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Abstract

Extreme weather events are becoming more and more frequent across
the globe, causing devastation to buildings and human life. We attempt
to model an example of extreme weather, namely rainfall from sites across
Great Britain using the Generalised Extreme Value distribution, firstly from
a frequentist perspective, then allowing for a trend in time with the location
parameter. We then fit the GEV using a Bayesian MCMC methodology,
again allowing for temporal trend in the location parameter, followed by
assuming a constant trend and shape parameter across regions of sites. Fi-
nally we fit a random effects model to each parameter within sub-regions and
compare in order to infer any patterns, before evaluating the strengths of our
models using goodness of fit tests.
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Chapter 1

Motivation

In this era of climate change and global warming, we are seeing more and
more extreme weather events and environmental catastrophes, which are
causing immense damage to infrastructure as well as ruining and claiming
human lives in a variety of different countries throughout the globe. These
can take many forms, for example hurricanes, the most pertinent in recent
memory being Hurricane Katrina in 2005 which caused an estimated 81 bil-
lion dollars worth of damage and killed 1836 people [9], flash floods, such
as those in Bangladesh in as recently as 2012 which killed 100 people and
stranded a quarter of a million [1], and typhoons, such as Typhoon Haiyan
in the Phillippines which killed more than 6000 people and forced over 3.8
million from their homes [8]. Of course these events are not restricted to the
more tropical and exotic regions of the world, here in the UK we have also
been affected by extreme weather, most recently during the winter storms
in early 2014 which brought with them extreme winds and flooding, causing
chaos throughout the country [5].

Naturally therefore it would make sense for us to attempt to predict these
extreme events so as to better prepare ourselves when they strike and to allow
us to construct appropriate safety mechanisms and protocol to protect both
property/infrastructure as well as human life. Clearly this is not a simple
task as these events can be dependent on a wide variety of factors, making
exact predictions as to when they will occur extremely difficult, as well as
the fact that we are seeing more and more that these events are in fact the
most extreme in recorded history at that particular area, meaning essentially
the task ahead is to predict that which has never happened before. It is at
this point we make a compromise and state that whilst it would be useful
to have a good prediction of exactly when a cataclysmic weather event will
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Figure 1.1: Aftermath of Hurricane Katrina [7]

occur, in most cases it is correctly gauging the ferocity and scale of it which
is of the most importance, since the primary use of this prediction will be,
as discussed earlier, to construct appropriate defences against these disasters
and so for this purpose it is important to know how strong the defences will
need to be.

An example of this, which will provide the bulk of this report, is that of
extreme rainfall which can cause severe flooding, and so it is important for
the civil engineers responsible for the construction of sea walls etc. to prevent
rivers from bursting their banks, to know how much rainfall to expect, and
thus how high their wall will need to be. Herein lies a trade-off, since from
a safety perspective one would argue it is best to simply build a sea wall as
high as possible, although this will clearly lead to budgetary (amongst other)
issues, meaning this is not practical and so a compromise must be reached. In
order to reach an appropriate compromise we must have an effective method
of forecasting the severity of the rainfall we are to expect, which is where the
statisticians come in.
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Chapter 2

Foundations of Extreme Value
Theory

2.1 Background

Usual statistical methods in this area, such as those used to analyse the effects
of global warming are based around looking at average levels over a given
time period, or general patterns and trends in time. Clearly this standard
statistical approach is of little use here, since it is not the average occurrences
which cause the devastation discussed earlier, it is the most extreme events
for which we must prepare. There are many approaches within Extreme
Value Theory which attempt to solve this problem, a common feature among
them being that we do not concern ourselves with the entire dataset, instead
choosing to focus on the most ”extreme” (usually but not necessarily the
largest, depending on the event being measured) values and ignoring the
rest. The method for defining which values we class as ”extreme” varies
between methodologies, that which we shall consider here involves simply
dividing the time over which the observations were recorded into set intervals
(e.g. days/weeks/years etc), and collecting the most extreme value from each
interval.

2.2 Extremal Types Theorem

We now take a more abstract, general viewpoint of this act of observing
extremes in order to understand the methods involved, before then showing
how these can be applied to the rainfall dataset we shall be investigating.
We suppose therefore we have a set of n i.i.d random variables X1, X2, ..., Xn

from a particular distribution which may or may not be known. We then
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denote the maximum of these variables as

Mn = max {X1, X2, ..., Xn} (2.1)

where n is the number of observations. It is then this object Mn that we wish
to learn about, in particular we would like to obtain a limiting distribution for
it, as this would then allow us to make appropriate inferences on the maxima
of our random variables. We can obtain an asymptotic result, known as the
Extremal Types Theorem which states for given sequences an and bn we have
that

Pr

(
Mn − bn
an

≤ x

)
→ G(x) as n→∞ (2.2)

Where G(x) is one of the following three CDFs:

G(x) = exp(exp(−x))−∞ < x <∞ (2.3)

G(x) =

{
0 if x ≤ 0,

exp(−x−α) if x > 0, α > 0.
(2.4)

G(x) =

{
exp(−(−x)α) if x < 0, α > 0,

1 if x ≥ 0.
(2.5)

[3]
The above densities are all named after the people who worked most promi-
nently with them, density 2.3 is known as the Gumbel density, density 2.4 is
known as the Frechet and density 2.5 is known as the Weibull. We can see
directly that the Gumbel density is unbounded, whereas the Frechet density
is bounded below and the Weibull is bounded above. A plot of the 3 extremal
densities is given in figure 2.1, where we can see that whilst they have sim-
ilar shapes there is a clear difference in their curvature, this is accentuated
further with larger values of α in the Frechet and Weibull densities (we show
a relatively modest α = 1 in 2.1)
We elect to give an outline proof of this result here but first must define the
property of max-stability as follows:

A distribution G is max-stable if for all n ≥ 2, there exists constants
αn > 0 and βn such that

Gn(αnz + βn) = G(z) (2.6)

Recalling our definitions from earlier in the chapter where G(z) is the CDF
of Mn = max {X1, X2, ..., Xn}, we see that equation 2.6 simply means that if
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Figure 2.1: Plot of extremal distributions

our density G(z) is max-stable, then it will remain the same type of extremal
density (that is Gumbel, Frechet or Weibull) irrespective of how many max-
ima we are using in our sample, and thus will be identical up to changes in
location and scale parameters.

From this definition we propose that a density is max-stable if and only
if it is a member of the extremal family of distributions outlined earlier. We
can see with simple algebra that the distributions defined above (2.3,2.4,2.5)
are max-stable, and the converse can be proved, although this requires ad-
vanced functional analysis and so we do not state the proof here. Hence in
order to prove the Extremal Types Theorem we simply have to show that
Mnk, the maximum random variable in a sequence of n×k random variables
(either the maximum of a single sequence of length n × k or the maximum
of k maxima, each of which is the maximum of n observations) is max stable
(and hence a member of the GEV family).

