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Abstract

In most groups of arthropods the number of segments for each species is fixed. Geophilo-
morph centipedes have been found to be an exception to this rule and present intraspecific
variation in segment number, which is determined during embryonic development. It is
difficult to say exactly what determines the number of segments developed although stud-
ies can be conducted to find factors that may have an influence. Bayesian techniques can
be applied to draw meaningful conclusions from samples of data. Ordinal logistic regres-
sion models for segment numbers are used. There is strong evidence to suggest a latitude
effect and a sex effect. Also, there is evidence to support a genetic effect and that there
may be an environmental effect based on the conditions during embryonic development.
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Chapter 1

Introduction

The development of segment number variation in the arthropod species Strigamia mar-
itima is something that has been of interest. Kettle and Arthur (2000) and Vedel et al.
(2009) have conducted studies in which samples of centipedes have been taken to observe
how different factors have an effect on their development. The studies have analysed the
data using only frequentist methods. In this project, we wish to apply Bayesian analysis
to see if we can improve on the current findings and extract further conclusions.

In our Bayesian analysis, we use Markov Chain Monte Carlo (MCMC) methods and
utilise the computer software package rjags. Guidance and advice on how to use rjags
can be found in Plummer (2014).

1.1 Content of the project

In Chapter 2 we introduce the ideas involved in Bayesian analysis and the type of modeling
we will be using. Chapter 3 gives an insight into the arthropod species S. maritima and
begins to introduce the experiments done by Kettle and Arthur (2000) that explore the
effects of latitude on the segment number variation. We then create our model and begin
to apply the Bayesian methods and analysis to the data in Chapter 4. To improve our
analysis, in Chapter 5 we adapt our model to include a variance component to allow for
a random effect at each latitude and then add a further variance component to allow
for a random cluster effect in Chapter 6. Finally, in Chapter 7 we look at the studies
conducted by Vedel et al. (2009) to observe a potential genetic effect occurring in the
development in segment numbers in centipedes.



Chapter 2

Bayesian Inference and Markov
Chain Monte Carlo Methods

2.1 Introduction to Bayesian inference

In Bayesian inference, uncertainty about unknown quantities is represented by a proba-
bility distribution. When data are observed the prior distribution is changed to give the
posterior distribution using Bayes’ theorem which shows Posterior o< Prior x Likelihood.

Many of the calculations involved in deriving important properties, such as the pos-
terior means, variances, predictive distributions and marginal density functions, all use
suitable integration methods. For many complex models, these integrals can prove to be
difficult to evaluate, resulting in a need for other methods, namely stochastic simulation.
We use Markov Chain Monte Carlo (MCMC) methods to perform our inference.

2.2 Markov Chain Monte Carlo

A Markov chain is a stochastic system in which a system moves from one state to another.
It has the property that the next state we will be in depends only on the current state
we are in and not on any previous state. Markov Chain Monte Carlo (MCMC) methods
are a collection of algorithms that work by repeatedly drawing sample values of unknown
quantities from a complex model in order to produce an approximation to the posterior
distribution. The repeated successive simulations form a Markov chain whose stationary
distribution is the desired distribution. Due to the construction of these simulations,
successive observations are correlated. Brooks (1998) shows how to implement techniques
used for MCMC.

Smith and Gelfand (1992) note that, using MCMC methods to take large samples
from a density, we can approximately recreate the density using techniques such as kernel
density estimates. As a result there is essentially a duality between the sample produced
and the density from which it came. This allows scope for experimenting with prior
specification in order to influence posterior outcomes.

2.3 The Gibbs sampler

The Gibbs sampler is a method that allows us to simulate samples from a normalized
joint density function. These samples may be marginalised to obtain marginal distribu-



tions related to the joint density. Gelfand (2000) demonstrates the motivation for using
Gibbs sampling methods for inference within a Bayesian framework, to remove the earlier
integration difficulties. Specifically, the Gibbs sampler allows us to simulate random vari-
ables from a distribution indirectly, removing the need to calculate the density. It proves
to be useful when it is difficult to write down the joint density function or integrate over
it.

Gelfand and Smith (1990) describe the processes involved. For the set of variables
01,0, ..., 0, the outline of the algorithm is as follows

Step 1: Initialise the chain. Set arbitrary set of starting values to be 9%0)950), e 0,20).

Set counter j =1

Step 2: Draw:
: - -
0?‘; N [QIW%J‘) )Zf"be’(“j ()] 1
92] N[92|91] 793J "'aek] ]

6 ~ [0l6y .. 6]
Step 3: Move counter j to j + 1 and return to step 2

Once we arrive at j = ¢ we will have the values (6§i)9£i), . 8,(:)). For large i, 1 — oo,
6765709 L (6y, 05, ..., 0x)

A more in depth explanation of the Gibbs sampler can be seen in Smith and Roberts
(1993) and Casella and George (1992).

2.4 Data augmentation

Sometimes the models can have complicated likelihood functions which could lead to dif-
ficult calculations if handled directly. It is sometimes possible to introduce extra variables
knows as auxiliary variables. These variables are not observed but, if they were, would
make the calculations simpler. The variables are then treated as missing data and this is
what is known as data augmentation. Tanner and Wong (1987) give examples of this in
practice.

2.5 Convergence

A big difficulty that can arise using the Gibbs sampler and other MCMC methods is
the ability to assess the convergence. We have seen the outcome of the Gibbs sampler
is (999&), ey (9,2 ) . As i — oo, the distribution of this will tend to our posterior distri-
bution of unknowns. In reality, it is not necessary to go to co as the required posterior
distribution will be reached after a sufficiently large amount of iterations. The time taken
to converge is known as the burn-in period.

In certain cases, convergence does not always occur. MCMCs have consecutive sam-
ples that are not independent, so we may find that the chain may spend some time in
one region of the posterior. It is therefore important to analyse the MCMC sufficiently
to ensure convergence has occurred and to find the size of the burn-in period. Once this
is known, the samples taken in the burn-in period can be discarded and we can analyse
our simulated posterior distributions.



To check convergence we can use multiple chains with different initial values and
observe the trace plots. A chain that has converged will produce a trace plot with all
chains moving within the same region of the parameter space with similar variation.
Zellner and Min (1995) explain the properties and show practical uses of Gibbs Sampler
convergence criteria.

2.6 The rjags package

In this project we use rjags, a package in R (R Development Core Team, 2004), that
provides an interface from R to the JAGS library for Bayesian data analysis. JAGS, Just
Another Gibbs Sampler, is a program that allows us to analyse Bayesian models using
MCMC. JAGS was designed with three key features in mind: to have an engine for the
BUGS language; to allow users to write their own functions, distributions and samples;
and to allow experimentation with ideas in Bayesian modeling. Advice on how to use
BUGS, Bayesian Inference Using Gibbs sampling, is given by Gilks et al. (1994).
Plummer (2012) provides the user manual with guidance on how to use the JAGS
software and Plummer (2014) gives further details and advice on using the rjags package.

