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Abstract

The sparsity of well-known and flexible multivariate distributions can lead to problems
when trying to effectively model a set of multivariate data. Hence we look at the use of
copulas to describe dependence between univariate random variables, specifically inves-
tigating the Gaussian and skew t copulas. We motivate the use of these by emphasising
their advantages when using them as dependence structures for rainfall volumes, as an
example. By employing Markov chain Monte Carlo methods we perform Bayesian in-
ference on the copula parameters, as well as simulate realisations from these complex
models.
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1 | Introduction

1.1 Background

When thinking about multivariate statistics, there are only a limited number of well
known distributions that come to mind, for instance the multivariate Normal is a favoured
distribution, along with the multinomial, multivariate t and Dirichlet distributions to
name a few. In the context of real life applications, if we were to model a multivariate
set of continuous data, X = (X1, . . . , Xp)

T , then modelling the univariate marginal
distributions, f(x1), . . . , f(xp), would be straightforward enough. However, we would
be lucky to find a multivariate distribution f(x) with these marginals. We will look
into using a type of distribution function known as a copula to describe the dependence
between univariate random variables, with a particular emphasis on modelling rainfall
volumes.

One of the most significant areas of research, at present, is climate change. There
are many factors that contribute to the ever-changing distribution of weather patterns,
caused by both natural and human events, and the effects of this are felt in very different
ways dependent on location.

Figure 1.1: Average rainfall (mm) for Northern dry season (May to September) from
1961 to 1990. [Bureau of Meteorology, Australia]

2



A copula approach to spatio-temporal modelling 1.1

Figure 1.2: Average rainfall (mm) for Northern wet season (October to April) from 1961
to 1990. [Bureau of Meteorology, Australia]

Australia’s climate is heavily affected by ocean currents, with a phenomenon known as
the El Niño Southern Oscillation. The varying rainfall amounts, due to this, results in
periods of drought in certain areas, whilst causing periods of heavy rainfall in others.
Whether it be the flooding caused by this, or conversely the drought, the areas in question
will need vital aid in order to minimise the amount of both damage and casualties, thus,
a way of better understanding the distribution of rainfall, and subsequently forecasting
rainfall volumes, is essential.

Figures 1.1 and 1.2, [Bureau of Meteorology, Australia], show us the average rainfall
in millimetres over the two seasonal periods in an annual cycle. We see that rainfall
is minimal in the centre of the country, regardless of the seasonal period due to the
desert-like climate in this area. The rainfall averages are much higher for the coastal
regions, dependent on the season, due to the contrasting weather system found here as
opposed to the centre of the country. The mountainous regions of the country also affect
the rainfall averages, such as northeastern Queensland having high rainfall totals during
the Northern wet season, and Tasmania having high totals over both seasons.

In 2013, Australia observed it’s warmest year since records began back in 1910, [Bu-
reau of Meteorology, Australia]. There were several drastic bush fires in a number of
areas and annual rainfall was below average across a variety of regions including western
Queensland and inland New South Wales, yet above average over areas of Tasmania and
parts of the south coast of Western Australia.
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A copula approach to spatio-temporal modelling 1.2

It is undoubtable that research in to climate change on both regional and international
scales is vital, not only for the physical attributes of the landscape, but to the way we
adapt as a consequence of this research.

Objective

We set out to find an appropriate flexible multivariate model to describe both the
temporal and spatial dependence in rainfall amounts in a specific area of Australia.
A copula based model will be used to do this. We will be assuming that the data
D = {xt : t = 1, . . . , T}, with xt = (xt,1, . . . , xt,p), can be described using a joint model
f(xt,xt−1). The T here represents the final time point of the data we will be using, since
we essentially have a time series of rainfall volumes, and the p will represent the number
of sites used in the model, thus xt,i, i = 1, . . . , p, is the rainfall amount for site i at time
t. Modelling the site-specific time-series should be straightforward enough and then we
must describe the dependence between each of these sites by utilising a multivariate
distribution known as a copula.

1.2 Copulas

Before we explain how the data will be modelled in more depth, we first need to give
some background about what copulas actually are and how they can be used. Nelsen
[2006] gives two descriptions of what copulas are, one stating that they are functions
that couple multivariate distributions to their one dimensional marginal distributions.
The other statement explains that copulas are continuous multivariate distributions with
uniform marginals on the interval (0, 1), which can also be found in Pitt et al. [2006]
along with the following, where C : [0, 1]p → [0, 1].

C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up). (1.1)

We can formally define a copula, originally defined by Abe Sklar in 1959, from Bouyé
et al. [2000].

Definition 1. A p-dimensional copula is a function C with the following properties:

1. Domain of C = [0, 1]p;

2. C is grounded and p-increasing;

3. C has univariate margins Cn which satisfy Cn(u) = C(1, . . . , 1, u, 1, . . . , 1) = u for
all u ∈ [0, 1]. Note: The u in the argument of C is in the nth position.

With this formal definition Sklar’s theorem, [Nelsen, 2006], shows that every multivariate
distribution function can be written in terms of a copula.
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Theorem 1.2.1 (Sklar’s theorem). Let F be a p-dimensional joint distribution function
with margins F1, . . . , Fp. Then there exists a copula C such that for all x1, . . . , xp ∈ R,

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)).

The above theorem then forms the basis of how we will construct an appropriate spatio-
temporal model, by joining our univariate marginals together by means of a copula. This
is better explained through an example. Say we have two random variables, X1 ∼ Exp(λ)
and X2 ∼ N(µ, σ), with known parameters λ, µ and σ, and cumulative distribution
functions F1 and F2, respectively. Via the Probability Integral Transform, Fi(Xi) =
Ui ∼ U(0, 1). Therefore, the joint distribution of X = (X1, X2)T is

F (x1, x2) = C(F1(x1), F2(x2)). (1.2)

Since the marginals are continuous, the joint density function can be found by differen-
tiating (1.2) to get

f(x1, x2) = f1(x1)f2(x2) c(F1(x1), F2(x2)), (1.3)

where f1 and f2 are the density functions for an Exp(λ) and N(µ, σ), respectively. This
result can then be generalised to p-dimensions to obtain

f(x1, . . . , xp) = f1(x1) . . . fp(xp) c(F1(x1), . . . , Fp(xp)), (1.4)

where c(u1, . . . , up) = ∂p

∂u
C(u1, . . . , up) is the copula density. The next step is to choose

our copula C.

Archimedean copulas

A popular class of copulas are the Archimedean copulas. As Nelsen [2006] describes,
they are popular due to the large variety of copulas available, the ease of which they can
be constructed and the fact that, even in high dimensions, the dependence model can be
described by only one parameter. We can define an Archimedean copula as follows, but
first we must define what is known as the generator ϕ(·), where ϕ : [0, 1] → [0,∞] is a
continuous, strictly decreasing convex function with ϕ(1) = 0, ϕ(0) ≤ ∞ [Fischer et al.,
2009]. We then define the pseudo-inverse of ϕ, ϕ[−1] by

ϕ[−1](t) ≡

{
ϕ−1(t) for 0 ≤ t ≤ ϕ(0),

0 for ϕ(0) ≤ t ≤ ∞.

For the 2-dimensional case, we can define a copula by

C(u1, u2) = ϕ[−1] (ϕ(u1) + ϕ(u2)) . (1.5)

This can be extended to the p-dimensional case as follows

C(u1, . . . , up) = ϕ[−1] (ϕ(u1) + . . .+ ϕ(up)) . (1.6)
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Family Generator ϕ(t|θ) Parameter

Clayton 1
θ
(t−θ − 1) θ ∈ (0,∞)

Frank − log
(
e−θt − 1/e−θ − 1

)
θ ∈ (0,∞)

Gumbel − log(t)θ θ ∈ (1,∞)

Joe − log
[
1− (1− t)θ

]
θ ∈ (1,∞)

Table 1.1: Popular generators for Archimedean copulas

As Fischer et al. [2009] also states, this is a p-dimensional Archimedean copula if and
only if ϕ−1 is completely monotonic on R+. Table 1.1 [adapted from Nelsen [2006]] gives
a few popular generators ϕ(·).