6



We suppose the limit distribution of Mn−βn
αn

is G, i.e. for large n Pr(Mn−βn
αn

≤
z) ≈ G(z). Hence for any k (with large n) we have

Pr
(Mnk − βnk

αn
≤ z
)
≈ G(z) (2.7)

However we defined Mnk to be the maximum of k variables which have the
same distribution is Mn, and so:

Pr

(
Mn − βn

αn
≤ z

)
= Pr

(
Mn − βn

αn
≤ z

)k
(2.8)

Hence by equation 2.7 we have:

Pr(Mnk ≤ z) ≈ G

(
z − βnk
αnk

)
(2.9)

and by equation 2.8 we have:

Pr(Mnk ≤ z) ≈ Gk

(
z − βnk
αnk

)
(2.10)

Hence we have that G and Gk are the same apart from the sequence of a
and b values (the scale and location coefficients) and hence we have that G
is max-stable and therefore is a member of the GEV family ([2, p. 49-51]).

This is a powerful result, since it shows that the maxima of random variables
from any distribution will have CDF given by one of the above distribu-
tions. Indeed it is worth noting that in each of equations equations 2.3, 2.4,
2.5 that the initial distribution of the random variables does not appear at all.

We consider the Extremal Types Theorem to be almost analogous to the
Central Limit theorem, in that the sequences of values an and bnbehave like
the standard deviation and mean do in the Central Limit Theorem, that is
they are essentially normalising values. We do not concern ourselves with
their values however since they are just constants and so can be absorbed
into the model, and so we shall not make any further mention of them here.

2.3 GEV distribution

Clearly we have already achieved a powerful result with the Extremal Types
Theorem in section 2.2 providing us with just 3 possibilities for the distribu-
tion of our maxima, however we naturally seek to generalise yet further and
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obtain just a single distribution to which all maxima can be attributed, this
is known as the Generalised Extreme Value distribution (henceforth referred
to simply as the GEV) which is given as follows:

G(x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
(2.11)

However clearly this is undefined in the limit when ξ tends to zero, in this
case we use the Gumbel approximation, given in equation 2.12

G(x;µ, σ) = exp

{
−
[
x− µ
σ

]}
(2.12)

[4] & [6]
From 2.11 we see that we now have 3 parameters governing this distribution,
firstly µ ∈ (−∞,∞) which is known as the location parameter, and in keeping
with the Normal distribution comparison made earlier, this behaves similarly
to the mean of the Normal, in as much as it determines the position of the
density on the number line, and the general magnitude of the values contained
(although it should be made clear that µ is not the mean of the GEV).
Next we have σ ∈ [0,∞) which is the scale parameter, and again behaves
similarly to the variance/standard deviation of the Normal in as much as it
determines the spread if the density (although again it is not the variance nor
the standard deviation of the GEV). Finally we have ξ ∈ (−∞,∞) which
is the shape parameter, which as its name would suggest, determines the
shape of the GEV density. In particular it determines which of the previous
3 densities (equations 2.3, 2.4, 2.5) the GEV will take the shape of, according
to the following set of criteria. If ξ = 0, then the density is a Gumbel, if ξ < 0
then the density is a Weibull, and if ξ > 0 the density is a Frechet. With the
exception of the former this can be seen directly by comparing 2.11 with the
corresponding density from section 2.2 (equation 2.4 or equation 2.5) with
positive/negative values of ξ.
We can verify this property of ξ graphically by comparing figure 2.2 with
figure 2.1 from section 2.2. We see that the curve with ξ = −1 displays the
same quadratic like curvature as the Weibull density, similarly the ξ = 1
curve displays the same levelling off type curvature as the Frechet density.
We recall that when ξ = 0 the GEV is undefined and hence is replaced by the
Gumbel density, and so there is nothing to verify in this case. Furthermore,
it is also worth noting that whilst theoretically ξ can take any real value,
it is rare to see values outside of the range (−1, 1), and to do so usually
indicates that the model has not fitted the data well for some reason, and so
we included the most extreme cases we are likely to encounter in figure 2.2.
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Figure 2.2: Plot of GEV CDF

2.4 Applying the GEV

Now that we have obtained a distribution which we can use to model ex-
treme values, the natural question is then to ask how do we use this model
to provide inference which can help in the real world to solve the problems
discussed in chapter 1? Since we have already obtained the CDF of the
GEV, the first step may be to calculate exceedance probabilities, that is to
determine the probability that the next maximum will exceed a given value.
Whilst this is a perfectly valid step to take and can be used to obtain some
useful results, it is not the most prevalent usage of GEV models, instead it
is far more common to calculate return levels.

Return levels are an inverted form of the exceedance level calculation, where
then we were interested in obtaining a probability of exceeding a fixed value,
whereas now we fix the probability and the return level is the value which
shall be exceeded with that probability. However, within the context of ex-
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tremes we are rarely, if ever, simply concerned with what shall be happening
in the immediate future, but instead need to think more long term. With
this in mind we choose to interpret these probabilities, not as ”the proba-
bility the next maxima shall be higher than a given value”, but instead we
interpret it as the relative frequency with which that value shall be exceeded.
For example, if we were to obtain an exceedance probability of 0.01, we could
interpret this as a fraction 1/100, and conclude that we would expect to see
this value exceeded once in the next 100 maxima. Similarly we therefore
interpret return levels as finding the value we would expect to be exceeded
once in a given length of time. It is important to bear in mind when taking
this interpretation of return levels however that they are based on the current
values of the parameters of the GEV distribution remaining constant, and
so, later on when we come to allow the parameters of our GEV density to
vary in time, our return levels will be based on the parameter values for the
year from which we are calcluating the return level. We obtain the formula
for return levels by inverting the GEV density (equation 2.11) to make x the
subject, and in doing so obtain

zr = µ+
σ

ξ

[(
− log

(
1− 1

r

))−ξ
− 1

]
(2.13)

We observe that this density, like the GEV density from which it is derived,
is not defined for a Gumbel type distribution (where ξ = 0) and so for this
case we invert the Gumbel density (equation 2.3) to obtain:

zr = µ+ σ

[(
− log

(
1− 1

r

))
− 1

]
(2.14)

Here we have the formulae for what is referred to as the r-year return level
(that is the value which is exceeded with probability 1/r) for a given set of
GEV parameters. It can be seen directly that the value of a fixed r-year
return level increases with µ, which is perhaps obvious when we consider the
role of µ within the distribution, whilst it decreases with increasing σ and ξ.

2.5 The Dataset

We now consider the dataset which we shall be studying throughout this re-
port. We have hourly rainfall measurements, given in tenths of millimetres,
taken over 62 years at 1281 separate sites across Great Britain (although for
each site some of the entries are missing) which are divided in regions, and
then further into sub-regions geographically.
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We have several problems with using the hourly data as it stands though,
the perhaps most important, is a mathematical issue arising from section 2.2,
when we derived the Extremal Types Theorem, one of the requirements was
that our data points we independent identically distributed random variables.
Clearly this would provide problems since we cannot realistically assume that
the amount of rain falling in each hour of the day will be from the same dis-
tribution across all days (which is made obvious when we consider seasonal
differences etc) and also the amount of rainfall in an hour is highly unlikely
to be independent of the amount of rain in the surrounding hours (an hour
where we observed 10mm of rainfall is highly unlikely to be surrounded by
hours where no rain fell at all), and so we have a problem.

