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Abstract

Having introduced the concepts of galactic winds and magnetohydrodynamics, we derive
equations that govern the gas density, velocity and magnetic field in the wind flow. The
equations are solved and the solutions are graphed in two and three dimensions. Finally the
solutions are compared with observational data from the nearby galaxy NGC 253.

All computations were performed with symbolic mathematics program MATLAB. The code
can be obtained from my supervisor on request.



Contents

1 Introduction 3

1.1 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Galactic Winds and Fountains . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Magnetohydrodynamic Galactic Winds . . . . . . . . . . . . . . . . . . . . . 5

2 Modelling Galactic Outflow 6

2.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Gas Density in the Outflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Outflow Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Cross-Sectional Area for the Outflow . . . . . . . . . . . . . . . . . . . . . . 9

2.5 The Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 The Magnetic and Velocity Fields in the Outflow . . . . . . . . . . . . . . . 10

2.6.1 The Magnetic Field Radial Component . . . . . . . . . . . . . . . . . 10

2.6.2 The Velocity Field Radial Component . . . . . . . . . . . . . . . . . 10

2.7 The Azimuthal Magnetic and Velocity Field . . . . . . . . . . . . . . . . . . 11

2.7.1 The Magnetic Field Azimuthal Component . . . . . . . . . . . . . . . 11

2.7.2 The Velocity Azimuthal Component . . . . . . . . . . . . . . . . . . . 12

2.8 Galactic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Solutions for Galactic Outflow 17

3.1 One-Dimensional Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Radial Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Cartesian Form for the Magnetic Field . . . . . . . . . . . . . . . . . . . . . 20

1



3.4 The Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Comparison with NGC 253 23

5 Summary and Conclusions 26

5.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



Chapter 1

Introduction

To begin we need a clear definition of magnetohydrodynamic galactic winds by defining the
individual concepts and then bringing these definitions together.

1.1 Magnetohydrodynamics

The field of magnetohydrodynamics (or MHD) is concerned with fluid flows in the presence of
magnetic fields. The main equations that are involved in MHD are a combination of Navier–
Stokes equations from fluid dynamics and Maxwell’s equations from electromagnetism. From
these equations comes differential equations that have to be solved either analytically or
numerically. Maxwell’s equations are,

∇ · ~E =
ρ0
ε0
, (1.1a)

∇× ~E = −∂
~B

∂t
, (1.1b)

∇ · ~B = 0, (1.1c)

∇× ~B = µ~J +
1

c2
∂ ~E

∂t
, (1.1d)

where ~E and ~B are the electric and magnetic fields respectively, ρ0 is the electric charge
density, ε0 is the vacuum permittivity, t is time, µ is the vacuum permeability and ~J is the
electric current density. Neglecting the displacement current and using Ohm’s law, Maxwell’s
equations yield the induction equation,

∂ ~B

∂t
= ∇× (~v × ~B) + η∇2 ~B, (1.2)

where η is the magnetic diffusivity and ~v is the velocity. Now that we have established the
electromagnetic part of MHD we shall move onto the equations involved in fluid dynamics
namely the Navier–Stokes(N–S) equation which is,

∂~v

∂t
+ (~v · ∇)~v = −∇P

ρ
− ~g, (1.3)
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where P is pressure, ρ is density, ~v is the flow velocity and g is a gravity acceleration. We
also need an equation for mass conservation,

∂ρ

∂t
+∇ · (ρ~v) = 0, (1.4)

which in our case will involve a cross sectional area A and the z-component of the velocity
vz.

1.2 Galactic Winds and Fountains

Galactic winds are a natural phenomena in the universe, which put simply, involves streams
of ionised gas (outflow) that at high enough speeds can escape the gravitational field of a
galaxy into galactic space. A consequence of this is that the outflow will never return and
continues on to infinity. This is similar to winds in general as they have a starting point
and will continue onwards without ever returning to this start point. An example of this is
shown in Fig. 1.1a.

(a) Galactic Wind. (b) Galactic Fountain.

(c) Combined Model.

Figure 1.1: Diagrams of the different galactic models.

Galactic fountains are the other possiblility for the outflow of which unlike the galactic winds
the speed of the outflow is less than the escape speed and therefore the gas falls back into
the galactic disc. An example of this is shown in Fig. 1.1b. The final possibility is combining
both the galactic wind model with the galactic fountain model so we have a model with both
outflow and inflow. This can be seen in Fig. 1.1c.
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1.3 Magnetohydrodynamic Galactic Winds

When regarding MHD with galactic winds we will mainly be more interested in the magnetic
field than the electric field as observations from the magnetic field can provide a better
insight into flow properties if the velocity is difficult or impossible to measure. Also we
will be focused on creating a model for that uses the combined model. We will be deriving
the wind velocity, ~v, and the magnetic field, ~B, which will both be vectors in cylindrical
coordinates (r, ρ, z). Also we will find the pressure, p, density, ρ, and the cross-sectional area
of the, A, which will be functions dependent on z and/or r. Since we are using cylindrical
coordinates our model shall also be axisymmetric as seen in Fig. 1.2a.