2.7 Regression models

2.7.1 Linear regression

Linear regression analysis allows us to test whether variables are linearly related and, if
so, how strongly. The relationship can be described by the equation ¥ = a 4+ X, in
which Y is the variable we are predicting using the variable X. The slope parameter
represents the change in Y that is associated with one unit change in the variable X and
the intercept parameter « predicts the value of Y when X = 0.

In cases with several predictor variables we have multiple regression. Say we have k
independent variables, our (1, (s, ..., B are our partial slope coefficients that represent the
change in Y associated with one unit change in the corresponding variable X, X, ..., Xj.
For multiple individuals, say j = 1, ...J, we can now describe our model by the equation

where ¢; is the the error associated with individual j. In a normal linear model we
make the following assumptions about the error term

e ¢; has a normal distribution
e ¢; has variance o2

e ¢; is independent of ¢; for i # j

Menard (2002) describes in further detail how to examine and analyse regression
models and some of their practical applications.



2.7.2 Logistic regression

In generalised linear models, we relax the first two of our assumptions about ¢; to allow for
a broader scope of models. For a normal linear model we say that u; = 2?:1 x;;B5. We
introduce a quantity called the linear predictor: n; = Z?Zl z; ;3. We can now introduce
a variety of link functions, g, where n; = g(u;)

Considering a regression model where the error distribution is binomial, we can in-
troduce what is called a logistic link function. Note, other link functions can be used.
In this case the response variable is binary and we will obtain values y; = 1 or y; = 0.
If we think of the mean value of y; to be p; then clearly a linear model p; = > f;; ;
would be inappropriate as large values of ) f;z; ; would lead to values greater than 1,
and conversely small values of > 8;x; ; would lead to values smaller than 0. In this case,
we need to transform our (0, 1) scale to a (—oo, 00) scale. This is achieved using logits,
denoted by

ni = logit(p;)

o < Di )
n; = log
I —p;i

Here, if p; — 1 then 7; — oo and if p; — 0 then 7, - —oc.
The inverse transformation is

__exp(m)
1 + exp(n;)

)

2.7.3 Ordinal logistic regression

Sometimes in regression, we are able to measure the response variable on an ordinal scale.
There are several different approaches to using ordinal models; cumulative, continuation
and local. We will consider the cumulative approach, in which we compare the probability
of being at or below a certain point to the probability of being beyond that point. This
is used when the dependent variable represents an underlying continuous measure. The
cumulative approach corresponds to the proportional odds model explained by McCullagh
(1980).

We approach this method by splitting the categories, say M, of the dependent variable
into M —1 logit equations. The outcome will be M —1 binary logit equations based on the
comparisons 1 vs. 2— M, 1—2vs. 3—M,...1— (M —1) vs. M. From this we obtain the
cumulative probability, the probability of being less than or equal to a category, that we
require. Further explanation of the cumulative approach and the other types of ordinal
logistic regression models are found in Fullerton (2009).



Chapter 3

The Data

3.1 Strigamia maritima

The Geophilomorph order of centipedes have shown to be an exception within the Arthro-
pod phylum. In general, most groups of arthropods have a fixed number of segments
for each species. Within the Geophilomorph order there is intraspecific variation in
the segment numbers. The segment number of a centipede, of this order, is indepen-
dent of age and is determined during embryonic development. Within this study, we
are considering the number of segments of a centipede to be the number of trunk seg-
ments. A trunk segment is also know as a leg bearing segment which, from here on,
we count the number of these as the number of segments. It is important to note here
that the segment numbers of the Strigamia Maritima, shown in Figure 3.1, are always odd.

Kettle and Arthur (2000) collected
data on the S.maritima species of Geophilo-
morph centipedes due to its advantageous
properties. It is found in high local densi-
ties, meaning that large samples are avail-
able to provide sufficient data for analysis.
Also S.maritima have clear sexual dimor-
phism in characters other than segment num-
ber. This species is restricted to coastal
habitats, which simplifies the pattern in geo-
graphical variation enabling easier choice of
sample sites. Finally, there have been previ-
ous studies by Horneland and Meidell (1986)
on the presence of segment number variation Figure 3.1: S. maritima
in this species.

3.2 Data collection

The data used in my study is that of Kettle and Arthur (2000). The data were collected
from ten sites along the east coast of Great Britain within a 700km span, varying from a
latitude of 52.017°N to 58.642°N.These Sites can be seen in Figure 3.2. When choosing
sites Kettle and Arthur ensured that there were approximately equal intersite distances
and that they each had a similar degree of exposure. This avoided introducing any
confounding variables. Another three further samples were taken close to the the samples



already collected at Holy Island and Whitburn, which allows us to investigate any small-
scale local variation that may have a significant effect.

Each sample con-
sisted of 39 to 254 cen-
tipedes which were taken
to a laboratory to deter-
mine the sex and count
the number of segments.
Age was not a factor that
needed to be considered
due to the development on
the S.maritima being ‘epi-
morphic’. The data col-
lected are recorded in Ta-
ble 3.1 and the correspond-
ing site locations can be
seen in Table 3.2.

Dunnottar Castle

North Berwick
-- Holy Island

Dunstanburgh Castle
Whitburn Bay

Scarborough

-- Cley Eye

-- Shingle Street

Figure 3.2: The locations of the ten main sampling sites

Latitude Male segment number Female segment number
Site | (°N) 45 | 47 | 49 | Mean | Total || 47 | 49 | 51 | 53 [ Mean | Total
1 58.642 14| 78| 0| 46.70 92 | 13|89 | 7| 0] 48.89 109
2 57.983 10| 62| 0| 46.72 72 7161 4] 0| 48.92 72
3 56.933 2| 43 | 14| 4741 59 | 013518 | 0] 49.68 53
4 56.05 0| 142 | 50 | 47.52 192 039 |23| 0| 49.74 62
ba | H5.685 6| 50| 7| 47.03 63| 135 6| 0| 49.24 42
5b | 55.673 2| 62|10 | 47.22 740 1128 3] 0| 49.13 32
5¢ | 55.67 6| 57|12 | 47.16 D 2168 9] 0| 49.18 79
6 55.49 0 21| 6] 47.44 27 1|27 17| 0| 49.71 45
Ta | 54.947 0| 20|10 | 47.67 30 0]29]20| 1] 49.88 50
7b | 54.94 1] 28|17 | 47.70 46| 011924 | 0] 50.12 43
8 54.3 0 4113 | 48.53 171 0 4]123| 2| 50.86 29
9 52.95 0 6 |13 | 48.37 191 0 5|17 | 0] 50.55 22
10 | 52.017 0 5110 | 48.33 51 0 618 | 0] 50.50 24

Table 3.1: Segment numbers collected from male and female centipedes

3.3 The data

Before carrying out any Bayesian analysis on the data, we can make some observations
on the data, seen in figure 3.3. The males and females are plotted separately in order to
observe the sex effects on the segment number and we have fitted a line through the data
points. It is clear to see that at each latitude, the mean segment number of the female
centipedes is larger than that of the males. The same pattern is evident in both sexes
with the mean segment number decreasing as the latitude increases.

