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Abstract

Using the idea of an interface dynamo, the purpose of my project is to create
a simplified model for the magnetic field within the Sun. The field is highly
turbulent and very active making it a source of great interest. Observations
of sunspots over many years has enabled us to draw a detailed picture of the
Sun’s magnetic activity cycle and using a 2-D Cartesian system I will show
how this cycle can be obtained using a dynamo. I am interested in the large-
scale problem with long time scales. My aim is to investigate modulation and
try to recreate this in my model.
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Chapter 1

Introduction

1.1 The Sun and its structure

The Sun is a large, spherical body of gas, it has a diameter of over 1 million
km and the temperature at the surface is 5778K, (see, e.g., Stix, 2002). As
the biggest planet in our solar system and vital for supporting life on Earth,
the Sun is an area of great interest for scientists and our knowledge is ever
increasing. One of the biggest areas of interest is the Sun’s magnetic field and
this is the main point of interest for my report.

It is very well understood how energy is created within the Sun, it is
through a process of nuclear fission in the core. The fusion of hydrogen into
helium creates thermal energy which radiates outward through the radiative
zone into the convection zone. This outer region of the Sun is convectively un-
stable and is an area of highly turbulent flow. The distinct layers of the Sun
are shown in Figure 1.2. Below the convection zone is the tachocline, shown
in red. This is the area of greatest interest when trying to create a dynamo
model.

1.2 Differential Rotation

Due to the gaseous nature of the Sun, the equator rotates more rapidly than
the poles, the equator rotates once every 25 days whilst the poles take over a
month. This is called differential rotation and it takes place not just on the
surface but within the Sun too. One of the biggest developments in recent
times was the introduction of helioseismology. This involves using the prop-
agating waves throughout the Sun to learn more about its invisible internal
structure giving us a better understanding of the processes in the Sun. Using
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Figure 1.1: Image of the Sun, taken 5/3/14, Source - NASA Solar Dynamics
Observatory

helioseismology it is possible to probe differential rotation within the solar in-
terior. There is distinct variation in the angular velocity in different positions
on the Sun; the angular velocity at high latitudes is know to be significantly
smaller than the angular velocity at lower latitudes (Schou et al., 1998). The
changing velocities are depicted in Figure 1.3. This results in a strong radial
shear which is mainly located in the tachocline.

Another important feature to consider are torsional oscillations, these are
migrating bands of both faster than average and slower than average rotation.
These are known as zonal flows. Helioseismology has been able to show that
this occurs not just on the surface of the Sun but also underneath it, as deep
as the outer 10% of the solar radius (Vorontsov et al., 2002). The period
of torsional oscillations is intrinsically linked with the period of the Sun’s
magnetic field and it’s sunspots. The oscillations have a period of 11 years.
In Figure 1.4 the red areas represent faster than average flows, whilst the blue
areas show slower than average flows. It can be seen that during the cycle, the
extreme values migrate to higher latitudes, i.e. towards the poles.

3



Figure 1.2: Internal Structure of the Sun, showing the convection zone, the
radiative zone, and in between, the tachocline, shown in red. Source – NASA
http://www.nasa.gov/mission˙pages/hinode/solar˙020.html

1.3 Magnetic observations

One of the most important and well documented observed features of the Sun
is the occurrence of sunspots. Sunspots are very large pieces of magnetic flux
that rise up to the solar surface due to a process called magnetic buoyancy.
The size of each sunspot is equivalent to the size of the Earth. Observations
have been recorded since the 17th century and they show that the number
of sunspots varies over an eleven year cycle, see Figure 1.5. During each
cycle the polarity reverses and so the complete magnetic cycle has a period of
approximately 22 years. The data also shows that at the beginning of the cycle
the sunspots appear predominantly at latitudes of around 30 ◦, known as the
“zones of emergence” and then appear closer and closer to the equator as the
cycle progresses (Tobias, 2002). The cycle is not completely periodic however,
with clear variation and some very weak cycles and some strong cycles. The
most obvious of these is known as the Maunder minimum, a period at the end
of the 17th century where there was very little solar activity. When the solar
activity started to increase again, the sunspots almost exclusively appeared in
the southern hemisphere. At this time the Sun’s field was strongly asymmetric
whereas now it is dipolar - the azimuthal field is antisymmetric about the
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Figure 1.3: Differential Rotation in the Sun for contours of constant angular
velocity. Taken from Schou et al. (1998)