(a) Diagram of our model showing symmetry
around the axis, the cross sectional area, the out-
flow and the galactic disc.

(b) Galaxy NGC 253 - a spiral starburst
galaxy with high star formation and has
outflow driven by starbursts.

One main galaxy we will be using is NGC 253 (shown in Fig. 1.2b) also known as the Sculptor
Galaxy. Currently the galaxy is in a age where there is a lot of star formation going on in
its plane.
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Chapter 2

Modelling Galactic Outflow

2.1 Basic Equations

The basic equations used to model galactic outflow involves the equation of mass conserva-
tion,

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.1)

which we can then modify by letting ρ not depend on t so the first term disappears and
introducing the cross-sectional area of the outflow A as a function of z. This leads to a
simplier equation of mass conservation as used by Hodgers (2013) from Everett et al. (2008),

d

dz
(ρvzA) = 0. (2.2)

To find the pressure P in terms of the density ρ we use the equation that describes variations
in gas and cosmic-ray pressures as described and used in the paper by Everett et al. (2008)
which when neglecting the cosmic-ray pressure gives us a simple equation for the gas pressure,

dPg
dz

= c2g
dρ

dz
, (2.3)

where z is the height above the galactic plane, cg is the sound speed and Pg is the gas
pressure. Integrating both sides with respect to a dummy variable z′ between z′ = z and
z′ = 0 the equation can be written as,∫ z

0

dPg
dz′

dz′ = c2g

∫ z

0

dρ

dz′
dz′. (2.4)

Hence, when canceling z on both sides, the equation integrates to,

Pg = c2gρ. (2.5)

The Navier-Stokes equation,

∂~v

∂t
+ (~v · ∇)~v = −∇P

ρ
− ~g, (2.6)

can be reduced by assuming that the outflow velocity v and the gravity acceleration g are
all functions of z. Hence, the equation becomes,

∂vz
∂t

+ (vz · ∇)vz = −∇P
ρ
− g, (2.7)
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and using,
∂vz
∂t

= 0, (2.8)

and that the pressure only depends on z, substituting P = Pg = c2gρ and using the above
result the N–S equation becomes,, the equation can be written as,

ρvz
dvz
dz

+ c2g
dρ

dz
= −ρg. (2.9)

This equation is the one found by Everett et al. (2008). Above we have g ≥ 0 is a gravity
acceleration. Also we have c2∗ being the composite sound speed which involves Pg. The
equation for the composite sound speed,

c2∗ =
dPg
dρ

. (2.10)

Also when comparing with Equation (2.3) we can see that c2g = c2∗. Now we can substitute
a polytropic equation of state for the gas pressure,

Pg = P0

(
ρ

ρ0

)γ
. (2.11)

Next, substituting this into Equation (2.10), we can see that

c2∗ =
dPg
dρ

=
d

dρ

[
P0

(
ρ

ρ0

)γ]
= γ

Pg
ρ

= c2g. (2.12)

From this we have that γ is the polytropic index of the thermal gas as in the paper by
Everett et al. (2008).

2.2 Gas Density in the Outflow

To derive the wind density ρ(z) we must assume Pg is distributed exponentially, e.g. Pg =
P0e

−z/H , in which H is the gas scale height as in the paper by Hodgers (2013). We do this
because Everett et al. (2008), found that approximately both the density and pressure of the
gas decrease almost expontentially with height. Differentiating this with respect to z gives,

dPg
dz

=
d

dz
(P0e

−z/H) = −P0

H
e−z/H = −Pg

H
. (2.13)

Substituting this and Equation (2.12) into Equation (2.3) gives

−Pg
H

=
γPg
ρ

dρ

dz
. (2.14)

To solve this equation we need to cancel Pg on both sides, use separation of variables and
exponentiating to give an equation for the density,

ρ = C exp

(
− z

Hγ

)
, (2.15)

and to find C by letting the density at z = 0 be ρ0 which means that ρ0 = C. Therefore,

ρ = ρ0 exp

(
− z

Hγ

)
. (2.16)
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2.3 Outflow Velocity

To derive the outflow velocity we need to rewrite Equation (2.9) by replacing ρvz
dvz
dz

with

1

2
ρ
dv2z
dz

as used by Hodgers (2013) and dividing by ρ which gives,

1

2

dv2z
dz

= −
(
g + γ

Pg
ρ2
dρ

dz

)
. (2.17)

