) = 𝜃(𝑒′

2) + 𝜅(𝑏2). Then

𝜃(𝑒′
1 − 𝑒′

2) + 𝜅(𝑏1 − 𝑏2) = 0. (3.2)

Applying 𝜈 to this equation gives 𝜈𝜃(𝑒′
1 − 𝑒′

2) = 𝜈 ′(𝑒′
1 − 𝑒′

2) = 0, so 𝑒′
1 − 𝑒′

2 = 𝜅′(𝑏′)
for some 𝑏′ ∈ 𝐵′. Substituting into (3.2), we see that 𝜃𝜅′(𝑏′) + 𝜅(𝑏1 − 𝑏2) =
𝜅(𝛽(𝑏′) + 𝑏1 − 𝑏2) = 0. Because 𝜅 is injective, it follows that 𝑏1 = 𝑏2 − 𝛽(𝑏′). This
is enough to show that that the two images of 𝑒 under 𝜂 are identical.

𝛾(𝑒′
1) + 𝛿(𝑏1) = 𝛾[𝑒′

2 + 𝜅′(𝑏′)] + 𝛿[𝑏2 − 𝛽(𝑏′)]
= 𝛾(𝑒′

2) + 𝛿(𝑏2) + (𝛾𝜅′ − 𝛿𝛽)⏟ ⏞
=0

(𝑏′)

Thus 𝜂 is well-defined.

3.1. THE BIFUNCTOR E 31

3.1.2 Induced maps

Let 𝛼 : 𝐴′ → 𝐴 be a homomorphism. Suppose we are given an extension 𝜈 : 𝐵 𝜅
�

𝐸
𝜈
� 𝐴 representing an extension class [𝜈] ∈ 𝐸(𝐴,𝐵). To define the induced map

𝛼*, construct the pullback 𝐸𝛼 of (𝛼, 𝜈).

𝐵 𝐸𝛼 𝐴′

𝐵 𝐸 𝐴

𝜅′ 𝜈′

𝜃 𝛼

𝜅 𝜈

(3.3)

Apply lemma 3.1. We add the homomorphism 𝜅′ to diagram (3.3), which
maps 𝐵 isomorphically onto ker 𝜈 ′ and then includes the result into 𝐸𝛼. The
lemma also tells us that 𝜈 ′ is surjective, and thus the top row is an extension
𝜈 ′ : 𝐵 𝜅′

� 𝐸𝛼 𝜈′

� 𝐴′. We define 𝛼*[𝜈] = [𝜈 ′] to be this extension’s equivalence class.
We should check that 𝛼* is well-defined. Suppose we perform the above

procedure on an extension 𝜈 equivalent to 𝜈. We obtain diagram (3.4). The
back-right square is already a pullback; the bottom-right square is a pullback by
lemma 3.2. So their composite rectangle is a pullback of 𝐸 (lemma 2.14). Hencẽ︀𝐸𝛼 is isomorphic to 𝐸𝛼 (via the dotted arrow). Looking at the top squares, we
see that 𝜈 ′ and 𝜈 ′ are equivalent extensions.

𝐵 ̃︀𝐸𝛼 𝐴′

𝐵 𝐸𝛼 𝐴′

𝐵 ̃︀𝐸 𝐴

𝐵 𝐸 𝐴

𝜈′

𝛼

𝜈′

𝛼

𝛼*

𝜈change to

equiv. exten.

𝜈

(3.4)

Have we made a functor out of 𝐸(−, 𝐵)? Set 𝐴′ = 𝐴 and 𝛼* = 1𝐴. Then
in diagram (3.3) we immediately see that 1*

𝐴 is the identity map on extension
classes. Next, a composition 𝛼′*𝛼* of induced maps would create two pullbacks
as in figure 3.1. Then the composite rectangle would be a pullback too, meaning
(𝐸𝛼)𝛼′ is isomorphic to the pullback 𝐸(𝛼𝛼′) created by (𝛼𝛼′)*. We conclude that
𝛼′*𝛼* = (𝛼𝛼′)* and thus 𝐸(−, 𝐵) is a contravariant functor.

* * *

Given 𝛽 : 𝐵 → 𝐵′, the process of constructing 𝛽*[𝜈] is similar. This time we
form the pushout of (𝜅, 𝛽) to obtain the module 𝐸𝛽. Using lemma 3.1 again,
we know that 𝜅′ is injective and that we may add the morphism 𝜈 ′, forming an
extension along the bottom row. We define 𝛽*[𝜈] = [𝜈 ′]. A argument similar to
that of 𝛼* (involving pushouts rather than pullbacks) shows that 𝛽* is well-defined.

