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Abstract

Dynamo theory has emerged as the most plausible explanation for the mag-
netic fields observed in astrophysical objects, such as stars, planets and galax-
ies [9]. This report applies mean-field dynamo theory to the magnetic fields
of the halos of spiral galaxies by solving the mean-field dynamo equation in
spherical geometry. The method of solution involves finding an eigenfunction
expansion over free-decay modes, the Galerkin expansion. Two models will
be discussed, a quasi-homogeneous spherical dynamo and a simple disc-halo
dynamo. Dipolar and quadrupolar solutions of both αω and α2ω dynamos
are discussed.
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1 Introduction

1.1 Magnetic Fields

In a Scientific American article, E. N. Parker states the following about
magnetic fields.

“Although only a small part of the available energy in the universe is invested
in magnetic fields, they are responsible for most of the continual violent ac-
tivity of the cosmos.” (Magnetic Fields in the Cosmos, Scientific American,
Volume 249, 1983 )

Examples of violent activity driven by magnetic fields are the Aurora Borealis
on Earth and stellar flares. Understanding these magnetic fields is important
for explaining how they drive activity in the universe [9].

(a) The Aurora Borealis.

apod.nasa.gov/apod/ap130326.html

(b) A Solar Flare.

www.scientificamerican.com

Figure 1: Examples of processes in the universe driven by magnetic fields.

Magnetic fields are present in a wide variety of astrophysical objects, such
as planets, stars and galaxies. Magnetic fields in the planets in the Solar
system, with the exception of Venus and Mars, have been detected using
magnetometers in spacecraft [9]. The magnetic fields of galaxies are de-
tected using synchrotron emission, polarisation of electromagnetic radiation,
Faraday rotation, Faraday depolarisation and the Zeeman effect [1].

The questions that then arise are how to explain the characteristics of
these fields, such as the intensity and geometry. There exist two rival hy-
potheses to explain these phenomena. The first is that magnetic fields are
primordial, trapped within astrophysical objects [9]. Whilst this hypothesis
is attractively simple and can explain the origin of magnetic fields, it does
not explain the strength, geometry or the lifetime of such fields. There also
exists no suitable mechanism to explain how such fields were generated [11].

The second hypothesis is that the astrophysical objects where magnetic
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fields are present act as dynamos [9]. Dynamo action can be used to explain
the characteristics of magnetic fields that cannot be accounted for by the
primordial fields hypothesis [11]. Hence, this approach will be followed in
the report.

1.2 Dynamos

1.2.1 A Laboratory Example

A dynamo converts the kinetic energy of an electrical conductor to elec-
tromagnetic energy. A simple dynamo can be constructed in a laboratory,
consisting of a metal disc rotating on an axle over a conducting coil. The
coil is aligned with the axle and is electrically connected to the disc and axle
via brushes [9]. A schematic for such a dynamo is in Figure 2.

If a current is passed through the coil, a magnetic field is induced, aligned
with the coil of wire. The electrons in the disc moving through the field expe-
rience a force directed along the radius of the disc, perpendicular to both the
direction of the magnetic field and the motion of the electrons. The direction
of the force can be found using the right-hand rule for vectors [9].

If the disc is rotating anti-clockwise when viewed from above and the
magnetic field is directed upwards, an electromotive force is induced. This
results in a current flowing from the axle to the edge of the disc. The current
then flows through the brushes to the coil. This amplifies the magnetic field
induced, increasing the current in the disc [9].

Figure 2: Schematic of a disc dynamo. The magnetic field is supplied by current flowing
the loop of wire. Dynamos of this type are known as homopolar dynamos [5].

http://ffden-2.phys.uaf.edu/645fall2007 web.dir/Dan S dynamo pages/
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1.2.2 Astrophysical Dynamos

Astrophysical dynamos work on a similar principle. However, it is the motion
of magnetically conducting fluid that generates the magnetic field. Electrons
can move freely about the fluid, so we shall use an argument involving mag-
netic field lines rather than electromotive forces [9].

The number of integral lines (field lines) contained in a volume repre-
sents the strength of the magnetic field in the volume. Using a point made
by Hannes Alfvén, a founder of magnetohydrodynamics, the field lines can be
regarded as “frozen” in the fluid or “attached” to volume elements. The field
moves with the fluid and is distorted by its motion. If the volume elements
to which a field line is “attached” move at different speeds perpendicular to
the field line, then the field line is stretched. This stretching of field lines
corresponds to an increase in the strength of the field [9].

In mean-field dynamo theory, two effects can drive the dynamo [5]. The α
effect is an electromotive force dependent on helicity, directed either parallel
or antiparallel to the mean magnetic field. This is the results of small-scale
turbulent motions with helicity [10]. The ω effect is caused by a shear as a
result of differential rotation.In the αω dynamo, the α effect converts toroidal
field to poloidal field, whilst the ω effect converts poloidal field to toroidal
field [5]. These effects in the Sun are illustrated in Figure 3.

The result of both effects can be to increase the strength of the field.
If these effects are strong enough to overcome dissipation, a dynamo occurs
and the strength of the magnetic field increases [8]. In α2ω dynamos, both
mechanisms operate for toroidal field generation [5].

Figure 3: Illustration of the α and ω effects for the Solar dynamo. In the α effect, the
toroidal field lines are twisted, whilst the poloidal field lines are stretched by differential
rotation. In both effects, the field lines are stretched, which corresponds to an increase in
magnetic field strength as discussed.

http://solarscience.msfc.nasa.gov/dynamo.shtml
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1.3 Spiral Galaxies

1.3.1 Galactic Discs

Galaxies are collections of stars, bound by gravity. The length scales associ-
ated with such objects are usually measured in kiloparsecs (kpc), where 1 pc
= 3.26 light-years= 3.086×1016 m. In disc galaxies, the stars are distributed
throughout a spheroidal bulge and a disc. The flatness of the disc is a result
of rapid rotation [11]. The interstellar medium (ISM) consists of gas and
dust particles [3]. Spiral galaxies are disc galaxies with arms emerging from
the central region. Often the pattern consists of two spirals, with a large
degree of symmetry with respect to the galactic centre [7].

There is a large variation amongst the spiral structures observed in these
galaxies. The most well defined spiral structure is called as grand-design spi-
ral structure, consisting of two great arms. Examples of this are the galaxies
M 51, M 81 and M 100. These grand-design structures are thought to be
generated as a result of a rotating bar within the galaxy, or a perturbation
resulting from the tidal gravitational field of a companion galaxy [3].

The other extreme of spiral structure is known as flocculent spiral struc-
ture, with short spiral arms. This structure is more commonly observed than
the grand design structure. The origin of the spiral structure is not fully un-
derstood. It is known that the stars and gas in discs have small, random
velocities. These irregularities can be amplified, which forms short spiral
arms [3].

The rotational velocity of a galaxy vc(r) is defined as vc(r) ≡ rΩ(r),
where Ω(r) is the angular velocity. In the central region of the galaxy, Ω(r)
is almost constant. This yields vc ∝ r, the distance from the galactic centre,
which is similar to the rotational velocity of a solid body [3]. In the outer re-
gions of spiral galaxies the rotation curve is flat, that is vc(r) = constant [7].
As a consequence, we can take Ω ∝ r−1 in this region. This approximation
can be assumed typically at distances r & 5 kpc from the galactic centre in
spiral galaxies [11].