7



’ Site ‘ Location

1 Gill’s Bay

2 Broch (near Brora)

3 Dunnottar Castle

4 North Berwick

ba | Holy Island - Emanuel Lead
5b | Holy Island - The Basin
5¢ | Holy Island - Scar Jockey
6 Dunstable Castle

7a | Whitburn Bay Site 1

7b | Whitburn Bay Site 2

8 Scarborough

9 Cley Eye

10 | Shingle Street

Table 3.2: The locations of the sites

51
I

X Females
X Males

Mean segment number

©
<

52 53 54 55 56 57 58
Latitude

Figure 3.3: Mean segment numbers of males and females at each latitude

At this point, it is important to notice that there are a few samples collected that
appear to be slightly further away than would be desired from the line of the data. This is
the cluster of three points which were all collected on Holy Island. These do not follow the
pattern we wish to see, suggesting there may be some other geographical factor causing
the centipedes at this location to evolve differently to those on the mainland. Another
outlying point to notice is the one occurring from data collected at Scarborough. Again,
there may be a factor that we are not aware of interfering with the results.

Additional samples of the S. maritima were taken later on and observed under labo-
ratory controlled environments to demonstrate the effects of other variables such as the
temperature the centipedes are exposed to during embryonic development (Vedel et al.,
2010) and a heritable component (Vedel et al., 2009)



Chapter 4

Data Analysis

4.1 Method of analysis

When analysing the data, we must consider the three different aspects involved. First of
all, we must define a model to fit the data. Secondly, we must consider the inferential
paradigm. We are considering Bayesian analysis of the data so we must elicit prior infor-
mation for our model parameters. Finally, we need to use numerical and computational
methods to calculate the posterior distributions of interest using rjags.

4.1.1 The model

The model that we fit to the data has several aspects. Firstly, we define our response
variable y; 5, for a centipede at site ¢ with sex s, to have a multinomial distribution with
5 categories. The distribution has a total number of n; ; trials with success probabilities
Dis- In total, our data has 26 combinations of sites and sexes, i.e 2 sexes for each of the
13 sites. We represent this by the following

Yis ™~ M5 (ni,57pi,s)

We use n; s to be the total number of centipedes observed at site ¢ with sex s and p; 5 is
a column vector of five probabilities corresponding to a centipede presenting a particular
number of segments given its characteristics. The 5 categories that our multinomial dis-
tribution has correspond to the centipedes having a certain number of segments present,
from 45 through to 53 in steps of 2. It is important to note that category 1 is actually
the event of having 45 or fewer segments and category 5 is actually the event of having
53 or more segments. No segment number outside the range 45 < N < 53 was observed
in the samples. N denotes the the number of segments.

In order to model these probabilities, p; 515 for each category, we introduce the cumu-
lative probabilities g; 5 1.5. These represent the probability of a centipede being in each of
our 5 categories. For example ¢; 51 = Pr(N < 45) and so clearly ¢; s5 = Pr(N < o0) = 1.
We can find the values of p; ;1.5 by finding the difference between the consecutive cumu-
lative probabilities, ¢; s 1.5. For example, we find p; ;3 by calculating ¢; s 3 — i s2-

We fit these probabilities to a linear model using a logit link function which, as
discussed in section 2.7.2, transforms our probabilities from a (0, 1) scale to a (—oo, 00)
scale. Our model is



log (q—) — o+t B (s — 55) (4.1)
- qi,s,h

where 7, is our intercept parameter, oy is our partial slope coefficient for the effects
of the sex of the centipede, [ is our partial slope coefficient for the effect of the site and
x; is the latitude of site 7. In this model we have centered the latitude data around 55,
which is roughly the center of the range of latitudes. As our v parameter is ordered we
want them to be subject to v < v < v3 < V4.

4.1.2 Prior specification

In order to implement this model, it is necessary for us to specify the prior beliefs.
O’Hagan et al. (2006) and Congdon (2005) discuss the complex processes and decisions
involved with eliciting the prior information.

We first look at the mean of the v’s. We choose 73 to be the probability of having
less that or equal to 49 segments. We expect half of our sample to fall either side of this
parameter so we centre our beliefs around this by giving it a mean of 0. About this, we
give 71,72 and 4 means —10, —5 and 5 respectively. We can justify these allocations by
considering the following model. If we had

as+5(xi—55) =0

then we would have
logit(g) =~
Or inversely, we could say that

_exp(v)
1+ exp(v)

Substituting in our mean values for v, we obtain the values ¢=0.00004539, 0.0066928, 0.5
and 0.993071 for means of -10, -5, 0 and 5 respectively.

As we do not want to be too informative with the prior assumptions, we give the 7’s a
fairly large variance of 20. This corresponds to a standard deviation of approximately 4.5
and therefore 2s.d~ 9. As our 95% intervals for our mean values are +2s.d’s we obtain
the 95% interval for the mean -10 to be

( exp(—19) exp(—1)
1+ exp(—19)" 1+ exp(—1)

) = (5.602796¢e — 09, 0.2689414)

Similarly, we obtain the intervals (8.31528e-07, 0.9820138), (0.0001233946, 0.9998766)
and (0.01798621, 0.9999992) for the means -5, 0 and 5 respectively. These intervals are
clearly large, as desired.

Looking now at the effects of sex, «, on the number of segments, we must first use the
constraint that a; + as = 0 in order to avoid over-parameterising the model. Again we
give this a Normal distribution. We do not want to assume that the sex of a centipede is
going to affect how many segments, in any direction, that the centipede will have. This
is done by giving it a mean of 0.

We then give this a relatively large variance of 10 as we do not want to be too
informative in the prior information. This variance of 10 corresponds to a standard

10



deviation roughly equal to 3, giving us 2s.d =~ 6. It follows then that we expect the
values of «a to fall within 6 units either side of the mean, 0. This time by considering the
model when the v and  effects are zero we get the model

a = logit(q)

Again by substituting o = 6 and o = —6 into the inverse equation, we can find our
95% interval for g to be ¢ € (0.00247,0.9975) which is large, as desired.