32 CHAPTER 3. EXTENSIONS AND THE BIFUNCTOR EXT

𝐵 (𝐸𝛼)𝛼′
𝐴′′

𝐵 𝐸𝛼 𝐴′

𝐵 𝐸 𝐴

𝛼′

𝛼

𝜅 𝜈

𝐵 𝐸 𝐴

𝐵′ 𝐸𝛽 𝐴

𝐵′′ (𝐸𝛽)𝛽′ 𝐴

𝜅

𝛽

𝜈

𝛽′

𝛼′*𝛼* = (𝛼𝛼′)* 𝛽′
𝛽 = (𝛽′𝛽)*

Figure 3.1: Diagrams showing how the induced maps compose. On the left, 𝛼*

composes contravariantly, whereas 𝛽* composes covariantly.

𝐵 𝐸 𝐴

𝐵′ 𝐸𝛽 𝐴

𝜅

𝛽

𝜈

𝜃

𝜅′ 𝜈′

Does this give us a functor? As before, set 𝐵′ = 𝐵 and 𝛽 = 1 to conclude
that 1* is the identity map on 𝐸(𝐴,𝐵). Consulting figure 3.1 again, we form
two pushouts in constructing the composition 𝛽′

𝛽. The composite rectangle is
then a pushout, meaning (𝐸𝛽)𝛽′ ∼= 𝐸(𝛽𝛽′). Thus 𝛽′

𝛽 = (𝛽′𝛽)* which tells us that
𝐸(𝐴,−) is a covariant functor.

3.1.3 Bifunctorality
One last question about 𝐸 remains: is it a bifunctor?

Theorem 3.3. 𝐸(−,−) is a bifunctor from Λ-Mod to Set. It is contravariant in
its first argument and covariant in its second.

Sketch proof. By lemma 2.8, we just need to show that 𝛼*𝛽* = 𝛽*𝛼
*. This involves

showing that extensions involving (𝐸𝛽)𝛼 and (𝐸𝛼)𝛽 are equivalent. Hilton and
Stammbach do this directly in [3, theorem III.1.4] with a diagram chase.

We shall omit the details. However, in the sections to follow we prove that
Ext is a bifunctor and we construct a natural equivalence between 𝐸 and Ext.
By imposing Ext’s bifunctor structure onto 𝐸, we can show indirectly that 𝐸 is
a bifunctor.

3.2 The bifunctor Ext
The functor 𝐸 is somewhat clumsy to work with. For instance, there is no
‘formula’ for 𝐸(𝐴,𝐵) that specifies all extension classes. We introduce Ext to
address this. First we must adapt the idea of a group presentation to modules.

3.2.1 Projective presentations
A group presentation ⟨𝑋 | 𝑅⟩ formally stands for the quotient group 𝐹 (𝑋)/𝑁(𝑅).
Here 𝐹 (𝑋) is the ‘free group’, consisting of strings 𝑥±1

𝑖1 . . . 𝑥±1
𝑖𝑛 made from the

3.2. THE BIFUNCTOR EXT 33

symbols 𝑥𝑖 ∈ 𝑋. This group has no relations—no 𝑥𝑖 interacts with any other
𝑥𝑗. We introduce relations by factoring out 𝑁(𝑅), the smallest normal subgroup
containing the relator set 𝑅.

We need to something like a ‘free module’. In fact the more general idea of a
projective module is sufficient.

Definition 3.4. Compare to free
Abelian groups.

Let 𝐴 be a set. The free Λ-module 𝐹 (𝐴) is the direct sum⨁︀
𝑎∈𝐴 Λ of copies of Λ.

Definition 3.5. 𝑃

𝐵 𝐶

𝛽
𝛾

𝜖

A Λ-module 𝑃 is projective if given any two Λ-module ho-
momorphisms 𝜖 : 𝐵 � 𝐶 and 𝛾 : 𝑃 → 𝐶 with 𝜖 surjective there is a third
homomorphism 𝛽 : 𝑃 → 𝐵 with 𝜖𝛽 = 𝛾.

Definition 3.6. Compare to 𝑁(𝑅) →˓
𝐹 (𝑋) � 𝐺

A projective presentation of a Λ-module 𝐴 is a short exact
sequence 𝑅

𝜇
� 𝑃

𝜖
� 𝐴 with 𝑃 projective.

Before proceeding, we demonstrate that every module has a presentation—
albeit not a very useful one.

Proposition 3.7. The free module 𝑃 = 𝐹 (𝐴) is projective for any set 𝐴.

Proof. Compare to the
standard basis vec-
tors 𝑒𝑖 of R𝑛.

Let 𝑒𝑎 be the tuple with 1 at position 𝑎 and 0 at all other positions.
Any element in 𝑃 is a linear combination ∑︀𝑎∈𝐴 𝜆𝑎𝑒𝑎 with only finitely many 𝜆𝑎
nonzero.

