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Abstract

Investigators of clinical crossover trials are often met with the problem of how to deal
with missing data caused by patients dropping out of a study prematurely. This
dissertation introduces the AB/BA crossover clinical trial and presents different
methods of analysis on both the complete case (the data set where patients with
incomplete data are omitted) and the full case (the data set where all patients’
readings have been included, regardless of whether or not they completed the trial).
The data used in this trial are from a study on analgesic pain killers for neuropathic
pain by Frank et al. [1]. A consideration of different types of missing data also
provides an insight to selection model analysis for crossover data. Conclusions show
differences between treatment estimators for the complete and full case analyses,
but a discussion shows that it may be pertinent to use the complete case in practical
applications.
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Chapter 1

Introduction to Crossover Trials

1.1 Randomised Controlled Clinical Trials

In the area of medical research and drug development, a clinical trial is an experiment
performed on a sample of human subjects with a particular condition used to assess
the efficacy of a new treatment or medication. There are many classifications and
designs of clinical trials, including Randomised Controlled Trials (RCTs). The
presence of statistical ideas in RCTs, such as randomisation, has established them
as the most reputable, and sometimes only, source of evidence for the assessment
of new treatments. The use of empirical data eliminates the risk implied by use of
opinions or uncontrolled environments.

A number of ethical implications arise through using human subjects in an experiment,
creating three points which must be considered by investigators involved in an RCT:

� A patient must never be given a treatment which is known to be inferior to
another.

� A patient must be made aware of all circumstances and implications of the
trial and treatment.

� A patient is able withdraw from the trial at any time.

1.1.1 Structure

The structure of an RCT is as follows:

� A group of patients which meet a particular set of eligibility criteria are
recruited. This criteria is in place to find a group of patients with relevant
characteristics. The consideration of eligibility criteria is important to ensure
generalisability of results.

� A sample of patients who formally consent to being entered into the trial are
recruited from the set of eligible patients.

1



CHAPTER 1. INTRODUCTION TO CROSSOVER TRIALS 2

� Members of this sample of recruited patients are randomly allocated to one of
two (or more) groups; the treated group, which receives the new treatment,
and a control group which receives the current most commonly used treatment
for the condition. Randomisation of allocation ensures the two treatment
groups are comparable with each other.

� Once data is collected for each participant, the outcomes are compared and
the efficacy of the treatment is assessed.

1.2 Crossover Trials

Generally, in a situation where a treatment is intended to cure an ailment, patients
in a trial are only allocated one of the possible treatments during the study; this
is called a parallel group design. For conditions where treatments are not intended
to cure but to ease or control symptoms of chronic diseases, such as diabetes and
asthma, subjects in a study could receive two or more treatments. Such studies are
called crossover trials.

The main feature distinguishing crossover trials from other clinical trial designs
is that a measurement from one patient receiving treatment A is compared to
the measurement of treatment B from the same patient. There are many varying
characteristics between human subjects and so this method provides the possibility
of a more precise treatment comparison. This is because the variability which exists
between subjects which can be removed quite simply from the comparison due to
the nature of the crossover model (see Section 1.2.3).

1.2.1 The AB/BA Design

In the comparison of two treatments, it would seem to be simplest to give all
patients treatment A followed by treatment B. However, this creates ambiguity in
the results. For example, consider:

� If treatment A is taken first, it may be that it appears to be better than
treatment B, purely because it was taken first.

� If all patients start the trial at the same time, there may be an outside
influence on the which affects all readings.

This leads to a confounding of treatment with time, which we shall call a period
effect. Therefore, recruited patients are still randomly allocated to one of two groups
but patients in one group will receive treatment A in the first treatment period and
cross over to treatment B in the second while patients in the other group receive
the treatments in order BA. This is an AB/BA crossover design and is the simplest
of the crossover trial designs.
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1.2.2 Carryover

One problem with crossover trials is the issue of carryover effect, i.e. the idea
that the benefits of the first treatment may continue into the second period, thus
affecting the results. Investigation has been done into overcoming carryover and a
common approach is to use non-statistical knowledge to introduce an appropriate
“wash-out period” in between treatments to eliminate the problem, or start over
with a different trial design.

1.2.3 Notation

Let nAB be the number of subjects in the group taking treatment A in treatment
period one followed by treatment B in treatment period two and nBA for the group
with the treatments in the reverse order. For group AB, we use yABij

to denote the
outcome for subject i (i = 1, ..., nAB) in period j, (j = 1, 2), with yBAij

similarly
defined for group BA. Then, we have:

yABi1
= µ+ π1 + τA + ξi + εi1, yABi2

= µ+ π2 + τB + ξi + εi2, (1.1)

yBAi1
= µ+ π1 + τB + ξi + εi1, yBAi2

= µ+ π2 + τA + ξi + εi2. (1.2)

Where,

� µ is the general mean,

� πj is the period effect of period j,

� τA, τB are the treatment effects for treatment A and B respectively,

� ξi is the patient effect of subject i,

� εij is the error term, with εij with mean 0 and variance σ2
W .

The subject effect, ξi, can be removed from the analysis easily due to the nature
of crossover design. This term is eliminated by taking differences of readings from
each patient, i.e.

dABi
= yABi1

− yABi2

= π1 − π2 + τA − τB + ξi − ξi + εi1 − εi2
= 2π + 2τ + ηi (1.3)

and dBAi
= yBAi1

− yBAi2

= 2π − 2τ + ηi., (1.4)

Where,

� π = π1,−π = π2, when π is the semi-difference of treatment periods,

� τ = τA,−τ = τB, when τ is the semi-difference between treatments and

� ηi = εi1 − εi2 is another error term, this time ηi with mean 0 and variance
2σ2

W = σ̃2.

Equations (1.3) and (1.4) can be used to determine treatment differences. Analysis
involves a t-test, discussed further in Chapter 2.
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1.3 The Pain Trial: Introduction

The paper by Frank et al. [1] outlines a crossover trial which compares the efficacy
and side effects of nabilone (N), a synthetic cannabinoid, versus dihydrocodeine
(D), a weak opiate, for treating neuropathic pain. The study, which lasted three
months, took place at three hospitals in the UK. Eligible patients had neuropathic
pain according to the diagnostic criteria (e.g. stabbing pain), were aged between 18
and 90 and were already taking a steady dose of pain relief. Patients excluded from
the study included those with epilepsy, liver disease, psychosis, bipolar disorder,
history of substance abuse, renal failure or those which display adverse effects to
dihydrocodeine or nabilone. Pain scores were given as measurements on a 0−100mm
visual analogue scale.

Figure 1.1 illustrates a flow chart describing the study. Ninety-six patients were
randomised to group DN, consisting of those who take dihydrocodeine in treatment
period one and nabilone in treatment period two, or group ND, consisting of those
taking the treatments in the reverse order. The model used included a fixed patient
effect and the assumption of normal errors. Each treatment period lasted six weeks
with a washout period of two weeks in between. Data were collected from the
last two weeks of each treatment period (weeks 5-6 and weeks 13-14) to enable the
exclusion of carryover from the model.

For the analyses in this report, we will only be considering the 82 patients who

Number of patients with
complete data

Number of patients with
missing period two data

Group DN 32 5 37
Group ND 35 10 45

67 15

Table 1.1: The group allocation for patients with complete and incomplete data in the
pain trial.

either have pain readings for both treatment periods or only have a pain reading for
period one. Table 1.1 shows a break down of the patients randomised to each group,
and whether they have complete or incomplete data (missing readings). Table 1.2
shows the means of these measurements for both treatments in each group sequence,
for the 82 patients.

Mean of
treatment D (mm)

Mean of
treatment N (mm)

Group DN 51.41 (54.14 ) 59.16 (59.16 )
Group ND 58.47 (58.47 ) 63.68 (64.87 )

Table 1.2: The average pain scores on each treatment (mm), for the complete cases only
(in italics) and the full data set.
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Figure 1.1: A flow chart from Frank et al. [1] describing the structure of the pain trial.



Chapter 2

Simple Analysis of AB/BA

2.1 Two Sample t-test

If we refer to Equations (1.3) and (1.4) in Section 1.2.3, we can see that

E (dABi
) = 2π + 2τ and E (dBAi

) = 2π − 2τ.

If there is no treatment difference (τ = 0) these two expectations are the same.
To assess the difference between treatments we use a two sample t-test to test
H0 : τ = 0.

2.1.1 Estimating τ

If we denote the mean sample difference in each group as

d̄AB = 2π + 2τ + η̄AB and d̄BA = 2π − 2τ + η̄BA,

then E
(
d̄AB − d̄BA

)
= 4τ and an estimate for the treatment difference is

τ̂ =
1

4

(
d̄AB − d̄BA

)
. (2.1)

If we take the expectation of this estimator, we show that it is unbiased
(i.e. E(τ̂) = τ):

E(τ̂) =
1

4
E
(
d̄AB − d̄BA

)
=

1

4
E (2π + 2τ + η̄AB − 2π + 2τ − η̄BA)

=
1

4
E (4τ + η̄AB − η̄BA)

= τ +
1

4
E (η̄AB − η̄BA)

= τ.