Much of the ISM mass is in the form of molecules. The most abundant
is the hydrogen molecule H2 [3]. The gas in the ISM is ionised by ultraviolet
radiation (UV), X-rays and cosmic rays. In the different phases of the ISM,
the degree to which the gas is ionised ranges from 30% to 100% [11]. A
significant fraction of the interstellar space consists of plasma (T > 106 K)
in which the hydrogen and helium are fully ionised [3]. The small effective
mean free path of interstellar gas particles allows a fluid description for the
motion of the interstellar gas to be justified [11].

The ISM is involved in turbulent motions driven by supernova stars (SN).
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SN remnants consist of hot gas at high pressure that initially expand super-
sonically. Once the expansion velocity is similar to or lower than the speed
of sound in the surrounding gas, a pressure disturbance propagates at a ve-
locity greater than that of the expanding SN shell. This drives motion in the
surrounding gas and a proportion of the remnant energy is converted into the
kinetic energy of the ISM. The occurrence of supernovae at almost random
times and positions results in random forces, which drive random motions in
the ISM, leading to turbulence. Since the interstelllar gas can be described
as an electrically conducting fluid that is both rotating and turbulent, we can
describe the motion of the gas using magnetohydrodynamics (MHD) [11].

Magnetic fields have been detected in the discs of spiral galaxies, Section
1.3.3 [1]. MHD dynamo action has emerged as the most plausible explanation
for magnetic fields in spiral galaxies whose scales exceed that of interstellar
turbulence [2], this length scale is typically 0.05–0.1 kpc [11].

1.3.2 Galactic Halos

The galactic halo is one of the components of a spiral galaxy. The easily
detectable halos consist of stars and gas orbiting at high velocities about the
galactic centre [13]. The stars in the halo form an almost spherical distribu-
tion. In the Milky Way, it is observed that the stellar halo extends to at least
25 kpc from the galactic centre, whilst the stars in the disc do not extend to
very large radii [3].

Hot gas from the disc flows to the halo in a convection type flow known as
the galactic fountain. The fountain is driven by the collective energy input of
tens of supernovae in clusters are commonly called OB associations. These
clusters contain a high fraction of O and B type stars and are of 0.5–1 kpc
in size [3, 11]. The temperature of the hot gas is sufficiently high for the
gas to be fully ionised by gas particle collisions [11]. This gas contains mag-
netic fields in which the radius of the circular motion of the gas particles
in the magnetic field, the Larmor radius, acts a mean free path, and so a
fluid description can be applied to the motion of the gas [4, 11]. Hence, we
shall adopt an MHD approach to describe the motion of the gas, as discussed
previously.

Galactic halos have magnetic fields as discussed in Section 1.3.4, and ob-
servations reveal vertical field components in the halo that may be related to
dynamo action [1]. Hence, we consider dynamo action in spherical geometry,
as appropriate to modeling the magnetic fields of galactic halos.
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1.3.3 Magnetic Fields in Galactic Discs

Two different systems of units are used in electromagnetism. In Gaussian
units, magnetic field strength is measured in Gauss (G). In SI units, this
quantity is measured in Teslas (T), where 1 T = 104 G [4]. The measure-
ments quoted in this section are in Gauss.

Modeling surveys of the total synchrotron and γ-ray emission from the
Milky Way yield a total field strength near the Sun of about 6µG. This fig-
ure is in agreement with data from Voyager, in addition to data collected
via observations of Zeeman splitting in low-density gas clouds and rotation
measure data from pulsars. In the inner Galaxy the total field strength is
about 10µG. Measurements of the field strength near the Galactic Centre
yield a measurement of 100µG for the total magnetic field strength [1].

Measurements of the Voyager 2 spacecraft in the heliosheath, the region of
the heliosphere at which the Solar wind has slowed to subsonic speeds, show
that the strength of the surrounding magnetic field in the ISM is 4–5µG.
This field is oriented at an angle of about 30◦ from the Galactic plane. Voy-
ager 1 has measured a field strength in interstellar space of 5.62 ± 0.01µG
[1].

The strengths of external spiral galaxies have also been observed. Galax-
ies such as M 31 and M 33, which are radio-faint have field strengths of
approximately 6µG. Galaxies such as M 51, M 83 and NGC 6946, which
are gas-rich with high star formation rates have field strengths in the range
15–20µG [1].

Spiral fields in galactic discs are generated by either dynamo action, com-
pression or shear in the interarm regions. Large-scale patterns of Faraday
rotation measures can be identified via diffuse polarised emission of galactic
discs or in rotation measure data from polarised background sources. These
are signatures of αω dynamo action generating a regular magnetic field [1].

However, αω dynamo action cannot wholly account for the spiral pattern
of magnetic fields. For example, the spiral pattern of M 51 cannot be ex-
plained fully by a regular field in the disc. In this case, a large proportion
of the field is anisotropic turbulent and is better explained via compression
and shear of non-axisymmetric gas flows [1].

1.3.4 Magnetic Fields in Galactic Halos

Nearby edge-on galaxies are observed to have a disc-parallel field near the disc
plane. Vertical field components have been detected in the halos of NGC 253,
NGC 891, NGC 4631 and NGC 5775, using polarised radio emission. These
components form an X-shaped pattern, related to dynamo action assisted by
an outflow [1].
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The azimuthal symmetry of magnetic fields, corresponding to the field in
the disc, is known for many spiral galaxies. The vertical symmetry of the
magnetic field in the halo is more difficult to determine. Background rotation
measures in the Large Magellanic Cloud (LMC) suggest a quadrupolar field.
Observations of the vertical symmetries of NGC 891 and NGC 5775 suggest
the vertical fields of these galaxies are quadrupolar [1].

In NGC 253, a halo extending to approximately 9 kpc above the galactic
plane has been detected. The regular field detected is predominantly parallel
to the plane in the disc and in the halo. The likely cause of this is strong
differential rotation in the disc [2]. In addition, an outwards-directed helical
field has been detected above the central starburst region in the gas outflow
cone, using high-resolution rotation measure mapping. The strength of this
field is approximately 20µG and extends to at least 1 kpc in height [1]. In
NGC 4631, the radio halo is of height ' 2 kpc. The magnetic field lines are
almost perpendicular to the inner disc, which exhibits almost rigid rotation
[2].

1.4 The Mean Field Dynamo Equation

1.4.1 Derivation

In a moving, electrically conducting medium with the assumption of isotropic
conductivity, Ohm’s law has the form

J = σ(v ×B + E), (1.1)

where σ is electrical conductivity, J is the current density, v is the velocity
of the conductor, B is the magnetic field and E is the electric field in the
conductor [10]. The Maxwell equations in the MHD approximation have the
form

∇ · E =
ρc
ε
, (1.2a)

∇ ·B = 0, (1.2b)

∇× E = −∂B

∂t
, (1.2c)

∇×B = µJ, (1.2d)

where ρc is the charge density, ε is the permittivity and µ is the permeability
[10]. In MHD, the assumption is made that the fluid velocity is much less
than the speed of light. As a consequence, the current displacement term in
(1.2d) has been neglected [5]. Equations (1.1) and (1.2b-d) can be combined
into the magnetic induction equation
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∂B

∂t
= ∇× (v ×B) + η∇2B, (1.3)

where η = 1/µσ is the magnetic diffusivity, taken to be constant [10]. We
shall assume that B and v both exhibit large scale behaviour with small scale
variations. Then the B and v fields can be split into mean and fluctuating
components [5],

B = B + B
′
, v = v + v

′
. (1.4)

The Reynolds averaging rules can be applied as follows [5]

B1 + B2 = B1 + B2, v1 + v2 = v1 + v2. (1.5)

Average quantities are unchanged, hence

B = B, v = v. (1.6)

Then, averaging (1.4) yields

B′ = 0, v′ = 0. (1.7)