Assume the setup of definition 3.5. Because 𝜖 is surjective, there is an
element 𝑏𝑎 such that 𝜖(𝑏𝑎) = 𝛾(𝑒𝑎) for every index 𝑎 ∈ 𝐴. Define 𝛽 by re-
quiring that 𝛽(𝑒𝑎) = 𝑏𝑎. This uniquely specifies 𝛽, since {𝑒𝑎}𝑎∈𝐴 is a basis for
𝐹 (𝐴). Explicitly, we have 𝛽(∑︀𝑎∈𝐴 𝜆𝑎𝑒𝑎) = ∑︀

𝑎∈𝐴 𝜆𝑎𝑏𝑎. Then 𝜖 maps this to∑︀
𝑎∈𝐴 𝜆𝑎𝜖(𝑏𝑎) = ∑︀

𝑎∈𝐴 𝜆𝑎𝛾(𝑒𝑎) = 𝛾(∑︀𝑎∈𝐴 𝜆𝑎𝑒𝑎). Hence 𝜖𝛽 = 𝛾.

Corollary 3.8. Every Λ-module 𝐴 has a projective presentation.

Proof. Let 𝑃 be the free Λ-module 𝐹 (𝐴). Imposing that 𝜖 satisfies 𝜖(𝑒𝑎) = 𝑎
completely determines 𝜖 in the same way that 𝛽 was determined above. Then
we may construct the sequence ker 𝜖 →˓ 𝐹 (𝐴) 𝜖

� 𝐸 which is (trivially) short
exact.

3.2.2 The Ext groups
Recall the hom-sets of example 2.5. In Λ-Mod, these consist of Λ-module ho-
momorphisms. We can turn such a set Hom(𝐴,𝐵) into an Abelian group using
the addition (𝜙 + 𝜓)(𝑎) = 𝜙(𝑎) + 𝜓(𝑎). The zero homomorphism is the iden-
tity; negatives are given by (−𝜙)(𝑎) = −(𝜙(𝑎)); and associativity follows from
associativity of module addition.

The maps 𝛼* and 𝛽* induced by Hom then become group homomorphisms,
and thus Hom becomes a functor to Ab rather than Set. What happens if we
apply this new Hom to a short exact sequence?

Proposition 3.9 (Hom(−, 𝐵) is left-exact). Let 𝑅
𝜇
� 𝑃

𝜖
� 𝐴 be a short exact

sequence of Λ-modules. For every Λ-module 𝐵, the induced sequence below is
exact.

Note that sequence
has reversed direc-
tion. This happens
because Hom(−, 𝐵)
is contravariant.

0 Hom(𝐴,𝐵) Hom(𝑃,𝐵) Hom(𝑅,𝐵)𝜖* 𝜇*
(3.5)

34 CHAPTER 3. EXTENSIONS AND THE BIFUNCTOR EXT

Proof. There are three facts to demonstrate.
1. Let 𝜏 ∈ ker 𝜖*. Then 𝜖*(𝜏) = 𝜏𝜖 = 0 = 0𝜖. Because 𝜖 is surjective, we may

cancel it on the right. So 𝜏 = 0, meaning 𝜖* is injective.

2. Let 𝜏 : 𝐴 → 𝐵 be a homomorphism (not neccesarily in ker 𝜖*. Consider the
composition 𝜏𝜖𝜇. On the one hand this is (𝜏𝜖)𝜇 = 𝜇*𝜖*𝜏 . On the other
hand, this is 𝜏(𝜖𝜇) = 𝜏0 = 0. Hence Im 𝜖* ⊆ ker𝜇*.

3. For the opposite inclusion. Let 𝜎 ∈ ker𝜇*, i.e. 𝜎𝜇 = 0. Can we use this to
find a 𝜓 : 𝐴 → 𝐵 such that 𝜎 = 𝜖*(𝜓) = 𝜓𝜖?

𝑅 𝑃 𝐴

𝐵

𝜇 𝜖

𝜎
𝜓

Given 𝑎 ∈ 𝐴, use the surjectivity of 𝜖 to choose an element 𝑝 ∈ 𝑃 with
𝜖(𝑝) = 𝑎; then define 𝜓(𝑎) = 𝜎(𝑝). This makes 𝜓 a homomorphism because
𝜏 is a homomorphism. To check that 𝜓 is well-defined, let 𝑝 and 𝑝′ both
map to 𝑎 under 𝜖. Because we have an exact sequence, 𝑝 − 𝑝′ = 𝜇(𝑟) for
some 𝑟 ∈ 𝑅. But 𝜎𝜇 = 0, meaning 𝜎(𝑝− 𝑝′) = 𝜎𝜇(𝑟) = 0. Rearranging this
tells us that 𝜎(𝑝) = 𝜎(𝑝′), so 𝜓 is well-defined.
From this we conclude that ker𝜇* ⊆ Im 𝜖*.