6
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So, τ̂ is an unbiased estimator, with variance:

Var(τ̂) = SE2 =
1

16
Var

(
d̄AB − d̄BA

)
=

1

16
Var (η̄AB − η̄BA)

=
1

16
σ̃2

(
1

nAB
+

1

nBA

)
. (2.2)

This variance is only dependent on σ̃2, the variance of the error term, not the
variance due to the patient, σ2

B. This is the main statistical manifestation of the
benefit of using a patient as his/her own control, mentioned in Section 1.2. Note
also, that for nAB or nBA = 0, this variance is infinite, i.e. there must be at least
one patient in each sequence for the estimator in Equation (2.1) to be valid.

2.1.2 The Pain Trial: Unpaired t-test

Using this simple analysis method, we can investigate the treatment effects for the
pain trial discussed in Section 1.3. As we are using patient differences, dDN and
dND, we are only able to consider the patients with complete data. If we conduct
an unpaired t-test on the complete cases in R, we receive the following output:

> t.test(dDN, dND, paired=F, var.equal=T)

Two Sample t-test

data: dDN and dND

t = -2.3535, df = 65, p-value = 0.02163

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-21.105968 -1.728743

sample estimates:

mean of x mean of y

-5.019981 6.397374

Here, we have a p-value of 0.02119 (< 0.05) for the null hypothesis H0 : τ = 0,
impying a difference between treatments which is not solely due to chance (at the
95% level). The output also gives values d̄DN = −5.019981 and d̄ND = 6.397374.
If we recall the estimator in Equation (2.1), we can use these values to calculate a
treatment difference estimate of

τ̂ =
1

4

(
d̄DN − d̄ND

)
=

1

4
(−5.019981− 6.397374)

= −2.8543,

which has a 95% confidence interval of (−5.2679,−0.4408). This suggests that
nabilone (N) is more beneficial than dihydrocodeine (D) for reducing pain score, as
moving from treatment D to treatment N reduces pain measurement by 2.85mm.
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2.2 Paired t-test

At first sight, if we did not consider a period effect, it may seem intuitive to use
a paired t-test on the data. In this case our treatment difference estimator is the
mean of the differences;

τ̂p =

∑nAB di −
∑nBA di

2 (nAB + nBA)
(2.3)

where
∑nAB denotes the sum over all the patients in group AB and

∑nAB denotes
the sum over all the patients in group BA.

2.2.1 Expectation and Variance of τ̂p

If we take the expectation of Equation (2.3), we can see that it is, in general, biased;

E(τ̂p) = E

[
2nAB (π + τ) +

∑nAB ηi − 2nBA (π − τ)−
∑nBA ηi

2(nAB + nBA)

]
= E

[
2π(nAB − nBA) + 2τ(nAB + nBA) +

∑n ηi
2n

]
=

π(nAB − nBA)

n
+ τ + E

(∑n ηi
n

)
=

π(nAB − nBA)

n
+ τ, (2.4)

(where n = nAB + nBA). Note that the distribution of
∑nAB ηi −

∑nBA ηi is the
same as that of

∑n ηi as η is symmetric about 0.

This has a variance of

Var(τ̂p) = SE2
p = Var

(∑n ηi
2n

)
=

σ̃2

4n
.

We can see from Equation (2.4) that, when there is no period effect or when group
sizes are the same (nAB = nBA), E (τ̂p) = τ , i.e. τ̂p is an unbiased estimator. In
the case when nAB = nBA, Equation (2.3) becomes τ̂p = 1

4

(
d̄AB − d̄BA

)
and the

analysis for the unpaired t-test and paired t-test are the same.

2.2.2 The Pain Trial: Paired t-test

Overleaf shows the output for a paired t-test on the complete cases from the
pain trial data. d and n are vectors of readings obtained when patients were
on dihydrocodeine and nabilone respectively, regardless of the treatment period.
Here, we have multiplied these vectors by 0.5 as we have been working with the
semi -treatment difference, τ .
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> t.test(0.5*d, 0.5*n, paired=T)

Paired t-test

data: 0.5 * d and 0.5 * n

t = -2.3852, df = 66, p-value = 0.01995

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-5.2718788 -0.4676361

sample estimates:

mean of the differences

-2.869757

On this occasion, the p-value is 0.01995 (< 0.05) for the null hypothesis of H0 : τ =
0, which still suggests a difference between treatments which is not solely due to
chance (at the 95% level). The treatment estimate is

τ̂p = −2.8698,

with a 95% confidence interval of (−5.2719,−0.4676) and Nabilone (N) is still the
better treatment for reducing pain score. If we refer to Table 2.1, we can see that
this treatment estimate and its confidence interval are very similar to those found
using the unpaired t-test which suggests that the period effect, π, is very small.

τ̂ 95% confidence interval
Unpaired t-test -2.8543 (-5.2679, -0.4408)
Paired t-test -2.8698 (-5.2719, -0.4676)

Table 2.1: The treatment effects and confidence intervals for the pain trial data, found
using unpaired and paired t-tests.

2.3 Analytic Comparison of Methods

Despite having a biased estimate for τ , there may be some situations where it is
better to use a paired t-test over an unpaired t-test. We investigate this further
using the ratio of the standard errors.

2.3.1 Ratio of Standard Errors

The standard errors of τ̂ and τ̂p are denoted SE and SEp respectively. The ratio is(
SE

SEp

)2

=
1

4

(nAB + nBA)2

nABnBA

=
1

4

(
nAB
nBA

+ 2 +
nBA
nAB

)
.
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We know that, for any x > 0, (
x+

1

x

)
≥ 2,

and so, (
nAB
nBA

+
nBA
nAB

)
≥ 2,

1

4

(
nAB
nBA

+ 2 +
nBA
nAB

)
≥ 1,

that is,

SE

SEp

≥ 1 ⇒ SE ≥ SEp

So the paired method has a smaller standard error which implies that it may give
results which are better representative of the population than the unpaired method.
However, this standard error does not take into account the bias of τp. To allow for
this, we use the mean square error (MSE).

2.3.2 Ratio of Mean Square Errors

The MSE of an estimator is a measure of performance of that estimator, which
takes into account both accuracy and precision. It measures the average squared
difference between an estimator and the parameter. It is defined by

MSE = E

[(
θ̂ − θ

)2]
= E

[(
θ̂ − E(θ̂) + E(θ̂)− θ

)2]
= Var

(
θ̂
)

+ bias
(
θ̂
)2

+ 2
(
E(θ̂)− θ

)
E
[
θ̂ − E(θ̂)

]
= Var

(
θ̂
)

+ bias
(
θ̂
)2
.

So for the unpaired method,

MSE = Var(τ̂) =
1

16
σ̃2

(
1

nAB
+

1

nBA

)
,

whereas for the paired,

MSEp = Var (τ̂p) + bias (τ̂p)
2

=
σ̃2

4(nAB + nBA)
+

[
π(nAB − nBA)

nAB + nBA

]2
=

σ̃2

4(nAB + nBA)
+
π2(nAB − nBA)2

(nAB + nBA)2
.
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Thus,

MSEp

MSE
=

(
16

σ̃2

nABnBA
nAB + nBA

)[
σ̃2

4(nAB + nBA)
+
π2(nAB − nBA)2

(nAB + nBA)2

]
=

4nABnBA

(nAB + nBA)2
+

16π2nABnBA(nAB − nBA)2

σ̃2(nAB + nBA)3

=
4nABnBA

(nAB + nBA)2

[
1 +

4π2(nAB − nBA)2

σ̃2(nAB + nBA)

]

= 4θ(1− θ)

[
1 +

4π2

σ̃2
n

(
nAB − nBA
nAB + nBA

)2
]

= 4θ(1− θ)
[
1 + k(2θ − 1)2

]
,

where

θ =
nAB

nAB + nBA
,

and

k =
4π2

σ̃2
n. (2.5)

If θ = 1
2
, i.e. the group sizes are the same size, then MSEp/MSE = 1 and the two

methods are just as effective as each other. This in agreement with Section 2.2.1
which states that the two methods of analysis are the same if the group sizes are
the same.

The unpaired method is better than the paired method when MSEp/MSE ≥ 1,
i.e.