We also assume that averaging commutes with differentiation. Hence,

∂B

∂t
=
∂B

∂t
, ∇ ·B = ∇ ·B. (1.8)

Thus, taking the average of (1.3) yields

∂B

∂t
= ∇× (v ×B) + η∇2B. (1.9)

Now we evaluate the term v ×B. Using (1.4) and (1.7),

v ×B = v ×B + v ×B′ + v′ ×B + v′ ×B′ = v ×B + v′ ×B′ . (1.10)

Substituting (1.10) into (1.9) yields

∂B

∂t
= ∇× (v ×B) +∇× ε + η∇2B, (1.11)

where
ε = (v′ ×B′). (1.12)

This term is the mean field e.m.f. (electromotive force) due to fluctuations.
Subtracting (1.11) from (1.3) gives the equation determining the fluctuations
B

′
[10],

∂B
′

∂t
= ∇× (v ×B

′
) +∇× (v

′ ×B) +∇×G+ η∇2B
′
, (1.13)

where
G = v

′ ×B
′ − v′ ×B′ . (1.14)

Equation (1.13) is a linear equation for B
′
, with a source term ∇× (v

′ ×B),
where B

′
can be thought of as the sum of two terms; one which is independent
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of B, the other resulting from the action of the small-scale turbulent velocity
v

′
on the mean magnetic field B [10]. We shall assume that

εi = ε(0)i + aijBj + bijk
∂Bj

∂xk
. (1.15)

where aij and bijk are tensors depending on v
′

and v and ε0i is independent
of B. For simplicity, we also assume there is no mean motion, v = 0, and
v

′
corresponds to homogeneous, isotropic turbulence. Then using symmetry

arguments, ε(0) = 0. Symmetry arguments also yield the following forms for
aij and bijk [10]:

aij = α(r)δij, bijk = −β(r)εijk. (1.16)

Using (1.16) in (1.11) yields the mean field dynamo equation

∂B

∂t
= ∇× (αB) +∇× (v ×B)−∇× (β∇×B) + η∇2B. (1.17)

The term involving β acts like a diffusive term. We shall assume β is also
constant and using (1.2b), along with the following identity

∇×∇×B = ∇(∇ ·B)−∇2B,

we can write
−∇× (β∇×B) = β∇2B. (1.18)

Therefore, we can write the mean field dynamo equation as follows

∂B

∂t
= ∇× (αB) +∇× (v ×B) + ητ∇2B. (1.19)

where ητ = η + β is the turbulent magnetic diffusivity. As a consequence of
our earlier assumptions, we take ητ to be constant.

1.4.2 Dimensionless Form

For convenience, we shall now drop the bars since every term in (1.19) is an
average

∂B

∂t
= ∇× (αB) +∇× (V ×B) + ητ∇2B. (1.20)

We shall make the variables dimensionless with the following scalings. We
shall normalise length by the radius of the dynamo volume R and time by the
diffusion time ητ/R

2. Using the typical scales associated with galactic halos,
R = 10–15 kpc and ητ = (3–5)×1027cm s2, we obtain ητ/R

2 ≈ (0.5–2)×1010

years. The velocity field V is the large scale velocity due to differential
rotation, and so we shall write V as V = Ω × r, where Ω is the angular
velocity. As a consequence, V can be normalised via normalising both Ω and
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using the length scale. Ω and α are normalised by their maximum values
Ω0 and α0. Now we can introduce the following dimensionless variables and
associated scalings:

∂

∂t
=
ητ
R2

∂

∂t′
, ∇ =

1

R
∇′
, α = α0α

′
, V = Ω0RV

′
, (1.21)

where the prime denotes dimensionless variable. Substituting these into
Equation (1.20) yields

∂B
′

∂t′
=
α0R

ητ
∇× (α

′
B

′
) +

Ω0R
2

ητ
∇× (V

′ ×B
′
) + ητ∇2B

′
. (1.22)

Note that the magnetic field is made dimensionless by B = B0B
′
, where

B0 is the typical scale of the magnetic field strength. However, B0 does not
appear in the dimensionless equation, as the equation is linear in B. Since
all the variables are dimensionless, we can drop the prime notation. We shall
also introduce the following dimensionless parameters

Rα =
α0R

ητ
, Rω =

Ω0R
2

ητ
. (1.23)

Therefore, we obtain the following dimensionless mean field dynamo equation

∂B

∂t
= Rα∇× (αB) +Rω∇× (V ×B) +∇2B. (1.24)

2 Free-Decay Modes

The kinematic dynamo problem is an eigenvalue problem with eigenvalues γ
for eigenfunctions B(r). Hence, we shall assume the time dependence of the
magnetic field is of the form eγt and write (1.24) as follows

γB = Rα∇× (αB) +Rω∇× (V ×B) + ητ∇2B. (2.1)

Such an equation can be solved using an eigenfunction expansion over the
modes of free decay, denoted as Bi

(0)(r), known as the Galerkin expansion.
The free-decay modes are the solutions to (2.1) in the absence of our source
terms. This equation is obtained from (2.1) by setting Rα = Rω = 0

γB = ητ∇2B. (2.2)

For each free-decay mode, the time dependence is of the form exp(γit). Hence
we shall write (2.2) for each free decay mode as follows

∇2Bi
(0) = γiBi

(0), (2.3)

where γi is the decay rate of the i’th mode. This equation is subject to the
following boundary conditions [8],
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[Bi
(0)] = 0 on r = 1, Bi

(0) = O(r−3) as r →∞. (2.4)

The square bracket notation denotes surface quantities. The first condition
in (2.4) denotes that there is no variation of Bi

(0) across the boundary r = 1,
and so all components of Bi

(0) are continuous at this boundary [8].

2.1 The Poloidal and Toroidal Potentials

Attempting to solve (2.3) with vectors is an unpleasant exercise. Fortunately,
it is possible with the assumption of axisymmetry, ∂/∂φ = 0, to solve this
equation in terms of scalars [6, 8].

We shall rewrite B in terms of a poloidal field represented by ∇ × A,
where A is a vector potential, plus a toroidal field represented by BT as
shown below

B = ∇×A + BT . (2.5)

The form in (2.5) retains the condition that B is divergence free, ∇ ·B = 0
[6, 8]. The standard technique is to write these fields as the gradients of
scalar potentials as follows

A = −r×∇S, BT = −r×∇T, (2.6)

where r = (r, 0, 0). It can be shown that substituting (2.6) into (2.3) gives
the following equations for S and T [6]

1

r2
∂

∂r

(
r2
∂S

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂S

∂θ

)
= γS, (2.7a)

1

r2
∂

∂r

(
r2
∂T

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
= γT. (2.7b)

subject to [6]

T = 0, [S] = ∂S/∂r = 0 on r = 1, S = O(r−2) as r →∞. (2.8)

2.2 Solutions of the Potential Equations

We shall solve these equations using separation of variables. The method
shall be demonstrated for a general potential G, where G = Si or Ti. For G,
(2.7) is shown below

1

r2
∂

∂r

(
r2
∂G

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂G

∂θ

)
− γG = 0. (2.9)

Using separation of variables we obtain two ODEs; Bessel’s equation in r and
Legendre’s equation in θ

12



r2
d2R

dr2
+ 2r

dR

dr
− [γr2 + n(n+ 1)]R = 0, (2.10a)

d

dθ

(
sin θ

dΘ

dθ

)
+ n(n+ 1)Θ sin θ = 0, (2.10b)

where n(n + 1) is the separation constant. Applying the substitutions x =√
−γr and Q(x) = x1/2R(x) to (2.10a) and x = cos(θ) and y(x) = Θ(x) to