The induced sequence (3.5) is exact but not necessarily short exact, as 𝜇* need
not be surjective. For example, take the sequence Z

×𝑛
� Z

mod𝑛
� Z𝑛 of Z-modules

and take 𝐵 = Z𝑛. We obtain the induced sequence

0 Hom(Z𝑛,Z𝑛) Hom(Z,Z𝑛) Hom(Z,Z𝑛).
𝜖*

(mod𝑛)*

𝜇*

(×𝑛)*

Here 𝜇* accepts a map 𝜏 : Z → Z𝑛 and returns 𝜏𝜇, which takes 𝑧 to 𝜏(𝑛𝑧) =
𝑛𝜏(𝑧) = 0. So 𝜇*(𝜏) is always the zero homomorphism. But Hom(Z,Z𝑛) contains
non-zero homomorphisms such as 𝜏 : Z → Z𝑛 : 𝑧 ↦→ 𝑧 mod 𝑛.

To get around this lack of surjectivity, we add an extra term to the right end
of (3.5) which makes the sequence exact at Hom(𝑅,𝐵).
Definition 3.10 (Ext groups).Note that Ext de-

pends on 𝜇, which is
given by the present-
ation of 𝐴 in spe-
cified by 𝐸.

For every Λ-module 𝐴, choose a projective present-
ation of 𝐴. Call the collection of presentations 𝐸.

Define Ext𝐸(𝐴,𝐵) to be coker𝜇* where 𝜇* is defined as in proposition 3.9.
Its elements are cosets [𝜙] of morphisms 𝜙 : 𝑅 → 𝐵. Two classes [𝜙] and [𝜙]′ are
equal if and only if 𝜙− 𝜙′ = 𝜏𝜇 for some 𝜏 : 𝑃 → 𝐵.

3.2.3 Induced maps
Let 𝛽 : 𝐵 → 𝐵′ be a homomorphism. We can extend (3.5) to form a longer exact
sequence using Ext groups.

The maps 𝜋 are ca-
nonical projections.

Hom(𝐴,𝐵) Hom(𝑃,𝐵) Hom(𝑅,𝐵) Ext𝐸(𝐴,𝐵)

Hom(𝐴,𝐵′) Hom(𝑃,𝐵′) Hom(𝑅,𝐵′) Ext𝐸(𝐴,𝐵′)

𝜖*

𝛽*

𝜇*

𝛽*

𝜋

𝛽* 𝛽*

𝜖* 𝜇*
𝜋

3.2. THE BIFUNCTOR EXT 35

The diagram shows two such sequences, connected by the maps 𝛽* induced by
the Hom functor. The rightmost 𝛽* is induced by Ext𝐸(𝐴,−), and is defined
by 𝛽*[𝜙] = [𝛽 ∘ 𝜙], making the right square commute. Then Ext𝐸(𝐴,−) is a
covariant functor—the details are similar to those of Hom(𝐴,−).

We can address the role of 𝐸 and construct induced maps on the left at
the same time. Let 𝛼 : 𝐴′ → 𝐴 be a homomorphism, and choose presentations
𝑅′ 𝜇′

� 𝑃 ′ 𝜖′

� 𝐴′ of 𝐴′ and 𝑅
𝜇
� 𝑃

𝜖
� 𝐴 of 𝐴. Because 𝑃 ′ is projective, there is a

homomorphism 𝜋 making the right square of (3.6) commute. (As shorthand, we
say that 𝜋 lifts 𝛼.) Then 𝜋 induces a unique homomorphism 𝜎 making the left
square commute.

The presentations
of 𝐴′ and 𝐴 are
allowed to be in
different collections
𝐸′ and 𝐸.

𝑅′ 𝑃 ′ 𝐴′

𝐵 𝑅 𝑃 𝐴

𝜇′

𝜎

𝜖′

𝜋 𝛼

𝜇

𝜙
𝜖

(3.6)

To construct 𝜎, define 𝜎(𝑟′) to be the unique 𝑟 ∈ 𝑅 such that 𝜇(𝑟) = 𝜋𝜇′(𝑟′).
We know that a unique such 𝑟 exists because 𝜖𝜋𝜇′(𝑟′) = 𝛼𝜖′𝜇′(𝑟′) = 0 and the
bottom row is exact.