4θ (1− θ)
[
1 + k(2θ − 1)2

]
≥ 1

⇒ k ≥ 1− 4θ (1− θ)
(2θ − 1)24θ (1− θ)

≥ 4θ2 − 4θ + 1

(2θ − 1)24θ (1− θ)

≥ 1

4θ(1− θ)
. (2.6)

The result in Equation (2.6) is better illustrated in Figure 2.1, a plot of MSEp/MSE
against θ for varying k. Values below the red line correspond to situations where the
paired method is more effective and above the red line corresponds to the unpaired
method being more effective.
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Figure 2.1: A graph of MSEp/MSE against θ for k = 0, 0.9, 1.3, 2, 3, 3.5.

We can see a number of things from Figure 2.1;

� When k=0 (the black quadratic curve), MSEp/MSE is under the
red line, which means that it is better to use the paired method
to analyse crossover data. k = 0 corresponds to π = 0 (See Equation
(2.5)), i.e. no period effect. We have seen before that a zero period effect
gives E (τ̂p) = E (τ̂) and τ̂p is unbiased in Section 2.2.1.

� Near θ=0,1, the curve is always below the line and the paired
method is more favourable. This is mentioned in Section 2.1.1. If either
nAB or nBA = 0, the variance of τ̂ is infinite (see Equation 2.2) and so is the
MSE of τ̂ . Then, MSEp is smaller and it is better to use the paired method.
However, this is unrealistic, as the definition of a crossover trial would require
patients in both groups.

� Regardless of the size of k, when θ=1
2

the paired method and
unpaired method are equally effective. When the groups are equal sizes,
the two methods coincide. Generally, we aim for group sizes to be equal in
clinical trials as this minimises the variance given in Equation (2.2). However,
patients in a study are able to drop out and groups are very often left unequal.
Refer to Chapters 4 and 6 for more information on patient drop outs.

� As k increases, more values reach over the red line and the unpaired
method is more favourable than the paired. Large k is likely, as k ∝ n,
and n is large.

Usually in a crossover trial, there are patients in both treatment groups and, whilst
the aim would be for the groups to be equal size, they are often left unequal. Also,
n would be large, which implies large k. So, an unpaired t-test is generally more
advisable.



Chapter 3

Likelihood Estimation for
Complete Data

In Section 2.1.1 we produced an estimate of τ̂ = 1
4

(
d̄AB − d̄BA

)
for the treatment

difference when using an unpaired t-test. However, this method did not consider
patients with incomplete data. To assess the the role of this partial information,
we can estimate τ and π using maximum likelihood estimation. As a preliminary,
we consider this approach on only the complete cases.

3.1 Likelihood Function

Here, we recall Equations (1.1) and (1.2) from Section 1.2.3

yABi1
= µ+ π1 + τA + ξi + εi1, yABi2

= µ+ π2 + τB + ξi + εi2,

yBAi1
= µ+ π1 + τB + ξi + εi1, yBAi2

= µ+ π2 + τA + ξi + εi2.

Recalling the definitions of µ, π and τ from Section 1.2.3, we can write the above’s
means as:

E (yABi
) = XABβ

=

(
1 1 1
1 −1 −1

)µπ
τ


E (yBAi

) = XBAβ

=

(
1 1 −1
1 −1 1

)µπ
τ

 ,

where yABi
is the [2× 1] vector of responses on subject i in group AB, similarly

for yBAi
. Previously we did not specify the form of ξi. For maximum likelihood

estimation, the number of parameters cannot increase with the number of observations,
so we must not take ξi to be a fixed effect. We therefore assume ξi is a normal
random effect with mean 0 and variance σ2

B.If we recall from Section 1.2.3 that

13
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Var(εi) = σ2
W , then

Var (yABi
) = σ2

B + σ2
W

= σ2.

We have a sample of independent observations and so, the likelihood function, L,
is the product of the joint density function at each observation, that is,

L = L (β|y1, . . . , yn)

=
n∏
i=1

f (yi|β) .

So, assuming normality of the error terms, the log-likelihood is

l = log(L)

= −n log(2π)− n

2
log |Σ| − 1

2

nAB∑
i=1

(yABi
−XABβ)>Σ−1 (yABi

−XABβ)

−1

2

nBA∑
i=1

(yBAi
−XBAβ)>Σ−1 (yBAi

−XBAβ)

= −n log(2π)− n

2
log |Σ| − 1

2

nAB∑
i=1

(
yABi

>Σ−1yABi
− 2yABi

>Σ−1XABβ + β>XAB
>Σ−1XABβ

)
−1

2

nBA∑
i=1

(
yBAi

>Σ−1yBAi
− 2yBAi

>Σ−1XBAβ + β>XBA
>Σ−1XBAβ

)
. (3.1)

3.2 Maximisation and Estimation

To estimate the parameters in β = (µ, π, τ)>, we wish to maximise the log-likelihood
function found in Equation (3.1). First, we differentiate the log-likelihood function,
with respect to β;

∂l

∂β
=

nAB∑
i=1

(
XAB

>Σ−1yABi
−XAB

>Σ−1XABβ
)
+

nBA∑
i=1

(
XBA

>Σ−1yBAi
−XBA

>Σ−1XBAβ
)
.

(3.2)
Then, to maximise, set ∂l/∂β = 0 to give

nAB∑
i=1

XAB
>Σ−1yABi

+

nBA∑
i=1

XBA
>Σ−1yBAi

= nABXAB
>Σ−1XABβ̂ + nBAXBA

>Σ−1XBAβ̂

If we denote the mean of the yABij
and yBAij

, for period j = 1, 2, to be ȳABj
and

ȳBAj
respectively, we have

nABXAB
>Σ−1ȳABj

+nBAXBA
>Σ−1ȳBAj

= nABXAB
>Σ−1XABβ̂+nBAXBA

>Σ−1XBAβ̂
(3.3)
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Here,

Σ = σ2

(
1 ρ
ρ 1

)
which implies

Σ−1 =
σ2

1− ρ2

(
1 −ρ
−ρ 1

)
.

We also set, for simplicity of notation,

n+ = nAB + nBA

n− = nAB − nBA.

Then the RHS of Equation (3.3) becomes(
nABXAB

>Σ−1XAB + nBAXBA
>Σ−1XBA

)
β̂

=
σ2

1− ρ2

nAB
1 1

1 −1
1 −1

( 1 −ρ
−ρ 1

)(
1 1 1
1 −1 −1

)

+ nBA

 1 1
1 −1
−1 1

( 1 −ρ
−ρ 1

)(
1 1 −1
1 −1 1

) β̂
=

σ2

1− ρ2

2nAB(1− ρ) 0 0
0 2nAB(1 + ρ) 2nAB(1 + ρ)
0 2nAB(1 + ρ) 2nAB(1 + ρ)


+

2nBA(1− ρ) 0 0
0 2nBA(1 + ρ) −2nBA(1 + ρ)
0 −2nBA(1 + ρ) 2nBA(1 + ρ)

 β̂
=

σ2

1− ρ2

2(1− ρ)n+ 0 0
0 2(1 + ρ)n+ 2(1 + ρ)n−

0 2(1 + ρ)n− 2(1 + ρ)n+

 β̂,

and the LHS of Equation (3.3) becomes

nABXAB
>Σ−1ȳABj

+ nBAXBA
>Σ−1ȳBAj

=
σ2

1− ρ2

nAB
1 1

1 −1
1 −1

( 1 −ρ
−ρ 1

)
ȳABj

+ nBA

 1 1
1 −1
−1 1

( 1 −ρ
−ρ 1

)
ȳBAj


=

σ2

1− ρ2

nAB
1− ρ 1− ρ

1 + ρ −(1 + ρ)
1 + ρ −(1 + ρ)

(ȳAB1

ȳAB2

)

+ nBA

 1− ρ 1− ρ
1 + ρ −(1 + ρ)
−(1 + ρ) 1 + ρ

(ȳBA1

ȳBA2

)
=

σ2

1− ρ2

nAB
(1− ρ)s̄AB

(1 + ρ)d̄AB
(1 + ρ)d̄AB

+ nBA

 (1− ρ)s̄BA
(1 + ρ)d̄BA
−(1 + ρ)d̄BA

 .
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Where d̄AB and d̄BA are the mean sample differences in each group defined in Section
2.1.1. We also define s̄AB = ȳAB1 + ȳAB2 and s̄BA = ȳBA1 + ȳBA2 . So, combining the
LHS and RHS, we obtainµ̂π̂
τ̂

 =

2(1− ρ)n+ 0 0
0 2(1 + ρ)n+ 2(1 + ρ)n−

0 2(1 + ρ)n− 2(1 + ρ)n+

−1 nAB
(1− ρ)s̄AB

(1 + ρ)d̄AB
(1 + ρ)d̄AB

+ nBA

 (1− ρ)s̄BA
(1 + ρ)d̄BA
−(1 + ρ)d̄BA

 .
As we are only interested in π̂, τ̂ , we look at:(
π̂
τ̂

)
=

(
2(1 + ρ)n+ 2(1 + ρ)n−

2(1 + ρ)n− 2(1 + ρ)n+

)−1 [
nAB

(
(1 + ρ)d̄AB
(1 + ρ)d̄AB

)
+ nBA

(
(1 + ρ)d̄BA
−(1 + ρ)d̄BA

)]
=

1

2����(1 + ρ)(n+2 − n−2)

(
n+ −n−
−n− n+

)[
nAB

(
����(1 + ρ) d̄AB
����(1 + ρ) d̄AB

)
+ nBA

(
����(1 + ρ) d̄BA
−����(1 + ρ) d̄BA

)]
where

n+2 − n−2 = (nAB + nBA)2 − (nAB − nBA)2 = 4nABnBA

implies,(
π̂
τ̂

)
=

1

8

[
1

nBA

(
n+ −n−
−n− n+

)(
d̄AB
d̄AB

)
+

1

nAB

(
n+ −n−
−n− n+

)(
d̄BA
−d̄BA

)]
=

1

8

[
1

nBA

(
n+d̄AB − n−d̄AB
n+d̄AB − n−d̄AB

)
+

1

nAB

(
n+d̄BA + n−d̄BA
−n−d̄BA − n+d̄BA

)]
.