Fortunately there is a relatively simple way to solve this issue. We choose to
transform our dataset by instead of working with the hourly observations, we
sum each day to obtain a set of daily totals for each site, and we now need
to select a timeframe from which the maximum daily totals will be indepen-
dent and identically distributed. Clearly selecting weeks or months would
be unlikely to be valid since there would be clear seasonal differences still
present, however this is not true if we were to take the largest value per year
(referred to as the annual maximum). We can be satisfied that observations
from different years are sufficiently far apart that they can be considered
independent, and since we have removed any seasonal effects etc we can be
satisfied that they would be from approximately the same distribution, and
so our assumptions for the Extremal Types Theorem are satisfied, when we
consider the maximum daily totals per year.

Whilst our dataset is incredibly useful with regards to inference, given it’s
extraordinary depth, we do have the issue of each site having large numbers
of entries missing for whatever reason (monitoring stations having not been
built, closed down, temporarily out of commission etc). This not only pro-
vides the obvious disadvantage of our dataset not being as large as it could
be, it can also endanger some of the key assumptions on which our modelling
approach is based. Given that we will be simply extracting the most extreme
day of each year, we do not know how many days of that year were missing,
and so clearly we will run into problems if we treat 2 maxima the same if
one was from a year with 365 of recorded days and the other with 10. For
this reason we impose a minimum bound on the amount of data that must
be recorded in order to make a year ”valid” and thus OK to include in our
model. Since the data is hourly it is easier to simply impose the limit on
the number of recorded hours, and so we choose our lower bound to be 7300
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hours (out of a possible 8760, i.e. 5/6) of data must be recorded for the year
to be accepted. Whilst this is an arbitrary choice (selecting 7000 or 8000
for instance would not cause dramatically different results), it does provide
a robust set of results which are unaffected by the fact we have missing data,
although regrettably this will lead to a loss of data in our model.
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Chapter 3

A Frequentist Approach

3.1 Maximum Likelihood Estimation

We have now established all of the basic theory required in order to make
some good inferences regarding extreme value estimation, and must now
turn our attention to actually applying this theory to our dataset. From a
frequentist perspective our first instinct when fitting a model like this to a
dataset is to use maximum likelihood theory to obtain estimates for each of
the parameters. As normal we obtain an expression for the likelihood of the
GEV from its density, obtained by differentiating 2.11 to obtain:

f(x;µ, σ, ξ) =
1

σ
exp

[
−
(
x− µ
σ

)]
exp

{
−exp

[
−
(
x− µ
σ

)]}
(3.1)

Which hence gives:

L(x;µ, σ, ξ) =
∞∏
i=1

f(xi;µ, σ, ξ) (3.2)

=
∞∏
i=1

1

σ
exp

[
−
(
xi − µ
σ

)]
exp

{
−exp

[
−
(
xi − µ
σ

)]}
(3.3)

From this we can then obtain an expression for the log-likelihood. As with
the return level formulae we have algebraic problems in the case ξ = 0 (i.e.
with a Gumbel density) and so this must be defined separately. When ξ 6= 0,
we have:
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l(x;µ, σ, ξ) = −n log(σ)−(1+
1

ξ
)

m∑
i=1

log

[
1 + ξ(

zi − µ
σ

]
−

m∑
i=1

[
1 + ξ(

zi − µ
σ

]− 1
ξ

(3.4)
And for ξ = 0 we have:

l(x;µ, σ) = −n log(σ)−
m∑
i=1

zi − µ
σ
−

m∑
i=1

exp

{
−zi − µ

σ

}
(3.5)

We then wish to obtain parameter values which maximise these likelihood
functions, unfortunately we do not have closed form for these maximum like-
lihood estimators, and so we compute our maximum likelihood estimates via
numerical methods. Fortunately this can be done easily within the ”Ex-
tRemes” and ”ismev” packages in R. We then use these maximum likelihood
estimates to make inferences about the extremes at the site in question, the
most obvious examples being the estimate of the shape parameter gives us
whether the distribution is of type Gumbel, Frechet or Weibull, as well as
allowing us to determine return levels at the various sites, for any given year-
usually 50 and 200 are popular choices for this inference, and indeed using a
50 year return level is a legal requirement for civil engineers when construct-
ing weather defences.

Now that we have established the methodology, we can begin applying the
model and obtaining some output. Using the previously mentioned ”Ex-
tRemes” package in R we apply this model to the ”Heaton Park” site (code
given in Appendix .1) and obtain the following output:

µ̂ = 298.84, σ̂ = 61.94, ξ̂ = −0.50,

s.e.(µ̂) = 17.94, s.e.(σ̂) = 14.15, s.e.(ξ̂) = 0.23

By direct substitution into 2.13 we can therefore obtain values for return
levels, i.e. ẑ50 = 405.11 and ẑ200 = 413.94.

The main inferences we can make here are that surprisingly the rainfall from
this site took a Weibull density (since ξ < 0), and upon comparison with its
standard error we see that it is greater than 2 standard errors less than 0,
meaning we can be confident that this is not due to random chance (although
how representative this particular site is remains to be seen). Our return
levels show that the largest amount of daily rainfall we would expect to see
at Heaton Park in the next 50 years is 40.51mm, and similarly the largest in
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the next 200 years is 41.39mm. We also obtained a negative log-likelihood
value of 81.4027, which can be used for simple goodness of fit tests, which
shall be referred to shortly.

3.2 Additional Parameters

One fairly large limitation of this approach is that it assumes the process
is stationary, that being that the levels of extreme rainfall are not changing
with time, shown by the fact that the model parameters are constant. We
can investigate this assumption by allowing the parameters to vary in time;
whilst theoretically we could allow all of our parameters to vary, here we
choose just the location parameter because as mentioned in section 2.3, the
location parameter governs the general position of the distribution, and thus
the overall magnitude of the extremes, and hence allowing this parameter to
vary would reflect the changing magnitude of the extreme weather events.
Hence we are effectively setting µ = µα + µβ ∗ time, where µα is the in-
tercept term and µβ is the effect of time, known as the ”trend” or ”slope”
term. Refitting this model to the site shown previously (using code given in
Appendix .2) gives:

µ̂α = 293.52, µ̂β = 24.11, σ̂ = 51.15, ξ̂ = −0.26

s.e.(µ̂α) = 16.97, s.e.(µ̂β) = 21.34, s.e.(σ̂) = 14.14, s.e.(ξ̂) = 0.38

ẑ50 = 455.60, ẑ200 = 479.57

From this we can see there is a positive trend with time, with our fitted
estimates indicating the location parameter increases by around 24 year-
on-year, however upon comparison with the standard error for the slope
parameter, we see that it is only just greater than 1 standard error greater
than 0, which implies that this result alone is not sufficient to conclude that
this trend exists, and would need to be combined with other data to do so (as
we shall see shortly). We have also obtained a Negative log-likelihood value
of 80.6490 for this model, again which we shall use shortly. In comparison
with the model fitted in section 3.1 we see that the value of the intercept
term µα is lower than the original µ estimate, which is to be expected since
µ has effectively been divided between two positive parameters. We also
note that the values of σ and ξ have changed slightly with the addition of
the new term, and interestingly the standard error for ξ is now greater than
its value (in modulus) meaning we can no longer be confident that its true
value is indeed below 0 (and thus that the density is a Weibull). We also
observe that our 50 and 200 year return levels are now both higher than
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their counterparts when trend wasn’t included, which implies that allowing
for this positive trend throughout the duration of the data has lead to expect
more severe weather events in the future, as opposed to when we assumed
the parameters were remaining constant throughout the data.
Whilst we have made a preliminary analysis on the effectiveness of the slope
term using its standard error, there is a more robust method. Since we have
a pair of nested models (since they are identical with the exception of an
additional parameter) we can therefore carry out a likelihood ratio test to
determine whether the accuracy of our model has been significantly improved
with the addition of µβ, which then provides information as to whether the
temporal trend really exists in any significant way. As seen in the above
results we have obtained the negative log-likelihoods for each of our models,
we can use these to calculate our test statistic:

D = 2 ∗ (81.4027− 80.6490) = 1.5074 (3.6)

Under the null hypothesis (that there is no difference between the models,
i.e. there is no significant trend) this value has a chi-squared distribution
with one degree of freedom (since the difference in numbers of parameters
between the models is 1), and we can use R to the p-value as p = 0.220.
As ever, since p > 0.05 it is not significant, and so we conclude we have no
evidence to reject the null hypothesis, and hence have no evidence to support
there being a temporal trend in the location parameter at this site, which
is in support of the primitive inference we made earlier with the standard
error.
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Chapter 4

A Bayesian Approach

4.1 Markov Chain Monte Carlo

We have shown in chapter 3 how to fit a standard GEV model using fre-
quentist methods, namely maximum likelihood estimation. Whilst this is a
perfectly valid approach, in modern statistics it is usually preferable to at-
tempt a Bayesian analysis instead, as this holds many advantages when it
comes to interpreting the results we obtain.

With a distribution as complicated as the GEV, it is regrettably not pos-
sible to use a simple closed form method such as a conjugate analysis to
carry out our analysis, however it is possible to carry out an MCMC method
to derive our posterior densities, which in algorithm which generates values
which generates values for our posterior, which we then decide whether or
not to accept it based on how well it fits to the data. A key question we must
consider when conducting a Bayesian analysis is what prior distributions do
we use to represent our beliefs regarding the parameters? Since we have
no expert knowledge to influence our beliefs prior to fitting the model, we
have to be wary of selecting a prior distribution which will heavily influence
our posterior distribution, since we have no prior knowledge, we essentially
wish for the data itself to dictate our conclusions. In order to do this we
select ”vague priors” which are essentially prior distributions with very high
variances, to reflect the fact that we have no prior inclinations regarding the
parameter values, and so theoretically they could be anything. The vague
priors are Normal N(0, 10002) distributions for each parameter. For our up-
date mechanism we use a metropolis random walk with Normal innovations,
with mean 0 and variance tailored to the parameter in question in order to
ensure the chain mixes well (we shall describe what this means later). Since
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the scale parameter is constrained to be strictly positive, in order to facilitate
these normal innovations (which by definition can be negative), we choose
to work with the log of the scale parameter, which we shall denote η, which
allows us to take negative values, whilst ensuring strictly positive values for
the scale.

We must also select the starting states for our chain, again these are tai-
lored to the individual parameters. For the location parameter we choose to
initialise at the mean of the data we are fitting our model to (namely the
series of annual maxima for the site in question) and the scale parameter at
the log of the standard deviation of the data, this is since, as discussed pre-
viously, the location and scale parameters play similar roles to the mean and
standard deviation of the distribution, and so therefore it would seem logical
that our final parameter estimates would be similar to the mean and stan-
dard deviation provided by the data, particularly since we are using vague
priors which should not influence the posterior densities.

Finally we choose to initialise the shape parameter at 0.01, ideally we would
select it to start at 0 since it can take both positive and negative values, this
would require us to switch to the Gumbel form of the likelihood, and so it is
simpler computationally if we are to stick to the GEV likelihood where pos-
sible, and so we select a very small non-zero value instead. Whilst we have
tried to be logical with our choice of starting value, by allowing our chain to
run for a long time the starting values should become irrelevant as the chain
settles down to its stationary distribution (this can be checked by analysing
trace plots of the parameter values as the chain progresses, which we shall
look at later). We now apply this Bayesian model to the Heaton Park site
we looked at in chapter 3. As discussed above it is important to tune the
Normal innovations so that the chain mixes well, and hence gives sensible
output, this can be checked by studying the ”acceptance rate” (the propor-
tion of the time that the value of a parameter moves, i.e. a proposed value is
accepted), with rates of around 0.3 indicating that the chain is mixing well.
Ultimately innovation values of 30, 0.8, and 0.45 for µ, σ and ξ respectively,
gave rates of 0.435, 0.266 and 0.316, which we deem acceptable. The mixing
of a chain can also be investigated by viewing plots of the parameter values
as the chain progresses, shown in 4.1.
In figure 4.1 we can see that the value of each parameter changes fairly
frequently and for the most part provides the dense black area which implies
it is mixing well (although admittedly not perfectly, as there are times when
the value remains stuck in the same place for a noticeable period, however
this is infrequent and so we can look past it). In addition the parameter
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Figure 4.1: Traceplots of parameters

values remain within the same area, which implies the chain is mixing well,
and that it has converged to the stationary distribution (i.e. the range of
values that are being accepted by our chain are those which come from the
posterior distribution). We can then view this obtained posterior distribution
by constructing histograms of the parameter values throughout the chain,
shown below in figure 4.5.
In figure 4.2 we can see the distribution of each parameter is fairly sym-
metric around a single modal peak, in this case we see µ peaks at around
300, σ peaks at around 60 (after exponentiating the chain values since the
parameter in the chain was η = log(σ)) and ξ peaks at around -0.5. This is
typical of what we would expect in an ideal situation, however when mod-
els become more complex the histogram may not be as easy to interpret
as this. If we were to compare this output with the frequentist output ob-
tained in section 3.1 we can see that our modal peak roughly coincides with
the maximum likelihood estimates for this model which we calculated to be
µ̂ = 298.84, σ̂ = 61.94, ξ̂ = −0.50. In addition to this the histogram shows
that the majority of the values we accept for µ to be in the region of (250,350)
which by and large coincides with the maximum likelihood estimate for the
standard error obtained in section 3.1 of 17.94,and so if we apply the rough
estimate of expecting most of the data to lie within 2 standard errors of the
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Figure 4.2: Histograms of posterior densities

mean this would give an interval of roughly (264,336). Similarly the major-
ity of the σ values are in the range (40,100), which ties in with it’s standard
error being around 15, and the ξ values tend to lie in the approximate area
(-0.8,-0.3), which ties in with the standard error being around 0.25. Hence
the majority of our Bayesian inference gives results roughly similar to their
frequentist counterparts from section 3.1 which is not surprising given the
vague prior distributions we are using in our model, designed to allow the
data to dictate the results.