Figure 1.3 shows the theoretical contours of the Clayton copula for θ = 1 as well as 50K
simulated values for θ = 1 (black) and θ = 2 (red). Evidently we see a weak but positive
correlation in the data, and then increasing this one copula parameter will then increase
the correlation in the data. Note that here the relation between the copula parameter
and the correlation in the data seems quite straightforward, although for most cases
outside of the family of elliptical distributions, the relation isn’t as simple [Schmidt,
2006].

In Figure 1.4, we have demonstrated how we can use copulas to join univariate marginals.
In this case we have two standard Normal marginals fitted with a Gumbel copula with
parameter θ = 2. We are accustomed to seeing Normal distributions having regular
ellipses as their joint density, whereas here, using a copula, the joint density does not
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Figure 1.3: Theoretical and simulated values from the Clayton copula.

Aamir Khan 6



A copula approach to spatio-temporal modelling 1.2

resemble the bivariate Normal density at all due to the skewed ellipses produced. Some
may find these single parameter copulas to be sufficient enough, for instance, Hennessy
and Lapan [2002] discuss how the structural form of these copulas can be used in the
area of risk and investments, specifically, using them to model portfolio allocations.

For our analysis we need a more flexible model, which is why we will look at elliptical
copulas for the remainder of this report, starting with the Gaussian copula. See Nelsen
[2006] for further properties of Archimedean copulas.
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Figure 1.4: Standard Normal marginals fitted with a Gumbel copula with θ = 2
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2 | The Gaussian copula

2.1 Definition

The Gaussian copula is derived from the multivariate Normal distribution and is one of
the more popular copulas used in the financial sector, and areas of risk management and
insurance with more listed in Balakrishnan and Lai [2009]. Some experts believe that the
Gaussian copula had a key role in the financial meltdown of 2008-09, when it was formerly
being used to assess risk by estimating the dependence between a number of individual
debt securities [Lee, 2009]. In comparison to the Archimedean copulas we looked at in
§1.2, the Gaussian copula has more than one parameter for dimensions p ≥ 2; in fact
there are p(p − 1)/2. As seen in Balakrishnan and Lai [2009], the bivariate Gaussian
copula is defined explicitly below in (2.2), with Φ2 denoting the cumulative distribution
function (cdf) for the standard bivariate Normal distribution, and Φ representing the
cdf of the standard univariate Normal distribution.
Definition 2 (Bivariate Gaussian copula function). The Gaussian copula function in
2-dimensions is defined as

C(u1, u2) = Φ2(Φ−1(u1),Φ−1(u2)|ρ) (2.1)

=
1

2π
√

1− ρ2

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
exp

{
−(s2 − 2ρst+ t2)

2(1− ρ2)

}
ds dt,

where ρ is the dependence parameter in the copula.

We can generalize this to p dimensions to obtain the following definition.
Definition 3 (Gaussian copula function). The p-dimensional Gaussian copula function
is defined as

C(u1, . . . , up) = Φp(Φ
−1(u1), . . . ,Φ−1(up)|P ), (2.2)

where Φp denotes the cdf of the p-dimensional Normal distribution.

Here P is the p × p correlation matrix, thus being a symmetric positive semi-definite
matrix with 1s along the diagonal. This means the number of parameters of the Gaussian
copula is equal to the number of entries in the upper triangular giving us p(p− 1)/2.

Using Song [2000], we can define the Gaussian copula density as follows, with the full
derivation found in Appendix A.1.1.
Definition 4 (Gaussian copula density). The Gaussian copula has density

c(u1, . . . , up) =
φp(Φ

−1(u1), . . . ,Φ−1(up)|P )∏p
i=1 φ(ui)

=(2π)−p/2|P |−1/2

× exp

−1

2

Φ−1(u1)
...

Φ−1(up)


T

(P−1 − Ip)

Φ−1(u1)
...

Φ−1(up)


 . (2.3)
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A copula approach to spatio-temporal modelling 2.2

Figure 2.1 shows the bivariate Gaussian copula density for values of ρ = 0.5 and ρ = −0.7,
respectively, to demonstrate how altering the value of ρ ∈ (−1, 1) affects the copula. For
large positive values of ρ the contours show a positive correlation, and conversely, for
negative values of ρ, the contours show negative correlation between the two uniform
variables u1, u2.
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Figure 2.1: Contours of the bivariate Gaussian copula with ρ = 0.5 (left) and ρ = −0.7
(right).

2.2 Simulation of realisations

By simulating values from the bivariate Normal distribution, N2(0, P ), where P is the
correlation matrix, it is easy to demonstrate how the copula can be used to join uni-
variate distributions. Using the Probability Integral Transform on different marginal
distributions we are able to have jointly distributed data using the copula, as previously
seen in §1.2 with the Gumbel copula with Normal marginals. Adequately simulating
from these copula based models is important since we will be performing inference on
simulated data first, before applying our methods to actual data in order to check that
our inferences are just.

Exponential and Normal marginals

Returning to our example in §1.2 where we had two random variables, X1 ∼ Exp(λ) and
X2 ∼ N(µ, σ), with known parameters λ, µ and σ, we will couple these two distributions
together using the Gaussian copula. Let’s say for X2 that λ = 0.5 and that X1 is
standard Normal. Figure 2.2 shows both a 3D density plot of the joint density function
and 50K simulated values from this joint distribution with their marginal histograms.
We’ve managed to couple two univariate distributions with the Gaussian copula. In the
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Figure 2.2: Joint density (left) and 50K simulated values (right) from the joint distri-
bution of X1 ∼ Exp(0.5) and X2 ∼ N(0, 1) using the Gaussian copula for ρ = 0.5, with
their marginal histograms.

context of rainfall data, we will be taking the observations at each site and coupling
them together using an appropriate copula model. Thinking about the rainfall example,
rainfall volumes can never be negative and so a Normal distribution wouldn’t be suitable
to describe the distributions at each site and so this example should be discarded when
considering an appropriate model for rainfall. An interesting note however, although
self-evident to see, is that if we had both X1 ∼ N(0, 1) and X2 ∼ N(0, 1) and used a
Gaussian copula with parameter ρ, then the resulting joint distribution is simply the
standard bivariate Normal, X = (X1, X2)T ∼ N2(0, P ). This can also be generalised to
p-dimensions.

Gamma marginals

Now we move on to using the Gamma distribution as our univariate marginals, since
this would be a more appropriate choice to say model rainfall data over the Normal dis-
tribution, given that the support is (0,∞). Figure 2.3 shows, on the left, the 3D density
plot of the joint distribution of the two Gamma distributions with a large correlation
parameter of ρ = 0.8 in the copula. On the right we see simulated values from this joint
distribution with an evidently large empirical linear correlation. Since our data involves
sites which are near to one and other in the context of location we would expect large
positive correlations in the observed data, understandable since rain at site A will, most
likely, mean rain at site B, if they are close.
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Figure 2.3: Joint density (left) and 50K simulated values (right) from the joint distribu-
tion of X1 ∼ Ga(2, 2) and X2 ∼ Ga(2, 2) using the Gaussian copula for ρ = 0.8, with
their marginal histograms.

2.3 Bayesian inference

Now we begin with Bayesian analysis of such models starting simple, on simulated data
from the Gaussian model. We first need to deal with the setup of this problem by cor-
rectly defining the model, likelihood, prior distributions and suitable paramaterizations
of the copula parameters, the p(p− 1)/2 elements of P . Since there will be no conjugate
analysis here due to the complex nature of the model, we will be implementing appropri-
ate Markov chain Monte Carlo algorithms, commonly abbreviated to MCMC, in order
to simulate observations from the posterior distributions of the parameters.