Then, an estimator for the period effect is:

π̂ =
1

8

(
1

nBA
n+d̄AB −

1

nBA
n−d̄AB +

1

nAB
n+d̄BA +

1

nAB
n−d̄BA

)
=

1

8

[
(nAB + nBA)

1

nBA
d̄AB − (nAB − nBA)

1

nBA
d̄AB

+ (nAB + nBA)
1

nAB
d̄BA + (nAB − nBA)

1

nAB
d̄BA

]
=

1

4

(
d̄AB + d̄BA

)
,

and an estimator for the treatment effect is

τ̂ =
1

8

[
(nAB + nBA)

1

nBA
d̄AB − (nAB − nBA)

1

nBA
d̄AB

− (nAB + nBA)
1

nAB
d̄BA − (nAB − nBA)

1

nAB
d̄BA

]
=

1

4

(
d̄AB − d̄BA

)
.

This estimator is in agreement with the estimator for the unpaired t-test found in
Section 2.1.1.



Chapter 4

Likelihood Estimation for
Incomplete Data

4.1 Patient Drop Outs and Missing Data

Ideally, when conducting a clinical trial, patients would turn up to every clinic to
provide the appropriate readings or measurements. However, it may be the case
that a patient decides to drop out of the trial, resulting in a missing reading for
that patient. There are four possible situations that can arise in this trial design:

1. patients which have an observation in each treatment period,

2. patients which have no observation for the first treatment period but an
observation for the second,

3. patients which have an observation for the first treatment period, but none
for the second,

4. patients which have no observations for either treatment period.

Those in situation 4 are not considered in analysis. Situation 2 is very rare in
practice, and so not considered in this dissertation. We will be considering data
with situations 1 (denoted the complete cases) and 3 (denoted the incomplete cases).

Previous methods in this paper have been ‘complete case analyses’ as they have
ignored patients with no data in period two. However, this may mean missing out
information important the results, so we can use maximum likelihood estimation to
find new estimates for τ and π based on all the available data. We shall call this
a full analysis. Further discussion into the causes of drop outs and how this data
should be dealt with in a more sophisticated way is considered in Chapter 6.

4.2 Likelihood Function

As the observations on each patient are independent and identically distributed with
the assumption of normality of the errors, we take the log-likelihood function to be

17
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the sum of the complete cases, denoted with (c), and incomplete cases, denoted
with (m), i.e. (ignoring factors of 2π)

l
(
β, σ2, ρ

)
= logL

(
β, σ2, ρ

)
= −

nAB(c)

2
log|Σ|−1

2

nAB(c)∑
i=1

(yABi
−XABβ)>Σ−1 (yABi

−XABβ)

−
nBA(c)

2
log|Σ|−1

2

nBA(c)∑
i=1

(yBAi
−XBAβ)>Σ−1 (yBAi

−XBAβ)

−1

2
nAB(m) log σ2 − 1

2

nAB(m)∑
i=1

(yABi1
−XAB1β)2

σ2

−1

2
nBA(m) log σ2 − 1

2

nBA(m)∑
i=1

(yBAi1
−XBA1β)2

σ2
. (4.1)

HereXAB1 andXBA1 denote the first rows of the matricesXAB andXBA respectively;

XAB1 =
(
1 1 1

)
XBA1 =

(
1 1 −1

)
.

We write

Σ = σ2

(
1 ρ
ρ 1

)
= σ2C,

Σ−1 =
σ−2

(1− ρ2)

(
1 −ρ
−ρ 1

)
= σ−2C−1,

and

|Σ| = σ4
(
1− ρ2

)
= σ4 |C| ,

so, disregarding terms constant with respect to β, ρ and σ2, we have

l
(
β, σ2, ρ

)
= −1

2
n+
(c) log |C| − 1

2

(
n+
(m) + 2n+

(c)

)
log σ2 − 1

2σ2
A (β, ρ) . (4.2)

Where

A (β, ρ) =

nAB(c)∑
i=1

(yABi
−XABβ)>C−1 (yABi

−XABβ)

+

nBA(c)∑
i=1

(yBAi
−XBAβ)>C−1 (yBAi

−XBAβ)

+

nAB(m)∑
i=1

(yABi1
−XAB1β)2 +

nBA(m)∑
i=1

(yBAi1
−XBA1β)2.



CHAPTER 4. LIKELIHOOD ESTIMATION FOR INCOMPLETE DATA 19

4.3 Maximisation and Estimation

We can maximise this likelihood using R function lmer. This is discussed further in
Chapter 5. First we consider the extent to which analytical progress is possible in
this case, rather than apply a general approach to this particular kind of crossover
study. To proceed, we note;

l
(
β, σ2, ρ

)
= function (ρ) + function

(
σ2
)

+ function
(
ρ, β, σ−2

)
.

For fixed ρ, we can maximise the likelihood found in Equations (4.2), with respect to
β, to find β̂ρ. Given this estimate, we consider l(β̂ρ, σ

2, ρ) and maximise to find σ̂2
ρ.

We are then left with a profile likelihood for ρ, l(β̂ρ, σ̂
2
ρ, ρ), which can be maximised

numerically or graphically.

4.3.1 Finding β̂

To maximise Equation (4.2) with respect to β we proceed in a similar way to Section
3.2. Firstly, we note that

(y1 −X1β) = (y1 −X1β)> (y1 −X1β)

= y1
2 + β>X1

>X1β − 2y1X1β.

The derivative with respect to β is 2X1
>X1β − 2X1

>y1, then,

∂l

∂β
=

nAB(c)∑
i=1

(
XABΣ−1yABi

−XAB
>Σ−1XABβ

)
+

nBA(c)∑
i=1

(
XBAΣ−1yBAi

−XBA
>Σ−1XBAβ

)
+

1

σ2

[nAB(m)∑
i=1

(
XAB1

>yABi1
−XAB1

>XAB1β
)

+

nBA(m)∑
i=1

(
XBA1

>yBAi1
−XBA1

>XBA1β
)]
.

Once again, we take the mean over all the patients in each group for period j, ȳABj

and ȳBAj
, to give

∂l

∂β
=

1

σ2

[
nAB(c)XAB

>C−1ȳAB(c)j − nAB(c)XAB
>C−1XABβ

+ nBA(c)XBA
>C−1ȳBA(c)j − nBA(c)XBA

>C−1XBAβ + nAB(m)XAB1

>ȳAB(m)1

− nAB(m)XAB1

>XAB1β + nBA(m)XBA1

>ȳBA(m)1 − nBA(m)XBA1

>XBA1β
]
.