We can use 𝜎 to make a map 𝜋* : Ext𝐸(𝐴,𝐵) → Ext𝐸′(𝐴′, 𝐵) defined by
𝜋*[𝜙] = [𝜙 ∘ 𝜎], forming the triangle in (3.6). In principle, 𝜋* may depend on
both 𝜋 and 𝛼. We show that 𝜋* is actually independent of 𝜋.

Lemma 3.11. Given the setup of (3.6), 𝜋* is the same for every choice of 𝜋.

Proof. Choose two liftings 𝜋1 and 𝜋2 which induce 𝜎1 and 𝜎2 respectively. Since
𝜖(𝜋1 −𝜋2) = 𝛼𝜖′ −𝛼𝜖′ = 0, there must exist 𝜏 : 𝑃 ′ → 𝑅 with 𝜋1 −𝜋2 = 𝜇𝜏 , because
the lower sequence is exact. Then 𝜇(𝜎1 − 𝜎2) = (𝜋1 − 𝜋2)𝜇′ = 𝜇𝜏𝜇′. Since 𝜇 is
injective, we conclude 𝜎1 = 𝜎2 + 𝜏𝜇′. Recall that [𝜙] = [𝜙′]

in Ext𝐸′
(𝐴′, 𝐵) if

𝜙 − 𝜙′ = 𝛾𝜇′ for
some 𝛾.

To finish, choose [𝜙] in Ext𝐸(𝐴,𝐵). Then
𝜋*

1[𝜙] = [𝜙𝜎1] = [𝜙𝜎2 + 𝜙𝜏𝜇′] = [𝜙𝜎2] = 𝜋*
2[𝜙].

The map 𝜋* can be formed for any Λ-module 𝐵. Collecting together all
these morphisms 𝜋* as 𝐵 varies gives us a transformation 𝑡 : Ext𝐸(𝐴,−) ⇒
Ext𝐸′(𝐴′,−). The transformation is natural in 𝐵 because

𝜋*𝛽*[𝜙] = [(𝛽 ∘ 𝜙) ∘ 𝜎] = [𝛽 ∘ (𝜙 ∘ 𝜎)] = 𝛽*𝜋
*[𝜙].

Let us write (𝛼;𝐸 ′, 𝐸) for this transformation 𝑡.
Suppose we have a second homomorphism 𝛼′ : 𝐴′′ → 𝐴′. Given a presentation

of 𝐴′′ in 𝐸 ′′, we can form a second transformation (𝛼′;𝐸 ′′, 𝐸 ′) by choosing a
suitable lifting 𝜋′ : 𝐴′′ → 𝐴′. But then 𝜋 ∘ 𝜋′ lifts 𝛼 ∘ 𝛼′. This means that the
transformations compose according to

(𝛼′;𝐸 ′′, 𝐸 ′) ∘ (𝛼;𝐸 ′, 𝐸) = (𝛼 ∘ 𝛼′;𝐸 ′′, 𝐸). Note how the 𝛼
maps swap.

(3.7)

Furthermore
(1𝐴;𝐸,𝐸) = 1, (3.8)

where 1 is the identity transformation 1: Ext𝐸(𝐴,−) ⇒ Ext𝐸(𝐴,−).
Now we may define induced maps in 𝐴. Let 𝛼 : 𝐴′ → 𝐴 and choose presenta-

tions of 𝐴′ and 𝐴 from the same collection 𝐸. Define 𝛼* = Ext𝐸(𝛼,𝐵) to be the
natural transformation (𝛼;𝐸,𝐸) evaluated at 𝐵. Where 𝜎 is induced

by a choice of 𝜋.
(Explicitly, 𝛼*[𝜙] = [𝜙 ∘ 𝜎].)

Then Ext𝐸(−, 𝐵) becomes a covariant functor due to rules (3.7) and (3.8).

36 CHAPTER 3. EXTENSIONS AND THE BIFUNCTOR EXT

3.2.4 Bifunctorality

Theorem 3.12. Ext𝐸(𝐴,𝐵) is a bifunctor from Λ-Mod to Ab. It is contravariant
in 𝐴 and covariant in 𝐵.

Proof. We just need to show that 𝛼*𝛽* = 𝛽*𝛼
*. We have 𝛼*𝛽*[𝜙] = [(𝛽∘𝜙)∘𝜎)] =

[𝛽 ∘ (𝜙 ∘ 𝜎)] = 𝛽*𝛼
*[𝜙].

Finally, we demonstrate that the choice of 𝐸 doesn’t affect the functor we
construct from it. Set 𝑒𝐴 = (1𝐴;𝐸 ′, 𝐸). This is the natural transformation which
changes the presentation of 𝐴.

Lemma 3.13. The transformation 𝑒𝐴 : Ext𝐸(𝐴,−) ⇒ Ext𝐸′(𝐴,−) is an equi-
valence.