A further useful property of the Bayesian MCMC method for fitting the GEV
is the use of return levels, since with the frequentist approach we only obtain
a single return level based on the maximum likelihood estimates for the GEV
parameters, here we can obtain a return level for each iteration of our chain,
and hence develop a distribution for our return levels. The 50 and 200 year
return levels for this model are given in figure 4.3.

In figure 4.3 we observe that like the standard histograms shown in fig-
ure 4.2, our return level densities have a clear modal peak, and the remain-
ing density appears to be roughly symmetrically distributed around it. We
observe that for both the 50 and 200 year return levels the modal peak is
around 400 for both, which tie in with the frequentist estimates in section 3.1
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Figure 4.3: Histograms for return levels

of 405.11 and 413.95 respectively with the 200 year density shifted slightly
to the right of the 50 year density, as we would expect.

4.2 Fitting Trends

As before with the frequentist approach in section 3.2 we would quite like
to investigate whether our parameters, particularly the location parameter,
vary in time. This can be done quite easily by replacing all instances of µ in
our model (including likelihood etc) with µα+µβ ∗time and then treating the
new slope parameter exactly the same as the others in our model by including
it within the random walk metropolis scheme used for the other parameters.
Again we do not have any information on which to base our prior distribution
for this new parameter, and so we adopt the same vague prior mechanism as
with the others, selecting a Normal N(0, 10002) prior. We tune the variance
of the Normal innovations in this scheme in the same way as for the others,
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and elect to use a starting value of zero, which is a purely arbitrary choice as
we have no idea as to what the final value will be, and again can rely on the
length of the MCMC chain to remove the importance of this choice anyway.
For numerical purposes, as in section 3.2 we standardise the year values so
as to ensure the the slope term µβ mixes well.

As before we tune the innovations to ensure a good mixing of the chain,
ultimately selecting innovation values of 35, 35, 0.75 and 0.5 for µα, µβ,
σ and ξ respectively, as they yielded respective acceptance rates of 0.4017,
0.4526, 0.2509 and 0.3809. Again we can attempt to verify a good mixing of
the chain by studying the traceplots in figure 4.4.

Figure 4.4: Traceplots of parameters

In figure 4.4 we see that once again each trace plot displays a thick black
line, indicating that the chain is mixing well, and furthermore since the values
remain within a single band, we can be satisfied that the chain has converged
to its stationary distribution, and thus the values that we are sampling from
are indeed the posterior values for each parameter. Again, we investigate
this posterior using histograms of simulated values in 4.5.
In figure 4.5 we observe a similar result as in section 4.1 in as much as the
Bayesian results here very much mirror their frequentist counterparts in sec-
tion 3.2. We have singular modal peaks for each parameter as in 4.1 with
µα peaking at around 300, compared with it’s MLE estimate of 293.52, µβ
peaks at around 25, compared with 24.11, σ peaking at 50, compared with
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Figure 4.5: Histograms of parameters

51.15, and finally ξ peaking at -0.3 compared with -0.26. From the above
list we again support our conclusions from section 4.1, that the Bayesian
analyses generate very similar results to their frequentist counterparts. As
in section 4.1 we can investigate the return level distribution, shown in fig-
ure 4.6.

In figure 4.6 we again observe a clear modal peak just above 400, which
ties in well with the frequentist estimates in section 3.2 of 455.60 and 479.57,
further supporting our beliefs that a vague prior approach to a Bayesian
analysis yields similar results to a frequentist approach. It further supports
the conclusions we forged in section 3.2 that allowing for trend causing an
increase in return level values.
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Figure 4.6: Histograms of return levels

4.3 Combining Parameters

Thus far we have developed a model which fits a seperate set of parameters
to each site independently of data observed at surrounding sites within the
same sub-region which in turn assumes that extremes at a particular site are
completely independent of those in the surrounding area, which unlikely to
be a realistic viewpoint. One particular area in which we can assume some
solidarity among neighbouring sites is for the shape parameter ξ, clearly we
would not expect the entire shape of the extremal distribution to change
within the same small area, and so we take the step to assume a constant
shape for all sites within a sub-region. Furthermore it would appear to be
sensible to also assume a constant slope parameter µβ within the region, as
again it does not seem logical for the effect of time to have a dramatically
different effect on the rainfall of regions which are quite close together. There
are several advantages to this approach, chief among them being that it
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appears to be a realistic assumption, and in making it we greatly increase
the amount of sata we have to support our inference regarding the values
of ξ and µβ (namely that we will be using the combined data for all of the
sites in a sub-region for learn about one parameter, as opposed to just a
single site as previously). Hence in order to fit this model we can no longer
fit a model to a single site by itself as previously, and instead must fit to
an entire sub-region at a time. For illustrative purposes we choose not to
demonstrate this on a sub-region included in our main dataset, but instead
on a dataset of pre-obtained maxima from Central and Eastern England,
which is a set of 26 annual maxima (with no missing values) obtained from
21 sites, and for computational time constraints we reduce the number of
iterations of our chain from 10000 to 2000, however we can be satisfied this
is still sufficient for the chain to converge well, as is shown in the selection of
traceplots (there are 63 in total) are shown below. The code for this model
is given in Appendix .5.

Figure 4.7: A selection of traceplots of parameters

From the traceplots in figure 4.7, we can see that whilst we do not have
a dense black region as we would have liked in each plot, the parameter
value does move frequently and occupies a good region of the space, and
hence the lack of density in the line is most likely due to the reduced number
of iterations in this run due to computational constraints. We do observe
in addition that the most satisfactory tace plots are those of the combined
parameters, ξ and µβ, which is clearly due to the much larger dataset we had
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on which to base our model for these parameters. Since each of the trace
plots occupy a band throughout the run of the chain we can be satisfied that
it has converged as required and move on to study the histograms in order
to make inferences regarding the posterior.

Figure 4.8: A selection of histograms of parameters

In figure 4.8, we observe that the combined parameters, in this case µβ and
ξ have a much smaller spread of values than for when they were simply for
an individual site, again due to the fact we now have a much larger dataset
on which to base our model for them. We also observe that from the his-
togram for the combined slope parameter for the entire site, the density is
spread around zero, with both positive and negative values having significant
density. Based on this result alone we would have to conclude that there is
no significant evidence for a temporal trend being present at sites in this
particular region.

The intercept and scale parameters are more likely to vary between these
sites and so we choose not to combine parameters for these (not least since
this would mean fitting a single GEV model to an entire sub-region, thereby
ignoring any variability that is present).