Again, to maximise, we set ∂l/∂β = 0, i.e.

nAB(c)XAB
>C−1ȳAB(c)j + nBA(c)XBA

>C−1ȳBA(c)j + nAB(m)XAB1

>ȳAB(m)1 + nBA(m)XBA1

>ȳBA(m)1

= nAB(c)XAB
>C−1XABβ̂ + nBA(c)XBA

>C−1XBAβ̂ + nAB(m)XAB1

>XAB1 β̂ + nBA(m)XBA1

>XBA1 β̂

(4.3)
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We know from Section 3.2 that

nABXAB
>Σ−1XAB + nBAXBA

>Σ−1XBA =
1

1− ρ2

2(1− ρ)n+ 0 0
0 2(1 + ρ)n+ 2(1 + ρ)n−

0 2(1 + ρ)n− 2(1 + ρ)n+

 ,

combined with

nAB(m)XAB1

>XAB1 + nBA(m)XBA1

>XBA1 = nAB(m)

1
1
1

(1 1 1
)

+ nBA(m)

 1
1
−1

(1 1 −1
)

=

n+
(m) n+

(m) n−(m)

n+
(m) n+

(m) n−(m)

n−(m) n−(m) n+
(m)


gives the RHS of Equation (4.3):(
nAB(c)XAB

>C−1XAB + nBA(c)XBA
>C−1XBA + nAB(m)XAB1

>XAB1 + nBA(m)XBA1

>XBA1

)
β̂

=

 1

1− ρ2

2(1− ρ)n+
(c) 0 0

0 2(1 + ρ)n+
(c) 2(1 + ρ)n−(c)

0 2(1 + ρ)n−(c) 2(1 + ρ)n+
(c)

+

n+
(m) n+

(m) n−(m)

n+
(m) n+

(m) n−(m)

n−(m) n−(m) n+
(m)

 β̂
We also know from Section 3.2:

X>ABΣ−1nAB ȳABj
+X>BAΣ−1nBAȳBAj

=
1

1− ρ2

nAB
(1− ρ)s̄AB

(1 + ρ)d̄AB
(1 + ρ)d̄AB

+ nBA

 (1− ρ)s̄BA
(1 + ρ)d̄BA
−(1 + ρ)d̄BA

 ,
If we combine this with

nAB(m)XAB1

>ȳAB1 + nBA(m)XBA1

>ȳBA1 = nAB(m)

1
1
1

 ȳAB1 + nBA(m)

 1
1
−1

 ȳBA1

=

nAB(m)ȳAB1 + nBA(m)ȳBA1

nAB(m)ȳAB1 + nBA(m)ȳBA1

nAB(m)ȳAB1 − nBA(m)ȳBA1


we find the LHS of Equation (4.3) to be

nAB(c)XAB
>C−1ȳAB(c)j + nBA(c)XBA

>C−1ȳBA(c)j
+ nAB(m)XAB1

>ȳAB(m)1 + nBA(m)XBA1

>ȳBA(m)1

=
nAB(c)

1− ρ2

(1− ρ)s̄AB(c)

(1 + ρ)d̄AB(c)

(1 + ρ)d̄AB(c)

+
nBA(c)
1− ρ2

 (1− ρ)s̄BA(c)
(1 + ρ)d̄BA(c)
−(1 + ρ)d̄BA(c)


+

nAB(m)ȳAB(m)1 + nBA(m)ȳBA(m)1

nAB(m)ȳAB(m)1 + nBA(m)ȳBA(m)1

nAB(m)ȳAB(m)1 − nBA(m)ȳBA(m)1

 .
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And so,

β̂ =

 1

1− ρ2

2(1− ρ)n+
(c) 0 0

0 2(1 + ρ)n+
(c) 2(1 + ρ)n−(c)

0 2(1 + ρ)n−(c) 2(1 + ρ)n+
(c)

+

n+
(m) n+

(m) n−(m)

n+
(m) n+

(m) n−(m)

n−(m) n−(m) n+
(m)

−1
nAB(c)

1− ρ2

(1− ρ)s̄AB(c)

(1 + ρ)d̄AB(c)

(1 + ρ)d̄AB(c)

+
nBA(c)
1− ρ2

 (1− ρ)s̄BA(c)
(1 + ρ)d̄BA(c)
−(1 + ρ)d̄BA(c)


+

nAB(m)ȳAB(m)1 + nBA(m)ȳBA(m)1

nAB(m)ȳAB(m)1 + nBA(m)ȳBA(m)1

nAB(m)ȳAB(m)1 − nBA(m)ȳBA(m)1

 .
(4.4)

Explicit inversion of the matrix in Equation (4.4) is awkward and so β̂ρ is found
numerically, as discussed further in Section 4.4 for the pain trial data.

4.3.2 Finding σ̂2
ρ

In order to find the equation for σ̂2
ρ we must maximise

l(β̂ρ, σ
2, ρ) = −1

2
n+
(c) log |C| − 1

2

(
n+
(m) + 2n+

(c)

)
log σ2 − 1

2σ2
A
(
β̂ρ, ρ

)
.

Differentiation of this likelihood with respect to σ2, gives

∂l

∂σ2
=

(
n+
(m) + 2n+

(c)

)
σ2

− 1

σ4
A
(
β̂ρ, ρ

)
,

and ∂l/∂σ2 = 0 implies

σ̂2
ρ =

A
(
β̂ρ, ρ

)
n+
(m) + 2n+

(c)

. (4.5)

This estimator will also be discussed further in Section 4.4.

4.3.3 Profile Likelihood

Substituting the estimate σ̂2
ρ into Equation (4.5) gives the likelihood function

l
(
β̂ρ, σ̂

2
ρ, ρ
)

= −1

2
n+
(c) log |C| − 1

2

(
n+
(m) + 2n+

(c)

)
log σ̂2

ρ −
1

2σ̂2
ρ

A
(
β̂ρ, ρ

)
= −1

2
n+
(c) log (1− ρ2)− 1

2

(
n+
(m) + 2n+

(c)

)
log σ̂2

ρ −
1

2

(
n+
(m) + 2n+

(c)

)
.

Disregarding the terms which are constant with respect to ρ, we have the profile
likelihood

f(ρ) = −1

2

[
n+
(c) log (1− ρ2) +

(
n+
(m) + 2n+

(c)

)
log σ̂2

ρ

]
. (4.6)
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This profile likelihood function is dependent on estimates β̂ρ and σ̂2
ρ found in

Equations (4.4) and (4.5) respectively. As β̂ is difficult to solve analytically, we
have written a function in R which calculates β̂ at fixed ρ = r (Appendix A). A
similar R function for the estimate σ̂2 at fixed ρ = r (Appendix B). Using these,
it is possible to write a third function (Appendix C), which produces the values of
Equation (4.6) at ρ = r.

4.4 The Pain Trial: Maximum Likelihood Estimation

for the Full Data

If we recall Table 1.1 in Section 1.3, we can see that 15 of the 82 patients have
data missing in period two. Here, we will follow the method outlined in Section
4.3 to calculate a new treatment estimate for the pain trial which includes these
un-paired period one readings. We recall the profile likelihood function for ρ in
Equation (4.6);

f(ρ) = −1

2

[
n+
(c) log (1− ρ2) +

(
n+
(m) + 2n+

(c)

)
log σ̂2

ρ

]
,

and its R function in Appendix C. Upon application of this R function to our pain
trial data we are able to plot the profile likelihood, found in Figure 4.1. We can
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Figure 4.1: Graphical representation of the profile likelihood function for the pain trial
data.

see that this likelihood is at a maximum somewhere between ρ = 0.6 and ρ =
0.7. Further numerical investigation returns ρ̂ = 0.6385. Stryhn and Christensen
[2] describe finding a confidence interval for this estimator as inverting a profile
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likelihood test. If we carry out an hypothesis test for ρ with H0 : ρ = r our test
statistic, D, in terms of the profile likelihood, f(ρ), is

D = 2 {f (ρ̂)− f (r)} ∼ χ2
1.

So, the region in which we accept an estimate of ρ at the 0.05 significance level is{
ρ | f(ρ̂)− f(r) ≤ 1

2
χ2
1 (0.95)

}
,

i.e. f(ρ) ≥ f(ρ̂) − 1.96. For the pain trial data, this returns a 95% likelihood
confidence interval of (0.4761, 0.7566) illustrated in Figure 4.2. If we use this value
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 )

Figure 4.2: Graphical representation of the likelihood confidence interval for ρ.

ρ̂ = 0.6385 to calculate β̂ and σ̂2 using the functions found in Appendices A and B
we obtain

β̂ =

57.8262
0.0142
−3.1104


σ̂2 = 529.0596.

We have a new treatment difference estimate of τ̂ = −3.1104, which is different to
the estimate of τ̂ = −2.8543, given by the complete case analyses.



Chapter 5

Linear Mixed-Effects Models

Linear mixed-effects models consist of a combination of fixed-effects and random-effects.
These types of models are useful in the analysis of longitudinal data, as they account
for multiple correlated readings on each subject but can also cope with unbalanced
designs caused by missing readings or varying time points.

Laird and Ware [3] describe linear mixed-effects models as ‘two stage random-effects
models’. Stage one consists of the introduction of the fixed-effects of the model (e.g.
the population parameters, individual effects and within-person variation) and stage
two consists of the introduction of the random-effects (e.g. the between-person
variation). So, for j = 1, . . . , ni readings on i = 1, . . . , N individuals, the model for
individual i is

yi = Xiβ +Zibi + εi, (5.1)

where

� yi is the ni-vector of responses,

� β is a p-vector of unknown population parameters,

� Xi is an [ni × p] design matrix linking β to yi,

� bi is an q-vector of random effects,

� Zi is an [ni × q] design matrix linking β to yi,

and

� εi ∼ N (0, σ2Wi) for [ni × ni] positive-definite covariance matrix Wi,

� bi ∼ N (0,Σ) for [q × q] positive-definite covariance matrix Σ.