Proof. Compose the transformation with (1𝐴;𝐸,𝐸 ′) using rules (3.7) and (3.8).
Both compositions give the identity transformation. Hence they are both equival-
ences (see remark 2.16).

This gives us a collection 𝑒 = {𝑒𝐴}𝐴∈Λ-Mod of equivalences—each natural in
𝐵—which change 𝐸 to 𝐸 ′. The collection itself is natural in 𝐴 in the sense that
there is no difference if we change 𝐴 before or after we change 𝐸 to 𝐸 ′. Consider
the following diagram of transformations.

Ext𝐸(𝐴,−) Ext𝐸′(𝐴,−)

Ext𝐸(𝐴′,−) Ext𝐸′(𝐴′,−)

𝑒𝐴

𝛼* 𝛼*

𝑒𝐴′

The top path gives (𝛼;𝐸 ′, 𝐸 ′)(1𝐴;𝐸 ′, 𝐸) = (𝛼;𝐸 ′, 𝐸) and the bottom gives
(1𝐴′ ;𝐸 ′, 𝐸)(𝛼;𝐸,𝐸) = (𝛼;𝐸 ′, 𝐸)—the same result.Formally 𝑒 as a

transformation is
given by 𝑒𝐴,𝐵 =
(𝑒𝐴)|𝐵, where |𝐵
means ‘evaluated at
𝐵’.

Thus the collection 𝑒 describes a natural equivalence 𝑒 : Ext𝐸 ⇒ Ext𝐸′ of
bifunctors. In other words, changing the presentations we use gives us a different
description of the same functor. This allows us to drop the 𝐸 from Ext𝐸.

3.3 The natural equivalence
Our last task is to demonstrate that 𝐸 and Ext are equivalent. For the moment,
we ‘forget’ that Ext produces Abelian groups, and just work with two set-valued
bifunctors.

Main Theorem 3.14. There is a natural equivalence 𝑓 : 𝐸(−,−) ⇒ Ext(−,−).

Step 1 (Construction of 𝑓). First we must provide a family of homomorphisms
{𝑓𝐴,𝐵} specifying the transformation. Fix a projective presentation 𝑅

𝜇
� 𝑃

𝜖
� 𝐴

of 𝐴. Given an extension 𝜈 : 𝐵 𝜅
� 𝐸

𝜈
� 𝐴, we may construct the top half of the

3.3. THE NATURAL EQUIVALENCE 37

following commutative diagram.

𝑅 𝑃 𝐴

𝐵 𝐸 𝐴

𝐵 𝐸 ′ 𝐴

𝜇

𝜙

𝜖

𝜋

𝜅 𝜈

𝜃

𝜅′ 𝜈′

(3.9)

Add in a lifting 𝜋 using the projectivity of 𝑃 ; this uniquely induces 𝜙 : 𝑅 → 𝐵
(in the same way that 𝜎 was induced in the previous section). We claim that
the coset [𝜙] ∈ Ext(𝐴,𝐵) is the same for any choice of 𝜋. Suppose we have two
liftings 𝜋1 and 𝜋2 which induce 𝜙1 and 𝜙2, respectively. Follow the proof of lemma
3.11 to see that 𝜙1 = 𝜙2 + 𝜏𝜇 for some 𝜏 : 𝑃 → 𝐵. Then [𝜙1] = [𝜙2 + 𝜏𝜇] = [𝜙2].

Let us write 𝑓 for 𝑓𝐴,𝐵. We would like to define 𝑓 [𝜈] = [𝜙], but is this
well-defined? Suppose an extension 𝜈 ′ is equivalent to 𝜈 via a map 𝜃 : 𝐸 → 𝐸 ′ as
in (3.9). Choose to use the lifting 𝜋′ = 𝜃 ∘ 𝜋 : 𝑃 → 𝐸 ′. According to the diagram,
𝜋′ induces 1𝐵 ∘ 𝜙 = 𝜙. So 𝑓 [𝜈 ′] = [𝜙], i.e. 𝑓 is well-defined.

Step 2 (The inverse 𝑔). Any pushout will
do, since any two
are isomorphic and
produce equivalent
extensions of 𝐴 by
𝐵.

Given a coset [𝜙] in Ext(𝐴,𝐵), form the pushout 𝐸 of
(𝜙, 𝜇). Then use lemma 3.1 to create an extension 𝜈 : 𝐵 � 𝐸 � 𝐴.