Figure 1.4: The top portion shows torsional oscillations: the rotational varia-
tion as a function of time and latitude at radius r. Red depicts faster than av-
erage flows and blue depicts slower than average flows. Taken from Vorontsov
et al. (2002)
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Figure 1.5: Butterfly diagram showing Sunspot activity, Source – NASA
http://www.nasa.gov/vision/universe/solarsystem/solar˙cycle˙graphics˙prt.htm

equator whilst the poloidal potential is symmetric about the equator. The
field may have been quadrupolar in the distant past but we can not be sure
of this. A quadrupolar field is opposite to a diploar one, meaning that the
azimuthal field is symmetric about the equator and the poloidal potential is a
antisymmetric (see, e.g., Stix, 2002). In relatively recent times scientist have
been able to accurately record the number of sunspots using observations of
the Sun. By tracing the levels of 10Be, found in ice cores, and 14C, found in tree
rings, whose abundance is anticorrelated to solar magnetic activity, scientist
have also been able to deduce information about the history of the Sun’s field
and thus the number of sunspots from before direct observations began.
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Chapter 2

Governing Equations

2.1 Basic Dynamo Theory

It is believed that the well observed cycle is caused by a large-scale dynamo.
For this to be true, the Sun’s magnetic field has to be continuously regener-
ated. The field can be regarded as being made up of poloidal and toroidal
parts (see Figure 2.1). The poloidal part of the field runs from pole to pole,
whilst the toroidal part runs around the equator. The process of converting
the poloidal field into toroidal is called the ω-effect. This is caused by the
differential rotation which ’stretches’ out the poloidal field along around the
sun. Conversely, the process of converting the toroidal field into the poloidal
field is called the α-effect. This process is less well understood but it is thought
that convection lifts loops of the field up and then the Coriolis force causes
it to twist. These ideas form the basis of dynamo theory and I am going to
assume that there is some form of dynamo located in the tacholine, between
the Radiative and Convection zones, and this is given the name of an interface
dynamo.

Scientists are investigating these types of models as they want to be able
to predict what the Sun will do in the future. The magnetic field can affect
satellites and other aspects of the earth’s atmosphere. At present they are still
unable to predict the cycle with any certainty. We are currently in cycle 24,
it was thought it would be a strong cycle but has actually turned out to be
quite weak (Dikpati et al., 2006). Clearly this is an area where progress can
still be made.
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Figure 2.1: Top: the direction of the poloidal and toroidal fields. Bottom
left: the conversion of poloidal into toroidal via stretching due to differential
rotation. Bottom right: the conversion of toroidal into poloidal via the α-
effect. Source – www.geomag.nrcan.gc.ca .
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2.2 Maxwell’s Equations

I begin with the well known Maxwell’s equations which are:

∇ ·B = 0, (2.1)

∇×B = µ0j, (2.2)

−∂B

∂t
= ∇× E, (2.3)

j = σ (E + u×B) . (2.4)

Equation (2.2) is Ampère’s Law, (2.3) is Faraday’s Law and (2.4) is Ohm’s
Law. This form of Ohm’s Law is slightly different to the standard form be-
cause the field is moving. Here, B(x, t) represents the magnetic field, E(x, t)
is the electric field, j(x, t) is the current density and u(x, t) is the fluid ve-
locity. Conventionally, µ0 is the magnetic permeability and σ is the electric
conductivity. I want to eliminate E and j, this is done by substituting (2.4)
into (2.2):

∇×B = µ0σ (E + u×B) , (2.5)

∇×
(

1

µ0σ
∇×B

)
= ∇× E +∇× (u×B) . (2.6)

Noticing that ∇× E is −∂B/∂t from (2.3) , I get the induction equation

∂B

∂t
= ∇× (u×B)−∇×

(
1

µ0σ
∇×B

)
, (2.7)

1/µ0σ is defined as η, the magnetic diffusivity and I will assume it is constant.
Thus the induction equation becomes

∂B

∂t
= ∇× (u×B)− η∇× (∇×B). (2.8)
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Considering the last term, it can be simplified using suffix notation:

[∇× (∇×B)]i = εijk
∂

∂xj
(∇×B)k, (2.9)

= εijk
∂

∂xj

(
εkpq

∂Bq

∂xp

)
, (2.10)

= εkijεkpq
∂2Bq

∂xj∂xp
, (2.11)

= (δipδjq − δiqδjp)
∂2Bq

∂xj∂xp
, (2.12)

=
∂2Bj

∂xj∂xi
− ∂2Bi

∂xj∂xj
, (2.13)

=
∂

∂xi

(
∂Bj

∂xj

)
−∇2Bi, (2.14)

=
∂

∂xi
(∇ ·B)−∇2Bi, (2.15)

= −∇2Bi. (2.16)