5.1 The AB/BA Mixed-Effects Model

For the AB/BA crossover trial design, we are able to apply the general linear
mixed-effects model in Equation (5.1) to the models provided in Equations (1.1)
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and (1.2) in Section 1.2.3. The fixed-effects are the period and treatment effects
and the random-effects are the patient effects so the Xiβ term in Equation (5.1)
corresponds to the

XABβ =

(
1 1 1
1 −1 −1

)µπ
τ


XBAβ =

(
1 1 −1
1 −1 1

)µπ
τ

 ,

found in Section 3.1. We also write the Zibi as

Ziξi =

(
1
1

)
ξi,

for both groups AB and BA. Here ξi ∼ N (0, σ2
B). The linear mixed-effects models

used in Sections 5.2 and 5.3 are

yABi
= XABβ + Zξi + εi,

=

(
1 1 1
1 −1 −1

)µπ
τ

+

(
1
1

)
ξi + εi (5.2)

yBAi
= XBAβ + Zξi + εi,

=

(
1 1 −1
1 −1 1

)µπ
τ

+

(
1
1

)
ξi + εi. (5.3)

5.2 The Pain Trial: Linear Mixed-Effects Regression

on the Complete Cases

We have found that using maximum likelihood estimation on the complete cases
derived an estimate for τ which was the same as the unpaired t-test estimator
(Equation (2.1)) to use linear mixed-effects regression on the complete cases of the
pain trial data we use R-function lmer from R package lme4 [4]. This fits a model
with fixed period (Periodc) and treatment (Rxc) effects and random patient (Patc)
effects, like that in Equations (5.2) and (5.3). This provides the following output:

> complete=lmer(yc~Periodc+Rxc+(1|Patc),REML=F)

> summary(complete)

Linear mixed model fit by maximum likelihood [’lmerMod’]

Formula: yc ~ Periodc + Rxc + (1 | Patc)

AIC BIC logLik deviance

1195.5822 1210.0714 -592.7911 1185.5822
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Random effects:

Groups Name Variance Std.Dev.

Patc (Intercept) 339.4 18.42

Residual 190.8 13.81

Number of obs: 134, groups: Patc, 67

Fixed effects:

Estimate Std. Error t value

(Intercept) 59.2710 2.5475 23.266

Periodc 0.3443 1.1946 0.288

Rxc -2.8543 1.1946 -2.389

Correlation of Fixed Effects:

(Intr) Peridc

Periodc 0.000

Rxc 0.000 0.045

So the treatment estimate of

τ̂ = −2.8543,

which is the same as that found using the unpaired t-test method and thus also the
same as would be found using maximum likelihood estimation on the complete cases
in the data. If we use R command confint on the linear mixed-effects regression
we receive the output:

> confint(complete)

Computing profile confidence intervals ...

2.5 % 97.5 %

.sig01 14.629527 23.0043930

.sigma 11.768560 16.5294013

(Intercept) 54.205460 64.3364761

Periodc -2.030938 2.7196340

Rxc -5.229625 -0.4790531

and so our treatment estimate has a 95% confidence interval of (−5.2296,−0.4791).
This confidence interval is the same size and in roughly the same place as that
found for the unpaired t-test, so these estimates are as precise as each other. We
also note the period effect estimate of

π̂ = 0.3443,

with a 95% confidence interval of (−2.0309, 2.7196). This is small, as was suggested
in Section 2.2.2.

5.3 The Pain Trial: Linear Mixed-Effects Regression

on the Full Data

As mentioned earlier in the chapter, linear mixed-effects regression copes well with
unbalanced data caused by missing data, and so we can fit a linear mixed-effects
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model in R to all of the pain data, complete and incomplete, with fixed period and
treatment effects and random patient effect;

> missing=lmer(Y~Period+Rx+(1|Pat),REML=F)

> summary(missing)

Linear mixed model fit by maximum likelihood [’lmerMod’]

Formula: Y ~ Period + Rx + (1 | Pat)

AIC BIC logLik deviance

1332.1445 1347.1642 -661.0723 1322.1445

Random effects:

Groups Name Variance Std.Dev.

Pat (Intercept) 338.7 18.40

Residual 190.9 13.82

Number of obs: 149, groups: Pat, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) 57.82532 2.34742 24.634

Period 0.01507 1.17545 0.013

Rx -3.10968 1.17230 -2.653

Correlation of Fixed Effects:

(Intr) Period

Period -0.076

Rx 0.022 0.054

From this output, we can see that the maximum likelihood estimates for the fixed
effects, β̂ are

β̂ =

µ̂π̂
τ̂

 =

57.8253
0.0151
−3.1097

 .

This has given us the same treatment effect as the full maximum likelihood estimation
analysis, found in Section 4.4. The change to the estimate of the mean, µ̂, and period
effect, π̂, is negligible. If we use R function confint once more, we get:

> confint(missing)

Computing profile confidence intervals ...

2.5 % 97.5 %

.sig01 14.758052 22.6355162

.sigma 11.774039 16.5176522

(Intercept) 53.156966 62.4699108

Period -2.339166 2.3385246

Rx -5.451721 -0.7902713
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giving a 95% confidence interval of (−5.4517,−0.7903) for τ̂ . Recalling the definitions
of σ2

W and σ2
B from Sections 1.2.3 and 3.1 respectively, the estimate for the correlation,

ρ̂, is parameterised as

ρ =
σ2
B

σ2
B + σ2

W

,

=
338.7

338.7 + 190.9
,

= 0.6395.

This estimate is the same as the estimate found in Section 4.4.



Chapter 6

Selection and Pattern Mixture

6.1 Types of Missing Data

The full analysis on the pain trial data (Sections 4.4 and 5.3) obtained treatment
effect estimates different to those in Sections 2.1.2, 2.2.2 and 5.2, where analysis was
only on the complete cases. We have argued that, by omitting patients with missing
period two data, we miss out on information important to the analysis of the study.
However, Rubin [5] states that also ignoring what causes data to be missing leads
to incorrect and biased results in some cases. He explains that missing data are
either

� missing completely at random (MCAR), where there is no relationship between
missingness and any of the missing or observed data points,

� missing at random (MAR), where the missingness of a data point is not related
to the value of the missing data point, but is related to some of the observed
data, or

� missing not at random (MNAR), where the missingness of the data depends
on the unseen observations.

Previous analyses in this dissertation have assumed data to be MAR or MCAR.
This assumption is potentially flawed, as experience of a treatment may cause a
patient to drop out, which means the missing data is MNAR. If we are to avoid
biased estimates in this case, we need a model which accounts for the missingness
process.

Little [6] develops an analysis of MNAR data by introducing a ‘missing-data indicator’,
R ∈ {0, 1}. Where Y1 is a reading in period one and Y2 a reading in period two, we
denote the indicator to be R = 1 for a patient with both Y1 and Y2 observed and
R = 0 for a patient with only Y1 observed. Then the joint distributions of the data
are either

Pr (Y1, Y2, R = 1) (6.1)

or
Pr (Y1, R = 0) (6.2)

29



CHAPTER 6. SELECTION AND PATTERN MIXTURE 30

for the complete and incomplete cases respectively. Thus the log-likelihood, formed
in the same way as in Section 3.1, is

l =
∑
AB(c)

logPr (Y1, Y2, R = 1) +
∑
BA(c)

logPr (Y1, Y2, R = 1)

+
∑
AB(m)

logPr (Y1, R = 0) +
∑
BA(m)

logPr (Y1, R = 0) .

P r (R = 1 | Y1, Y2) models how R depends on Y1 and Y2. As we consider missingness
to be a result of the experience the patients have on the treatment, it is reasonable
to assume that the probability should potentially depend on both Y1 and Y2. For
simplicity, we model this situation using a linear predictor, θ0 + θ1Y1 + θ2Y2, and
set

Pr (R = 1 | Y1, Y2) = F (θ0 + θ1Y1 + θ2Y2) , (6.3)

where F (·) denotes a function which maps R→ [0, 1]. Note that, this model has

� θ1 = θ2 = 0 when the data are MCAR, and

� θ2 = 0 when the data are MAR.

Typically, logistic regression would be used for this model, however, we will use
probit regression for mathematical tractability. So Equation (6.3) becomes

Pr (R = 1 | Y1, Y2) = Φ (θ0 + θ1Y1 + θ2Y2) , (6.4)

where Φ (·) denotes the standard normal distribution function.

6.2 Selection Models

There are two ways of factorising the joint distributions found in Equations (6.1)
and (6.2); selection models and pattern mixture models. If we use a selection model,
we have

Pr (Y1, Y2, R = 1) = Pr (R = 1 | Y1, Y2)Pr (Y1, Y2) ,

and
Pr (Y1, R = 0) = Pr (R = 0 | Y1)Pr (Y1) .