𝑅 𝑃 𝐴

𝐵 𝐸 𝐴

𝜇

𝜙

𝜖

𝜋

𝜅 𝜈

(3.10)

As before, we propose the definition 𝑔[𝜙] = [𝜈] and check its validity. Suppose
𝜙′ is an alternative representative of the coset [𝜙]. Then 𝜙′ = 𝜙+ 𝜏𝜇 for some
𝜏 : 𝑃 → 𝐵. Set 𝜋′ = 𝜋+𝜅𝜏 . If we replace 𝜋 and 𝜙 with their primed counterparts,
(3.10) is still commutative: on the left we have 𝜅𝜙′ = 𝜅𝜙+𝜅𝜏𝜇 = (𝜋+𝜅𝜏)𝜇 = 𝜋′𝜇,
and 𝜈𝜋′ = 𝜈𝜋 + 𝜈𝜅𝜏 = 𝜖+ 0 = 𝜖 on the right.

By lemma 3.2, the left square of (3.10) is a pushout when its vertical edges
are the primed maps. Hence 𝑔[𝜙′] = [𝜈], meaning 𝑔 is well-defined.

Step 3 (𝑓 is an equivalence). The composition 𝑓𝑔 takes a coset [𝜙] and applies 𝑔,
obtaining [𝜈] as in (3.10). To apply 𝑓 we must choose a lifting 𝑃 → 𝐸. Let us
choose 𝜋, which was constructed by applying 𝑔. Now 𝜋 induces a unique map
𝑅 → 𝐵 making (3.10) commute, namely 𝜙. ‘𝑓𝑔 = 1’ means

‘𝑓𝐴,𝐵 ∘ 𝑔𝐴,𝐵 = 1𝐴,𝐵

for every 𝐴 and 𝐵.’

Hence 𝑓𝑔[𝜙] = 𝑓 [𝜈] = [𝜙], so 𝑓𝑔 = 1
where 1 stands for the identity transformation 1Ext : Ext(−,−) ⇒ Ext(−,−).

In the other direction, begin with the extension 𝜈 and apply 𝑓 , forming the top
half of (3.9). Lemma 3.2 tells us that the top-left square is a pushout. So 𝑔𝑓 [𝜈] =
𝑔[𝜙] = [𝜈], hence 𝑔𝑓 = 1. This time, 1 stands for 1𝐸 : 𝐸(−,−) ⇒ 𝐸(−,−).

Step 4 (𝑓 is natural). First consider naturality in 𝐵. Applying 𝑓 first yields
𝛽*𝑓 [𝜈] = 𝛽*[𝜙] = [𝛽 ∘ 𝜙]. If we apply 𝛽* first, we obtain an extension 𝜈 ′ as below.

38 CHAPTER 3. EXTENSIONS AND THE BIFUNCTOR EXT

𝑅 𝑃 𝐴

𝐵 𝐸 𝐴

𝐵′ 𝐸𝛽 𝐴

𝜇

𝜙

𝜖

𝜋

𝜅

𝛽

𝜈

𝜃

𝜅′ 𝜈′

(3.11)

To apply 𝑓 , we need a lifting 𝜋′ : 𝑃 → 𝐸𝛽. We choose 𝜋′ = 𝜃 ∘ 𝜋, where 𝜋
was constructed in applying 𝑓 to [𝜈]. This induces a unique homomorphism
𝜙′ : 𝑅 → 𝐵′ making (3.11) commute. But 𝜓′ must be 𝛽 ∘ 𝜙 according to the
diagram. Thus 𝑓𝛽*[𝜈] = 𝑓 [𝜈 ′] = [𝜙′] = [𝛽 ∘ 𝜙].

Now for naturality in 𝐴. Begin with the extension class [𝜈], displayed as the
lower-back row of (3.12). Apply 𝑓 to obtain the upper-back row and the Ext
coset [𝜙]. In Ext(𝐴,𝐵), the induced map 𝛼* gives us the upper-front row and
the coset 𝛼*𝑓 [𝜈] = 𝛼*[𝜙] = [𝜙 ∘ 𝜎].

All squares without
any dotted edges
commute. (We prove
that those with dot-
ted edges must com-
mute too.)

𝑅 𝑃 𝐴

𝑅′ 𝑃 ′ 𝐴′

𝐵 𝐸 𝐴

𝐵 𝐸𝛼 𝐴′

𝜙

𝜎 𝛼

𝑓

𝛼*

𝜈

𝛼𝜙′

𝜈′

𝜋′

(3.12)

Such a lifting must
exist because 𝑃 ′ is
projective.

For the opposite order, first apply 𝛼* in 𝐸(𝐴,𝐵) to obtain the extension class
[𝜈 ′]. To transform via 𝑓 , we must find a lifting 𝜋′ : 𝑃 ′ → 𝐸𝛼 and see which map
𝜙′ : 𝑅′ → 𝐵 it induces.