Since we already know what ρ is, we can find the derivative with respect to z,

dρ

dz
=

d

dz

(
ρ0e
−z/(Hγ)) = − ρ0

Hγ
e−z/(Hγ). (2.18)

Now, substituting Equations (2.18), (2.16) and (2.11) into Equation (2.17) we get,

1

2

dv2z
dz

= −g − γ

ρ20e
−2z/HγP0

(
ρ0e
−z/Hγ

ρ0

)γ (
− ρ0
Hγ

e−z/(Hγ)
)
, (2.19)

or
1

2

dv2z
dz

= −g +
P0

ρ0H
exp

(
−z(1− 1/γ)

H

)
. (2.20)

Now we will let g be the gravity acceleration in the solar vicinity, as used in the paper by
Fletcher and Shukurov (2001) which was originally derived by Ferrière (1998) from Kuijken
and Gilmore (1989),

g = A1
z√

z2 + Z2
1

+ A2
z

Z2

, (2.21)

where A1 = 4.4 × 10−9 cm s−2, A2 = 1.7 × 10−9 cm s−2, Z1 = 0.2 kpc and Z2 = 1 kpc.
Equation (2.21) is similar to the equation found by Hodgers (2013). By substituting this
into Equation (2.20) and multiplying by two gives

dv2z
dz

= −2A1
z√

z2 + Z2
1

− 2A2
z

Z2

+ 2
P0

ρ0H
exp

(
−z(1− 1/γ)

H

)
(2.22)

To find v2z we will have to integrate the equation with respect to a dummy variable between
z′ = 0 and z′ = z,

v2z = −2A1

∫ z

0

z′√
z′2 + Z2

1

dz′ − 2A2

∫ z

0

z′

Z2

+
P0

ρ0H

∫ z

0

e−
z′(1−1/γ)

H dz′. (2.23)

To find vz we take these integrals separately and solve them. Starting with the first integral,

−2A1

∫ z

0

z′√
z′2 + Z2

1

dz′, (2.24)

which integrates to,

−2A1

[√
z2 + Z2

1 − Z1

]
. (2.25)

Now for the second integral, which is a trivial integration,

−2A2

Z2

∫ z

0

z′ dz′ = −A2
z2

Z2

. (2.26)
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Finally the third integral,

2P0

ρ0H

∫ z

0

exp

(
−z
′(1− 1/γ)

H

)
dz′, (2.27)

which becomes,
2P0γ

ρ0(γ − 1)

[
1− exp

(
−z(1− 1γ)

H

)]
. (2.28)

Now that we have evaluated the three integrals, we can now find vz,

v2z = −2A1

[√
z2 + Z2

1 − Z1

]
− A2

z2

Z2

+
2P0γ

ρ0(γ − 1)

[
1− exp

(
−z(1− 1/γ)

H

)]
. (2.29)

To find v(z) we also must add the velocity of the wind at z = 0 which is vz(0) = v0 and then
square root v2z ,

vz(z) =

√
−2A1

[√
z2 + Z2

1 − Z1

]
− A2

z2

Z2

+
2P0γ

ρ0(γ − 1)

[
1− exp

(
−z(1− 1/γ)

H

)]
+ v20,

(2.30)
which is similar to the equation found by Hodgers (2013).

2.4 Cross-Sectional Area for the Outflow

To find the cross-sectional area for the outflow we must integrate Equation (2.2) with respect
to z as in the paper by Hodgers (2013),

d

dz
(ρvzA) = 0, (2.31)

to get

A(z) =
φ

ρ(z)vz(z)
, (2.32)

where φ is a constant. To find A(z) we must find φ on the galactic disc, i.e. setting z = 0,
which then gives A(0) = A0, ρ(0) = ρ0 and v(0) = v0 so φ = A0ρ0v0. Finally substituting
Equations (2.16) and (2.30) into A(z) to get,

A(z) =
A0v0e

z/Hγ√
−2A1

[√
z2 + Z2

1 − Z1

]
− A2

z2

Z2

+
2P0γ

ρ0(γ − 1)

[
1− e−

z(1−1/γ)
H

]
+ v20

, (2.33)

which is close to the equation found by Hodgers (2013).

2.5 The Magnetic Field

In this part we will need to find the z-component of the magnetic field, Bz, by first introducing
the magnetic flux conservation law,

d

dz
(BzA) = 0, (2.34)
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and then integrating it with respect to z and re-arranging to get,

Bz =
λ

A
, (2.35)

where λ is a constant, which for z = 0, Bz|z=0 = Bz0 and A(0) = A0 gives λ = Bz0A0. Then
substituting Equation (2.33) into this gives,

Bz(z) =
Bz0

v0
e−z/Hγ

√
−2A1

(√
z2 + Z2

1 − Z1

)
− A2

Z2

z2 +
2P0γ

ρ0(γ − 1)

[
1− e−

z(1+1/γ)
H

]
+ v20,

(2.36)
which is similar to the equation found in Hodgers (2013).