(2.10b), we obtain

x2
d2Q

dx2
+ x

dQ

dx
+
[
x2 −

(
n+ 1

2

)2]
Q = 0, (2.11a)

d

dx

[
(1− x2)dy

dx

]
+ n(n+ 1)y = 0. (2.11b)

Both these equations can be solved using standard techniques. We obtain
Bessel functions as the solutions to (2.11a) and Legendre polynomials as the
solutions to (2.11b) [6, 8]. Now we can write the non-singular solutions of
(2.7) as follows,

T =
∞∑
n=1

∑
l

Tnl(r)Pn(cos θ) exp(γnlt), (2.12a)

S = R
∞∑
n=1

∑
l

Snl(r)Pn(cos θ) exp(γnlt), (2.12b)

where

Tnl(r) =
cnl

ξnl
√
r
Jn+1/2(ξnlr), (2.13a)

Snl(r) =
cnl

ξnl
√
r
Jn+1/2(ξnlr), (2.13b)

with cnl constants and
ξnl =

√
−γnl. (2.14)

The index l is used to denote the zeros of the Bessel functions. The factor
of R in (2.12b) is to ensure the dimensions of the solutions agree with those
for S and T [6]. To satisfy the conditions in (2.8), it is necessary for Tnl and
Snl to satisfy the following conditions:

Tnl = 0, Snl = an, ∂Snl/∂r = −(n+ 1)an on r = 1. (2.15)

where an is independent of r [6]. By eliminating an from the second and
third conditions, we obtain the following boundary condition for Snl [6]

∂Snl/∂r + (n+ 1)Snl = 0. (2.16)

Using recurrence relations, and the requirement that Tnl and Snl do not
vanish simultaneously gives [6]
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Jn−1/2(ξnl)Jn+1/2(ξnl) = 0. (2.17)

From this we can obtain values for ξnl. Using γnl = −(ξnl)
2, we can obtain

the decay rates γnl [6], shown in Table 1.

Table 1: Decay rates γnl.

n = 1 n = 2 n = 3 n = 4
l = 1 −π2 −(4.493)2 −(2π)2 −(7.725)2

l = 2 −(4.493)2 −(5.763)2 −(7.725)2 −(9.095)2

l = 3 −(5.763)2 −(6.988)2 −(9.095)2 −(10.417)2

l = 4 −(6.988)2 −(8.813)2 −(10.417)2 −(11.705)2

For n odd, Jn−1/2(ξnl) = 0 for all l. Hence, Tnl = 0 for n odd. Conversely,
when n is even, Jn+1/2(ξnl) = 0 for all l. Hence, Snl = 0 for n even. Now the
solutions satisfying (2.15) can be written, with j = n+ l, as follows

T =
∞∑
j=3

∑
k even

ck(j−k)√
r
Jk+1/2(ξk(j−k)r)P(j−k)(cos θ) exp(γk(j−k)t), (2.18a)

S =
∞∑
j=2

∑
k odd

dk(j−k)√
r

Jk+1/2(ξk(j−k)r)P(j−k)(cos θ) exp(γk(j−k)t), (2.18b)

where ck(j−k) and dk(j−k) are constants. The sums are arranged to be ordered
in terms of the decay rates, |γ|.

Using (2.5), (2.6) and (2.18) we can write the free-decay modes using
these potentials. These form two sets based on their symmetries about the
mid-plane θ = π/2, called the antisymmetric and symmetric modes respec-
tively. The antisymmetric modes are derived from Snl and Tnl for n+ l even
and correspond to the modes of dipolar parity, whilst the symmetric modes
are derived from Snl and Tnl for n+ l odd and correspond to the modes of a
quadrupolar parity.

The first four antisymmetric and the first four symmetric modes are given
in Section 2.3, denoted by Bi

(0)a and Bi
(0)s to distinguish the symmetries.

These modes have been normalised to form an orthonormal set of basis func-
tions. It should be noted that the modes are either purely poloidal or toroidal.

14



2.3 The Free Decay Modes

2.3.1 The Antisymmetric Modes

The mode B1
(0)a is purely poloidal with the eigenvalue γ1

a = −π2:

B1
(0)a = C1

{
2

r
Q1(r)cosθ,−sin θ

r

d

dr
[rQ1(r)], 0

}
, (2.19a)

C1 ≈ 0.346, Q1(r) = r−1/2J3/2(k1r), k1 = π. (2.19b)

The modes B2
(0)a and B3

(0)a form a degenerate pair, with eigenvalue γ2
a =

−(5.763)2. B2
(0)a is purely poloidal, whilst B3

(0)a is purely toroidal:

B2
(0)a = C2

{
2

r
Q2(r)cosθ(5cos2θ − 1),−sin θ

r
(5cos2θ − 1)

d

dr
[rQ2(r)], 0

}
, (2.20a)

C2 ≈ 0.250, Q2(r) = r−1/2J7/2(k2r), k2 ≈ 5.763, (2.20b)

B3
(0)a = C3 {0, 0, Q3(r) sinθ cosθ} , (2.21a)

C3 ≈ 3.445, Q3(r) = r−1/2J5/2(k2r). (2.21b)

The mode B4
(0)a is purely poloidal with the eigenvalue γ4

a = −(2π)2:

B4
(0)a = C4

{
2

r
Q4(r)cosθ,−sin θ

r

d

dr
[rQ4(r)], 0

}
, (2.22a)

C4 ≈ 0.346, Q4(r) = r−1/2J3/2(k4r), k4 = 2π. (2.22b)

Plots of the antisymmetric modes are given in Figure 4, shown in the (x, z)–plane
for convenience.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

z

a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

z

b)

15



−0.6

−0.6

−0
.6

−0
.6

−0.4

−0.4

−0.4

−0.4

−0.4

−0
.4

−0.2

−0.2

−0.2

−0.2 −0.2
−

0.
2

−0.2

−0
.2

0

0

0

0

0

0

0

0

0.2

0.2

0.
2

0.2 0.2

0.2

0.2

0.2

0.4

0.
4

0.4

0.4

0.4

0.4

0.6

0.6

0.6 0.6

x

z

c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

z

d)

Figure 4: The antisymmetric free decay modes: a) B1
(0)a, b) B2

(0)a, c) B3
(0)a and d)

B4
(0)a. The poloidal modes are represented via vectors, the length of which are propor-

tional to |Bi
(0)a|. The toroidal mode is represented via contours. The red and yellow

curves denote the isolines for Bφ > 0, the green curves indicate the isolines for Bφ = 0,
whilst the blue curves denote the isolines for Bφ < 0. The isolines are drawn for values of
0, ±0.2, ±0.4 and ±0.6.