Likelihood

To perform posterior analysis we compute the likelihood of the data, with the full deriva-
tion found in Appendix A.1.2. Since the rainfall data between time points will be cor-
related, we will assume that there is time dependence, i.e. between xt and xt−1, and
so wish to model the distribution of X t given X t−1, that is f(xt|xt−1). Suppose that
the marginal distribution of Xt,i depends on the set of parameters αi and denote the
cdf and pdf of Xt,i as Fi and fi, respectively, for i = 1, . . . , p. Let X = (x1, . . . ,xT ),
A = (α1, . . . ,αp) and β be the set of parameters in the copula, c(·), in this case the
Gaussian copula. Taking the product of the this over the number of sites, p, and over
all time points in the data, T , we get the likelihood, explicitly, (2.4).

f(X|A,β) =

∏T
t=2 f(xt,xt−1|A,β)∏T−1

t=2 f(xt|A,β)
, (2.4)
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where

f(xt,xt−1|A,β)

{
p∏
i=1

fi(xt,i|αi)fi(xt−1,i|αi)

}
× c(ut,ut−1|A,β).

Due to the possibility of performing this on many sites over a long time interval, the log-
likelihood function would be more favourable in this instance as we can often run in to
numerical issues when taking products of products such as integer overflow in packages
such as R and so we will use the log-likelihood, simply by taking the log of (2.4).

Posterior distribution

As we know, Bayesian analysis allows us to combine both our beliefs and what the data
actually tells us, so our posterior distribution is found since it is proportional to our
prior beliefs multiplied by the likelihood. We will assume that our prior beliefs for the
parameters of the marginal distributions and the copula parameters are independent.
The posterior density is

π(A,β|D) ∝ π(A)π(β)f(X|A,β).

As stated previously, it is understandable that no conjugate analysis is possible, so
MCMC, specifically Metropolis-Hastings algorithms will be used to draw samples from
the posterior distribution. The usual approach with copula based models is to use a two
stage process to estimate the parameters, see Danaher and Smith [2011] and Joe [2005].
This method involves estimating the parameters of the marginal distributions, and then
estimating the copula parameters conditional upon these.

Marginal parameters

Estimating the marginal distributions in the first stage can be done through a variety
of ways including maximum likelihood estimation, method of moments estimation and,
the technique we will be performing, MCMC algorithms, full details of which can be
found in Appendix A.1.5. We essentially perform analysis assuming spatial and temporal
independence to obtain realisations from the independent posterior densities, that is,

π̃(αi|D) ∝ π(αi)
T∏
t=1

f(xt,i|αi).

We will be using Gamma distributions for our marginals, so Xi ∼ Ga(αi, λi), thus
αi = (αi, λi), for each site i = 1, . . . , p. Since we require both αi and λi to be positive,
we impose independent Lognormal prior distributions on both parameters. The MCMC
algorithm is specifically a Metropolis Hastings algorithm, so we require a suitable pro-
posal distribution for proposed values of the parameters which are then accepted or
rejected. Due to both parameters being positive, we use Lognormal distributions again
when proposing values α∗i , λ∗i , since using a Normal random walk here would generate
negative proposals as well and having to reject these every so often will be quite wasteful.
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Copula parameters

Since the parameters of the copula are elements of a correlation matrix P , certain con-
straints exist, since correlation matrices must be positive semi-definite. This will be
the difficult part of the MCMC scheme as proposing ρij ∈ (−1, 1) for the symmetric
off-diagonal elements would yield low acceptance probabilities. As Barnard et al. [2000]
identify, producing a valid correlation matrix is a challenging statistical issue and so this
is tackled by parametrising the correlation matrix using a similar approach to Dana-
her and Smith [2011], but adapted to consider the lag 1 auto-correlation in the data.
Essentially we use the following representation

P = diag(Σ)−1/2 Σ diag(Σ)−1/2,

where
P =

(
P1 P2

P2 P1

)
(2.5)

is a 2(p × p) matrix where P1 represents the correlations between X1, . . . , Xp at time t
and P2 is the lag 1 autocorrelation matrix, that is, describing the dependence between
X1, . . . , Xp at times t and t − 1. Here Σ = Cov(X t,X t−1) is constructed from two
further matrices Rm and Rv, which are both upper triangular matrices containing our
new parameters r. See Appendix A.1.4 for full technical details. Below we have the two
matrices for the p = 2 case:

Rm =

(
rm1 rm2

0 rm3

)
and Rv =

(
1 rv1

0 1

)
.

This is easily generalised for the p-dimensional case. This parameterization of the corre-
lation matrix means that the constraints of the different r’s are the thing to be concerned
about. The only constraints here are that we require the diagonal elements of Rm to
be positive real values and all the upper-triangular elements of both Rm and Rv must
be real. This setup yields the correlation matrix in (2.5). This allows us to generate
valid positive semi-definite correlation matrices, as long as we adhere to the constraints
of the r’s. However we now have p2 number of parameters, as opposed to the p(p− 1)/2
number of parameters, needed to parameterize a correlation/covariance matrix.

Prior distributions The prior distributions we impose on these r’s will be Uniform,
with different end-points dependent on the constraints. Let us denote r+

i as the diagonal
r’s that we require to be positive. Since we want to input fairly uninformative prior
information, we impose a U(0, 5) prior on these. The way we propose values for these
parameters will be through Lognormal proposal distributions. Let the unconstrained r’s
be denoted by r±i . We impose a U(−5, 5) prior on these, again to be fairly uninformative,
and use a Normal random walk proposal. We will be updating each parameter separately,
and not as a block update, thus allowing us to tune each accordingly.
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Inference on simulated data

Performing the MCMC scheme on data we have simulated from the model allows us to
confirm whether or not the algorithm is correct. Simulating from the model is slightly
more involved this time around due to the lag 1 autocorrelations which we need to
account for and the complete algorithm is found in Appendix A.1.3. We will keep things
basic by having p = 2, although the code used to run this is already generalised to
perform for p ≥ 2.

Inference on marginal parameters

The marginals we have here will be X1 ∼ Ga(3, 1) and X2 ∼ Ga(4, 1), as these have
larger densities for smaller values, since we expect to have more weight down the lower
end of the scale of rainfall volumes. Using a sample size of n = 1, 000 and a copula
correlation matrix with components

P1 =

(
1.000 0.768
0.768 1.000

)
and P2 =

(
0.065 0.059
0.059 0.124

)
, (2.6)

stage 1 output was obtained and are shown in Figures 2.4 to 2.5 and Table 2.1. This
run was carried out after an initial, shorter, run in order to tune each of the parame-
ters, which we discuss when looking at the autocorrelation. Evidently, the algorithm is
clearly producing realisations from the independent posterior densities for the marginal
parameters as each one of the (marginal) kernel densities has the respective value, used
to simulate the data, near the mean of the posterior distribution.

Parameter Posterior mean Posterior SD Effective sample size
α1 3.032 0.128 5145.3
α2 4.007 0.170 3290.7
λ1 1.024 0.047 5349.5
λ2 1.016 0.046 3470.6

Table 2.1: Posterior summaries from the stage 1 analysis.

Convergence and Autocorrelation To assess the convergence of the algorithm, we
can run three simultaneous schemes starting from different initial values as seen in Fig-
ures 2.4 and 2.5. Since the stationary distribution of our algorithm is the posterior
distribution, the chain will eventually converge to the posterior no matter where we ini-
tialise the chain (provided we initialise in the correct parameter space). Here, it’s evident
that we have convergence since, even after removing as little as 100 iterations, the chain
has already ‘burnt-in’. A way to see how much autocorrelation we have in the chain is
to look at both autocorrelation plots and the effective sample sizes of the parameters.
The effective sample size is an estimate of how many uncorrelated realisations the chain
contains. An issue here is that there is a fair amount of autocorrelation within the chain,
as we get very small effective sample sizes from runs of 10K, only around 500 for each
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Figure 2.4: Traceplots and densities obtained from 10K posterior realisations of α1 and
α2.
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Figure 2.5: Traceplots and densities obtained from 10K posterior realisations of λ1 and
λ2.
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of the parameters, despite having a thinning interval of 10. And so instead, we perform
the algorithm again, with appropriate tuning, and a thinning interval of 100, essentially
taking every 100th realisation from a run of 100K, to get almost 10K uncorrelated reali-
sations. The effective sample sizes are given in Table 2.1, and we see the autocorrelation
plots in Figure 2.6.
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Figure 2.6: Autocorrelation plots for α and λ.