2.6 The Magnetic and Velocity Fields in the Outflow

2.6.1 The Magnetic Field Radial Component

The magnetic field uses cylindrical polar co-ordinates denoted by (Br, Bφ, Bz) as it is a
solenoidal of which we already have the z-component from earlier. We can assume ∂

∂φ
=

0 since we have an axi-symmetric model. We shall use this to rewrite Gauss’ Law for
Magnetism, ∇ · ~B = 0, as

1

r

∂

∂r
(rBr) +

∂

∂z
(Bz) = 0. (2.37)

To solve this we need to re-arrange and integrate with respect to r which gives,

Br = −r
2

∂Bz

∂z
+
C

r
. (2.38)

Due to Br being finite for all values of r, for r = 0 Br is finite, therefore C = 0. Hence,

Br = −r
2

∂Bz

∂z
, (2.39)

or

~B =

(
−r

2

∂Bz

∂z
, 0, Bz

)
, (2.40)

which is the vector found by Hodgers (2013).

2.6.2 The Velocity Field Radial Component

The radial component for the outflow velocity is calculated using the mass conservation,

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.41)

with
∂ρ

∂t
= 0 (2.42)

Therefore the equation becomes,
∇ · (ρ~v) = 0, (2.43)
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which can be rewritten as,
∇ρ · ~v + ρ∇~v = 0, (2.44)

and since ρ is only a function of z this implies that

∇ρ =

(
0, 0,

∂ρ

∂z

)
. (2.45)

Therefore, Equation (2.44) can be written as,

vz
∂ρ

∂z
+ ρ

[
1

r

∂

∂r
(rvr) +

∂vz
∂z

]
= 0 (2.46)

and since
1

ρ

∂ρ

∂z
=
∂ ln ρ

∂z
we have,

∂vz
∂z

+
∂ ln ρ

∂z
vz = −1

r

∂

∂r
(rvr). (2.47)

From here there are two choices we can make to find vr, one being that ρ and vz are
independent of r or to let ρ and vz dependent on r. If we make the independent choice, then
we can simply integrate Equation (2.47) with respect to r and then rearrange to find that,

vr = −
(
r

2
+
C

r

)(
∂vz
∂z

+
∂ ln ρ

∂z
vz

)
. (2.48)

To find the constant C we know that vr is finite as r → 0 therefore C = 0. Hence,

vr = −r
2

(
∂vz
∂z

+
∂ ln ρ

∂z
vz

)
, (2.49)

and then substituting ρ in, we then get,

vr = −r
2

(
∂vz
∂z
− vz
Hγ

)
. (2.50)

On the other hand, we could let ρ and vz depend on r which leads us to integrating Equa-
tion (2.47) with respect to a dummy variable r′ and then rearranging so the equation be-
comes,

vr = −1

r

∫ r

0

r′
(
∂vz
∂z

+
∂ ln ρ

∂z
vz

)
dr′. (2.51)

Since we want ρ and vz dependent on the radius r then we will be solving Equation (2.51)
numerically.

2.7 The Azimuthal Magnetic and Velocity Field

2.7.1 The Magnetic Field Azimuthal Component

We now need to find the azimuthal component of the magnetic field or Bφ which can be
found using the magnetic flux and mass conservation. Using, for C,

Bφ dr dz = C (2.52)
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and
φ dV = C (2.53)

where
V = 2πr dr dz. (2.54)

Therefore,
2πr dr dz = const (2.55)

Now to find Bφ,
Bφ

r
= const. (2.56)

When z = 0, Bφ = Bφ0 and r = r0, we get that C =
Bφ0
r0

. Therefore,

Bφ = Bφ0
r

r0
, (2.57)

with
Bφ0 = Bφ(r0, 0) (2.58)

2.7.2 The Velocity Azimuthal Component

To find vφ or the velocity azimuthal component can be found by combining the formulae for
angular momentum,

L = ρvφrdV = const, (2.59)

and mass conservation,
M = ρdV = const, (2.60)

which gives,
vφr = const. (2.61)

Then at the point when z = 0, we get vφ = vφ0 and r = r0. Hence, we have const= vφ0r0
and then the equation becomes,

vφ =
vφ0r0
r

. (2.62)

However as this does not work for all values of r, because at r = 0, vφ →∞ or the equation
is singular at r = 0. Therefore we must try with Navier–Stokes again,

∂~v

∂t
+ (~v · ∇~v) = −∇P

ρ
, (2.63)

with
∂~v

∂t
= 0. (2.64)

Now, to find vφ we must find the φ component of (~v · ∇~v)φ ,

(~v · ∇~v)φ = vr
∂vφ
∂r

+ vz
∂vφ
∂z

+
vφvr
r
. (2.65)