2.3.2 The Symmetric Modes

The modes B1
(0)s and B2

(0)s form a degenerate eigenfunction pair, with eigen-
value γ1

s = −(4.493)2. B1
(0)s is a purely poloidal mode, whilst B2

(0)s is a
purely toroidal mode:

B1
(0)s = A1

{
r−1P1(r)(3cos2θ − 1),−r−1sinθcosθ

d

dr
[rP1(r)], 0

}
, (2.23a)

where A1 ≈ 0.662, P1(r) = r−1/2J5/2(q1r), q1 ≈ 4.493. (2.23b)

B2
(0)s = A2 {0, 0, P2(r)sinθ} , (2.24a)

where A2 ≈ 1.330, P2(r) = r−1/2J3/2(q1r). (2.24b)

The modes B3
(0)s and B4

(0)s form a degenerate eigenfunction pair, with eigen-
value γ3

s = −(6.988)2. B3
(0)s is a purely poloidal mode, whilst B4

(0)s is a
purely toroidal mode:

B3
(0)s = A3

{
r−1P3(r)S1(θ), r

−1 d

dr
[rP3(r)]

d

dθ
S1(θ), 0

}
, (2.25a)

where A3 ≈ 0.133, P3(r) = r−1/2J9/2(q3r), q3 ≈ 6.988, S1(θ) = 35cos4θ − 30cos2θ + 3, (2.25b)

B4
(0)s = A4

{
0, 0,−P4(r)

d

dθ
S2(θ)

}
, (2.26a)

where A4 ≈ 0.763, P4(r) = r−1/2J7/2(q3r), S2(θ) = 5cos3θ − 3cosθ. (2.26b)
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Plots of the symmetric modes are given below, again shown in the (x, z)–plane
for convenience.
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Figure 5: The symmetric free decay modes: a) B1
(0)s, b) B2

(0)s, c) B3
(0)s and d) B4

(0)s.
The poloidal modes are represented via vectors, the length of which are proportional to
|Bi

(0)s|. The toroidal modes are represented via contours. For B2
(0)s, the isolines are

drawn for increments of 0.1. The dark red curves denote the isolines Bφ = 0.9, whilst the

black curves denote the isolines for Bφ = 0.1. Whereas for B4
(0)s, the blue curves indicate

the isolines for Bφ < 0, the cyan curves indicate the isolines for Bφ = 0, whilst the red
and yellow curves indicate the isolines for Bφ > 0. The isolines are drawn for the values
0, ±0.5, ±1 and 1.5.
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3 The Galerkin Expansion

The free decay modes form an orthonormal set of basis functions, and solu-
tions of the mean-field dynamo equation can be expanded over them

B = exp(Γt)
N∑
i=1

aiBi
(0)(r) (3.1)

where N is the number of free decay modes used in the expansion. Since the
free decay modes satisfy the vacuum boundary conditions, B also satisfies
these conditions.

Substituting (3.1) into (2.1) and integrating over space yields a system of
algebraic equations for ai:

aj(γj − Γ) +
N∑
i=1
i6=j

aiWji = 0, for j = 1, 2, . . . , N, (3.2)

with matrix elements Wji defined as

Wji =

∫
Bj

(0) · ŴBi
(0) d3r. (3.3)

This integration is performed over the whole space. We shall consider both
the αω and α2ω dynamos in this report. For the α2ω dynamo, the perturba-
tion operator Ŵ is defined as

ŴB = Rα∇× (αB) +Rω∇× (V×B), (3.4)

whilst for the αω dynamo, Ŵ is given by

ŴB = Rα(∇× (αB)− [∇× (αB)]φ) +Rα∇× (V×B). (3.5)

A discussion of the two dynamo mechanisms can be found in Section 4.1.
Since V = Ω× r, the rotational only has an azimuthal component. Also, if
α(r) is odd in θ and V(r) is even in θ, Ŵ preserves the division of the solu-
tions into independent sets of symmetric and antisymmetric modes also for
Rα,Rω 6= 0. We shall consider forms of α(r) and V(r) with these symmetries
in θ in this report.

The symmetric and antisymmetric solutions will be considered indepen-
dently. Each corresponding subset of symmetric and antisymmetric free
decay modes represents a complete orthonormal functional basis. For ax-
isymmetric α(r) and V(r), the modes with different azimuthal wavenumbers
evolve independently of each other. Hence for simplicity, α(r) and V(r) are
chosen to be aximsymmetric.
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Since we assume axial symmetry, Ŵ transforms a purely poloidal field
into a purely toroidal field and vice versa. Hence, the nonzero matrix ele-
ments occur when one of the fields Bi

(0) and Bj
(0) is poloidal and the other

is toroidal. Since the toroidal fields vanish outside the conducting sphere,
the integration in (3.3) is restricted to the region r ≤ 1.

The model considered must satisfy the necessary conditions for dynamo
action to occur. This means that toroidal and poloidal fields are mixed for
Rα, Rω 6= 0 and the growing field is neither purely poloidal or toroidal. Since
the modes are either purely poloidal or toroidal, we must include at least one
mode of each symmetry. However, the first three antisymmetric modes are
required for αω dynamo to result in a growing dipolar field, since B2

(0)a and
B3

(0)a form a degenerate pair. Thus, we are forced to include at least three
antisymmetric modes. We shall also include the mode B4

(0)a to improve ac-
curacy and also for comparison to the symmetric modes, since the symmetric
modes form degenerate pairs. Hence, we shall set N = 4 as the minimum
number of modes to include to obtain a growing magnetic field.

The system in (3.2) has nontrivial solutions for ai if its determinant equals
zero. This yields an N ′th-order algebraic equation for the growth rate Γ.
Since N = 4, the equation for Γ is an fourth-order equation that can easily
solved numerically.

The expansion coefficients are then found as the associated eigenvector
for the largest value of Γ, the dominant growth rate. Any N−1 coefficients ai
can be expressed using the remaining coefficient, e.g. a1, with this coefficient
fixed by the normalisation condition

∑
i

|ai|2 = 1.

4 Quasi-Homogeneous Dynamo

Since the intended application of our model is to galactic halos, we choose
the rotation to be cylindrically symmetric with a flat rotation curve at some
distance from the axis of rotation. Thus, we adopt the following form for V,

V = [0, 0, V (s)], (4.1)

where s is the cylindrical radius and

V (s) = V0

[
1− exp

(
−s
s0

)]
. (4.2)

In terms of spherical coordinates we have

V (r, θ) = V0

[
1− exp

(
−r sin θ

s0

)]
. (4.3)
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Here, s0 is the characteristic radial scale of the disc. We incorporate V0 into
Rω in order to normalise V(r) via the relation Ω0 = V0/s0. For numerical
estimates, we adopt values typical of spiral galaxies s0 = 5 kpc, R = 10
kpc and ηT = 5× 1027cm2s−1. To simplify the exploration of the parameter
space, Rα will be the sole control parameter. We shall consider Rα in the
range 0 ≤ Rα ≤ 10, a commonly used range for Rα in galaxies. The strength
of the differential rotation is fixed at Rω = 200, which corresponds to V0 =
167 kms−1. This is motivated by the fact that the rotation of galaxies can
be well determined from observations, whilst Rα is obtained from order of
magnitude estimates [11]. We shall assume a simple form for the normalised
α coefficient α(r) = cos θ.

4.1 The α2ω and αω Dynamos

We shall now briefly discuss the difference between the α2ω and αω dynamos.
Since we have taken a cylindrical rotation law, we shall use cylindrical polar
co-ordinates for the explanations in this section. It is convenient to write the
magnetic and velocity fields as sums of poloidal and toroidal parts [8]

B = BP + BT , V = VP + VT , (4.4)

where BP and BT denote the poloidal and toroidal magnetic fields, similar
to Section 2.1 but with BP = ∇ × A representing the poloidal field. VP

and VT are the poloidal and toroidal velocity fields. Since the velocity field
considered is purely azimuthal, VP = 0 and we can write

V = VT = sΩφ̂, (4.5)

where Ω is the angular velocity [8]. With

A = (0, 0, A), BT = (0, 0, B), (4.6)

(4.4) yields the following equations [8]

∂B

∂t
= s(BP · ∇)Ω +∇× (αBP ) + ητ

(
∇2 − 1

s2

)
B, (4.7)

∂A

∂t
= αB + ητ

(
∇2 − 1

s2

)
A. (4.8)

These are the equations for the α2ω dynamo The α effect acts as a source
for both poloidal and toroidal fields, via the terms involving α in (4.7) and
(4.8) [5]. The differential rotation acts as an additional source term for the
toroidal field, via s(BP · ∇)Ω in (4.7).