The likelihood function then becomes

l =
∑
AB(c)

logPr (R = 1 | Y1, Y2)Pr (Y1, Y2) +
∑
BA(c)

logPr (R = 1 | Y1, Y2)Pr (Y1, Y2)

+
∑
AB(m)

logPr (R = 0 | Y1)Pr (Y1) +
∑
BA(m)

logPr (R = 0 | Y1)Pr (Y1).

(6.5)

We recall from Section 3.1 that Y1 and Y2 are bivariate normal random variables
with variance σ2C and means (

µ1

µ2

)
=

(
µ+ π + τ
µ− π − τ

)
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for group AB, and (
µ1

µ2

)
=

(
µ+ π − τ
µ− π + τ

)
for group BA. We will use µ1 to denote the mean of the period one readings and
µ2 for period two readings, but we must keep in mind that these differ for the two
treatment sequences, AB and BA. So, using this and Equation (6.4), we evaluate
the terms corresponding to the complete cases in Equation (6.5) to be

Pr (R = 1 | Y1, Y2)Pr (Y1, Y2) = Φ (θ0 + θ1Y1 + θ2Y2)φ2 (Y1, Y2) ,

where φ2 (Y1, Y2) denotes a standard bivariate normal. While this is relatively
straightforward, evaluating the terms which correspond to the incomplete cases
is more difficult.

6.2.1 Likelihood Contribution from the Incomplete Cases

We are unable to evaluate Pr (R = 0 | Y1)Pr (Y1) in the same way as the complete
cases, as the missingness of Y2 could depend on the value of Y2. Hence, we can
write

Pr (R = 0 | Y1) =

∫
Pr (R = 0 | Y1, Y2)Pr (Y2 | Y1) dY2.

Here,

Pr (R = 0 | Y1, Y2) = 1− Pr (R = 1 | Y1, Y2)
= Φ (−θ0 − θ1Y1 − θ2Y2)

and
Pr (Y2 | Y1) = φ (Y2 | Y1)

is the conditional distribution of Y2 given Y1. This is normal with mean

E (Y2 | Y1) = µ2 + ρ
σ2
σ1

(Y1 − µ1)

= (µ2 − ρµ1) + ρY1

= µcond,

as σ1 = σ2 in our model. Its variance is

V ar (Y2 | Y1) = σ2
(
1− ρ2

)
= σ2

cond.

Once again, we note that the conditional means differ between the two treatment
sequences. Now,

Pr (R = 0 | Y1) =

∫
Φ (−θ0 − θ1Y1 − θ2Y2)φ

(
Y2 | µcond, σ2

cond

)
dY2. (6.6)

In order to proceed, we need to introduce the skew-normal distribution.
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6.3 Extended Skew Normal Distribution

Azzalini [7] denotes a random variable Z, which is skew-normal with parameter λ,
to be Z ∼ SN (λ) if Z has density

f (z;λ) = 2φ (z) Φ (λz) , (6.7)

where z ∈ R. Here,

� φ (z) denotes the N (0, 1) density function,

� Φ (z) denotes the N (0, 1) cumulative distribution function,

� λ denotes the skewness parameter, which has λ ∈ (−∞,∞).

We note that λ = 0 corresponds to the N (0, 1) probability density function. Often,
realistic data is unimodal with some skewness and this distribution is appropriate
for the analysis of such data. The skew-normal distribution can also be extended
to the multivariate case. A random variable, U , is said to be distributed as an
extended skew-normal if it has density

f (u) =
φp (u | µ,Ω) Φ

(
ν + α> (u− µ)

)
Φ
(
ν/
√

1 + α>Ωα
) , (6.8)

where

� µ and α are p-dimensional vectors,

� ν is a scalar,

� Φ (·) is the univariate standard normal CDF and,

� φp (· | µ,Ω) is the PDF of a p-dimensional normal variable with mean µ and
covariance Ω.

See Ho et al.[8] for details. As Equation (6.8) is a density, integrating it with respect
to u equals one. This implies∫

φp (u | µ,Ω) Φ
(
ν + α> (u− µ)

)
du = Φ

(
ν√

1 + α>Ωα

)
, (6.9)

which we can use to evaluate Equation (6.6);

Pr (R = 0 | Y1) =

∫
Φ (−θ0 − θ1Y1 − θ2Y2)φ

(
Y2 | µcond, σ2

cond

)
dY2.

If we make the identifications u = Y2, α = −θ2, µ = µcond and Ω = σ2
cond,

ν − θ2 (Y2 − µcond) = −θ0 − θ1Y1 − θ2Y2
ν + θ2µcond = −θ0 − θ1Y1
ν = −θ0 − θ1Y1 − θ2µcond.
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So, using Equation (6.9), we get

Pr (R = 0 | Y1) = Φ

−θ0 − θ1Y1 − θ2µcond√
1 + θ2

2σ2
cond


= Φ

−θ0 − θ1Y1 − θ2ρY1 − θ2 (µ2 − ρµ1)√
1 + θ2

2σ2 (1− ρ2)

 .

6.4 Forming the Log-Likelihood

Equation (6.5) illustrated the general form of the log-likelihood for our MNAR data;

l =
∑
AB(c)

logPr (R = 1 | Y1, Y2)Pr (Y1, Y2) +
∑
BA(c)

logPr (R = 1 | Y1, Y2)Pr (Y1, Y2)

+
∑
AB(m)

logPr (R = 0 | Y1)Pr (Y1) +
∑
BA(m)

logPr (R = 0 | Y1)Pr (Y1).

This now becomes

l =
∑
AB(c)

log [Φ (θ0 + θ1Y1 + θ2Y2)φ2 (Y1, Y2)]

+
∑
BA(c)

log [Φ (θ0 + θ1Y1 + θ2Y2)φ2 (Y1, Y2)]

+
∑
AB(m)

log

Φ

−θ0 − θ1Y1 − θ2 (µ2 − ρµ1)− θ2ρY1√
1 + θ2

2σ2 (1− ρ2)

φ (Y1)


+
∑
BA(m)

log

Φ

−θ0 − θ1Y1 − θ2 (µ2 − ρµ1)− θ2ρY1√
1 + θ2

2σ2 (1− ρ2)

φ (Y1)

 .
If we rewrite the above as

(6.10)

l =
∑
AB(c)

log [φ2 (Y1, Y2)] +
∑
BA(c)

log [φ2 (Y1, Y2)]

+
∑
AB(m)

log [φ (Y1)] +
∑
BA(m)

log [φ (Y1)]

+
∑
AB(c)

log [Φ (θ0 + θ1Y1 + θ2Y2)] +
∑
BA(c)

log [Φ (θ0 + θ1Y1 + θ2Y2)]

+
∑
AB(m)

log

Φ

−θ0 − θ1Y1 − θ2 (µ2 − ρµ1)− θ2ρY1√
1 + θ2

2σ2 (1− ρ2)


+
∑
BA(m)

log

Φ

−θ0 − θ1Y1 − θ2 (µ2 − ρµ1)− θ2ρY1√
1 + θ2

2σ2 (1− ρ2)

 ,
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we notice the first four terms are the same as the log-likelihood function for the full
MAR analysis, which we will denote luncorr, found in Equation (4.1);

luncorr = −
nAB(c)

2
log|Σ|−1

2

nAB(c)∑
i=1

(yABi
−XABβ)>Σ−1 (yABi

−XABβ)

−
nBA(c)

2
log|Σ|−1

2

nBA(c)∑
i=1

(yBAi
−XBAβ)>Σ−1 (yBAi

−XBAβ)

− 1

2
nAB(m) log σ2 − 1

2

nAB(m)∑
i=1

(yABi1
−XAB1β)2

σ2

− 1

2
nBA(m) log σ2 − 1

2

nBA(m)∑
i=1

(yBAi1
−XBA1β)2

σ2
.

The use of a selection model has given us the log-likelihood function luncorr, plus a
correction term, lcorr, which is dependent on θ2. Fitting this model would require
maximisation of Equation (6.10) to find the relevant parameters. We notice that,
for θ2 = 0 (i.e. the MAR case), the correction term becomes

lcorr =
∑
AB(c)

log [Φ (θ0 + θ1Y1)] +
∑
BA(c)

log [Φ (θ0 + θ1Y1)]

+
∑
AB(m)

log [Φ (−θ0 − θ1Y1)] +
∑
BA(m)

log [Φ (−θ0 − θ1Y1)] .

This term is not dependent on the model parameters and so differentiation of
luncorr + lcorr with respect to those parameters will yield the same estimators as
maximum likelihood estimation on the full data, found in Chapter 4.