Thus (2.8) can be written as

∂B

∂t
= ∇× (u×B) + η∇2B. (2.17)

I am interested in the large-scale field and so I will take averages using a
Reynolds decompostion:

B = B + b′ u = u + u′, (2.18)

where B is the average and b′ is the fluctuating part. This gives

∂B

∂t
= < ∇× (u×B) > +η∇2B, (2.19)

= ∇× (u×B) +∇× < u′ × b′ > +η∇2B. (2.20)

Assuming initially that u is given, then b′ is linearly dependent upon B.
Therefore, < u′ × b′ > is linearly dependent upon B. Further assuming that

< u′ × b′ >= αB− β∇×B, (2.21)

I can write,

∂B

∂t
= ∇× (u×B) +∇× (αB) + (η + β)∇2B. (2.22)
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This is the mean-field dynamo equation and it is fundamental to creating a
dynamo model. Here α represents the α-effect as discussed in section 2.1 and
β is enhanced turbulent diffusion.

11



Chapter 3

Cartesian System

3.1 System geometry

The basic form of my system is pictured in Figure 3.1. I have taken a thin
layer around the tachocline running from pole to pole and flattened it out into
a rectangular box. x = 0 represents the North Pole and x = L represents the
South Pole, therefore the equator lies at x = L/2. On the vertical axis, the
domain runs from z = 0 to z = l with the base of the convection zone situated
at z = l/2.

3.2 Poloidal-Toroidal decomposition

Next, I need to derive equations for A and B whilst ensuring that ∇ ·B = 0.
Using (2.1), the poloidal-toroidal decomposition is

B = B(x, z, t)ŷ +∇× [A(x, z, t)ŷ]. (3.1)

I assume that

u = V (x, z)ŷ, α ≡ α(x, z), η + β = ηT = constant. (3.2)

The first term accounts for differential rotation whilst the last term is for
simplicity. Thus,

B = Bŷ +∇× Aŷ, (3.3)

=

(
−∂A
∂z

,B,
∂A

∂x

)
. (3.4)
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Figure 3.1: Simple diagram of system showing a flattened layer around the
base of the convection zone from pole to pole.

Using this to calculate each part of (2.22)

∂B

∂t
=

(
− ∂

∂z

(
∂A

∂t

)
,
∂B

∂t
,
∂

∂x

(
∂A

∂t

))
, (3.5)

u×B =

(
V
∂A

∂x
, 0, V

∂A

∂z

)
. (3.6)

Thus,

∇× (u×B) =

(
0,

∂

∂z

[
V
∂A

∂x

]
− ∂

∂x

[
V
∂A

∂z

]
, 0

)
, (3.7)

=

(
0,
∂V

∂z

∂A

∂x
− ∂V

∂x

∂A

∂z
, 0

)
. (3.8)

Similarly,

∇× (αB) =

(
− ∂

∂z
(αB),− ∂

∂z

[
α
∂A

∂z

]
− ∂

∂x

[
α
∂A

∂x

]
,
∂

∂x
(αB)

)
, (3.9)

and

∇2B =

(
− ∂

∂z
(∇2A),∇2B,

∂

∂x
(∇2A)

)
. (3.10)

Combining the above 3 equations, I get

∂A

∂t
= αB + ηT∇2A, (3.11)

∂B

∂t
=
∂V

∂z

∂A

∂x
− ∂V

∂x

∂A

∂z
− ∂

∂z

(
α
∂A

∂z

)
− ∂

∂x

(
α
∂A

∂x

)
+ ηT∇2B. (3.12)
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3.3 α−ω Approximation and the Lorentz force

Before starting to analyse these equations numerically, it is best to simplify
again. I am going to assume an αω approximation. This means that the
ω effect is much stronger than the α effect, i.e. there is strong differential
rotation. For my model this means neglecting α relative to the ∇V terms in
(3.12). Therefore the mean field equations become

∂A

∂t
= αB + ηT∇2A, (3.13)

∂B

∂t
=
∂V

∂z

∂A

∂x
− ∂V

∂x

∂A

∂z
+ ηT∇2B. (3.14)

Motivated by observations of torsional oscillations I introduce a non-linearity,
amending the system so that the flow is perturbed by the Lorentz force due
to the magnetic field

FL ∝
1

µ0

(∇×B)×B. (3.15)

Here I am assuming that all other forces are balanced an so any perturbation
is due to the Lorentz force. The system becomes

u = V (x, y)ŷ + V ′(x, z, t)ŷ. (3.16)