Inference on copula parameters

Using the stage 1 realisations, we use these in the next stage in order to perform inference
on the copula parameters, therefore, conditional on the marginal parameters.

π(β|A,D) ∝ π(β)f(X|A,β).

The output from this gives realisations from the posterior of the r’s, of which we can
construct the copula correlation matrix P , so we then have the posterior for the elements
of P . Figure 2.7 shows both the trace plots and kernel densities of the (marginal)
posterior distributions of the elements of P . The scheme is clearly sampling from the
posterior distribution here, since, when comparing the densities of each element with
the corresponding element of P used to simulate the data, 2.6, we see that these ‘true’
values are all captured within the (marginal) posteriors.
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Figure 2.7: Traceplots and densities obtained from 10K posterior realisations of P .

Convergence and Autocorrelation In order to assess that the chain converges for
the copula parameters, we can run two chains in parallel with different initial values to
check that realisations are in fact from the posterior distribution. It’s evident that the
chains are converging since both the black and red chains are covering roughly the same
parameter space in the trace plots. A thinning interval of 10 was used in this run, meaning
we effectively ran the algorithm for 100K iterations and took every 10th realisation, giving
us a sample of 10K. We use this with the hopes of removing any autocorrelation from
our posterior realisations. As we observe in Figure 2.8, the autocorrelations are quite
small past lag 5, and we have effective sample sizes given in Table 2.2.

Since we have quite a large amount of data we have simulated from the model, and
used weak priors, it’s safe to assume that the MCMC algorithms are in fact producing
realisations from the posterior distributions. Although the Gaussian copula works well at
describing the dependence for certain applications, we come across issues when describing
dependence between extreme events, something which a heavy-tailed distribution would
be more suited for. The aim of our analysis is to find a suitable, yet flexible, model for
rainfall and so we now move on to look at the skew t copula, which not only allows for
heavier tails than the Gaussian, but also allows skewness in each dimension.
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Figure 2.8: Autocorrelation plots for the copula parameters.

Parameter Posterior mean Posterior SD Effective sample size
P11,1 0.775 0.010 1433.5
P21,1 0.085 0.029 1043.0
P21,2 0.077 0.026 3368.9
P22,2 0.139 0.030 1688.6

Table 2.2: Posterior summaries for the copula parameters.
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3 | The skew t copula

3.1 Definition

Although the Gaussian copula has it’s applications in certain fields, returning back to
our example of rainfall, a dependence structure with increased flexibility would be more
suitable. We need one which would not only capture dependence between extreme events
more adequately, but also allow for asymmetry, and so we investigate the skew t copula.

The skew t copula is again derived from a multivariate elliptical distribution, namely
the skew t distribution. This isn’t as widely used as the well-known multivariate Nor-
mal distribution that the Gaussian copula is derived from, so we must first define this
distribution. Due to the degrees of freedom, ν, the skew t copula has uses in areas such
as finance and economics, just like the Gaussian, with the the skew t, and symmetric t
copula, being favoured due to the ability to account for extreme events. See Smith et al.
[2012] for applications with regional spot prices in the Australian electricity market and
dependence of website popularity.

Due to the ability of having different levels of skewness in each dimension, we will be
using the distribution as defined by Sahu et al. [2003], as opposed to the one defined by
Azzalini and Capitanio [2003].

Definition 5 (Skew t distribution). Suppose that X and Q are both p × 1 vectors and
have a joint 2p-dimensional t distribution with zero mean/mode, degrees of freedom ν
and scale matrix Ω, that is(

X
Q

)
∼ tν

((
0
0

)
, Ω =

(
P + ∆2 ∆

∆ Ip

))
,

where ∆ = diag(δ1, . . . , δp) and P = (ρij) is a p×p (positive definite) correlation matrix.
Then the skew t distribution is defined to be that of X|Q > 0, with density

fSt(x|P, δ, ν) = 2p
∣∣P + ∆2

∣∣−1/2
ψν

((
P + ∆2

)−1/2
x
)

Pr(Q > 0|X = x),

where ψν(·) is the p-dimensional standardised t density and

Q|X = x ∼ tν+p

(
∆
(
P + ∆2

)−1
x,

ν + xT
(
P + ∆2

)−1
x

ν + p

{
Ip −∆

(
P + ∆2

)−1
∆
})

.

We denote X ∼ Stν(P, δ) if X has density fSt(x|P, δ, ν) as defined above. As given in
Sahu et al. [2003], the first two moments are given below, with

E(X) =
(ν
π

)1/2 Γ ([ν − 1]/2)

Γ(ν/2)
δ,

Var(X) =(Γ + ∆2)
ν

ν − 2

−

[{(ν
π

)1/2 Γ ([ν − 1]/2)

Γ(ν/2)

}2

11T − (11T − I)
2ν

π(ν − 2)

]
◦ δδT ,
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where δ = (δ1, . . . , δp)
T , 1 is a p-vector of 1’s and the operator ◦ represents the Hadamard

matrix product. The skewness in each dimension is controlled by the skewness param-
eters δi ∈ R for i = 1, . . . , p, with symmetry occurring when δi = 0. The degrees of
freedom control how heavy the tails are in the distribution and when ν → ∞ the skew
t converges to a skew Gaussian, also known as a skew Normal. When we have δ = 0,
the skew t distribution simply becomes the multivariate t distribution, and so it follows
that with δ = 0 and ν →∞, the skew t converges to the Normal distribution. With the
skew t distribution defined, we construct the skew t copula as follows.

Definition 6 (Skew t copula). The skew t copula is Cst(u|P, δ, ν), with density

cSt(u|P, δ, ν) =
fSt(x|P, δ, ν)∏p
i=1 fSt,i(xi|δi, ν)

,

where xi = F−1
St,i(ui|δ, ν).

Some properties from the multivariate skew t distribution carry to the skew t copula, due
to this construction. When ν → ∞ the skew t copula converges to the skew Gaussian
copula, and when δ = 0 also the copula converges to the Gaussian copula defined in the
previous chapter.

Data augmentation

If we were to compute the likelihood of the model currently, we would fall into issues
due to the difficult calculations required. For example, the need to evaluate the term
Pr(Q > 0|X = x) is a rather daunting task. This is a p-dimensional probability for
a t distribution, a challenging computation to tackle. We could look in to methods
discussed by Genz and Bretz [2002] to calculate this, but we instead look at augmenting
the problem. Introducing auxiliary variables will allow us to make the likelihood much
simpler. These auxiliary variables aren’t observed, but if they were the likelihood would
be simplified enough for us to explore the posterior, so we treat these as missing data,
where they are dealt with in our MCMC algorithms.

Conditional Gaussian representation

Due to this augmentation, we represent the skew t as a scale mixture of Normals [Smith
et al., 2012]. We get X ∼ Stν(P, δ), marginally, using auxiliary variables w, q, where

X|q, w ∼ Np

(
∆q,

1

w
P

)
and Q|w ∼ Np

(
0,

1

w
Ip

)
,

and W ∼ Ga(ν/2, ν/2); see Appendix A.2.1.

We can then use this representation to now simplify the skew t copula density as

cSt(u|P, δ, ν, q, w) =
φp(x|∆q, w−1P )∏p
i=1 fSt,i(xi|δi, ν)

,

where xi = F−1
St,i(ui|δ, ν).
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Figure 3.1: Varying skewness parameters, from left to right, δ = (1, 0), δ = (0, 0), δ =
(0, 1).