Similarly with the effects of latitude, 3, we do not want to assume anything or be too
informative, so again we give this a Normal distribution with a mean of zero and a fairly
large variance of 25. This corresponds to 2s.d’s=10, however we also have the element
of centering occurring for this parameter, i.e. we multiply it by (z; — 55). Our latitudes
fall roughly within £3° of 55° so this combines with our standard deviation to give us an
interval of £30. This is very large and obtains the interval ¢ €(9.357623e-14, 1).

In summary, our prior distributions are

7o~ N(
Yo~ N(
3o~ N(
v ~ N(5,20
B~ N(
a; ~ N(0,25

4.1.3 The rjags specification

Now that we have specified the model and the prior information that we wish to use we
can compute our posterior distributions and summaries using rjags. We do this using
the following code to create our model file

model

{
for (i in 1:26) {
y[i,] dmulti(plsitel[i],sex[i],],n[i])
}

for (st in 1:13) {
for (sx in 1:2) {
plst,sx,11<-q[st,sx,1]
plst,sx,2]<-qlst,sx,2]-qlst,sx,1]
plst,sx,3]1<-qlst,sx,3]-qlst,sx,2]
plst,sx,4]1<-qlst,sx,4]1-q[st,sx,3]
plst,sx,5]<-1-q[st,sx,4]
for (h in 1:4) {
logit(q[st,sx,h])<-gamma[h]+alphal[sx] +beta*(x[st]-55)
}
}
}
gammaOl[1] “"dnorm(-10,0.05)
gammaO [2] “"dnorm(-5,0.05)
gammaO [3] “dnorm(0,0.05)
gammaO [4] “dnorm(5,0.05)

11



gamma [1:4]<-sort (gamma0)
alpha[1] “"dnorm(0,0.1)
alpha[2]<-0-alphal[1]
beta~dnorm(0,0.04)

We then read this model file into R using the jags.model function. In order to define
the burn-in period we use the command update . To create our MCMC sample that sum-
marises the posterior distribution we use the coda.samples function. This also provides
convergence diagnostics that allow us to check that our output is valid to analyse.

4.2 Assessing the convergence of the sampler

Having fitted a model to my data using MCMC, it is important to ensure good mixing
and convergence of the chains has occurred before continuing. This has already been done
using the coda.samples function in R but we must also look at the trace plots. An example
of this can be seen in Figure 4.1.We have used two parallel chains, using colours black and
red for clarity, to observe convergence from different starting values. Clearly, for each ~,
the chains have not moved much from the initial value, showing an appropriate burn in
period has been used. It is also evident that both chains in each graph are moving within
the same region of the parameter space with similar variation, suggesting the mixing is
good.

Y1 Y2

-26 -22 -18
|

T T T T T T T T T T T T
6000 8000 10000 12000 14000 16000 6000 8000 10000 12000 14000 16000

Iterations Iterations

Y3 Ya

12

7 8 9 10

T T T T T T T T T T T T
6000 8000 10000 12000 14000 16000 6000 8000 10000 12000 14000 16000

Iterations Iterations

Figure 4.1: Trace plots of the posterior information of the +’s

This is apparent with trace plots of the other parameters, suggesting the simulated
posterior distributions all converge and are sufficient to continue to analyse.
4.3 Assessing the posterior information

Using the rjags simulated values, we can plot posterior densities which can then be
compared to those of the priors. This will allow us to see how the prior beliefs have been
updated by the data.

12



Figure 4.2 shows the density plots of ;4. The posterior densities for each of the
parameters clearly have a much smaller variance than the prior densities. Clearly the
posterior information is more precise than the prior and we are more certain about the
values of the parameters. For each graph we can see a slight increase in our belief
about the mean value from -10,-5,0,5 to -6.902707, -1.984655, 3.065809 and 8.112955

respectively.
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Figure 4.2: Prior (red) and posterior (black) density plots of the 4’s

Figure 4.3 shows the density of a;, which corresponds to the sex effect, specifically the
male sex effect. Again, there is a significant reduction in the variance from the prior to
the posterior. Our large prior variance of 10, i.e 2s.d &~ +6, has therefore not influenced
our results and we are now more certain about our beliefs.

We can see that the mean has increased from 0 to 2.729, showing that the sex of the
centipede does in fact affect the outcome of the number of leg bearing segments that
a centipede will develop. Due to the structure of the model, having a positive mean
translates as the centipede being more likely to have a smaller number of segments. As
a1 is the male sex effect we can say that a male centipede is more likely to have fewer leg
bearing segments than a female centipede at the same latitude. As we set the constraint
a1 = —aw, the female sex effect will have a negative mean and will therefore mean the
female centipedes are more likely to have a larger number of leg bearing segments than
male centipedes at the same latitude.

Figure 4.4 shows the density of 3, the effect of latitude on the number of segments
present in the centipede. Again the variation has decreased from prior to posterior so we
are now more certain about the value of 5. Assigning the variance of 25 has turned out
to be very large and has meant that our prior distribution has not had too much of an
effect on the posterior distribution and the information we use is coming primarily from
the data.

The mean of 3 has slightly increased from 0 to about 0.707. Similarly to before, having
a positive mean for our parameter shows that as the latitude increases the centipede
becomes more likely to have fewer leg bearing segments than a centipede found at a
lower latitude.
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Figure 4.4: Prior (red) and posterior (black) density plot of 3, the latitude effect

4.4 Bivariate posterior density plots

Using R, we produced bivariate posterior density plots in order to observe the depen-
dence between the parameters. The plots for the neighboring v parameters are shown
in Figure 4.5. As we have simulated lots of data these plots are very clustered and not
necessarily clear so, using a function in R shown in the listing below, we estimated the
bivariate density in order to produce the smooth contour plots also shown in Figure 4.5.
We originally expected to see the ~ variables all having a positive correlation, with the
strongest correlation occurring with neighboring variables. However, this has not been
apparent in the resulting graphs.