We can derive the αω dynamo equations are by first taking an order of
magnitude estimate for the ratio of the two source terms in (4.7)
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∣∣∣∣s(BP ·∇)Ω

∇×(αBP )

∣∣∣∣ ∼ LΩ0

α0

, (4.9)

where α0 and Ω0 are typical values of α and Ω [8]. The αω approximation
applies when the differential rotation term dominates, |α0| � |LΩ0| [8]. As
a consequence, we can ignore the ∇ × (αBP ) term in (4.7) and obtain the
following equation

∂B

∂t
= s(BP · ∇)Ω + ητ

(
∇2 − 1

s2

)
B, (4.10)

This equation along with (4.8) are the αω dynamo equations. The α effect
is the source for the poloidal field only and differential rotation is the only
source of the toroidal field [8].

For the α2ω dynamo we adopt the form for Ŵ given in (3.4), whereas the
form in (3.5) corresponds to the αω dynamo.

4.2 α2ω Dynamo

4.2.1 Antisymmetric Modes

Our analysis shall focus on the eigenvalue Γ with the largest real part, as it
corresponds to the most rapidly growing field. The dependence of the growth
rate Re Γ and associated oscillation frequency Im Γ of the four antisymmetric
modes on Rα are shown in Figure 6.
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Figure 6: The dominant growth rate Re Γ and associated oscillation frequency Im Γ
against Rα for the antisymmetric modes. The vertical dashed line denotes Rα cr, the value
at which dynamo action produces a growing magnetic field.

The growth rate initially decreases with increasing Rα, but there is a turning
point at Rα ≈ 2 at which Re Γ begins increasing, at an especially rapid rate
for Rα > 8. The growth threshold for the antisymmetric modes, correspond-
ing to Re Γ = 0 is Rα cr ≈ 9.2.
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At small values of Rα, Im Γ is zero and the magnetic field evolves mono-
tonically. As the growth rate begins to increase, the modes become oscilla-
tory, with the maximum oscillation frequency at Rα ≈ 5. Near the generation
threshold Rα ≈ Rα cr, Γ is real and the growing mode is stationary. Figure 6
suggests that the structure of the dominant mode changes at Rα ≈ 2 and at
Rα ≈ 8.

This suggestion is confirmed by the dependence of the moduli of the ex-
pansion coefficients |ai| on Rα, shown in Figure 7.
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Figure 7: The expansion coefficients |ai| against Rα: |a1| (solid, black), |a2| (dashed,
blue), |a3| (dashed, red), |a4| (dashed, green). For each value of Rα, the coefficients are
normalised as discussed.

The mode B3
(0)a dominates for small Rα values, with the mode B1

(0)a be-
coming dominant in the range 2 ≤ Rα ≤ 8, where the modes are oscillatory.
At Rα ≈ 8 where Γ is purely real, B1

(0)a becomes less dominant and the
other modes become gradually more significant as Rα increases. The mode
B3

(0)a becomes dominant just above the growth threshold Rα cr.
Figure 8 shows the poloidal structure of the solution at Rα = Rα cr. The

structure of the toroidal field at Rα = Rα cr is not shown, since it is the same
as the free decay mode B3

(0)a, as B3
(0)a is the only antisymmetric mode

toroidal mode used in the solution.
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Figure 8: Magnetic field vectors in the (x, z)–plane of the dipolar poloidal field at Rα cr ≈
9.2 for the α2ω dynamo. The vector length is proportional to |B|.

The poloidal structure of the magnetic field at Rα = Rα cr is very similar to
the mode B1

(0)a shown in Figure 4. This might be expected, since B1
(0)a is

the dominant poloidal mode at Rα = Rα cr. There are some differences in
the structure of the eigenfunction for |x| > 0.5, where it is more similar to
that of the mode B2

(0)a, showing that this mode has some significance in the
structure of the field at the onset of dynamo action.

4.2.2 Symmetric Modes

We now consider the symmetric modes. The dependence of Re Γ on Rα for
the four symmetric modes is shown in Figure 9.
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Figure 9: The dominant growth rate Re Γ against Rα for the symmetric modes. As for
Figure 6, the vertical dashed line denotes Rα cr. For all Rα, Im Γ = 0.
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In comparison to the antisymmetric modes, the growth rate increases much
more rapidly with Rα. The growth threshold for the symmetric modes is
Rα cr ≈ 0.14, significantly lower than for the antisymmetric modes. Hence
the preferred symmetry for the α2ω dynamo is quadrupolar. This contrasts
with other spherical systems such as planets and stars, where the magnetic
fields are usually dipolar [11]. The likely cause of this is the cylindrical sym-
metry of the rotational velocity.

The oscillation frequency is zero for all Rα and so the growing symmetric
mode is stationary. The dependence of the moduli of the expansion coeffi-
cients |ai| on Rα is shown in Figure 10.
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Figure 10: The expansion coefficients |ai| against Rα: |a1| (solid, black), |a2| (dashed,
blue), |a3| (dashed, red), |a4| (dashed, green). For each value of Rα, the coefficients are
normalised as discussed.

We see that, except for very small Rα where B2
(0)s is dominant, B4

(0)s is
the dominant mode. B3

(0)s increases in significance with increasing Rα cr.
Throughout the majority of the range for Rα, the modes B1

(0)s and B2
(0)s

are largely insignificant, with B1
(0)s the dominant mode of this degenerate

pair for Rα > 2.
Figures 11 and 12 show the poloidal and toroidal structures of the solution

at Rα = Rα cr.
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Figure 11: Magnetic field vectors in the (x, z)–plane of the quadrupolar poloidal field at
Rα cr ≈ 0.14 for the α2ω dynamo. As for Figure 8, vector length is proportional to |B|.

The poloidal structure of the magnetic field at Rα = Rα cr is very similar
to the mode B3

(0)s shown in Figure 5, the dominant poloidal mode at the
growth threshold.
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Figure 12: Contour representation in the (x, z)–plane of the strength of the quadrupolar
toroidal field at Rα cr ≈ 0.14 for the α2ω dynamo. The blue curves indicate the isolines
for Bφ < 0, the cyan curves indicate the isolines for Bφ = 0 whilst the red and yellow
curves indicate the isolines for Bφ > 0. The isolines are drawn with increments of 0.5, for
the values 0, ±0.5, ±1 and 1.5.

The toroidal structure is very similar to the dominant toroidal mode at the
growth threshold, B4

(0)s shown in Figure 5, in a manner similar to that of
the corresponding poloidal structure.
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4.3 αω Dynamo

4.3.1 Antisymmetric Modes

We shall now consider the dipolar solution for the αω dynamo and compare
this to the corresponding solution for the α2ω dynamo. The dependence of
Re Γ and Im Γ on Rα is shown in Figure 13.
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Figure 13: The dominant growth rate Re Γ and associated oscillation frequency Im Γ
against Rα for the antisymmetric modes for the αω dynamo. Re Γ < 0 for the given range
of Rα and so there is no realistic value for Rα cr.

Similar to Figure 6, the dominant growth rate initially decreases with Rα,
with a turning point at Rα ≈ 2 at which Re Γ increases, but at a lower rate
than for the α2ω dynamo solution. In contrast to Figure 6, Re Γ < 0 for the
range of Rα considered. Hence, an αω dynamo will not produce a growing
dipolar field for this model.