3.2 Simulation of realisations

We can again simulate from this copula model using the algorithm given in Appendix
A.2.2. Since we’ve already discussed how copulas are used to describe the joint distribu-
tion of marginal distributions, we’ll take a brief look at how uniform variables within the
copula are dependent on each other with varying copula parameters. In Figure 3.1, we
see three scatterplots of realisations from the joint distribution of U = (U1, U2) which are
described with a bivariate skew t copula with ν = 5, ρ = 0.8 in the correlation matrix P ,
and varying skewness parameters. These three scatterplots demonstrate the usefulness
of having the flexibility of skewness parameters for each dimension.
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Figure 3.2: Contours of the bivariate Gaussian (left) and t (right) copulas with ρ = 0.8,
and ν = 5 for the t copula.
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An interesting note here is that the centre plot is equivalent to a symmetric t copula,
since we have chosen there to be no asymmetry. Next in Figure 3.2, we can compare the
contours of the Gaussian and symmetric t copula in order to demonstrate the difference
due to the degrees of freedom. We note the closeness of the contours for the Gaussian,
due to the steepness in the density. Comparing these to the more dispersed contours
of the t copula, it is understandable how the heavy tails of the t distribution affect the
copula, allowing us to capture dependence between extreme events effectively.

3.3 Bayesian inference

We now look in to MCMC methods in order to estimate the posterior distributions of
the copula parameters. The number of parameters in this case is p2 + p+ 1, due to the
r’s of the P matrix, the p-vector of δ parameters and the degrees of freedom ν.

Likelihood

We are simply changing the copula being used in this problem, and so we still model
f(xt|xt−1), just changing the copula function c(ut,ut−1|A,β). Full details are given in
Appendix A.2.3. Let zt,i = F−1

St,i(ut,i|δi, ν), then the skew t copula of (ut,ut−1) is

cSt(ut,ut−1|r, δ, ν) =
fSt(zt, zt−1|r, δ, ν)∏p

i=1 fSt,i(zt,i|δi, ν) fSt,i(zt−1,i|δi, ν)
.

Now we write this in terms of the augmented variables qt, qt−1, wt, wt−1,

cSt(ut,ut−1|r, δ, ν, qt, qt−1, wt, wt−1) =
f(zt, zt−1|r, δ, ν, qt, qt−1, wt, wt−1)∏p
i=1 fSt,i(zt,i|δi, ν) fSt,i(zt−1,i|δi, ν)

,

where the distribution of (zt, zt−1) is a multivariate normal. Through some cancellation
and matrix manipulation, we get the following representation of our likelihood:∏T

t=2 f(zt, zt−1|r, δ, ν, Q,W )∏T−1
t=2 f(zt|r, δ, ν, Q,W )

∝
|P |(T−1)/2 exp

{
− 1

2
tr (SP−1)

}
|P1|T/2−1 exp

{
− 1

2
tr
(
S∗P−1

1

)} , (3.1)

where Q = (qt) and W = (wt), with S defined in Appendix A.2.3. This is much easier
to handle than if we were to not augment the problem.

Posterior Distribution

We will assume independent prior distributions for the marginal and copula parameters
again, and so we have

π(A, r, δ, ν, Q,W |D) ∝ π(A)π(r)π(δ)π(ν)f(U |A, r, δ, ν, Q,W ),
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with

f(U |A, r, δ, ν, Q,W ) ∝
|P |(T−1)/2 exp

{
− 1

2
tr (SP−1)

}
|P1|T/2−1 exp

{
− 1

2
tr
(
S∗P−1

1

)} .
MCMC algorithms will be used here to draw realisations from the posterior distributions,
where we will adopt the same approach as in the Gaussian copula with stage 1 analysis
on the parameters of the margins and stage 2 analysis on the copula parameters.

Inference on simulated data

Here we look at performing analysis on simulated data from the model, specifically with
Normal margins. Due to the large amounts of matrix multiplications, and generally
much more complex calculations needed in comparison to the Gaussian, the statistical
package R can be quite cumbersome, and so computations can be a lot slower, thus
we shall perform inference with only n = 100 points with p = 2. Complete steps are
given in Appendix A.2.4. We use margins X1 and X2 both distributed N(1, 1) and have
ν = 5, δ1 = 0.4, δ2 = 0.2 and the same correlation matrix P found in the Gaussian case,
with

P1 =

(
1.000 0.768
0.768 1.000

)
and P2 =

(
0.065 0.059
0.059 0.124

)
. (3.2)

In the analysis that follows, we fix all other parameters to their ‘true’ values, in particular
the parameters of the correlation matrix of the copula P . We are also mixing over the
augmented variables w and q, so a fair amount of uncertainty in the posterior distribution
is to be expected.

Prior distributions

The prior distributions of the copula parameters will be taken from Smith et al. [2012],
except for the r’s where we shall adopt the same priors as we did in the Gaussian, that is,
U(0, 5) for the constrained r’s and U(−5, 5) otherwise. For ν we induce a uniform prior
on the interval [2,50], since this would place non-zero weight on either heavy tailed or
near Gaussian distributions on the dependence structure. For the skewness parameters
δi, for i = 1, . . . , p, we assume a N(0, 52) prior, thus having a large variance and giving
weak prior information.

Posterior analysis for ν

We begin with the degrees of freedom, ν, which affects the tail dependence within the
copula. Small values of ν, say under 5, represent heavy tails in the skew t copula. With
our prior, we are assuming that any value between 2 and 50 is equally likely, and so
our posterior beliefs for ν will built upon the data. Looking at Figure 3.3, we see the
posterior for ν is weighted heavily towards smaller values and so our prior beliefs, that
is all values of ν between 2 and 50 are equally likely, have changed dramatically in light
of the data, since, we know that the data was simulated using ν = 5.
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Figure 3.3: 1K iterations from the posterior distribution of ν.
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Figure 3.4: Autocorrelation plot for ν.

Parameter Posterior mean Posterior SD Effective sample size
ν 11.417 9.862 646.7

Table 3.1: Posterior summaries for ν.

Convergence and Autocorrelation Figure 3.4 shows the autocorrelation plot for
ν, where we see reasonably low autocorrelations and insignificant ones past lag 5. This
was after a thinning interval of 20, from a run of 20K, leaving us with 1K iterations,
but now we will be left with a higher chance of uncorrelated realisations as a result of
this thinning. Table 3.2 shows the posterior summaries and the effective sample size
obtained, where we see a large amount of independent realisations from the chain, 647
from 1000. The two chains were ran in parallel in order to asses convergence as well, and
both chains seem to be covering the same parameter space.
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Figure 3.5: 2K iterations from the posterior distributions for δ1 and δ2.

Posterior analysis for δ

The prior we place upon each individual skewness parameter δi places most weight around
0, but even values of ±5 are highly likely, with the large 95% interval of (-9.799, 9.799).
In our simulations, we have δ1 = 0.4, and δ2 = 0.2, and so we hope to see the posterior
distribution to be more concentrated around these values than the N(0, 52). As we can
see in Figure 3.5, the posterior distribution for both of our skewness parameters have a
much smaller variance than the prior. Even though the ‘true’ values used to simulate
the data are well within the kernel density plots, there is still a fair degree of uncertainty
due to the small sample size in our analysis and the augmentation of the problem. The
kernel densities aren’t typical bell-shaped densities we would hope for, and instead seem
to look bi-modal.

Parameter Posterior mean Posterior SD Effective sample size
δ1 0.099 0.3533 166.8
δ2 -0.086 0.2720 469.4

Table 3.2: Posterior summaries for skewness parameters δ1 and δ2.

Aamir Khan 25



A copula approach to spatio-temporal modelling 3.3

0 200 600 1000

−
1

.0
0

.0
1

.0

Lag

A
u

to
c
o

rr
e

la
ti
o

n

delta_1

0 200 600 1000

−
1

.0
0

.0
1

.0

Lag

A
u

to
c
o

rr
e

la
ti
o

n

delta_2

Figure 3.6: Autocorrelation plots for δ1 and δ2.

Convergence and Autocorrelation Again, we start two chains in parallel from dif-
ferent initial values in order to assess convergence. Both chains seem to be covering
the same parameter space for both parameters. A thinning interval of 15 was used here
due to high autocorrelations in the chain, and so we are left with a much smaller chain
of only 2K iterations, from a full chain of 30K. The autocorrelations have reduced sig-
nificantly, as seen in Figure 3.6, meaning that the chain we have here is more likely to
contain independent realisations from the posterior. The small number of iterations isn’t
ideal here, especially since we have small effective sample sizes, although running the
algorithm for longer with the same thinning interval would prolong the system time of
the algorithm significantly. Remember, we have data augmentation and vast amounts of
matrix arithmetic in our scheme, so it would be naive to expect a quick run time in this
instance.