26



Chapter 5

Random Effects

Throughout Chapter 4 we experimented with the idea of having distinct pa-
rameters for each site within a sub-region, and then in section 4.3 considered
the opposite idea of combining certain parameters which we believed would
be unlikely to change in any significant way within the same small geograph-
ical area (i.e. within the same sub-region). Whilst there is an argument
supporting both methodologies, both also have their drawbacks. The for-
mer ignores the data we have on the surrounding sites, and the later does
not allow for any variation at all between sites within the same sub-region-
hence it would appear that a compromise between the two would be desir-
able. The compromise we use here would be to accept there are differing
values of parameters within the same sub-region, however rather than treat
them as completely unrelated- known as fixed effects- we treat them as re-
alisations from an overall distribution from which the values of a particular
parameter for each site in a sub-region are obtained- which are known as
random effects. This approach is preferable since it respects the inter-site
differences that are present, whilst still combining the data from all of the
sites within a sub-region, enabling us to make strong conclusions regarding
that sub-region as a whole,which can then be compared. For this approach
we choose a N(µ, σ2) distribution, where µ and σ2 are parameters within our
model, which can therefore be specified by the data. We now fit a model to
the ”NW South” sub-region (containing 40 sites,one of which being ”Heaton
Park” which we looked at previously) where we allow the slope parameter µβ
to be a random effect, and hence have prior N(µ, σ2) where µ and σ2 each
have vague N(0, 10002) prior distributions. The code for this model is given
in .6, and as with the scale parameter, we shall work with the log of the
random effect standard deviation to avoid unnecessary rejection of proposed
values and for extra precision in our conclusions we increase the number of
iterations to 5000. Here we begin by studying the traceplots of the random
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effects parameters, shown in figure 5.1

Figure 5.1: Traceplots of random effects parameters

In figure 5.1 we observe a phenomena which is common in large scale MCMC
runs but as of yet has not occurred in the runs we have looked it, that of
a burn-in period. This is essentially where the chain does converge to it’s
stationary distribution, it simply takes some time to arrive there, as can be
seen in both plots in figure 5.1 the parameters do not occupy a single band
of values, as we have seen in previous trace plots until approximately 3000
iterations in. This is not a problem and we simply correct it by removing
the burn-in period (here the first 3000 values from each parameter) and
replotting, as shown in figure 5.2
From figure 5.2 we now see that both traceplots demonstrate the type of
pattern we are used to seeing in a converged chain, in as much as the values
move frequently and occupy a single band of values, whilst the chain may
not be mixing perfectly it is adequate for uses here. We can therefore use
this latter section of the chain run to plot our histograms of the posterior
densities, shown in figure 5.3

From figure 5.3 we can see that the histogram for µ, the mean of our
random effects distribution has density which virtually is all positive, with
a relatively even spread but a clear peak at around 25, which alone would
imply that we have a positive temporal trend in this region, however when
we look at the histogram for the standard deviaition exp(η), we see that it
has virtually all of its density between 40 and 90, implying that there is a
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Figure 5.2: Traceplots with burn-in removed

fair amount of variability in the temporal trends in this region, and hence
the standard deviation of our random effects distribution is greater than the
mean. Therefore we do not have any real evidence that there is a clear,
overall temporal trend in this region, which is already what we had observed
at the ”Heaton Park” site in the region.
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Figure 5.3: Histograms of posterior densities
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Chapter 6

Conclusions

In this report we have investigated both a frequentist and Bayesian approach
for modelling extreme rainfall by fitting GEV distributions to annual max-
ima, and showed how these approaches yield similar results for simplistic
models, thanks to the vague prior assumptions we made, as well as show-
ing how return levels can be estimated using both frequentist and Bayesian
methods. From then we investigated the effects of assuming constant pa-
rameters within a localised area and showed how it dramatically reduced
the variability of our posterior densities for the common parameters, thereby
increasing the precision of our conclusions regarding them. Finally we inves-
tigated applying a random effects model for the temporal trend parameter
in a localised region and showed how that can be used to draw conclusions
regarding the presence, or lack thereof, of a temporal trend in these regions.
We observed throughout the report that despite climate change events being
reported, we did not see any clear evidence for a temporal trend in the loca-
tion parameter of our GEV distribution at the sites we investigated, implying
that the parameter may not be changing with time and the extreme rainfall
events have not got significantly more severe over the course of the last 60
or so years.
A natural place to continue the study of this topic would be to apply a
random effects term for each parameter in the model, since whilst we were
reluctant to assume a constant parameter for the intercept and shape param-
eters across a sub-region, by using a random effects model we can still retain
the individuality of each site, and any large differences in these parameters
across a sub-region can be reflected by a large variance in the resulting ran-
dom effects distribution. A mass application of this sort of model (regrettably
not possible here due to the computing power/time required) could then be
used in order to make some very useful inferences regarding flood estima-
tion across the country. It may also be of interest to apply some Bayesian
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goodness of fit tests to discern just how well each model does in fact fit the
data, which can be used as a method for testing the assumptions we have
made when proposing each model (i.e. is it appropriate to assume a constant
slope among sites for all sub-regions etc?). In addition, it would be desir-
able to achieve much longer runs of these chains (ideally of at least 10,000
runs) which we were not possible here due to computational restraints, which
would provide even more firm conclusions with regards to our final posterior
densities.
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.1 Frequentist Code
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i n s t a l l . packages ( extRemes )
l i b r a r y ( extRemes )
l eap=c ( rep ( c (365 ,365 ,366 ,365) , 15 ) , 365 ,365 ,364)
l e ap s=c (1 ,1+cumsum( leap ) )
hourgev=func t i on ( x ){

pr in t ( x )
data=read . t ab l e ( x ) [ , 7 ]
to tmi s s=matrix (0 , nco l =2,nrow=length ( data )/24)
maxmiss=matrix (0 , nco l =2,nrow=63)
max=vecto r ( )
j=1
f o r ( i in 1 : ( l ength ( data )/24) ){

to tmi s s [ i ,2 ]=sum( data [ seq ((24∗ i )−23 ,(24∗ i ))]>=0)
}
f o r ( i in 1 : l ength ( data ) ){

i f ( data [ i ]<0) data [ i ]=0
}
f o r ( i in 1 : ( l ength ( data )/24) ){

to tmi s s [ i ,1 ]=sum( data [ seq ((24∗ i )−23 ,(24∗ i ) ) ] )
}
f o r ( i in 1 : 63 ){

maxmiss [ i ,1 ]=max( totmi s s [ seq ( l e ap s [ i ] , l e ap s [ i +1]−1) ,1])
maxmiss [ i ,2 ]=sum( totmi s s [ seq ( l e ap s [ i ] , l e ap s [ i +1]−1) ,2])
i f ( maxmiss [ i ,2 ]>7300){

max [ j ]=maxmiss [ i , 1 ]
j=j+1

}
}
i f ( l ength (max)>=5){

f i t=gev . f i t (max)
r l e v e l=return . l e v e l ( f i t , r p e r i o d s=c (10 ,50 ,200) , make . p l o t=F)

re turn ( c ( f i t $conv , f i t $mle , f i t $ s e , r l e v e l $ r e t u r n . l e v e l , l ength (max ) ) )
}

e l s e i f ( l ength (max)<5)
{ r e turn ( 1 : 9 )}

}

s i t e s=l i s t . f i l e s ( pattern =”∗.∗ txt ”)
output=lapp ly ( s i t e s , hourgev )
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.2 Frequentist Trend Code

y e a r f i t=func t i on ( x ){
data=read . t ab l e ( x ) [ , 7 ]
to tmi s s=matrix (0 , nco l =2,nrow=length ( data )/24)
maxmiss=matrix (0 , nco l =2,nrow=63)
max=vecto r ( )
year s=vec to r ( )
s tandyears=vec to r ( )
year =1964
j=1
k=1
f o r ( i in 1 : ( l ength ( data )/24) ){