Using the Navier-Stokes equation I obtain a 3rd equation in my system gov-
erning V ′ (the perturbation to the azimuthal flow)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ ρg + F + ρν∇2u + Fm, (3.17)

where F are imposed turbulent stresses and Fm is the Lorentz force. p is the
pressure, ν is the kinematic viscosity, ρ is the density and g is the gravitational
force. Taking the y-component of (3.17)

∂V ′

∂t
=

1

ρ
[j×B]y + ν∇2V ′, (3.18)

where

j =
1

µ0

∇×B, (3.19)

and

B =

(
−∂A
∂z

,B,
∂A

∂x

)
. (3.20)
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The RHS of (3.18) can be expanded component by component:

∇×B =

(
−∂B
∂z

,−∂
2A

∂z2
− ∂2A

∂x2
,
∂B

∂x

)
. (3.21)

Therefore

j =
1

µ0

(
−∂B
∂z

,−∂
2A

∂z2
− ∂2A

∂x2
,
∂B

∂x

)
, (3.22)

and

(3.23)
j×B =

1

µ0

(
−
(
∂2A

∂z2
+
∂2A

∂x2

)
∂A

∂x
−B∂B

∂x
,−∂B

∂x

∂A

∂z
+
∂B

∂z

∂A

∂x
,

−B∂B
∂z
−
(
∂2A

∂z2
− ∂2A

∂x2

)
∂A

∂z

)
.

Thus

[j×B]y =
1

µ0

(
∂B

∂z

∂A

∂x
− ∂B

∂x

∂A

∂z

)
, (3.24)

and so (3.18) can be written as

∂V ′

∂t
=

1

µ0ρ

(
∂B

∂z

∂A

∂x
− ∂B

∂x

∂A

∂z

)
+ ν∇2V ′, (3.25)

where again µ0 is the magnetic permeability, ν is the kinematic viscosity and
ρ is the density.

Now I have equations for ∂A/∂t, ∂B/∂t and ∂V ′/∂t:

∂A

∂t
= αB + ηT∇2A, (3.26)

∂B

∂t
=
∂V

∂z

∂A

∂x
− ∂V

∂x

∂A

∂z
+ ηT∇2B, (3.27)

∂V ′

∂t
=

1

µ0ρ

(
∂B

∂z

∂A

∂x
− ∂B

∂x

∂A

∂z

)
+ ν∇2V ′. (3.28)

3.4 Dimensionless Equations

The next step is to make these dimensionless. To do this, I consulted Tobias
(1996) and introduced the scalings:

x = lx∗ −→ ∇ ∼ 1

l
∇∗ −→ ∇2 ∼ 1

l2
∇∗2, (3.29)
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t =
l2

ηT
t∗ −→ ∂

∂t
∼ ηT

l2
∂

∂t∗
, (3.30)

α = α0f(x, z), A = lB0A
∗, B = B0B

∗, (3.31)

and
V = lω0V

∗, V ′ = lω0V
′∗. (3.32)

l is a characteristic lengthscale in the z-direction and α0, ω0 and B0 are repre-
sentative values. These correspond with my imposed boundary conditions of
A = B = V ′ = 0 at z = 0 and z = l. Looking first at (3.26)

ηT
l2
lB0

∂A∗

∂t∗
= α0B0f(x, z)B∗ +

ηT
l2
lB0∇∗2A∗ (3.33)

∂A∗

∂t∗
=

α0l

ηT
f(x, z)B∗ +∇∗2A∗ (3.34)

Taking a further rescaling of

A∗ =
α0l

ηT
A∗∗ (3.35)

this becomes

α0l

ηT

∂A∗∗

∂t∗
=

α0l

ηT
f(x, z)B∗ +

α0l

ηT
∇∗2A∗∗ (3.36)

∂A∗∗

∂t∗
= f(x, z)B∗ +∇∗2A∗∗ (3.37)

A similar approach can be used to simplify (3.27) and (3.28), giving the
following dimensionless equations,

∂A

∂t
= f(x, z)B +∇2A (3.38)

∂B

∂t
= D

[
∂(V + V ′)

∂z

∂A

∂x
− ∂(V + V ′)

∂x

∂A

∂z

]
+∇2B (3.39)

∂V ′

∂t
= sign(D)

[
∂B

∂z

∂A

∂x
− ∂B

∂x

∂A

∂z

]
+ τ∇2V ′ (3.40)

Here, D is the dynamo number α0ω0l
3/η2T and τ = ν/ηT , the magnetic Prandtl

number . sign(D) takes the value −1 if D < 0 or +1 if D > 0.
Note that a further rescaling of A and B in (3.28) is needed to deal with

the coefficient of the Lorentz force.
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Chapter 4