Posterior analysis for the joint distribution (ν,δ)

Now we finally look at the joint posterior for (ν,δ) conditional on the parameters of
the correlations matrix of the copula. For this we only ran two chains for 5K iterations
due to the very slow algorithm run time. Table 3.3 gives posterior summaries for the
parameters and Figure 3.7 gives both trace plots and densities of the marginal densities.
Again, all of the ‘true’ values used to simulate the data are all well within the densities,
but with a lot more uncertainty.

Parameter Posterior mean Posterior SD Effective sample size
ν 11.956 9.9610 20.7
δ1 0.001 0.299 59.7
δ2 -0.051 0.272 78.6

Table 3.3: Posterior summaries from the joint posterior distributions of (ν, δ).
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Figure 3.7: 1K realisations from the joint posterior distributions of (ν, δ).
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Figure 3.8: Autocorrelation plots for the joint posterior distributions of (ν, δ).

Convergence and Autocorrelation Thinning the output by 5 does little to help the
autocorrelations, as we can see in Figure 3.8. Again we ran two chains to assess conver-
gence and all parameters do seem to be exploring the parameter space, although not at
all efficiently as we can see very poor mixing. Looking at Table 3.3, we see very small
effective sample sizes and so we have the same issue as previously seen, when we have ν
and δ separately, where we would need to run the algorithm for many more iterations,
say 100K, and increase the thinning interval further to obtain a reasonable amount of
independent posterior realisations. The increasing uncertainty is to be expected as we
allow both ν and δ to vary with such a small sample size.

Full posterior analysis

Due to mixing over augmented variables, matrix multiplications and hence very slow
system run times of these algorithms in R, obtaining realisations from the full posterior
density (that is, not conditioning upon any parameters) would not be feasible within the
time period allowed for this project. The data used here was only 2 dimensional with
100 observations. Imagine using this on actual data with a larger number of dimensions
(sites) and a great deal of time points, the inference methods employed here would take
far too long to be a viable technique. Thus, our study of the skew t copula ends here.
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4 | Conclusions

Modelling with the use of only well-known distributions, analysis falls short when trying
to appropriately model dependence in certain real world applications of multivariate
statistics. The study was set out to construct and investigate a spatio-temporal model
through a different means, specifically with copulas. In Chapter 1 we demonstrated the
fundamentals of copulas and how they can be utilised for joint distributions.

Estimating the marginal distributions in our stage 1 analysis was straightforward using
independent spatial and temporal assumptions. Exploring the posterior distribution
of our model with the Gaussian copula in Chapter 2 wasn’t overly challenging either.
Although modelling with this is practical in certain areas, we need a model which is
appropriate for our example of rainfall volumes, where extreme events need to be taken
in to account, an area which the Gaussian fails to capture.

Investigating the posterior distribution of our model with the skew t copula in Chapter
3 was a lot more involved. The complex MCMC schemes developed and mixing over
the augmented variables resulted in very long run times, meaning exploring the entire
posterior distributions wasn’t attainable. We found high autocorrelations in the output,
meaning that large thinning intervals were needed and consequently adding to the run
times further. An efficient programming language such as Java or C++ would be more
suitable here, and so further work would be aided by ample use of more efficient coding.
Once the full posterior could be analysed for simulated data, performing inference on
actual rainfall data would be the next logical step.

Modelling real life data such as rainfall is necessary if we want to adequately forecast
future outcomes. Hence finding an appropriate joint distribution is crucial, something
which we have only begun investigating here due to the need for much more in depth
analysis and time.
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A | Appendix

A.1 Gaussian copula

A.1.1 p-dimensional Gaussian copula density

The Gaussian copula is, adapted from Renard and Lang [2007],

C(u1, . . . , up) = Φp(Φ
−1(u1), . . . ,Φ−1(up)|P ).

The density is then

c(u1, . . . , up) =φp(Φ
−1(u1), . . . ,Φ−1(up)|P )×

∣∣∏p
i=1

d
dui

Φ−1(ui)
∣∣

=
φp(Φ

−1(u1), . . . ,Φ−1(up)|P )∏p
i=1{Φ−1(ui)

=(2π)−p/2|P |−1/2

× exp

−1

2

Φ−1(u1)
...

Φ−1(up)


T

(P−1 − Ip)

Φ−1(u1)
...

Φ−1(up)


 .

A.1.2 Likelihood

We wish to model the distribution of xt|xt−1 due to the temporal dependence. The joint
distribution of xt,xt−1 is

f(xt,xt−1|A,β) =

{
p∏
i=1

fi(xt,i|αi)fi(xt−1,i|αi)

}
× c(F1(xt,1|α1), . . . , Fp(xt,p|αp),

F1(xt−1,1|α1), . . . , Fp(xt−1,p|αp), |β)

=

{
p∏
i=1

fi(xt,i|αi)fi(xt−1,i|αi)

}
× c(ut,ut−1|A,β),

where ut(A) = (F1(xt,1|α1), . . . , Fp(xt,p|αp)), that is, each ut,i(A) = Fi(xt,i|αi). Let
X = (x1, . . . ,xT ), t = 1, . . . , T , then the likelihood is

f(X|A,β) =f(x1|A,β)
T∏
t=2

f(xt|xt−1A,β)

=f(x1|A,β)
T∏
t=2

f(xt,xt−1|A,β)

f(xt−1|A,β)

=

∏T
t=2 f(xt,xt−1|A,β)∏T−1

t=2 f(xt|A,β)
.
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A copula approach to spatio-temporal modelling A.1

Since the variables in the copula are marginally uniform, we could express this joint
density in a second way as follows by letting U = (u1(A), . . . ,uT (A)):

f(U |A,β) =

∏T
t=2 c(ut,ut−1|A,β)∏T−1

t=2 c(ut|A,β)
.

Returning back to (xt,xt−1), we can explicitly show the likelihood as

f(X|A,β) =

∏T
t=2 {

∏p
i=1 fi(xt,i|αi)fi(xt−1,i|αi)} c(ut,ut−1|A,β)∏T−1
t=2 {

∏p
i=1 fi(xt,i|αi)} c(ut|A,β)

=

{∏p
i=1

∏T
t=2 fi(xt−1,i|αi)c(ut,ut−1|A,β)

}∏p
i=1 fi(xT,i|αi)∏T−1

t=2 c(ut|A,β)
.

A.1.3 Simulating from the Gaussian copula with time depen-
dence

In order to test that the MCMC algorithm is working, we first consider
Z1,t

Z2,t

Z1,t−1

Z2,t−1

 ∼ N4(0, P ) (A.1)

for the 2 dimensional case (although this is easily generalised for the p-dimensional case),
where P is given in (2.5). We form the following conditional distribution, conditional
upon Z1,t−1 = z1,t−1, Z2,t−1 = z2,t−1. This allows us to simulate data from the copula
model with temporal dependence by simulating values from(

Z1,t

Z2,t

) ∣∣∣∣∣
(
z1,t−1

z2,t−1

)
∼ N2(µ,Σ) (A.2)

where
µ = P2P

−1
1

(
z1,t−1

z2,t−1

)
and Σ = P1 − P2P

−1
1 P2.

Algorithm

1. Generate Z1 ∼ N2(0, P1)

2. For t = 2, . . . , T ,

• Generate subsequent values Zt|zt−1 ∼ Np(µ,Σ).

• Set U t = (Φ(Zt,1), . . . ,Φ(Zt,p)).

• Set X t = (F−1
1 (Ut,1), . . . , F−1

p (Ut,p)).
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A copula approach to spatio-temporal modelling A.2

A.1.4 Paramaterizing the correlation matrix P

An effective way of obtaining an appropriate Σ with the correct structure is to take
X t = M +Rt, that is, X t is composed of a random variable M with Var(M )=V and
time-dependent noise, Rt with Var(Rt) = W , withM and Rt independent. This choice
produces a covariance matrix

Σ = Cov(Xt, Xt−1) =

(
V +W V
V V +W

)
. (A.3)

The resulting correlation matrix constructed from this then has the correct form as
expressed in (2.5).