Observe that the compositions 𝑃 ′ → 𝑃 → 𝐸
𝜈→ 𝐴 and 𝑃 ′ → 𝐴′ =→ 𝐴′ 𝛼→ 𝐴

are equal. Because 𝐸𝛼 is a pullback of (𝜈, 𝛼), there is a (unique) connecting
homomorphism 𝜋′ which makes the central square 𝑃𝑃 ′𝐸𝛼𝐸 and the front-right
square 𝑃 ′𝐴′𝐴′𝐸𝛼 commute. Next, 𝜋′ induces 𝜙′, making the front-left square
𝑅′𝑃 ′𝐸𝛼𝐵 commute.

The only square whose commutativity remains undecided is the left end,
𝑅𝑅′𝐵𝐵. The two compositions 𝑅′ → 𝑅 → 𝐵 → 𝐸 and 𝑅′ → 𝐵

=→ 𝐵 → 𝐸 are
equal, because each can be ‘bent’ around the left cube to form the other. Since
𝐵 � 𝐸 is injective, we may cancel it from the equality to conclude that the left
end square commutes.

This shows that 𝜙′ = 𝜙 ∘ 𝜎 and hence 𝑓𝛼* = 𝛼*𝑓 , i.e. 𝑓 is natural in 𝐴. Thus
𝑓 is a natural equivalence.

Finally we check that 𝑓 is well-defined. Choose 𝐴′ = 𝐴 and 𝛼 = 1𝐴, but let
us continue to use (potentially) different presentations 𝐴 as in (3.12). The fact
that 𝑓 is natural in 𝐴 tells us that 𝑓 is independent of the presentation of 𝐴.

3.4 Conclusion and further reading
In this project, we have introduced modules and elementary constructions upon
them. We have seen how extensions may be formed and illustrated the difficulty

3.4. CONCLUSION AND FURTHER READING 39

of classifying extensions directly. This last result allows us to use the ‘formula’
for Ext(𝐴,𝐵) to investigate 𝐸(𝐴,𝐵).

Furthermore, we can use the equivalences of section 3.3 to impose the group
operation of Ext onto 𝐸. A direct description of this operation was first given in
1934 by Baer. The details of the ‘Baer sum’ are outlined in [3, ch. III, ex. 2.5–2.7]
and [8].

Even with the Baer sum and knowledge that extension classes come in groups
(and Abelian groups at that), it is still often easier to compute 𝐸(𝐴,𝐵) indirectly.
To this end, Hilton and Stammbach provide tools for working with Ext in [3, sec.
III.4, III.5]. There is a notion of extensions for groups, too, but different tools
are needed to describe them; see [3, sec. VI.10].

Ext does much more than we have described here. It occurs in a much
more general setting as a ‘derived functor’; in fact there are many such func-
tors {Ext1,Ext2, . . . ,Ext𝑛, . . .}. In certain circumstances, these Exts may be
interpreted as describing 𝑛-extensions of modules; [3, ch. IV] describes the
theory.

Chapter 4

Bibliography

[1] Max Dehn. Über unendliche diskontinuierliche gruppen. Mathematische
Annalen, 71(1):116–144, 1911.

[2] Samuel Eilenberg and Saunders Mac Lane. General theory of natural equi-
valences. Transactions of the American Mathematical Society, 58(2):231–294,
1945.

[3] P.J. Hilton and U. Stammbach. A Course in Homological Algebra. Graduate
Texts in Mathematics. Springer-Verlag, second edition, 1997.

[4] Saunders Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer, second edition, 1998.

[5] Pyotr Sergeyevich Novikov. On the algorithmic unsolvability of the word
problem in group theory. Trudy Matematicheskogo Instituta im. VA Steklova,
44:3–143, 1955.

[6] Michael Potter. Set Theory and its Philosophy. Oxford, 2004.

[7] C.A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1995.

[8] C.A. Weibel. The history of homological algebra. In I.M. James, editor,
The History of Topology, chapter 28, pages 797–836. Elsevier, 1999. Preprint
available at http://www.math.uiuc.edu/K-theory/0245/.

http://www.math.uiuc.edu/K-theory/0245/

	Modules
	Introduction
	Examples
	Motivation

	Working with modules
	Sub- and quotient modules
	Homomorphisms
	Kernel, image and cokernel
	Direct products and sums

	Extensions of Modules
	Sequences and extensions
	Diagrams and equivalent extensions
	The set of equivalence classes

	Category Theory
	Introduction
	Categories
	Functors
	Bifunctors

	More categorical tools
	Pullbacks and pushouts
	Natural transformations

	Extensions and the bifunctor Ext
	The bifunctor E
	Technical Lemmas
	Induced maps
	Bifunctorality

	The bifunctor Ext
	Projective presentations
	The Ext groups
	Induced maps
	Bifunctorality

	The natural equivalence
	Conclusion and further reading

	Bibliography