Third Order System

4.1 Modifying the Equations

My aim is to use the model equations to reproduce the butterfly diagram
showing the sunspot observations. I assume that f(x, z) = F (x) and A = B =
V ′ = 0 at z = 0, l where z = 0 corresponds to the base of the domain and
z = l corresponds to the top. If I was using a spherical model, A, B and V ′

would all vanish at the poles to allow for the stress and current to be finite.
In my 2-D model this corresponds to A, B and V ′ being zero at x = 0 and
x = L. The assumption that they also vanish at z = 0 and z = 1 is simply
an idealisation to make my model easier to solve. Using a similar approach to
Dawes (2007), I introduce

A = A1(x, t) sin(πz), (4.1)

B = B1(x, t) sin(πz), (4.2)

V ′ = V2(x, t) sin(2πz), (4.3)

and substituting these into (3.38), (3.39) and (3.40) then simplifying gives the
equations for a third order coupled system. I have used sin(2πz) for the V ′

equation to allow for it being quadratic in B.
Looking in detail at the process for (3.40):

(4.4)

∂

∂t
[V2 sin(2πz)] = sign(D)

[
∂

∂z
[B1 sin(πz)]

∂

∂x
[A1 sin(πz)]

− ∂

∂z
[A1 sin(πz)]

∂

∂x
[B1 sin(πz)]

]
+ τ

∂2

∂x2
[V2 sin(2πz)] + τ

∂2

∂z2
[V2 sin(2πz)]
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sin(2πz)
∂V2
∂t

= sign(D)

[
π cos(πz)B1 sin(πz)

∂A1

∂x
− π cos(πz)A1 sin(πz)

∂B1

∂x

]
+ τ sin(2πz)

∂2V2
∂x2

− 4τπ2 sin(2πz)V2

(4.5)

Using sin(2πz) = 2 sin(πz) cos(πz),

(4.6)
sin(2πz)

∂V2
∂t

= sign(D)

[
π

2
sin(2πz)B1

∂A1

∂x
− π

2
sin(2πz)A1

∂B1

∂x

]
+ τ sin(2πz)

∂2V2
∂x2

− 4τπ2 sin(2πz)V2

Projecting onto the relevant Fourier mode gives

∂V2
∂t

= sign(D)
π

2

[
B1
∂A1

∂x
− A1

∂B1

∂x

]
+ τ

∂2V2
∂x2

− 4π2τV2 (4.7)

This process can be similarly repeated for both (3.38) and (3.39). Therefore
the equations for the 3rd order system are:

∂A1

∂t
= F (x)B1 +

∂2A1

∂x2
− A1π

2 (4.8)

∂B1

∂t
= D

∂A1

∂x
− πD

[
V2
∂A1

∂x
− A1

2

∂V2
∂x

]
+
∂2B1

∂x2
− π2B1 (4.9)

∂V2
∂t

= sign(D)
π

2

[
B1
∂A1

∂x
− A1

∂B1

∂x

]
+ τ

∂2V2
∂x2

− 4π2τV2 (4.10)

4.2 Numerical Methods

The system equations are very difficult to solve analytically and so I will solve
them numerically. I am using a Runge-Kutta time step, defined as

k1 = hf(xn, yn), (4.11)

k2 = hf(xn +
1

2
h, yn +

1

2
k1), (4.12)

yn+1 = yn + k2 +O(h3), (4.13)

which is 2nd order accurate in time, and the method of finite differences, which
is 2nd order accurate in space along provided I use a time-step smaller than
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(δx)2/2, (Press et al., 1986). This gives me my equations in a form suitable to
solve in Fortran. For example, the RHS of (4.8) is written as

F (x)B1(j) +
A1(j + 1)− 2A1(j) + A1(j − 1)

(∆x)2
− A1(j)π

2 (4.14)

I have also calculated the toroidal magnetic energy and kinetic energy of
the system. The magnetic energy can be found using

EM =
1

2

∫ 1

0

∫ 8

0

[B1(x, t) sin(πz)]2 dxdz, (4.15)

=
1

4

∫ 1

0

∫ 8

0

B2
1 [1− cos(2πz)] dxdz, (4.16)

=
1

4

∫ 8

0

B2
1

[
z − 1

2π
sin(2πz)

]1
0

dx, (4.17)

=
1

4

∫ 8

0

B2
1 dx. (4.18)

Using the trapezium rule∫ xn

x0

f(x) dx =
1

2
h [f(x0) + f(xn) + 2 (f(x1) + f(x2) + . . .+ f(xn − 1))] ,

(4.19)
(4.18) becomes

EM =
∆x

2

[
1

4
B1(0)2 +

1

4
B1(N)2 +

2

4

N−1∑
i=1

B1(i)
2

]
. (4.20)