A.1.5 MCMC algorithm

Stage 1 First we perform analysis assuming spatial and temporal independence to get
realisations from the independent posterior densities

π̃(αi|D) ∝ π(αi)
T∏
t=1

fi(xt,i|αi).

Stage 2

1. Initialise

• Simulate the constrained r’s from r
+(0)
i ∼ U(0, 5) indep.

• Simulate the unconstrained r’s from r
±(0)
i ∼ U(−5, 5) indep.

• Construct the correlation matrix P (0) using the setup in A.1.4
• Set ut,i = Fi(xt,i|αi)

2. Each parameter takes their current value in the chain. For iterations 1, . . . , N

3. For i = 1, . . . , p (constrained r’s)

• simulate a proposal value r+c
i ∼ LN(log r+

i , τ
2
ri

);
• construct P (r+c

i ) and hence P1(r+c
i ) and then, assuming uniform priors,

logB = log f(U |P (r+c
i ))− log f(U |P (r+

i ))

• accept proposal with probability min(1, B)

4. For i = 1, . . . , p(p− 1) (unconstrained r’s)

• simulate a proposal value r±ci ∼ N(r±i , τ
2
ri

);
• construct P (r±ci ) and hence P1(r±ci ) and then, assuming uniform priors,

logB = log f(U |P (r±ci ))− log f(U |P (r±i ))

• accept proposal with probability min(1, B)

Aamir Khan 34



A copula approach to spatio-temporal modelling A.2

A.2 Skew t copula

A.2.1 Conditional Gaussian representation

By augmenting the skew t distribution as follows, we can make our inference on the skew
t copula slightly less challenging. Using the full (X,Q) representation, we have

f(x, q|Q > 0) ∝ f(x|q) f(q) I(q > 0)

for which X ∼ Stν(P, δ) marginally, where

X|q ∼ tν+p

(
∆q,

ν + qTq

ν + p
P

)
.

We can further simplify this problem by introducing W ∼ Ga(ν/2, ν/2), then

f(x, q, w|Q > 0) ∝ f(x|q, w) f(q|w) I(q > 0) f(w)

where
X|q, w ∼ Np

(
∆q,

1

w
P

)
and Q|w ∼ Np

(
0,

1

w
Ip

)
.

We still maintain X ∼ Stν(P, δ) marginally. Using this representation, we now simplify
the skew t copula as

CSt(u|P, δ, ν) ∝
∫

Φp

(√
wP−1/2(x−∆q)

)
f(q|w) I(q > 0) f(w) dw dq

where Φp(x) =
∏p

i=1 Φ(xi) is the p-dimensional standard normal distribution function.

Thus
cSt(u|P, δ, ν, q, w) =

f(x|P, δ, ν, q, w)∏p
i=1 fSt,i(xi|δi, ν)

=
φp(x|∆q, w−1P )∏p
i=1 fSt,i(xi|δi, ν)

,

where xi = F−1
St,i(ui|δi, ν) and φp(·|µ,Σ) is the p-dimensional Np(µ,Σ) density function.

A.2.2 Simulating variates from the skew t copula

Algorithm

1. Simulate w ∼ Ga(ν/2, ν/2)

2. Simulate q ∼ Np(0, w
−1Ip), constrained to q > 0

3. Simulate Z ∼ Np(∆q, w
−1P )

4. For i = 1, . . . , p,

• Set Ui = FSt,i(Zi|δi, ν)

• Set Xi = F−1
i (Ui)
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A.2.3 Likelihood

In our model, we have a stationary skew t copula for (ut,ut−1), with

cSt(ut,ut−1|r, δ, ν) =
fSt(zt, zt−1|r, δ, ν)∏p

i=1 fSt,i(zt,i|δi, ν) fSt,i(zt−1,i|δi, ν)
,

where zt,i = F−1
St,i(ut,i|δi, ν). Introducing the augmented variables, (qt, qt−1, wt, wt−1), we

then have

cSt(ut,ut−1|r, δ, ν, qt, qt−1, wt, wt−1) =
f(zt, zt−1|r, δ, ν, qt, qt−1, wt, wt−1)∏p
i=1 fSt,i(zt,i|δi, ν) fSt,i(zt−1,i|δi, ν)

,

where(
zt
zt−1

)∣∣∣∣ r, δ, ν, qt, qt−1, wt, wt−1 ∼ N2p

((
∆qt

∆qt−1

)
, diag(w−1

t Ip, w
−1
t−1 Ip)P

)
.

We have the likelihood, in terms of the uniform variables, with Q = (qt) and W = (wt),
as

f(U |r, δ, ν, q, w) = cSt(u1|r, δ, ν, Q,W )
T∏
t=2

cSt(ut|ut−1, r, δ, ν, Q,W )

=
f(z1|r, δ, ν, q1, w1)∏p

i=1 fSt,i(z1,i|δi, ν)

T∏
t=2

f(zt|zt−1, r, δ, ν, qt, qt−1, wt, wt−1)∏p
i=1 fSt,i(zt,i|δi, ν)

=
f(z1|r, δ, ν, q1, w1)∏T
t=1

∏p
i=1 fSt,i(zt,i|δi, ν)

T∏
t=2

f(zt, zt−1|r, δ, ν, q, w)

f(zt−1|r, δ, ν, q, w)

=
1∏T

t=1

∏p
i=1 fSt,i(zt,i|δi, ν)

×
∏T

t=2 f(zt, zt−1|r, δ, ν, qt, qt−1, wt, wt−1)∏T−1
t=2 f(zt|r, δ, ν, qt, wt)

.

We now simplify the numerator and denominator of the second term above:
T∏
t=2

f(zt, zt−1|r, δ, ν, qt, qt−1, wt, wt−1)

∝
T∏
t=2

|P |−1/2

× exp

{
− 1

2

(
(zt −∆qt)

T (zt−1 −∆qt−1)T
)
diag(wt Ip, wt−1 Ip)P

−1

(
zt −∆qt

zt−1 −∆qt−1

)}
∝ |P |(T−1)/2

× exp

{
T∑
t=2

tr
[(

(zt −∆qt)
T (zt−1 −∆qt−1)T

)
diag(wt Ip, wt−1 Ip)P

−1

(
zt −∆qt

zt−1 −∆qt−1

)]}
∝ |P |(T−1)/2

× exp

{
tr

[
T∑
t=2

(
zt −∆qt

zt−1 −∆qt−1

)(
(zt −∆qt)

T (zt−1 −∆qt−1)T
)
diag(wt Ip, wt−1 Ip)P

−1

]}
.
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If we introduce a new 2(p× p) matrix

S =

( ∑T
t=2wt(zt −∆qt)(zt −∆qt)

T
∑T

t=2wt−1(zt −∆qt)(zt−1 −∆qt−1)T∑T
t=2wt(zt−1 −∆qt−1)(zt −∆qt)

T
∑T

t=2wt−1(zt−1 −∆qt−1)(zt−1 −∆qt−1)T

)
=

( ∑T
t=2 wt(zt −∆qt)(zt −∆qt)

T
∑T

t=2wt−1(zt −∆qt)(zt−1 −∆qt−1)T∑T
t=2wt(zt−1 −∆qt−1)(zt −∆qt)

T
∑T−1

t=1 wt(zt −∆qt)(zt −∆qt)
T

)
then

T∏
t=2

f(zt, zt−1|r, δ, ν, Q,W ) ∝ |P |(T−1)/2 exp

{
− 1

2
tr
(
SP−1

)}
.

Using the same idea,

T−1∏
t=2

f(zt|r, δ, ν, qt, wt) ∝
T−1∏
t=2

|P1|−1/2 exp
{
− wt

2

(
zt −∆qt

)T
P−1

1

(
zt −∆qt

)}
∝ |P1|T/2−1 exp

{
− 1

2
tr
(
S∗P−1

1

)}
where S∗ =

∑T−1
t=2 wt(zt −∆qt)(zt −∆qt)

T . Thus we have our likelihood in (3.1) as∏T
t=2 f(zt, zt−1|r, δ, ν, Q,W )∏T−1

t=2 f(zt|r, δ, ν, Q,W )
∝
|P |(T−1)/2 exp

{
− 1

2
tr (SP−1)

}
|P1|T/2−1 exp

{
− 1

2
tr
(
S∗P−1

1

)} .
Note that S is a function of δ and ν as it is a function of zt,i = F−1

St,i(ut,i|δi, ν), and P is
a function of the r’s.