Listing 4.1: Bivariate kernel smoother breaklines

bivardens<-function(xlims,ylims,data,adj=1)
{
n<-length(datal,1])
W<-solve (var (data))*adj
xvals<-seq(xlims [1] ,xlims [2],length.out=101)
yvals<-seq(ylims [1] ,ylims [2],length.out=101)
dens<-matrix (0,nrow=101,ncol=101)
for (ix in 1:101) {
write(ix,file="")
x<-datal[,1]-xvals[ix]
for (iy in 1:101) {

14



y<-datal[,2]-yvals[iy]
for (i in 1:m) {
xy<-c(x[il,y[i])
dim(xy)<-c(2,1)
dens [ix,iy]l<-dens[ix,iyl+exp (-(t(xy) h*x%Wh*%xy))
}
}
}
stepx<-xvals[2]-xvals [1]
stepy<-yvals[2]-yvals [1]
dens<-dens/(sum(dens)*stepy*stepx)
result<-list(x=xvals,y=yvals,density=dens)
return(result)

From Figure 4.5, we observe that the plot for v, vs .y, fits to what we expect. The
plots for v vs. 73 and 73 vs. 74 do not behave as we would wish. At this point we
believe that the problem lies with 3 and ~,. These correspond to the probability of
having less than or equal to 49 segments and less than or equal to 51 segments. Looking
back to the data collected, we can see that we only have samples of females with more
than 49 segments. One concern that arose previously in the study was the abnormal
figures collected at Holy Island. In particular at this site, it can be seen that we have
low numbers of female centipedes taken at this point relative to the numbers collected at
nearby sites. Perhaps there is an unknown geographical factor that is causing abnormal
results.
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Figure 4.5: Bivariate plots of the v parameters
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Chapter 5

Improving the Model

5.1 Adding a random site effect

Having come across an unexpected result, it seems appropriate to adapt the model to
include a random effect that accommodates this deviation from the simple model. Our
model becomes

log (161%) =+ as+ B (x; —55) +1; (5.1)
— Yi,s,h

ri ~ N(0,7.L)

) ' site
Teite ~ Ga(1.1,0.3)

where r; is a random site effect for site i. We assign the same prior information to the
parameters in equation (5.1) as before for equation (4.1) and we have given the random
effect a Normal distribution with a zero mean. Any nonzero mean will be absorbed
by the fixed effects in the model. For the previous parameters, we assumed constant
variation at each latitude. For this random effect we have given the precision a Ga(1.1,0.3)
distribution to relax the straight-line assumption of our previous model.

5.2 Assessing the model

By adapting our previous R code, we can now produce plots that allow us to analyse
our new model. The ~ trace plots are shown in Figure 5.1. Again we use two chains in
our simulation in order to assess the convergence and mixing of the sample. From the
figure we see the two separate chains, in red and black, are both mixing well within the
same region of the parameter space. This is apparent in all of the posterior trace plots,
suggesting to us that our burn in period and thinning are sufficient and we can continue
to analyse the data.

5.3 Assessing the posterior information

Figure 5.2 shows the posterior distribution of both this model and our previous model,
for comparison. We can see that our new posterior, blue, has a smaller variance than the
prior distribution, but not smaller than the variance of our previous posterior distribution,
black. This is due to the fact that the random effect in our new model creates deviation
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from the straight-line assumption. This has the effect of relaxing the structure of the
model but making our beliefs more realistic.
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Figure 5.2: Prior (red), posterior (Blue) and posterior from previous model (black) density
plots for the intercept parameters, ;.4

Figure 5.3 shows that, for the sex effect, our posterior distribution, blue, is quite
similar to that of the previous,black. This we expected to see as the random effect that
has been added to the model is only being affected by site and not on sex. So as before,
being male means the centipede is more likely to have fewer segments.

Unlike our @ parameter, the random effect has had a big impact on the distribution
of our [ parameter. This was to be expected as the beta parameter is related to the site
of the sample. Figure 5.4 shows us that our posterior distribution, blue, has a smaller
variance than that of the prior but again not as small as that of the previous posterior,
black. However, our new posterior distribution is perhaps a better representation of the
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data. The mean has stayed almost the same as the one obtained from our previous model
so we still expect to find centipedes with fewer segments as we observe a sample from a
site of higher latitude.
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Figure 5.4: Prior (red), posterior (blue) and posterior from previous model (black) density
plots of 3, the latitude effect

5.4 The variance component

In our new model, we introduced a random site effect which had a precision 7y;.. Using
this precision we can observe the deviation of our data by noting that 7., is our variance
component. In order to observe the effects of this component we wanted a density plot
of the prior and posterior distributions. It is important to note that the posterior data
is simulated and so plotting its density with a smoothing kernel will produce negative
values. This is undesirable as 7, has a gamma distribution which has the property that
it returns positive real numbers.

To overcome this, we must first transform the data using logarithms and then use a
kernel smoother to obtain the density of the transformed data. In order to get our data
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back into the desired form we must exponentiate the x values obtained from the kernel
smoother. In order to obtain our new distribution we must note the following about how
we transformed x.

x
Tsite = €

and so
deite

dx

S
=€ = Tsite

Now, using
fT (Tsite)deite - fz ([E)d{t

we can see that the following equations gives us our density

fT(Tsite) = fz(z)/% = fz(x)/TSite

Having transformed our data we can produce the plot shown in figure 5.5. Clearly,
the posterior variance has decreased so we are now more certain about the value of
Tsite- Looking at our R output we can see that it has actually decreased from 12.222
to 0.7613736 and that our mean value has decreased from 3.6667 to 1.893032. Having
observed this parameter we can say that any deviation of our data from the line of
regression is not just due to the random sampling but also due to the individual sites at
each latitude.
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Figure 5.5: Prior (red) and posterior (black) density plot of 7y

5.5 Bivariate density plots

Using the R code from Section 4.4, we again produced bivariate plots and contour plots.
These are shown in Figure 5.6. We now see the desired effect we were previously looking
for. It is clear to see that the neighboring ~ parameters are dependent on one another.
This suggests to us that adding the random effect to our model has resolved the problem
we experienced previously and leads us to believe the model has been improved.
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Chapter 6
Addition of a Further Random Effect

6.1 The cluster effect

Having seen that we do indeed have variation between the different sites, it seems sensible
to investigate the possibility of sites within a cluster, where more than one site appears
within the same region, having variation. This involves us adding a further random effect
to our model to get

log (ﬁLq’h) = Y + o, + /6 (,Il — 55) + 73 + Weluster
- Yi,sh

where

-1
Weluster ™~ N(()? 7_clustelf)

Before we assign prior information to the random cluster effect, wester, We must
consider the logistics of variance components.

6.2 Learning about the model

Adding random variables to the model produces different outcomes depending on how
many variables we add. Supposing that we only have one random effect, the variation
of the deviation from the line, say ¢, for the model is given to this random variable. If
we added another random effect so we now have two random variance components, our
e will be split between the two.

For the model with one random effect, this deviation can be represented as

1

Tsite

var(e) =

Introducing a model that has two variance parameters, we need to note that we now
have

VaI“(E) - 1/Tsite + 1/Tcluster

= Total = /[var(e)]

We now have to adapt our model to accommodate for our variance of deviation being
assigned to two random effects. In our model specification, we have introduced a variable
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Tiotat Which behaves as though it is the only variance component in our model. So we
assign this component the same Ga(1.1,0.3) distribution that we assigned to our model
with one random effect in Section 5. The plot in Figure 6.1 shows the prior and posterior
density plots for 7ot
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Figure 6.1: Prior (red) and posterior (black) density plot of Tital

From Figure 6.1 we can see that the variance of the posterior distribution has de-
creased from that of the prior distribution, so we are more certain about our value. More
specifically, if we compare this plot to Figure 5.5 in Section 5.4 we can see that our
distributions are in fact the same, due to the total variance of deviation from the line
remaining the same.