At the boundaries, B1 is taken to be zero and so

EM =
∆x

4

N−1∑
i=1

B1(i)
2. (4.21)

Similarly, the kinetic energy is found from

EK =
1

2

∫ 1

0

∫ 8

0

[V2(x, t) sin(πz)]2 dxdz, (4.22)

and so,

EK =
∆x

4

N−1∑
i=1

V2(i)
2. (4.23)
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I am also interested in looking at the torsional oscillations and so calculate
the average part of the induced flow. This requires taking the average of V2 at
each time step.

Another way to find the critical value of D is to consider the linear theory.
The linearised equations for the system are

∂A

∂t
= cos

(πx
L

)
B +

∂2A

∂x2
− Aπ2, (4.24)

∂B

∂t
= D

∂A

∂x
B +

∂2B

∂x2
−Bπ2, (4.25)

∂V

∂t
= τ

∂2V

∂x2
− 4π2τV. (4.26)

I am only interested in the A and B equations as they are coupled. Letting

A(x, t) = a1(t) sin
(πx
L

)
+ a2(t) sin

(
2πx

L

)
, (4.27)

and

B(x, t) = b1(t) sin
(πx
L

)
+ b2(t) sin

(
2πx

L

)
, (4.28)

and then substituting these into (4.24) and (4.25) then projecting onto each
Fourier mode, first by multiplying the resultant equations by sin(πx/L) and
integrating w.r.t x between 0 and L and then by multiplying the resultant
equations by sin(πx/L) and integrating w.r.t x between 0 and L. Looking for
solutions proportional to ept where p ∈ C by letting

a1 = â1e
pt and a2 = â2e

pt, (4.29)

b1 = b̂1e
pt and b2 = b̂2e

pt, (4.30)

where p = σ + iω . This results in 4 equations

â1

(
pL+

4π2

L
+ π2L

)
= b̂1

L

2
, (4.31)

â2

(
pL+

π2

L
+ π2L

)
= b̂2

L

2
, (4.32)

b̂1

(
pL+

π2

L
+ π2L

)
= â1

16D

3
, (4.33)

b̂2

(
pL+

4π2

L
+ π2L

)
= −â1

8D

3
. (4.34)

These equations can then be formed into a matrix and solved for D using
Matlab.
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Figure 4.1: Contours of B1 and x over time when D = 500 and τ = 1

4.3 Numerical results

I was able to produce graphs that show x and B1 varying over time. By
plotting x, t and the mid-point of B1 I can reproduce the butterfly diagram,
Figure 1.5. I also let F (x) = cos(πx/L).

I first looked at the case of D > 0 with τ = 1. Figure 4.1 shows the
contours of B1 over time when D + 500 and τ = 1. They are clearly periodic
and symmetric, however, the direction of propagation is polewards and this is
the opposite to what we observe on the sun. Now looking at the case D < 0 as
shown below, the propagation changes direction and so is in agreement with
what actually happens in the sun. Thus I will look more closely at the negative
D case.

I want to find the critical value for D by looking at the case τ = 1. This is
the simplest case because the time-scale is the same as the diffusive time-scale.
From Figure 4.2 it is clear that the critical value for D lies between -400 and
-450. This value is constant for all values of τ . Keeping τ constant I can
demonstrate the effects of decreasing D.

Figure 4.3 shows the contours of B1 along with the values of magnetic and
kinetic energy when D = −1000 when τ = 1. The contours are clearly periodic
and symmetric with an amplitude of around 15. The magnetic and kinetic
energies settle down to a steady oscillation after the initial perturbation. Next,
decreasing D to −1500, Figure 4.4 the contours look rather similar, however
the amplitude has increased to 20. The values of magnetic and kinetic energies
have also increased but again follow a similar shape. A much more dramatic
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Figure 4.2: Contours of B1 and x over time. Top; Decaying oscillations when
D = −400, τ = 1. Bottom: Growing oscillations when D = −450, τ = 1.
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Figure 4.3: Top: Contours of B1 and x over time when D = −1000 and τ = 1.
Middle: Magnetic energy. Bottom: Kinetic energy
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Figure 4.4: Top: Contours of B1 and x over time when D = −1500 and τ = 1.
Middle: Magnetic energy. Bottom: Kinetic energy
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Figure 4.5: Top: Contours of B1 and x over time when D = −3000 and τ = 1.
Middle: Magnetic energy. Bottom: Kinetic energy
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change can be seen in Figure 4.5 when D decreases to −3000. The contours of
B1 are very asymmetric and the period has changed. Once again the amplitude
has increased to 25 and the values of magnetic and kinetic have also increased,
approximately by a factor of 2.