Chapter 7

Discussion

τ̂
95% confidence interval

for τ̂ π̂
Unpaired t-test −2.8543 (−5.2679,−0.4408)
Paired t-test −2.8698 (−5.2719,−0.4676)
LMER: Complete Cases −2.8543 (−5.2296,−0.4791) 0.3443

Table 7.1: The estimates and confidence intervals for the complete case analyses.

τ̂
95% confidence interval

for τ̂ π̂
Likelihood Estimation −3.1104 0.0142
LMER: Incomplete Cases −3.1097 (−5.4517,−0.7903) 0.0151

Table 7.2: The estimates and confidence intervals for the full analyses.

The above tables contain the treatment and period effect estimates obtained throughout
this dissertation for the pain trial data. Table 7.1 illustrates the methods of analysis
where we only considered the complete cases. We can see from this table that
treatment estimates differed very little between these methods of analysis. We
would expect a difference between a treatment estimate obtained from the unpaired
t-test compared to that of the paired t-test only if there is a significant period effect,
but linear mixed-effects regression revealed the period effect to be close to zero
(0.3443), which explains the lack of change between the treatment estimates from
the two types of t-test. Confidence intervals for these treatment estimates are very
similar in size which suggests, for this data set, the three methods provide estimates
that are very similar in precision.

Table 7.2 shows the treatment estimates for the full analyses. We notice that
the inclusion of this additional data has made a difference to the estimators; the
treatment difference estimate has changed and could potentially be more accurate.
However, the confidence interval given by the full linear mixed-effects regression
analysis is similar in size to those for the three methods analysing only the complete
cases, and so this estimate may be more accurate, but not more precise. The period

35



CHAPTER 7. DISCUSSION 36

effect has also changed but is still close to zero.

The main difference between the methods of analysis in this dissertation is the
data used. Treatment differences in the data used from the pain trial did not differ
largely between the complete case analysis and full analysis, but in a trial where
the proportion of drop out is high, the full analysis could be more accurate and
reliable. Chapter 6 includes an analysis which uses even more information; the
process causing the data to be missing. The MNAR approach to crossover trial
data may seem most desirable in a statistical sense, but a thought to the practical
applications of the trial may actually reveal the complete case analysis to be most
pertinent. For example, Ho et al. [8] consider a treatment with a side-effect which
causes patients to be unable to drive and so some patients refuse that treatment.
There is then a subset of patients that this treatment would be administered to,
and thus the treatment analysis is only relevant to those in that subset.

The concern, when faced with crossover data containing drop out, is that a patient
has dropped out because they are intolerant to the treatment they were on. The
modified log-likelihood in Equation (6.10) attempts to account for the missingness
in the trial in a more sophisticated way. In a parallel group trial (see Section
1.1.1), a patient may actually receive a treatment different from the one they were
originally assigned by randomisation, because it is considered unsuitable for them
by a member of medical staff. In this case the two treatment groups are no longer
comparable and analysis is no longer unbiased. Often analysis by intention to treat
[9, p.188] is a solution to this. Here, analysis is no longer necessarily of how the
patients were treated but how they were intended to be treated at the beginning
of the study. Conclusions may then, for example, be in favour of surgery but
knowledgeable that some patients may be inoperable and so those will be given
radiotherapy. If, in our crossover trial, the concern that a patient dropping out of
the study is because they cannot tolerate one of the treatments, then it becomes
questionable whether those patients are relevant to the comparison under analysis
by intention to treat. Then, the most pertinent analysis may only consider those
who took both treatments, i.e. the complete cases.



Chapter 8

Conclusions

We have seen that the complete case analysis and full analysis have given different
estimates for the pain data. From a statistical viewpoint we are able to argue that,
because the full analysis provides us with more information, the estimators obtained
are more reliable and representative of the total population. However, considering
the basis on which the data are included, an MAR analysis is possibly naive. Even
better would be the selection model analysis of the data, which would include even
more information about the nature of the missingness of the data. However, we have
also discussed the practical application of crossover data analysis and could argue
that, while the analysis of the all the data and the consideration of the missingness
process may provide an estimate more representative of the population, it may end
up being less relevant to those who will eventually take the treatment.

Further work could be done to maximise the likelihood function for the selection
model, found in Equation (6.10), and apply it to the pain trial data to investigate
the impact of the MNAR analysis on the estimates. It may also be interesting
to investigate the pattern mixture factorisation of the joint distributions found
in Equations (6.1) and (6.2) to compare the computation and outcomes with the
selection model factorisation.
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Appendix A

R function: betahat

betahat=function(r,YAB ,YBA ,YABm ,YBAm){

nABc=length(YAB[,1])

nBAc=length(YBA[,1])

nABm=length(YABm)

nBAm=length(YBAm)

yABc1=mean(YAB[,1])

yBAc1=mean(YBA[,1])

yABc2=mean(YAB[,2])

yBAc2=mean(YBA[,2])

yABm1=mean(YABm)

yBAm1=mean(YBAm)

nplusc=nABc+nBAc

nplusm=nABm+nBAm

nminusc=nABc -nBAc

nminusm=nABm -nBAm

sABc=yABc1+yABc2

sBAc=yBAc1+yBAc2

dABc=yABc1 -yABc2

dBAc=yBAc1 -yBAc2

m1=matrix(data=c(2*(1-r)*nplusc ,0,0,0,2*(1+r)*nplusc ,2*(1+r)*nminusc ,

0,2*(1+r)*nminusc ,2*(1+r)*nplusc),nrow=3,ncol=3,byrow=T)

m2=matrix(data=c(nplusm ,nplusm ,nminusm ,nplusm ,nplusm ,nminusm ,

nminusm ,nminusm ,nplusm),nrow=3,ncol=3,byrow=T)

m3=(1/(1-r^(2)))*m1+m2

inv=solve(m3)

m4=matrix(data=c((1-r)*sABc ,(1+r)*dABc ,(1+r)*dABc),nrow=3,ncol=1,byrow=T)

m5=matrix(data=c((1-r)*sBAc ,(1+r)*dBAc ,-(1+r)*dBAc),nrow=3,ncol=1,byrow=T)

m6=matrix(data=c((nABm*yABm1)+(nBAm*yBAm1),(nABm*yABm1)+(nBAm*yBAm1),

(nABm*yABm1) -(nBAm*yBAm1)),nrow=3,ncol=1,byrow=T)

LHS=(nABc/(1-r^(2)))*m4+(nBAc/(1-r^(2)))*m5+m6

betahat=inv%*%LHS

return(betahat)

}
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Appendix B

R function: sigsqhat

sumdiag=function(r,Y){

C=matrix(c(1,r,r,1),ncol=2,nrow=2,byrow=T)

Cinv=solve(C)

trans=t(Y)

p=Y%*%Cinv%*%trans

m=sum(diag(p))

return(m)

}

sigsqhat=function(r,bhat ,YAB ,YBA ,YABm ,YBAm){

nABc=length(YAB[,1])

nBAc=length(YBA[,1])

nABm=length(YABm)

nBAm=length(YBAm)

nplusc=nABc+nBAc

nplusm=nABm+nBAm

nminusc=nABc -nBAc

nminusm=nABm -nBAm

XAB=matrix(c(1,1,1,1,-1,-1),nrow=2,ncol=3,byrow=T)

muhatAB=XAB%*%bhat

XBA=matrix(c(1,1,-1,1,-1,1),nrow=2,ncol=3,byrow=T)

muhatBA=XBA%*%bhat

yABmat=matrix(nrow=length(YAB[,1]),ncol =2)

yABmat [,1]=YAB[,1]-muhatAB [1,]

yABmat [,2]=YAB[,2]-muhatAB [2,]

yBAmat=matrix(nrow=length(YBA[,1]),ncol =2)

yBAmat [,1]=YBA[,1]-muhatBA [1,]

yBAmat [,2]=YBA[,2]-muhatBA [2,]

XAB1=XAB[1,]

muABm1=XAB1%*%bhat

XBA1=XBA[1,]

muBAm1=XBA1%*%bhat

yBAsum=sum((YBAm -muBAm1)^2)

yABsum=sum((YABm -muABm1)^2)

A=sumdiag(r,yABmat)+sumdiag(r,yBAmat)+yABsum+yBAsum

sigsqhat=A/(nplusm +2*nplusc)

return(sigsqhat)

}
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Appendix C

R function: prlike

prlike=function(r,YAB ,YBA ,YABm ,YBAm){

nABc=length(YAB[,1])

nBAc=length(YBA[,1])

nABm=length(YABm)

nBAm=length(YBAm)

nplusc=nABc+nBAc

nplusm=nABm+nBAm

bhat=betahat(r,YAB ,YBA ,YABm ,YBAm)

ssq=sigsqhat(r,bhat ,YAB ,YBA ,YABm ,YBAm)

pr=-(nplusc*log(1-(r)^(2))+( nplusm +2*nplusc)*log(ssq))/2

return(pr)

}
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