As for Figure 6, Im Γ = 0 for low values of Rα, with the modes becoming
oscillatory as Re Γ increases. However, Im Γ increases continuously as Re Γ
increases, in contrast to the α2ω dynamo solution.

The large differences between the dipolar solutions solutions for the αω
and α2ω dynamos suggest that, for the antisymmetric modes, the ∇×(αBP )
term is significant in (4.7). Hence the αω approximation in this case would
be questionable.

4.3.2 Symmetric Modes

We shall now compare the quadrupolar solutions for the α2ω and αω dy-
namos. The dependence of Re Γ on Rα for the four symmetric modes is
shown in Figure 14.
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Figure 14: The dominant growth rate Re Γ against Rα for the symmetric modes for the
αω dynamo. As for Figures 6 and 9, the vertical dashed line denotes Rα cr. As for the
corresponding α2ω solution, Im Γ = 0 for all Rα.

This figure is remarkably similar to Figure 9. The growth rate increases
rapidly with Rα, although at a lower rate than in Figure 9. Similar to
the α2ω dynamo solution, the growth threshold for the symmetric modes i
Rα cr ≈ 0.14. From Figures 13 and 14, we conclude that αω dynamo action
for this model results only in a growing quadrupolar field. As for the α2ω dy-
namo solution, the oscillation frequency is zero for all Rα and so the growing
symmetric mode is stationary.
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Figure 15: The normalised expansion coefficients |ai| against Rα for the symmetric modes.
The lines denote the same coefficients as in Figure 10.
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Figure 15 shows remarkable similarities between the dependence of the |ai|
on Rα for the solutions for both dynamos. Again B4

(0)s is the dominant
mode, except for very small Rα, with B3

(0)s increasing in significance with
Rα cr. The other two modes are again largely insignificant.

We now examine the show the poloidal and toroidal structures of the so-
lution at Rα = Rα cr. From the earlier results of our analysis, the expectation
is that the structures will be very similar to Figures 11 and 12.
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Figure 16: Magnetic field vectors in the (x, z)–plane of the quadrupolar poloidal field at
Rα cr ≈ 0.14 for the αω dynamo. As for Figures 8 and 11, the vector length is proportional
to |B|.

As shown in Figure 16, the poloidal magnetic field structure at Rα = Rα cr is
very similar to B3

(0)s, the same structure as in Figure 11.
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Figure 17: Contour representation in the (x, z)–plane of the strength of the quadrupolar
toroidal field at Rα cr ≈ 0.14 for the αω dynamo. The curves indicate the same isolines as
in Figure 12.
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Figure 17 shows that the toroidal magnetic field structure at Rα = Rα cr is
very similar to B4

(0)s. As for Figure 16, this is the same structure as shown
in the corresponding figure in Section 4.2.2, Figure 12.

The similarities between the quadrupolar solutions for both dynamos sug-
gest that, for the symmetric modes, the removal of the α effect as a possible
source term for the toroidal field makes little difference. Hence, the∇×(αBP )
term can be ignored in (4.7) and so the αω approximation may be valid for
this model.

5 Dynamo in an Embedded Disc

We shall now consider a more complicated model, where a flat disc is embed-
ded into a spherical halo. For this purpose, we consider an α effect mostly
confined to the disc of the form: α = sin2 θ cos θ. A comparison of the two
forms of α is shown in Figure 18.
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Figure 18: The two forms of α: cos θ (blue, dashed) and sin2 θ cos θ (black, solid). The
dashed red line θ = π/2 denotes the mid-plane.

For the quasi-homogeneous spherical dynamo model, α is concentrated near
the poles and is close to zero near θ = π/2. Whereas for the disc-halo model,
α is maximum close to π/2 and is close to zero near the poles, which more
closely resembles a disc.

For the disc-halo model, we shall perform the same analysis that was
conducted in Section 4. We shall take the same parameters values s0 = 0.5
and Rω = 200. The sole parameter will again be 0 ≤ Rα ≤ 10. We will use
the same velocity field as before and consider the same sets of modes.
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5.1 α2ω Dynamo

5.1.1 Antisymmetric Modes

Our analysis again focuses on the most rapidly growing field and we shall
compare the following results to those in Section 4.2.1. The dependence
of Re Γ and the associated oscillation frequency Im Γ on Rα for the four
antisymmetric modes is shown in Figure 19.
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Figure 19: The dominant growth rate Re Γ and associated oscillation frequency Im Γ
against Rα for the antisymmetric modes. As for Figure 13, the value of Rα cr occurs
outside the given range of Rα.

As for Figure 6, we see that whilst there is an initial decrease in the growth
rate with Rα , but the turning point is at Rα ≈ 4. In addition, the rate of
increase is much less than in Figure 6 and Re Γ < 0 for all Rα. Hence we
conclude that for this model, α2ω dynamo action does not result in a growing
dipolar field.

In the range of Rα for which the growth rate decreases, Im Γ = 0 and
the magnetic field evolves. As Re Γ increases, the modes become oscillatory,
and Im Γ increases with Rα. We are unable to fully compare the behaviour
of Im Γ shown in this figure to Figure 6, since we have no data about the
dependence of Im Γ on Rα for Rα cr.

This result is quite surprising considering that the corresponding case for
the simple halo model did result in a growing magnetic field, albeit for large
values of Rα. However, an possible explanation is that the form of α for this
model is restricted, relative to α = cos θ, since the maximum of sin2 θ cos θ
is approximately 0.4 compared to 1 for cos θ. Thus, we may expect that a
larger value of Rα is required for a growing magnetic field.
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5.1.2 Symmetric Modes

We now compare the quadrupolar solution for the α2ω dynamo in the disc-
halo model with those in Section 4.2.2. The dependence of the dominant
growth rate Re Γ on Rα for the symmetric modes is shown below.
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Figure 20: The dominant growth rate Re Γ against Rα for the symmetric modes. As in
the previous section, the vertical dashed line denotes Rα cr. As in Section 4.2.1, Im Γ = 0
for all Rα.

As shown in Figure 20, the growth rate increases rapidly with Rα, similar to
Figure 9. However, the rate of increase is lower, particularly for small Rα.
The growth threshold for the symmetric modes is Rα cr ≈ 0.45, significantly
higher than for the α = cos θ model. Hence, we conclude that α2ω action
does result in a growing quadrupolar field, albeit at larger values of Rα, and
so the parity of the growing magnetic field is quadrupolar. As discussed in
Section 5.1.1, the higher value of Rα cr might be expected.

As for the quasi-homogeneous model, Im Γ = 0 for all Rα and so the
growing quadrupolar mode is stationary.

To determine any differences between the quadrupolar α2ω dynamo so-
lutions for both models, we examine the dependence of the moduli of the
expansion coefficients |ai| on Rα, shown in Figure 21. This figure is very
similar to Figure 10, except that B2

(0)s is the dominant mode of the largely
insignificant pair. This is unlikely to affect the structure of the solution at
at Rα cr, since B4

(0)s is much more prominent at the onset of magnetic field
growth.

31



0 2 4 6 8 10
0

0.5

1

1.5

Rα

|a
i|

 

 
|a

1
|

|a
2
|

|a
3
|

|a
4
|

Figure 21: The normalised expansion coefficients |ai| against Rα for the symmetric modes.
The lines denote the same coefficients as in Figures 10 and 15.

We now analyse the structure of the poloidal and toroidal fields at Rα = Rαcr,
with the expectation that the results will be very similar to those in Figures
11 and 12.
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Figure 22: Vector representation in the (x, z)–plane of the quadrupolar poloidal field at
Rα cr ≈ 0.45. As for the previous poloidal structure plots, the vector length is proportional
to |B|.