6.3 Prior specification

In order to observe the effects of our individual random effect parameters we must define
the ratio of the total variance that the two variance components take. To do this, we
have introduced another parameter ¢ that has a Beta(1.5,1.5) distribution.

Using the distributions of ¢ and 7i,. We can define our variance components to be

_ Ttotal
Tsite — 5 9

d Ttotal
an Tcluster 1 5

Using these ratios, we can evaluate our joint prior distributon for 7. and 7uster- We
first rearrange to find Tiota1(7¢) and 6 in terms of 7o (7s) and Toyster(7e). We obtain

TsTe
T = 9
Ts + Te
Te
and § =
Ts + Te

Using the prior distrions 7, ~ Gamma(a, b) and 6 ~ Beta(c,d) we find the joint prior
density to be

['(c+d)
I'(e)I'(d)

a
b a—1_—br

101 _ syd—1
01 —9) F(a)Tt e
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Substituting in 7 and ¢ in terms of 7, and 7., the joint prior distribution of 7, and 7. is

I(c+d) Te et Ts =1 pa TeTe ol e ]
C(e)T(d) \ 75 + 7o Ts + T ['(a) \ 75 + 7¢ c

where |J| is the determinant of the Jacobian matrix which is

- e TsT,
S c 2 S c 2
B e R S
(Ts+7e)?  (Ts+7e)? (Ts + TC)

The joint prior density of 74 and 7, is therefore

F(C+d) pe 7.£(1+d—17_ccl+c—1 . _stTc
X
T(Q)0(d) T(a) (rs + 7o)*terd “P\ 7+ 7

After checking that all of the convergence criteria were met we produced the graphs in
Figure 6.2 and Figure 6.3 which show the prior and posterior distributions of our variance
components.
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Figure 6.2: Prior (red) and posterior (black) density plot of Te
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Figure 6.3: Prior (red) and posterior (black) density plot of Tejuster
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From Figure 6.3 we can see that there has been a big reduction in our variance from
the prior to the posterior distribution, so we have learnt a bit about this parameter. Our
mean value has changed from 12.55 to 4.253238. This supports our theory that sites
within a cluster do have similar traits and so we do not wish to count them as individual
sites.

We can see from Figure 6.2 the variance of 7. has not decreased as much as Tepuster
so we have learnt a little bit about this but not quite as much as 7guster. This is due to
the sites in each cluster no longer counting as individual sites. The mean has decreased
from 12.55 to 6.50076.
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Chapter 7

The Effects of a Heritable
Component in the Development of
Segment Number in Offspring

7.1 Introduction

Having drawn conclusive results from the latitudinal data, it seems appropriate to observe
another factor that may influence the segment number variation of the S.maritima. We
have chosen to look at heritability.

Vedel et al. (2009) obtained 204 clutches with their mothers from the field site at
Brora, Scotland. The samples were then preserved in tubes with 70% ethanol and stored
under temperature controlled conditions, at 4°C', to ensure the preservation of the hatch-
lings soft cuticle. The hatchlings were stained with methanol blue to distinguish better
the segment and genital structures and pictures were obtained. From here, it was possible
to analyse the hatchlings and determine the gender and number of segments.

Size of mother Male segment number Female segment number

43 [ 45| 47 [ 49 | Mean | Total | 47 | 49 | 51 | 53 | Mean | Total
47 1137] 45| 0] 46.06 83149 | 34| 2| 0] 47.90 85
49 053|260 |32| 46.88 | 345 |42 |259 | 16| 1| 48.85| 318
51 O 1| 15| 7| 47.52 23 1 9| 5| 0| 49.53 15

Table 7.1: Size of the offspring compared to the size of the parent

The raw data obtain can be seen in Table 7.1. We have then plotted these to visualise
any initial observations that may be present. This plot can be seen in Figure 7.1. This
shows that, generally, offspring present higher segment numbers when their parents have
higher segment numbers.

7.2 Analysis

In order to draw any conclusions from this data, we must use the same method of analysis
used in Chapter 4.
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Figure 7.1: Mean segment number of offspring

7.2.1 The model

We have the response variable y,, s for a centipede of sex s from a mother from group
m. There are three different sizes for m, m; = 47,my = 49 and m3z = 51. The response
variable is given a multinomial distribution with 6 categories, a total of n,, s trials with
success probabilities p,, ;. This data has a total of 6 combinations of size of parent with
sex of offspring, i.e. 2 sexes for each of the three sizes of parent centipede. So

Ym,s ™~ Mﬁ (nm,sapm,s)

Our n,, s represents the total number of offspring observed to be sex s from a mother
from group m and p,, s to be a column vector of length six, corresponding to the prob-
ability that the offspring will present a certain number of segments. In this data set,
we have offspring with segment numbers in the range 43 < N < 53, remembering that
centipedes will only present an odd number of leg bearing segments and that N =number
of leg bearing segments.

Again, we have to introduce the cumulative probabilities g, s1.6. Similar to before,
Gis1 = Pr(N <43),...¢;s6 = Pr(N < 00). We can then work out the values of p,, s 1.6 by
subtracting consecutive cumulative probabilities. For example, py, s5 = Gm. s5 — Gm.s -

We transform the cumulative probabilities using the logit link function. Our model is

log (ﬁm—sh) =, + a5+ B (x, —49) (7.1)

where 7, is our intercept parameter, o, is our partial slope coefficient for the effects
of the sex of the offspring, § is our partial slope coefficient for the heritable effect and x,,
is the number of leg bearing segments of the parent in group m. In this model, we have
centered the size of the parent data around 49, which is the center of the range of parent
sizes. As our « parameter is ordered we want them to be subject to 11 < 79 < 73 < Y4 <

Vs-

7.2.2 Prior specification

When assigning prior information to these parameters, we use similar methods for our
choices as in Section 4.1.2 for model 4.1.
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We assign 7.6 a Normal distribution, with means -10, -5, 0, 5, 10 and variances 100,
20, 20, 20, 100 respectively. In this case the variance of each ~ is not the same. This
is because we were more certain about the values in the middle of the range of segment
numbers, as opposed to those at the ends. We also know that it takes a large change in
the logit to produce a small change in the probability near the ends.

For 8 we have a normal distribution with mean 0 and variance 20, so we are being
vague and not assuming anything in our prior. For similar reasons, we give a; a normal
distribution with mean 0 and variance of 10. We also have the constraint again that
a1 4+ ag = 0 so we are not over-parameterising the model.