Therefore, the Navier-Stokes equation can be written as,

vr
∂vφ
∂r

+ vz
∂vφ
∂z

= −vr
r
vφ −

1

ρ

∂P

∂z
, (2.66)
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and when z = 0 this gives vφ(r, 0) = v0(r). To solve for vφ we must rewrite the equation
using vφ = u, ∂r = ∂x, ∂z = ∂y and constants vr = a, vz = b, vr/r = c, v0(r) = u(x, 0) and
−1
ρ
∂P
∂z

= d, then find the characteristics, introduce two new variables, ξ and η, and solve for

u. To begin, Equation (2.66) is written as,

a
∂u

∂x
+ b

∂u

∂y
= −cu+ d. (2.67)

Now to introduce ξ = x and η = η(x, y) = const on the characteristics and hence integrating,

dy

dx
=
b

a
, (2.68)

and solving on the characteristics gives,

η = y − b

a
x. (2.69)

Also we have to solve the equation,

a
∂u

∂ξ
= −cu+ d. (2.70)

Dividing by a, rearranging and then integrating both sides gives,∫
a

cu− d
du =

∫
− dξ. (2.71)

We will need to use f(η) as the constant of integration, then divide both sides by a/c and
next exponentiating both sides of the solution to get,

cu− d = exp
[
− c
a
ξ +

c

a
f(η)

]
. (2.72)

Now rearranging to get u, substituting Equation (2.69) and ξ = x the equation now is,

u =
d

c
+

1

c
exp

[
c

a

{
−x+ f

(
y − b

a
x

)}]
. (2.73)

Using u(x, 0) = v0(x), the above equation becomes,

v0(x) =
d

c
+

1

c
exp

{
c

a

[
−x+ f

(
− b
a
x

)]}
, (2.74)

which can be rewritten as,

(cv0(x)− d) exp
( c
a
x
)

= exp

[
c

a
f

(
− b
a
x

)]
. (2.75)

Now, by letting A = −bx/a and substituting into Equation (2.75), we obtain,

(cv0(x)− d) exp
{
−c
b
A
}

= exp {f(A)}. (2.76)

After letting A = y − b

a
x in Equation (2.76) and substituting back into u from Equa-

tion (2.73), the equation becomes,

u =
d

c
+

(cv0(x)− d)

c
exp

{
−c
b

(
y − b

a
x

)
− c

a
x

}
. (2.77)
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Now cancelling the cx/a’s in the exponential and rewriting this with the original variables
and constants we have,

vφ =
1

ρ

∂P

∂z

r

vr
+

[
v0(r)−

1

ρ

∂P

∂z

r

vr

]
exp

{
−vr
r

z

vz

}
. (2.78)

To prove that this is correct, we can let z = 0 therefore the solution to our equation should
be vφ(r, 0) = v0(r). So solving our equation we get that,

vφ(r, 0) =
1

ρ

∂P

∂z

r

vr
+

[
v0(r)−

1

ρ

∂P

∂z

r

vr

]
exp

{
−vr
r

0

vz

}
=

1

ρ

∂P

∂z

r

vr
+ v0(r)−

1

ρ

∂P

∂z

r

vr
= v0(r). �

(2.79)

Which is correct but now we must also check if our equation works for all values of r, as
that was the problem with using angular momentum and mass conservation. The equation
now also works for all values of r, specifically when r = 0, exp (−vrz/0) → 0, therefore we
can see for r = 0, vφ has no singularities.

2.8 Galactic Parameters

Now that we have found the wind velocity, magnetic field, cross-sectional area and the density
we can now find out what they look graphically but first we need to non-dimensionalize
certain variables. We shall start by defining what our dimensionless quantities will be for
length x, time, t and velocity v,

[x] = 1 kpc = 3× 1021 cm,

[t] = 10 Myr = 3× 1014 s,

[v] = 100 km/s = 107 cm/s.

(2.80)

To check these, we shall check that the velocity is length/time,

[v] =
[x]

[t]
=

3× 1021 cm

3× 1014 s
= 107 cm/s = 100 km/s. X (2.81)

From Equation (2.80) we have that,

1 cm =
[x]

3× 1021

1 s =
[t]

3× 1014

(2.82)

Now we can find the dimensionless quantities for the density, ρ, the magnetic field, ~B and
the pressure P . The density is defined by [ρ] = mp[n] where mp is the mass of the proton and
[n] is the number density. Using mp = 1.7× 10−24 g and the number density [n] = 1 cm−3,
we get that,

[ρ] = 1.7× 10−24 g cm−3. (2.83)

From this we get that,

1 g cm−3 =
[ρ]