We will be performing Metropolis Hastings on each of these parameters, with Normal
random walks for all except for the contained r’s which will have Lognormal random
walks. In the following acceptance probabilities, the proposed value is denoted with a
superscript c, as in rcij.

A Normal or Lognormal random walk move for the individual rij, the Metropolis Hastings
acceptance probability is min(1, B), where

B =
π(rcij)f(U |rcij, {r\rij}, ·)

π(rij)f(U |r, ·)

=
π(rcij)

π(rij)
×
|P (rcij)|(T−1)/2 exp

{
− 1

2
tr
(
SP (rcij)

−1
)}

|P1(rcij)|T/2−1 exp
{
− 1

2
tr
(
S∗P1(rcij)

−1
)}

×
|P1(rij)|T/2−1 exp

{
− 1

2
tr (S∗P1(rij))

−1}
|P (rij)|(T−1)/2 exp

{
− 1

2
tr (SP (rij))

−1} .
A Normal random walk move for the individual δi has Metropolis Hastings acceptance
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probability is min(1, B), where

B =
π(δci ) f(U |δci , {δ\δi}, ·)

π(δi) f(U |δ, ·)

=
π(δci )

π(δi)
×

exp
{
− 1

2
tr (S(δci )P

−1)
}

exp
{
− 1

2
tr
(
S∗(δci )P−1

1

)} × exp
{
− 1

2
tr
(
S∗(δi)P−1

1

)}
exp

{
− 1

2
tr (S(δi)P−1)

}
×
∏T

t=1 fSt,i(zt,i|δi, ν)∏T
t=1 fSt,i(z

c
t,i|δci , ν)

.

A Normal random walk move for ν has Metropolis Hastings acceptance probability is
min(1, B), where

B =
π(νc) f(U |νc, ·)
π(ν) f(U |ν, ·)

=
π(νc)

π(ν)
×

exp
{
− 1

2
tr (S(νc)P−1)

}
exp

{
− 1

2
tr
(
S∗(νc)P−1

1

)} × exp
{
− 1

2
tr
(
S∗(ν)P−1

1

)}
exp

{
− 1

2
tr (S(ν)P−1)

}
×
∏T

t=1

∏p
i=1 fSt,i(zt,i|δi, ν)∏T

t=1

∏p
i=1 fSt,i(z

c
t,i|δi, νc)

.

For the augmented variables, we have Gibbs steps. The moves for the wt are Gibbs steps
with

wt|· ∼ Ga(A,B)

where

A =
ν

2
+m+ 1, B =

1

2

{
(zt −∆qt)

TP−1
1 (zt −∆qt) + qTt qt + ν

}
.

The moves for the elements of the qt are done one at a time from the conditional
distribution of qt,i|qt\qt,i, ·, constrained so that qt,i > 0, where

qt|· ∼ Np

(
wt(I + wt∆P

−1
1 ∆)−1∆P−1

1 zt, (I + wt∆P
−1
1 ∆)−1

)
.

A.2.4 MCMC algorithm

Since the stage 1 algorithm is the same as the stage 1 for the Gaussian copula, we will
look at the stage 2 analysis where we perform inference on the copula parameters. Below
is the full algorithm for all copula parameters.

1. Initialise

• Simulate the skewness parameters δ(0)
i , i = 1, . . . , p from its prior: δi ∼

N(0, 52), indep.

• Simulate the degrees of freedom ν(0) from its prior: ν ∼ U(2, 50)

• Simulate the constrained r’s from r
+(0)
i ∼ U(0, 5) indep.
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• Simulate the unconstrained r’s from r
±(0)
i ∼ U(−5, 5) indep.

• Construct the correlation matrix P (0) using the setup in A.1.4

• Set ut,i = Fi(xt,i|αi)

2. Each parameter takes their current value in the chain. For iterations 1, . . . , N

• Set zt,i = F−1
St,i

(
ut,i
∣∣δi, ν)

• For t = 1, . . . , T , simulate wt|· ∼ Ga(A,B) where

A =
ν

2
+m+ 1, B =

1

2

{
(zt −∆qt)

TP−1
1 (zt −∆qt) + qTt qt + ν

}
.

• For t = 1, . . . , T ,

– for i = 0, . . . ,m, simulate qt,i|qt\qt,i, ·, constrained so that qt,i > 0, where

qt|· ∼ Np

(
wt(I + wt∆P

−1
1 ∆)−1∆P−1

1 zt, (I + wt∆P
−1
1 ∆)−1

)
.

• For i = 1, . . . , p

– simulate a proposal value δci ∼ N(δi, τ
2
δi

)

– calculate zct,i = F−1
St,i(ut,i|δci , ν), t = 1, . . . , T and then S(δci ) and S∗(δci ).

– calculate

logB = log π(δci )− log π(δi)

− 1

2
tr
(
S(δci )P

−1
)

+
1

2
tr
(
S∗(δci )P−1

1

)
− 1

2
tr
(
S∗(δi)P−1

1

)
+

1

2
tr
(
S(δi)P

−1
)

+
T∑
t=1

log fSt,i(zt,i|δi, ν)−
T∑
t=1

log fSt,i(z
c
t,i|δci , ν)

– accept proposal with probability min(1, B).
– If proposal is accepted then recalculate zt,i = F−1

St,i(ut,i|δi, ν), t = 1, . . . , T .

• Simulate a proposal value νc ∼ N(ν, τ 2
ν ). Reject proposal if νc 6∈ (2, 50) as

this will have zero prior density. If proposal is not rejected then

– calculate zct,i = F−1
St,i(ut,i|δi, νc), t = 1, . . . , T

– calculate

logB = log π(νc)− log π(ν)

− 1

2
tr
(
S(νc)P−1

)
− 1

2
tr
(
S∗(ν)P−1

1

)
+

1

2
tr
(
S∗(νc)P−1

1

)
+

1

2
tr
(
S(ν)P−1

)
+

T∑
t=1

p∑
i=1

log fSt,i(zt,i|δi, ν)−
T∑
t=1

p∑
i=1

log fSt,i(z
c
t,i|δi, νc)
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– accept proposal with probability min(1, B)

• For i = 1, . . . , p (constrained r’s)

– simulate a proposal value r+c
i ∼ LN(log r+

i , τ
2
ri

);
– construct P (r+c

i ) and hence P1(r+c
i ) and then, assuming uniform priors,

logB =
T − 1

2
log |P (r+c

i )| − 1

2
tr
(
SP (r+c

i )−1
)
−
(
T

2
− 1

)
log |P1(r+c

i )|

+
1

2
tr
(
S∗P1(r+c

i )−1
)

+

(
T

2
− 1

)
log |P1(r+

i )| − 1

2
tr
(
S∗P1(r+

i )−1
)

− T − 1

2
log |P (r+

i )|+ 1

2
tr
(
SP (r+

i )−1
)
.

– accept proposal with probability min(1, B)

• For i = 1, . . . , p(p− 1) (unconstrained r’s)

– simulate a proposal value r±ci ∼ N(r±i , τ
2
ri

);
– construct P (r±ci ) and hence P1(r±ci ) and then, assuming uniform priors,

logB =
T − 1

2
log |P (r±ci )| − 1

2
tr
(
SP (r±ci )−1

)
−
(
T

2
− 1

)
log |P1(r±ci )|

+
1

2
tr
(
S∗P1(r±ci )−1

)
+

(
T

2
− 1

)
log |P1(r±i )| − 1

2
tr
(
S∗P1(r±i )−1

)
− T − 1

2
log |P (r±i )|+ 1

2
tr
(
SP (r±i )−1

)
.

– accept proposal with probability min(1, B)
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