to tmi s s [ i ,2 ]=sum( data [ seq ((24∗ i )−23 ,(24∗ i ))]>=0)
}
f o r ( i in 1 : l ength ( data ) ){

i f ( data [ i ]<0) data [ i ]=0
}
f o r ( i in 1 : ( l ength ( data )/24) ){

to tmi s s [ i ,1 ]=sum( data [ seq ((24∗ i )−23 ,(24∗ i ) ) ] )
}
f o r ( i in 1 : 63 ){

year=year+1
maxmiss [ i ,1 ]=max( totmi s s [ seq ( l e ap s [ i ] , l e ap s [ i +1]−1) ,1])
maxmiss [ i ,2 ]=sum( totmi s s [ seq ( l e ap s [ i ] , l e ap s [ i +1]−1) ,2])
i f ( maxmiss [ i ,2 ]>7300){

max [ j ]=maxmiss [ i , 1 ]
j=j+1
years [ k]= year
k=k+1

}
}
f o r ( i in 1 : l ength ( year s ) ){

s tandyears [ i ]=( years [ i ]−mean( years ) )/ sd ( year s )
}
i f ( l ength (max)>=5){
f i t=gev . f i t (max , ydat=matrix ( standyears , nco l =1) ,mul=c ( 1 ) )
re turn ( c ( f i t $conv , f i t $mle , f i t $ s e , l ength (max ) ) )
}
e l s e i f ( l ength (max)<5){
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r e turn ( 1 : 1 0 )
}

}

s i t e s=l i s t . f i l e s ( pattern =”∗.∗ txt ”)
output=lapp ly ( s i t e s , y e a r f i t )
matout=do . c a l l (” rbind ” , output )
$

.3 Bayesian Code

g e v l l <− f unc t i on ( theta , datase t )
{
mu <− theta [ 1 ]
eta <− theta [ 2 ]
x i <− theta [ 3 ]
m <− 1+x i ∗( dataset−mu)/ exp ( eta )
i f (min (min (m) , exp ( eta ))<1e−5) re turn (−1e6 )
l o g l i k <− −l ength ( datase t )∗ eta−sum(mˆ(−1/ x i ))−(1+1/ x i )∗sum( log (m) )
re turn ( l o g l i k )
}
accept <− f unc t i on ( curr , prop , pr io r , j )
{

accept <− FALSE
i f ( r u n i f (1)<exp ( prop$ l ik−c u r r $ l i k )∗dnorm( prop$theta [ j ] , prior$mea [ j ] , p r i o r$ sdev [ j ] ) / dnorm( cur r$ the ta [ j ] , prior$mea [ j ] , p r i o r$ sdev [ j ] ) ) { accept <− TRUE}
r e turn ( accept )

}
update <− f unc t i on ( curr , dataset , p r io r , j )
{

prop <− curr
prop$theta [ j ] <− rnorm (1 , cu r r$ the ta [ j ] , c u r r $ e r r [ j ] )
p rop$ l i k <− g e v l l ( prop$theta , datase t )
i f ( accept ( curr , prop , pr io r , j ) )
{
curr <− prop
curr$change [ j ] <− curr$change [ j ]+1
}
r e turn ( curr )

}
gevbayes <− f unc t i on (n , dataset , s t a r t , err , mea , sdev )
{

37



theta . mat <− matrix (0 , nrow=n , nco l =3)
curr <− l i s t ( )
cur r$ the ta <− s t a r t
c u r r $ l i k <− g e v l l ( curr$theta , datase t )
curr$change <− c (0 , 0 , 0 )
c u r r $ e r r <− e r r
p r i o r <− l i s t (mea=mea , sdev=sdev )
f o r ( i in 1 : n)
{

f o r ( j in 1 : 3 ) { curr <− update ( curr , dataset , p r io r , j )}
theta . mat [ i , ] <− cur r$ the ta

}
f eedback <− l i s t ( theta . mat , curr$change /n)
re turn ( feedback )

}

.4 Bayesian Trend Code

g e v l l <− f unc t i on ( theta , datase t )
{

mua <− theta [ 1 ]
mub <− theta [ 2 ]
eta <− theta [ 3 ]
x i <− theta [ 4 ]
m <− 1+x i ∗( dataset−(mua+mub∗ time ) )/ exp ( eta )
i f (min (min (m) , exp ( eta ))<1e−5) re turn (−1e6 )
l o g l i k <− −l ength ( datase t )∗ eta−sum(mˆ(−1/ x i ))−(1+1/ x i )∗sum( log (m) )
re turn ( l o g l i k )

}
gevbayes <− f unc t i on (n , dataset , s t a r t , err , mea , sdev )
{

theta . mat <− matrix (0 , nrow=n , nco l =4)
curr <− l i s t ( )
cur r$ the ta <− s t a r t
c u r r $ l i k <− g e v l l ( curr$theta , datase t )
curr$change <− c ( 0 , 0 , 0 , 0 )
c u r r $ e r r <− e r r
p r i o r <− l i s t (mea=mea , sdev=sdev )
f o r ( i in 1 : n)
{

f o r ( j in 1 : 4 ) { curr <− update ( curr , dataset , p r io r , j )}
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theta . mat [ i , ] <− cur r$ the ta
}
f eedback <− l i s t ( theta . mat , curr$change /n)
re turn ( feedback )

}

.5 Fixed Shape and Slope Code

gev l lmu l t <− f unc t i on ( theta , datase t )
{

mua <− theta [ seq (1 , ( 2∗ ( l ength ( datase t [ 1 , ] ) −1) )+1 ,2 ) ]
eta <− theta [ seq (2 ,2∗ l ength ( datase t [ 1 , ] ) , 2 ) ]
mub <− theta [ ( 2∗ l ength ( datase t [ 1 , ] ) ) + 1 ]
x i <− theta [ ( 2∗ l ength ( datase t [ 1 , ] ) ) + 2 ]
m=matrix ( nrow=length ( datase t [ 1 , ] ) , nco l =26)
l o g l i k=vecto r ( )
f o r ( i in 1 : l ength ( datase t [ 1 , ] ) ) {

m[ i , ] <− 1+x i ∗( datase t [ , i ]−(mua [ i ]+mub∗ time ) )/ exp ( eta [ i ] )
i f (min (min (m[ i , ] ) , exp ( eta [ i ]))<1 e−5) re turn (−1e6 )

}
f o r ( i in 1 : l ength ( datase t [ 1 , ] ) ) {

l o g l i k [ i ]=− l ength ( datase t [ , i ] ) ∗ eta [ i ]−sum(m[ i , ]ˆ(−1/ x i ))−(1+1/ x i )∗sum( log (m[ i , ] ) )
}
r e turn (sum( l o g l i k ) )