1.7× 10−24
. (2.84)
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The pressure is [P ] = [ρ][v]2 with [ρ] = 1.7 × 10−24 g cm−3 and [v] = 107 cm s−1, so we
obtain,

[P ] = 1.7× 10−10 g cm−1 s−2. (2.85)

Which then gives us,

1 g cm−1 s−2 =
[P ]

1.7× 10−10
. (2.86)

The magnetic field is calculated using [B] =
√

4π[ρ][v]2 with ρ and v as above we find that,

[B] = 4.62× 10−5 g1/2 cm3/2 s−1/2, (2.87)

which can be converted into Gaussian units for the magnetic field by using G ≡ g1/2 cm3/2 s−1/2.
Hence, we have,

[B] = 4.62× 10−5 G = 46.2. (2.88)

This then gives us,

1 µG =
[B]

46.2µG
. (2.89)

Now we can convert the other parameters into a dimensionless form using the values for A1

and A2 from the paper by Kuijken and Gilmore (1989),

A1 = 4.4× 10−9
cm

s2
× [x] 9× 1028 s2

3× 1021 cm [t]2

= 0.132
[x]

[t]2
.

A2 = 1.7× 10−9
cm

s2
× [x]× 9× 1028 s2

3× 1021 cm [t]2

= 0.051
[x]

[t]2
.

(2.90)

To check that the conversion to dimensionless form is correct we must do the calculation
A1/A2 for the original values and the dimensionless values,

A1

A2

=
4.4× 10−9

1.7× 10−9
=

44

17
A1

A2

=
0.132

0.051
=

44

17
.

(2.91)

Therefore our dimensionless forms for A1 and A2 are correct. The initial conditions for the
density, ρ0 involving using the mass of the proton, mp, from before as well as the number
density at the base of the wind, i.e. when z = 0, which is n0 = 10−3 cm−3. Thus we obtain,

ρ0 = mpn0 = 1.7× 10−27 g cm−3. (2.92)

Now the initial condition for the pressure, P at z = 0, is dependent upon the temperature of
the gas as it leaves the galactic disc, T , the number density at the base of the wind, n0 and
k = 1.38 × 10−16 erg K−1. We shall use the typical temperature of the hot gas in galactic
discs as described by Spitzer (2004), i.e. T = 106 K. This gives,

P = n0kT = 1.38× 10−13 g cm−1 s−2. (2.93)

For the components of the magnetic field (Br, Bφ, Bz), we will need to have the conditions
on the galactic plane i.e. when z = 0. So we shall use Br|z=0 = Br0 ≈ 0.5 µG, Bφ|z=0 =
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Bφ0 ≈ 2 µG and Bz|z=0 = Bz0 ≈ 0.1 µG. Hence the dimensionless quantities for these will
be found by making each of Br0, Bφ0 and Bz0 dimensionless,

Br0 = 0.5 µG × [B]

46.2 µG
= 0.01082 [B]

Bφ0 = 2 µG × [B]

46.2 µG
= 0.04329 [B]

Bz0 = 0.1 µG × [B]

46.2 µG
= 0.00216 [B].

(2.94)

Other parameters we need are γ = 5/3, H = 0.5 kpc, Z1 = 0.2 kpc and Z2 = 1 kpc which are
either already dimensionless or in the dimensional quantities we need from Section 2.3. The
other dimensionless quantities will by found by making each of ρ, P and v dimensionless.
Also we shall use v0 = 300 km s−1 for our initial condition for the outflow velocity. Therefore,
we have,

ρ0 = 1.7× 10−27 g cm−3 × [ρ]

1.7× 10−24 g cm−3
= 10−3[ρ].

P = 1.38× 10−13 g cm−1 s−2 × [P ]

1.7× 10−10 g cm−1 s−2
= 8× 10−4[P ].

v0 = 300 km s−1 × [v]

100 km s−1
= 3[v].

(2.95)

Now that we have all the dimensionless parameters and variables that we need, we can now
look at the graphical solutions in the next chapter.
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Chapter 3

Solutions for Galactic Outflow

We will now be using Matlab to graph our solutions numerically for Equations (2.16), (2.30), (2.33)
and (2.36).

3.1 One-Dimensional Solutions

For each of our graphs different properties of the outflow are shown which are the gas
density, vertical wind velocity, cross-sectional area and the vertical magnetic field, as shown
in Figures (3.1)-(3.4) respectively. For Figure’s (3.2)-(3.3) we have used multiple values for
v0, A0 and Bz0.
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−
3

Figure 3.1: The gas density in the outflow ρ against the height of the wind z. We can see
that as the wind height increases, the gas density decreases exponentially as we expect.
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Figure 3.2: The vertical outflow velocity vz against the height of the wind z. For smaller
values of the initial velocity v0 we can see that the outflow velocity increases but does not
achieve the escape speed and then steadily decreases as the wind does not escape from the
galaxy. For larger values of v0, the graph clearly shows that the wind does achieve the escape
speed and then steadies out as it escapes the galaxy.
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Figure 3.3: The cross-sectional area A against the height of the wind z. We have that as z
increases, A increases exponentially and for small A0 and constant v0 that the cross-sectional
area is also small. The graph suggests that the wind’s shape is similar to a cylinder or a
funnel.
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Figure 3.4: The vertical magnetic field Bz against the height of the wind z. Bz decreases
with z, very rapidly and steadily tends to zero for large values of z.