So in summary

v~ N(-10,100)
72~ N(=5,20)

3~ N(
Y1~ N(
5o~ N(
B~ N(
a; ~ N(0,10)

7.2.3 The rjags specification

We can now create our model file to compute our values using the following code

model
{
for (i in 1:6) {
y[i,]7dmulti(p[mother[i],sex[i],],n[i])
}
for (mc in 1:3) {
for (sx in 1:2) {
plmc,sx,1]1<-q[mc,sx,1]
plmc,sx,2]<-q[mc, sx,2]-q[mc,sx,1]
plmc,sx,3]<-q[mc,sx,3]-q[mc, sx,2]
plmc,sx,4]1<-q[mc,sx,4]-q[mc, sx, 3]
plmc,sx,5]<-qlmc,sx,5]-q[mc,sx,4]
plmc,sx,6]<-1-q[mc,sx,5]
for (h in 1:5) {
logit(q[mc,sx,h])<-gamma[h]+alpha[sx]+beta*(x[mc]-49)
}
}
}
gammaO[1] “"dnorm(-10,0.01)
gammaO [2] “dnorm(-5,0.05)
gammaO [3] “dnorm(0,0.05)
gammaO [4] “dnorm(5,0.05)
gammaO [5] “"dnorm(10,0.01)
gamma [1:5]<-sort (gammaO)
alpha[1] “dnorm(0,0.1)
alpha[2]<-0-alpha[1]
beta~dnorm(0,0.04)
}
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7.3 Assessing the convergence

It is important for us to again assess the convergence and fit of this model before contin-
uing to use MCMC to analyse the data. Some of the trace plots obtained from the data
are shown in figure 7.2. These clearly show that our model is mixing and converging well
and that it is sufficient to analyse.

Y1 Y2

-34

X 4.0
TR S SO N N

-18 -14 -10

-4.6

T T T T
2000 4000 6000 8000 10000 12000

T T T
4000 6000 8000 10000 12000
Iterations Iterations

N
o |
o
o

Y3 Ya

45 50 55 6.0

T T T T T T T T T T T T
2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000

Iterations Iterations

Ys

T T T T T
2000 4000 6000 8000 10000 12000

Iterations

Figure 7.2: Trace plots of the v’s

7.4 Assessing the posterior distributions

From Figure 7.3, we can see that for vi.5 the variance of the posterior distribution is a
lot smaller than the variance of the prior distribution. This shows that we have learnt
from the data and we are more certain of our results. For each plot, the mean has
stayed roughly the same. For 7.5, we find the means are -9.442857, -3.935069, 0.3365787,
4.914731 and 8.823271, respectively.

Looking at Figure 7.4, it is clear to see that the variance of the male sex effect, aq, has
reduced a lot from the prior distribution to the posterior distribution so we have learnt
about «; from our data. Using R, we find that it has decreased from 10 to 0.01221174. We
also find that the mean has increased from 0 to 2.101575, showing that a male centipede
is more likely to present fewer leg bearing segments than a female centipede.

Figure 7.5 shows that the variance of the posterior distribution for 3, the effect of the
size of the parent centipede, has decreased from the variance of the prior distribution,
from 20 to 0.006506826. Therefore, we are now more certain about the value of our
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Figure 7.3: Prior (red) and posterior (black) density plots of 1.5, the intercept parameters
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Figure 7.4: Prior (red) and posterior (black) density plot of «, the sex effect

parameter. It is also evident that the mean has decreased from 0 to -0.9168345. Due to
the structure of the model, this tells us that the offspring with parents presenting higher
segment numbers are more likely to have more leg bearing segments than those from a
mother presenting fewer leg bearing segments.

7.5 Is this really due to a genetic effect?

There does appear to be a genetic effect but the mean increase in segment number of
the offspring for an increase of 2 in the mother’s segment number is less than 2. Perhaps
this could be due to an environmental effect or potentially just "regression to the mean”.
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Figure 7.5: Prior (red) and posterior (black) density plot of 3, the parent effect

Regression to the mean occurs when there is random variation in observed data around
the true mean. This is a common occurrence when observing the effects of genetics as
seen in Atkinson et al. (2010) and other studies such as Maher and Mountain (2009).
Barnett et al. (2005) explain regression to the mean in further detail and give methods
to overcome it.

To explore the possibility that there is an environmental effect occurring, we can com-
pare the distribution of the data obtained in this experiment under laboratory conditions,
Table 7.1, with that of Kettle and Arthur (2000), Table 3.1, for the particular observa-
tions obtained at Broch (near Brora). We assume that the mothers are a random sample
of Bora females and that survival to adulthood is independent of segment number.

7.6 Re-analysing the data

The data we are now going to be analysing can be seen in Figure 7.2. We can see that the
means obtained are almost identical for the same sex in each condition but the females
are on average larger than the male centipedes.

Conditions Male segment number Female segment number

43 45| 4749 | Mean | Total || 47 [ 49 | 51 | 53 | Mean | Total
Wild 0[10] 62| 0| 46.72 T2 7] 61 4| 0] 48.72 72
Laboratory || 1|91 | 320 | 39 | 46.76 4511192 |1 302 |23 | 1| 48.679 418

Table 7.2: Samples from the site at Brora

7.7 Analysis

7.7.1 The model

In this case we denote our response variable as y.s, where ¢ denotes the condition the
centipede develops in and s denotes its sex, male or female. There are two possible choices
for the condition which are wild or laboratory which we assign 1 and 2 respectively. We
give the response variable a multinomial distribution with 6 categories, corresponding to
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the range of outcomes which are segment numbers ranging from 43 to 53, remembering
that segment numbers are only every odd. We have the success probabilities p, s and a
total number of n,. s trials. So we have

Ye,s ™ MG (nc,s ’ pc,s)

The number of centipedes observed with a certain number of segments bred in a
particular condition is represented by n.,. Our p., is a column vector of length 6, corre-
sponding to the probability that the offspring will present a certain number of segments.

We use the difference between consecutive cumulative probabilities ¢, 1.6 to find our
values of p.s1.6. Similar to before, ¢.s1 = Pr(N < 43),...,¢.s6 = Pr(N < o0). So, for
example, we can find p.s4 = Qe sa — Qe,s,3. As before we must transform these with the
logit link function and we obtain the model

log (ﬂ> =, + as + S, (7.2)
- 4e,s,h

where v, is our intercept parameter, «y is our partial slope parameter for the effects
of the sex of the centipede and [, is the partial slope parameter for the effects of the con-
ditions during embryonic development. Again, in our model, we want our v parameters
to be subject to v1 < 72 < V3,71 < V5 < V6.