}
gevbayesmult <− f unc t i on (n , dataset , s t a r t , err , mea , sdev )
{

theta . mat <− matrix (0 , nrow=n , nco l =(2∗ l ength ( datase t [ 1 , ] ) ) + 2 )
curr <− l i s t ( )
cur r$ the ta <− s t a r t
c u r r $ l i k <− gev l lmu l t ( curr$theta , datase t )
curr$change <− rep (0 , (2∗ l ength ( datase t [ 1 , ] ) ) + 2 )
c u r r $ e r r <− e r r
p r i o r <− l i s t (mea=mea , sdev=sdev )
f o r ( i in 1 : n)
{

f o r ( j in 1 : ( ( 2∗ l ength ( datase t [ 1 , ] ) ) + 2 ) ) { curr <− updatemult ( curr , dataset , p r io r , j )}
theta . mat [ i , ] <− cur r$ the ta

}
f eedback <− l i s t ( theta . mat , curr$change /n)
re turn ( feedback )
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}

.6 Random Effects Code

annmax=func t i on ( x ){
data=read . t ab l e ( x ) [ , 7 ]
to tmi s s=matrix (0 , nco l =2,nrow=length ( data )/24)
maxmiss=matrix (0 , nco l =2,nrow=63)
max=vecto r ( )
year s=vec to r ( )
year =1949
j=1
k=1
f o r ( i in 1 : ( l ength ( data )/24) ){

to tmi s s [ i ,2 ]=sum( data [ seq ((24∗ i )−23 ,(24∗ i ))]>=0)
}
f o r ( i in 1 : l ength ( data ) ){

i f ( data [ i ]<0) data [ i ]=0
}
f o r ( i in 1 : ( l ength ( data )/24) ){

to tmi s s [ i ,1 ]=sum( data [ seq ((24∗ i )−23 ,(24∗ i ) ) ] )
}
f o r ( i in 1 : 63 ){

year=year+1
maxmiss [ i ,1 ]=max( totmi s s [ seq ( l e ap s [ i ] , l e ap s [ i +1]−1) ,1])
maxmiss [ i ,2 ]=sum( totmi s s [ seq ( l e ap s [ i ] , l e ap s [ i +1]−1) ,2])
i f ( maxmiss [ i ,2 ]>7300){

max [ j ]=maxmiss [ i , 1 ]
j=j+1
years [ k]= year
k=k+1

}
}
m=matrix ( nrow=length (max) , nco l =2)
m[ ,1 ]=max
m[ ,2 ]= years
re turn (m)

}
gev l lmu l t <− f unc t i on ( theta , datase t )
{

s=length ( datase t )
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mua <− theta [ seq (1 ,3∗ ( s−1)+1 ,3)]
mub <− theta [ seq (2 ,3∗ ( s−1)+2 ,3)]
eta <− theta [ seq (3 ,3∗ s , 3 ) ]
x i <− theta [3∗ s +1]
m=vecto r ( )
l o g l i k=vecto r ( )
f o r ( i in 1 : s ){

m <− 1+x i ∗( datase t [ [ i ] ] [ , 1 ] − (mua [ i ]+mub[ i ] ∗ ( ( datase t [ [ i ] ] [ , 2 ] −mean( datase t [ [ i ] ] [ , 2 ] ) ) / sd ( datase t [ [ i ] ] [ , 2 ] ) ) ) / exp ( eta [ i ] ) )
i f (min (min (m) , exp ( eta [ i ]))<1 e−5) re turn (−1e6 )
l o g l i k [ i ]=− l ength ( datase t [ [ i ] ] [ , 1 ] ) ∗ eta [ i ]−sum(mˆ(−1/ x i ))−(1+1/ x i )∗sum( log (m) )

}
r e turn (sum( l o g l i k ) )

}
r a n d l l <− f unc t i on ( theta , datase t )
{

mub <− theta [ seq (2 , ( 3∗ ( l ength ( datase t )−1))+2 ,3)]
betamu <− theta [3∗ l ength ( datase t )+2]
betaeta <− theta [3∗ l ength ( datase t )+3]
r a n d l l=vec to r ( )
f o r ( i in 1 : l ength ( datase t ) ){

r a n d l l [ i ]= log ( ( 1/ ( exp ( betaeta )∗ s q r t (2∗ pi ) ) )∗ exp(−(mub[ i ]−betamu )ˆ2/(2∗ exp (2∗ betaeta ) ) ) )
}
r e turn (sum( r a n d l l ) )

}
accept <− f unc t i on ( curr , prop , pr io r , j )
{

accept <− FALSE
i f (dnorm( cur r$ the ta [ j ] , prior$mea [ j ] , p r i o r$ sdev [ j ])==0) re turn ( accept )
i f ( j<3∗s +2){

i f ( r u n i f (1)<exp ( prop$ l ik−c u r r $ l i k )∗dnorm( prop$theta [ j ] , prior$mea [ j ] , p r i o r$ sdev [ j ] ) / dnorm( cur r$ the ta [ j ] , prior$mea [ j ] , p r i o r$ sdev [ j ] ) ) { accept <− TRUE}
}
e l s e {
i f ( r u n i f (1)<exp ( prop$randl ik−c u r r $ r a n d l i k )∗dnorm( prop$theta [ j ] , prior$mea [ j ] , p r i o r$ sdev [ j ] ) / dnorm( cur r$ the ta [ j ] , prior$mea [ j ] , p r i o r$ sdev [ j ] ) ) { accept <− TRUE}
}
r e turn ( accept )

}
updatemult <− f unc t i on ( curr , dataset , p r io r , j )
{

prop <− curr
prop$theta [ j ] <− rnorm (1 , cu r r$ the ta [ j ] , c u r r $ e r r [ j ] )
p rop$ l i k <− gev l lmu l t ( prop$theta , datase t )
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prop$rand l ik <− r a n d l l ( prop$theta , datase t )
i f ( accept ( curr , prop , pr io r , j ) )
{

curr <− prop
curr$change [ j ] <− curr$change [ j ]+1

}
r e turn ( curr )

}
gevbayesmult <− f unc t i on (n , dataset , s t a r t , err , mea , sdev )
{

s=length ( datase t )
theta . mat <− matrix (0 , nrow=n , nco l=3∗s+3)
output <− matrix (0 , nrow=n , nco l=5∗s+3)
curr <− l i s t ( )
cur r$ the ta <− s t a r t
c u r r $ l i k <− gev l lmu l t ( cu r r$ the ta [ 1 : ( 3 ∗ s +1)] , datase t )
c u r r $ r a n d l i k <− r a n d l l ( cu r r$ the ta [ ( 3∗ s +2):(3∗ s +3)] , datase t )
curr$change <− rep (0 , (3∗ s )+3)
c u r r $ e r r <− e r r
p r i o r <− l i s t (mea=mea , sdev=sdev )
f o r ( i in 1 : n)
{

p r i o r [ [ 1 ] ] [ seq (2 ,3∗ ( s−1)+2 ,3)]= cur r$ the ta [3∗ s +2]
p r i o r [ [ 2 ] ] [ seq (2 ,3∗ ( s−1)+2 ,3)]=exp ( cur r$ the ta [3∗ s +3])
f o r ( j in 1 : ( ( 3∗ s )+3)) { curr <− updatemult ( curr , dataset , p r io r , j )}
theta . mat [ i , ] <− cur r$ the ta

}
f eedback <− l i s t ( theta . mat , curr$change /n)
re turn ( feedback )

}
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