Within our range of z, the gas density decreases exponentially with z, as we assumed in
Section 2.2. Also we have that the vertical velocities, for small values of v0, do not reach
their escape velocity and thus the wind becomes a fountain. On the other hand, for the
larger values of v0 the vertical outflow velocity is at a steady speed during it’s escape from
the galaxy and continues outward.

The cross-sectional area increases rapidly only for larger values of z. Also for bigger values of
A0, the cross-sectional area is also bigger. Conversely, the vertical magnetic field decreases
rapidly for small values of z .

Before we can look at the 2-dimensional solutions we must first redefine some constants and
variables by giving them some r-dependence.

3.2 Radial Dependence

The variables we must give radial dependence are, H, A2 and v0 by introducing two new
constants, ra and rH . The radial dependence for H is exponentially increasing whereas the
radial dependence for A2 and v0 are exponentially decreasing. The new equation for H is,

H = H0 exp

(
r

rH

)
, (3.1)

where H0 = 0.5 kpc from Section 2.8. The new equation for A2 is,

A2 = 0.051 exp

(
−r
ra

)
, (3.2)

and finally the equation for v0,

v0 = 3 exp

(
−r
ra

)
. (3.3)
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3.3 Cartesian Form for the Magnetic Field

Since we already have the equations forBr, Bφ andBz which are given by Equations (2.39), (2.57)
and (2.36) respectively. We can find formulae that correspond to the cartesian forms for the
magnetic field, by using the transformations from cylindrical polar to cartesian coordinates
which are x = r cosφ, y = r sinφ and z = z. Using these we can see that,

r =
√
x2 + y2, (3.4)

and
φ = arctan

y

x
. (3.5)

Also we can use the transformation rules for unit vectors in cylindrical polar coordinates,

~̂x = cosφ~̂r − sinφ
~̂
φ,

~̂y = sinφ~̂r + cosφ
~̂
φ.

(3.6)

These unit vectors can now be exchanged for the vector components of the magnetic field,

Bx = cosφBr − sinφBφ

By = sinφBr + cosφBφ.
(3.7)

Also since z is the same in cartesian and cylindrical polar, we have Bz unchanged. These
equations will be useful for plotting the magnetic field.

3.4 The Magnetic Field

In this part we look at and discuss our results for both the three-dimensional and two-
dimensional solutions for the magnetic field which are presented in cartesian coordinates as
shown in Section 3.3. Also we have used the parameters for the magnetic field, wind velocity,
cross-sectional area, pressure and density from Section 2.8 alongside the updated equations
from Section 3.2.

Figure 3.5: 3-d magnetic field shown in cartesian coordinates which shows that there is
definite symmetry.
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Figure 3.6: 2-d magnetic field for the cartesian x− y axis which shows that in this quadrant
the magnetic field lines fan out in a radial direction from the z-plane.

(a) 2-d magnetic field for the x− z axis (b) 2-d magnetic field for the y − z axis

Figure 3.7: The magnetic field lines for the x − z and y − z axis that shows that when
comparing the two together we can see that appear to be symmetrical to one another.

Now we will look at the final two plots for the magnetic field zoomed in.
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(a) Zoomed x− z magnetic field lines. (b) Zoomed y − z magnetic field lines.

Figure 3.8: As before we can see that on a smaller scale the two plots are indeed symmetric
to one another.

From Figures 3.6 and 3.7a we can see that the magnetic field lines for the x − y and x − z
axes flow in an anti-clockwise direction whereas the the field lines for the y − z flow in a
clockwise direction. Also from Figure 3.5 we can see that the majority of the field lines are
focused in the centre and along each of the axes.

From Figures 3.8a and 3.8b we can identify that there is symmetry between the two sets
of axis. Also from the plots above we can see that on each the magnetic field lines move
away from their respective axis at certain angles and then continue on in which they should
theoretically spiral out as true to a magnetic field as our plots only show the first quadrants.
Also we can see that from the plots the magnetic field points outward for our model.
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Chapter 4

Comparison with NGC 253

In this chapter, we compare our model with observations of NGC 253 as shown in the paper
by Hessen et al. (2009). The reason for using NGC 253 is since it is a spiral, starburst galaxy
with high star formation in its galactic plane i.e. there is a huge amount of stars being created
within the galactic plane of the galaxy. NGC 253’s outflow is starburst-driven i.e. the outflow
is dependent on the formation of stars and supernovae in the galaxy. From this the gas in
the ouflow is hot and mainly emits thermal X-ray emissions instead of radiation, therefore
the velocity would be near impossible to take measurements of. Instead observations of the
magnetic field provides the necessary information for the outflow properties.