As shown in Figure 22, the poloidal magnetic field structure at Rα = Rα cr is
very similar to B3

(0)s, the dominant poloidal mode at the growth threshold.
Likewise, Figure 23 shows that the structure of the toroidal magnetic field
structure at Rα = Rα cr is very similar to the dominant toroidal mode at the
growth threshold, B4

(0)s. These structures are as expected from the results
shown in Figure 21.
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Figure 23: Contour representation in the (x, z)–plane of the strength of the quadrupolar
toroidal field at Rα cr = 0.45 for the α2ω dynamo. The curves indicate the same isolines
as in Figures 12 and 17.

Therefore, for the disc-halo model, we see that α2ω dynamo action results
in only a growing quadrupolar field at a higher growth threshold. This field
has the same structure as for the quasi-homogeneous model.

5.2 αω Dynamo

5.2.1 Antisymmetric Modes

We now consider the dipolar solution for the αω and compare the results to
those in Section 4.3.1. The dependence of both the dominant growth rate
Re Γ and associated oscillation frequency Im Γ are shown in Figure 24
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Figure 24: The dominant growth rate Re Γ and associated oscillation frequency Im Γ
against Rα for the antisymmetric modes for the αω dynamo. As for Figures 13 and 19,
the value of Rα cr occurs outside the given range of Rα.
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These graphs have similarities to those in Figure 13. The growth rate again
initially decreases with Rα, but the turning point at Rα ≈ 4 at which Re Γ
increases, which is close to the behaviour show in Figure 19. As for Figures
13 and 19, Re Γ < 0 in the considered range of Rα. Thus, for the disc-halo
model, αω dynamo action does not result in a growing dipolar field, as for
the α2ω dynamo. The modes become oscillatory as Re Γ increases, with the
oscillation frequency increasing with Rα, similar to Figures 13 and 19.

The behaviour of both dipolar solutions is very similar for the disc-halo
model. However commenting on the validity of the αω approximation may
not be appropriate, as the region of Rα used does not correspond to any
interesting behaviour, such as magnetic field growth, for either dynamo.

5.2.2 Symmetric Modes

Finally, we consider the quadrupolar αω dynamo solution, with a view to
comparing the results to those in Section 4.3.2. In addition, we shall examine
if the disc-halo model produces any appreciable differences between the two
dynamo solutions. We examine the dependence of the dominant growth rate
Re Γ for the four symmetric modes on Rα, shown below.
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Figure 25: The dominant growth rate Re Γ against Rα for the symmetric modes. As for
the previous figures, the vertical dashed line denotes Rα cr. Im Γ = 0 for all Rα.

As for Figure 14 in comparison to Figure 9, the similarities between Figures
25 and 20 are significant. Re Γ increases rapidly with Rα, although at a lower
rate than for the previous figures. As for Figure 20, the growth threshold is
Rα ≈ 0.45. The growing mode is again stationary, as Im Γ = 0 throughout
the range considered for Rα.
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To determine any discrepancies between the two dynamo solutions, we ex-
amine the dependence of the moduli of the expansion coefficients |ai| on Rα,
shown in Figure 26. The results for the coefficients for the two dynamo so-
lutions are almost identical, with a small exception in that the significance
of the the modes B1

(0)s and B2
(0)s in this figure is closer to those shown in

the corresponding figures in Section 4.
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Figure 26: The normalised expansion coefficients |ai| against Rα for the symmetric modes.
The lines denote the same coefficients as previously discussed.

We finish our analysis by examining the structures of the poloidal and toroidal
fields at Rα = Rαcr, shown below. From Figure 26, we except the structures
to be similar to those shown in Figures 22 and 23.
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Figure 27: Vector representation in the (x, z)–plane of the quadrupolar poloidal field at
Rα cr ≈ 0.45. As for the previous quiver plots, the vector length is proportional to |B|.
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As shown in Figures 27 and 28, we see the same structures for the poloidal
and toroidal fields as in Figures 22 and 23, with the poloidal and toroidal
fields very similar to B3

(0)s and B4
(0)s respectively. This is also the same

structure as shown in the corresponding figures for the quasi-homogeneous
model.
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Figure 28: Contour representation in the (x, z)–plane of the quadrupolar toroidal field at
Rα cr ≈ 0.45 for the α2ω dynamo. The curves indicate the same isolines as in Figures 12,
17 and 23.

Thus, because of the similarities between the two dynamo solutions for the
symmetric modes, the consequences of removing the α effect as a source
term for the toroidal field appears to be small. Hence, as for the quasi-
homogeneous model, we may ignore the ∇× (αBP ) term in (4.7), and so the
αω approximation appears to be valid.

Therefore, we can conclude that α2ω and αω dynamos in the disc-halo
model results only in a growing quadrupolar field, with a higher growth
threshold than for the quasi-homogeneous model. The structure of the grow-
ing field is similar to that for the quasi-homogeneous model.

6 Conclusion

We have discussed dynamo action for two models; a galactic halo and a more
complicated disc-halo system. For each model, we have discussed both the
αω and α2ω dynamos for modes of both dipolar and quadrupolar parity.

In both models, we have found that the preferred symmetry of the mag-
netic field in the halo is quadrupolar, the same as for galactic discs [11]. With
the exception of the α2ω dynamo solutions for the simple halo model, self-
excitation occurs only for the quadrupolar field. For this case, a comparison
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Rαcr shows that for the symmetric modes, Rαcr is approximately a factor of
50 smaller than the corresponding value for the antisymmetric modes. Since
a lower value of Rαcr indicates the preferred symmetry, this again confirms
that quadrupolar fields dominate. The apparent cause for this preference is
the cylindrical geometry of the rotational velocity, akin to the rotation of
galaxies.

The embedding of a disc into the halo results in a greater dominance
for the quadrupolar mode, although the structures of such fields are largely
unaffected. This feature of the solution, which needs additional confirmation
with further study, will have significant implications for the symmetries of
magnetic fields in the disc-halo systems of spiral galaxies.

In the cases where we found magnetic field growth, the growing modes are
steady, whilst decaying antisymmetric modes, for the most part, are oscilla-
tory. For the symmetric modes, the similarity of the two dynamo solutions
for both models indicate that for the symmetric modes, the ω effect is dom-
inant. By contrast, we can infer from the results in Sections 4.2.1 and 4.3.1
that the α effect is more prominent for the antisymmetric modes.

Extending the range of Rα beyond that considered in the report for the
antisymmetric αω dynamo solution for the simple halo model, yielded a criti-
cal dynamo number of Dcr ∼ 5.5×103, where D = RαRω for the αω dynamo.
A dynamo model for T Tauri stars using similar forms of α and V yields a
critical dynamo number Dcr ∼ 5 × 103 [12], in some with agreement our
result.

6.1 Further Study

The model with an embedded disc is a step towards modeling a disc-halo
system. However, it is still rather idealised and much more work is required
to obtain a realistic model for the disc-halo system of a spiral galaxy. An
important step is to introduce variable diffusivity η(r, θ), to account for dif-
ferent values of η in the disc and halo. This would require a modification
to the given system of equations to allow for turbulent dimagnetism. In ad-
dition, the equations would have to account for integrals involving ∇η and
those integrals that will no longer vanish as a result of a non-constant η. An-
other important modification will be to include a more complicated form for
α, including a thinner disc and dependence on the cylindrical radius. These
changes will require an increase in the number of free decay modes used in
the expansion.

It may also be possible to apply the method discussed to a weakly non-
linear system which incorporates quenching of both α and η, however this is
likely to require changes to deeper aspects of the approach.
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