7.7.2 Prior specification

We use similar methods for our prior specification here as we did in Section 4.1.2. We
assign the same prior information for v and « as we did in Section 7.2.2 for model 7.1.
In this model, g is the effect of the conditions during embryonic development. We
have two different conditions and so set 3; + 82 = 0 so as not to over-parameterise our
model. We then give 8; a Normal distribution with a mean of 0 and a variance of 20.
This ensures that we are vague and don’t assume anything in the prior.
So in summary

v~ N(-10,100)
v2 ~ N(=5,20)
73~ N(0,20)
Y4~ N(5,20)
vs ~ N(10,100)
B~ N(0,20)

a1 ~ N(0,10)

7.7.3 The rjags specification
We can now create our model file to compute our values using the following code

model

{
for (i in 1:4) {
y[i,] dmulti(plsite[i],sex[i],],n[i])
}
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for (st in 1:2) {
for (sx in 1:2) {
plst,sx,11<-qlst,sx,1]
plst,sx,2]<-q[st,sx,2]-q[st,sx,1]
plst,sx,3]<-q[st,sx,3]-q[st,sx,2]
plst,sx,4]1<-q[st,sx,4]-q[st,sx,3]
plst,sx,5]<-qlst,sx,5]-qlst,sx,4]
plst,sx,6]<-1-q[st,sx,5]
for (h in 1:5) {
logit(q[st,sx,h])<-gamma[h]+alpha[sx]+betalst]
}
}
}
gammaO[1] “"dnorm(-10,0.01)
gammaO [2] “dnorm(-5,0.05)
gammaO [3] “dnorm(0,0.05)
gammaO [4] “dnorm(5,0.05)
gammaO [5] “"dnorm(10,0.01)
gamma [1:5]<-sort (gammaO)
alpha[1] “dnorm(0,0.1)
alpha[2]<-0-alpha[1]
beta[1] “dnorm(0,0.04)
betal[2]<-0-betal[1]

7.8 Assessing the convergence

Using R, we find that the convergence criteria are met by this model and the trace plots
in Figure 7.6 show the model is mixing and converging well and is sufficient to analyse.

7.9 Assessing the posterior distribution

From Figure 7.7 we can see that for each v the variance of the posterior distribution is
smaller than that of the prior distribution so we have learnt from our data and are now
more certain about our results. The mean values have changed from -10,-5,0,5 and 10 to
-8.954224, -3.52919, 0.5096215, 4.75139 and 8.735937 respectively.

We can see the effects of the sex of the centipede, «q, specifically the male sex effect
in Figure 7.8. From this plot we can see that the variance is smaller in the posterior
distribution than in the prior distribution so we are more certain about our value of a;.
The mean has increased from 0 to 1.990766 which shows again that a male centipede is
more likely to have fewer segments than a female centipede.

In Figure 7.9 we can see the distribution of ;, the effect of embryonic development
occurring in the wild. The variance of the posterior distribution is much smaller than the
variance of the prior distribution so we are now more certain about the value of f;.

Using R, we can say that the mean of 3, has decreased from 0 to -0.1303214. In total,
we have 2000 simulated values for ;. We find the total number of values of 5; < 0 is
108008. So we can say Pr(f; < 0) = 0.9004. So although the change in mean is only small
we can say that there is a high chance that there will be a little bit of an environmental
effect occurring. So centipedes that undergo embryonic development in the wild are more
likely to have more segments than a centipede whose embryonic development takes place
in laboratory conditions at this particular site.
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Figure 7.7: Prior (red) and posterior (black) density plots of the v’s
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Figure 7.8: Prior (red) and posterior (black) density plot of ay, the male sex effect
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Figure 7.9: Prior (red) and posterior (black) density plot of 3y, the effect of the embryonic
development occurring in the wild
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Chapter 8

Conclusion

We have analysed a few factors that could have a potential effect on the segment number
variation in centipedes. The first factor is environmental and the second genetic.

Performing Bayesian analysis on our latitudinal data in Chapter 4, we have reaffirmed
the findings of Kettle and Arthur (2000) that a centipede found at a higher latitude is
more likely to have fewer leg bearing segments than one found at a lower latitude and that
females are, on average, bigger than males. After altering our model to include variance
components in Chapters 5 and 6, we concluded that deviation from our line of regression
is not just due to random sampling but also because of the individual variance found in
samples from each latitude. Furthermore, we found that the sites that were taken close
together, i.e. in a cluster, have a similar variation to each other and so should not be
considered as independent within our analysis.

In Chapter 7, we analysed the data from Vedel et al. (2009) and ruled out the possi-
bility that the segment number variation within centipedes is purely environmental and
concluded that there is a genetic element affecting the development. We found that
centipedes with a large number of segments generally produced larger offspring than a
centipede with a smaller number of segments.

Comparing the data in Chapter 7 to that at the same site in Chapter 4, we found that
there is also an environmental effect affecting the number of segments that a centipede
develops. We saw that centipedes that undergo embryonic development in the wild
have a slightly higher chance of developing more segments than a centipede undergoing
embryonic development in laboratory conditions.

To investigate the segment number variation in centipedes further, we would look at
other factors that could have an influence such as the study by Vedel et al. (2010) on the
effects of the temperature during embryonic development.
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Appendix

Model with addition of two random effects

model
{
for (i in 1:26) {
y[i,] dmulti(p[sitelil,sex[i],]1,n[i])
}
for (st in 1:13) {
for (sx in 1:2) {
plst,sx,11<-qlst,sx,1]
plst,sx,2]<-qlst,sx,2]-qlst,sx,1]
plst,sx,3]<-q[st,sx,3]-qlst,sx,2]
plst,sx,4]1<-qlst,sx,4]-q[st,sx,3]
plst,sx,5]<-1-q[st,sx,4]
for (h in 1:4) {
logit(q[st,sx,h])<-gamma[h]+alpha[sx]
+beta* (x[st]-55)+r[st]+wlcluster[st]]
}
}
}
for (s in 1:13) {
r[s] “dnorm(0,tau.site)
3
for (cc in 1:10) {
wlcc] “dnorm(0,tau.cluster)
}
tau.total"dgamma(1.1,0.3)
delta~dbeta(1.5,1.5)
tau.site<-tau.total/delta
tau.cluster<-tau.total/(1-delta)
gammaOl[1] “"dnorm(-10,0.05)
gammaO [2] “"dnorm(-5,0.05)
gammaO [3] “dnorm(0,0.05)
gammaO [4] “dnorm(5,0.05)
gamma [1:4]<-sort (gamma0)
alpha[1] “dnorm(0,0.1)
alpha[2]<-0-alphal1]
beta~dnorm(0,0.04)
}
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