Below, I have shown the effects of decreasing τ whilst keeping D constant.
Figure 4.6 shows the case when D = 1000 and τ = 0.1. The contours are
periodic and symmetric. It can been seen that after the initial perturbation,
both the magnetic and kinetic energies settle down to a steady value. When I
decreased τ to 0.025, as shown in Figure 4.7, the results are no longer symmet-
ric. Looking at the energy graphs, the results are no longer steady, but appear
to be roughly periodic. Decreasing τ once again, to 0.001, as in Figure 4.8,
the contours are aperiodic and asymmetric. Both the magnetic and kinetic
energy values no longer appear to follow any pattern and are unlike any of the
previous graphs, they appear to be chaotically modulated.

The following graph shows the torsional oscillations for the third order
system when D = −1000 and τ = 1.

It is clear that the torsional oscillations follow the same shape as the con-
tours of B1. Looking at the graph we can count that there are approximately
12 periods in a space of 1 unit on the time axis. For this to agree with what
we know about the sun, I would expect there to be 12 periods in a space of
2 units on the time axis. From Figure 4.6 it can be seen that this is the case
and my results agree with the observed data.

Figure 4.7 shows the torsional oscillations for D = −1000 and τ = 0.025.
Clearly this does not look as expected. When considering the torsional oscil-
lations, we expect a steady mode along with the excited parts. It is difficult
to remove the long time-scale modulation from the values to see the under-
lying structure. For this example, the graph could be improved only looking
at a very short time-scale but this problem is one of the limitations of time-
averaging.
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Figure 4.6: Top: Contours of B1 and x over time when D = −1000 and
τ = 0.1. Middle: Magnetic energy (red), Kinetic energy (blue). Bottom:
Torsional oscillations.
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Figure 4.7: Contours of B1 and x over time when D = −1000 and τ = 0.025.
Middle: Magnetic energy(red), Kinetic energy (blue). Bottom: Torsional os-
cillations

28



Figure 4.8: Contours of B1 and x over time when D = −1000 and τ = 0.01.
Middle: Magnetic energy. Bottom: Kinetic energy
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Chapter 5

Sixth Order System

5.1 Model Equations

To create a more realistic model, I changed f(x, z) to allow for increasing and
α with z, representing increasing turbulence:

f(x, z) =
F (x)

2
[1− cos(πz)] . (5.1)

This requires a new Ansatz:

A(x, z, t) = A1(x, t) sin(πz) + A2(x, t) sin(2πz), (5.2)

B(x, z, t) = B1(x, t) sin(πz) +B2(x, t) sin(2πz), (5.3)

V (x, z, t) = V1(x, t) sin(πz) + V2(x, t) sin(2πz), (5.4)

which results in six equations:

∂A1

∂t
=
F (x)

2
B1 −

F (x)

4
B2 +

∂2A1

∂x2
− π2A1, (5.5)

∂A2

∂t
=
F (x)

2
B2 −

F (x)

4
B1 +

∂2A2

∂x2
− π2A2, (5.6)

∂B1

∂t
= D

∂A1

∂x
+ πD

[
−V2

∂A1

∂x
+
V1
2

∂A2

∂x
− A1

2

∂V2
∂x

+ A2
∂V1
∂x

]
+
∂2B1

∂x2
− π2B1,

(5.7)
∂B2

∂t
= D

∂A2

∂x
+ πD

[
V1
2

∂A1

∂x
− A1

2

∂V1
∂x

]
+
∂2B2

∂x2
− 4π2B2, (5.8)
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∂V1
∂t

= πsign(D)

[
−B2

∂A1

∂x
+
B1

2

∂A2

∂x
− A1

2

∂B2

∂x
+ A2

∂B1

∂x

]
+τ

[
∂2V1
∂x2

− π2V1

]
,

(5.9)
∂V2
∂t

=
π

2
sign(D)

[
B1
∂A1

∂x
− A1

∂B1

∂x

]
+ τ

[
∂2V2
∂x2

− 4π2V2

]
. (5.10)

As with the 3rd order system, I included commands to calculate the mag-
netic and kinetic energy. The magnetic energy is found from

EM =
1

2

∫ 1

0

∫ 8

0

[B1(x, t) sin(πz) +B2(x, t) sin(2πz)]2 dxdz, (5.11)

which can be simplifed down to

EM =
∆x

4

N−1∑
i=1

[
B1(i)