Figure 4.1: Figure 16 from Hessen et al. (2009) which is a sketch of the observable magnetic
field structure for NGC 253 on a large scale.

The sketch from Hessen et al. (2009) in Figure 4.1 shows that in the galactic plane i.e. the
black horizontal spiral field, is similar in shape to our plot of the x − y axis Figure 3.6
specifically the top left hand side which corresponds directly. Similarly the sketch resembles
our plots directions for the x − z and y − z axes as shown by the red field lines. The
only difference from our model is that the magnetic field points inwards in the sketch and
outwards in our model. Also from this sketch we have that the magnetic field is even inside
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and outside the galactic disc which supports our symmetry of the magnetic field.

Figure 4.2: Figure 15 from Hessen et al. (2011) showing a sketch of the magnetic field in
the walls around the outflow cone. Solid lines show field lines on front of cone whilst dotted
lines show them on rear of cone. The galactic plane is at the top and the outflow fans out
to the bottom.

The sketch from Hessen et al. (2011) in Figure 4.2 shows that the magnetic field lines, when
close to the galactic disc, are vertical and then open into a winding helix with increasing
height. This is similar to our findings from the 2-dimensional plots Figures 3.6, 3.7a and 3.7b.
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Figure 4.3: Figure 14 from Hessen et al. (2009) showing modeled polarized intensity of the
combined even disc and even halo magnetic field. Vectors indicate the orientation of the
magnetic field.

Figure 4.3 shows the magnetic field lines travelling in opposite directions as in our plots
in Figures 3.7a and 3.7b. Overall, according to Figures 4.1, 4.2 and 4.3 we can say that
our model fits accordingly with the observations done in the papers by Hessen et al. (2009)
and Hessen et al. (2011).
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Chapter 5

Summary and Conclusions

First we introduced magnetohydrodynamics; describing the equations of electromagnetism,
Maxwell’s equations and the induction equation, and the main equations of fluid dynamics,
the Navier–Stokes and mass conservation equations. We also introduced what each of the
individual variables of the equations were, specifically the velocity, area, magnetic field,
pressure and density. Then we introduced and discussed the different types of galactic winds,
wherein the outflow can achieve a high enough speed for the wind to escape into galactic
space, and fountains, wherein the outflow does not escape into space, then we generalised
into a combined model with both scenarios happening. Next we brought the two ideas
together and neglected the electric field in favour of the magnetic field. Then we introduced
the cylindrical coordinates we used and the main galaxy we focus on NGC 253.

Desiring a model we looked into previous researched models by Everett et al. (2008) and
Hodgers (2013) and decided to follow the model used in Hodgers (2013) as the model by Ev-
erett et al. (2008) was found to be complicated. The model we used follows the model out-
lined by Hodgers (2013) wherein the density ρ(z) is assumed to be exponential as in Hodgers
(2013). Whereas the equation for the gravity acceleration for the solar vicinity is not neg-
ative, which then affects the vertical wind velocity vz(z), cross-sectional area A and the
vertical magnetic field Bz(z); all found using ρ(z), solving Navier-Stokes and solving mass
conservation. Also, we found the radial magnetic field Br as found by Hodgers (2013) but for
the radial and azimuthal velocity vr and vφ respectively we decided on a more complicated
model that was dependent on the radius. Next we solved the partial differentiation equation
to find the azimuthal magnetic field Bφ. Then we found dimensionless parameters so we
could have a solution using realistic data.

Investigating our model for one-dimension, we found that: the gas density decreases expo-
nentially; vertical outflow velocity is dependent on the height of the wind if it can or cannot
achieve escape velocity; the cross-sectional area increases exponentially with respect to the
height of the wind; and the vertical magnetic height decreases exponentially with respect
to the wind height. For two-dimensions we found that there is symmetry within our field
lines; the field lines fan out in opposite directions from their respective planes and that the
magnetic field points outward.

Finally, we compared our results with observations of NGC 253 as documented by Hessen
et al. (2009) and Hessen et al. (2011). We find that our results were corroborated with the
diagrams and sketches from the two papers.
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Overall, we found out that our model is not perfect but is accurate to a certain degree and
is similar to observational data. We can say that our model is a sufficient description of
galactic outflows for the assumptions we have made. Further work could entail updating or
adjusting our model to get a better precision and accuracy for the observations as well as
looking into how the velocity could be incorporated.
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