2 +B2(i)
2
]
. (5.12)

Similarly,

EK =
1

2

∫ 1

0

∫ 8

0

[V1(x, t) sin(πz) + V2(x, t) sin(2πz)]2 dxdz, (5.13)

=
∆x

4

N−1∑
i=1

[
V1(i)

2 + V2(i)
2
]
. (5.14)

5.2 Results

Beginning with trying to find the critical value for D, I let τ = 1 as with the
third order system and variedD. From Figure5.1 it can be seen that the critical
value for D is approximately -1100. Here the contours are clearly symmetric
and periodic with an amplitude of around 15. The factor of [1− cos(πz)]
in f(x, z) means that it will always be less than the alpha for the 3rd order
system and so this system will have to work harder to drive a dynamo. This
explains why the critical D value is greater in modulus than that for the 3rd
order system.

Keeping τ constant and decreasing D to -2000, as in Figure 5.2, the con-
tours of B1 are still symmetric but are no longer completely periodic, there is
some modulation. Some of the cycles appear weaker than others. Again the
amplitude is approximately 15.The values of magnetic energy reflect that the
cycles are no longer periodic. Now decreasing D to -3000, Figure 5.3 shows
clear modulation. Again, the contours seem to be roughly symmetric about
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Figure 5.1: Contours of B1 and x over time. Top: D = −1000 , τ = 1.
Bottom: D = −1100 , τ = 1
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the equator but now have an amplitude of 25. The magnetic energy values
range from 140 to 220 which a massive increase from the previous plot. One
point of interest when comparing this plot to Figure 5.2 is that the the plot
showing a smaller D value is actually more complicated. I would expect that
as the modulus of D increases the complexity of the contours will increase.
There is obviously some form of non-trivial D dependence for the 6th order
system, this may simply be a quirk of my model.

As with the 3rd order system, the effects of decreasing tau can be shown.
Starting with D = −1500 and τ = 0.5 in Figure 5.4 the contours of B1 are
periodic and symmetric about the equator with an amplitude of 8. Decreasing
τ to 0.1, Figure 5.5 shows that the contours are no longer symmetric and the
amplitude has decreased to 3. Figure 5.6 shows the case when τ = 0.01. The
contours are now completely aperiodic and the amplitude has decreased once
again to 1. This decrease in amplitude is expected as a smaller τ inhibits the
dynamo. I would also have expected to see some modulation at such a low τ
but it may be that D also needs to decrease to see such results.
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Figure 5.2: Contours of B1 and x over time when D = −2000 and τ = 1.
Middle: Magnetic energy. Bottom: Kinetic energy
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Figure 5.3: Contours of B1 and x over time when D = −3000 and τ = 1.
Middle: Magnetic energy. Bottom: Kinetic energy
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Figure 5.4: Contours of B1 and x when D = −1500 and τ = 0.5

Figure 5.5: Contours of B1 and x when D = −1500 and τ = 0.1

Figure 5.6: Contours of B1 and x when D = −1500 and τ = 0.01
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Chapter 6

Conclusions

I have found the method of using an interface dynamo to be quite successful
in recreating the Sun’s magnetic field. Obviously my simplified 2 dimensional
model will not produce as accurate result as a full spherical model but I am
happy that my model has produced results that are concurrent with the Sun.
My own butterfly diagrams are clearly very similar to butterfly diagram of
sunspots observed on the Sun.

Starting with the simpler third order system I first found that for positive D
the direction of propagation for the contours of B1 is opposite to that observed
on the Sun and so not of real interest to me. Next, I found that for negative
D the direction of propagation now agrees with the observations from the Sun
and the critical value of D for the onset of dynamo action is approximately
-450. When τ = 1 decreasing D causes the contours to become less symmetric
and periodic. The values of magnetic energy and kinetic energy also vary more,
over a larger scale, as D decreases. Next, keeping D = −1000 and decreasing
τ from 0.1 to 0.01 causes the contours to become increasingly aperiodic and
showing modulation.

Increasing the complexity with the sixth order system the critical D value
is now approximately -1100. Again keeping τ = 1 and decreasing D leads
to quite complex contours of B1 and energy plots. Then keeping D constant
at -1500 clearly shows that as τ decreases, the contours remain periodic but
become completely asymmetric.

In the future I would like to continue on with my work the torsional oscil-
lations. Further I would continue work on the linear theory using Matlab to
find a value for critical D. I would then consider the 4-mode case and even
the 6-mode case. This should increase the accuracy of the critical D value.
Finally, I would also like to consider more complicated models, perhaps using
a Fourier expansion in the horizontal plane.
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