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Abstract

The aim of the project is to explore methods into assigning reasons to a “bad”
credit score. This exploration will give credit risk companies the ability
to give their customers a specific reason as to why they receive a certain
treatment. Using modelling techniques we will be able to predict if an account
holder will miss a payment in the next three months.
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Chapter 1

Introduction

Credit risk scoring is a method used to determine the creditworthiness of an
account holder. Decisions made in credit risk are typically based upon scores
provided by scorecards. Scorecards are statistical models built using a large
number of variables. These variables are chosen from internal company data
and also credit bureau information. The risk scores calculated then drive
a certain action, depending on the models cut-off point. Generally, higher
valued scores suggest a more creditworthy account. The models used in credit
risk companies have a large number of variables and this makes it difficult
to assign a score to a particular reason. The objective is to explore methods
into assigning reasons to a “bad” score such that credit risk companies can
explain to their customers why they receive a certain treatment. With the
use of modelling techniques we will be able to predict if a customer will miss
a payment in the next three months. From the model(s) found an optimal
cut-off point will be determined which will provide the threshold used to
define accounts as accepted or declined. The model(s) found will represent a
short-term risk model.

1.1 Credit risk scoring

In order to define credit risk scoring, we must first look at the two components
separately; “credit” and “scoring”, using the definitions found in Anderson
[2007].

1.1.1 Credit

Credit is a term used at present to describe the analogy “buy now, pay later”.
It originates from the Latin word ‘credo’, which has the meaning ‘trust in’
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or ‘rely on’. Credit can be thought of as lending to an individual whilst
trusting them to honour the obligation. Borrowers’ must abide by terms to
ensure this trust is upheld, for example agreeing to a risk premium. This
provides security for the lender in case the borrower does not repay. This is
where the term credit risk arises. Credit risk is the potential financial impact,
on the lender, when a change in the borrowers’ creditworthiness occurs, i.e.
their ability to repay. When the credit risk is high, lenders typically increase
charges or premiums to counterbalance the risk. However, due to lenders
current vast data collection trust can be built upon using the borrowers’
financial details. Thus, the risk of lending is lowered.

1.1.2 Scoring

Scoring is a ranking order tool. This ordering occurs according to a real or
regarded quality used to discriminate between the ranks and make impartial,
consistent decisions. For example, companies can be ranked based upon
their performance to help decide which company to sell. The data available
is collected and incorporated into a single value representing quality. This
is thought of as a score. Scoring is universally used where predictions are
needed. Predictive scoring models use prior data and past events to predict
the likelihood of a future event occurring.

1.1.3 Credit scoring

Credit scoring involves the transformation of collected data into numeri-
cal measures, using statistical models. These models influence credit deci-
sions. Credit scoring helps to determine whether borrowers’ repay the lender.
Credit risk scoring used in industry, particularly finance, classes an account
“good” or “bad” based upon their credit report. This determination is used
to filter if an account holder poses a risk to lend to. If an account is deemed
“good” then the credit score is used by the lender to decipher if they qualify
for the loan, what interest rate they should be charged and what credit limits
should be set. Dependent on the level of “bad” score the account could be
rejected.

1.2 Decision making

Lenders make decisions for different scenarios based upon credit scores. The
subsequent action that occurs is also dependent on the score, for example
accept/reject a customers request for an increase in loan amount, interest
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rate lowered etc. Credit scores can be categorised into different types of
score, with the most common scores used being; [Anderson, 2007]

• Application score: Used in new businesses. It combines data from
the customer, past dealings and the credit bureau.

• Behavioural score: Used in account management, e.g. limit setting.
It focuses on individual accounts’ behaviour.

• Collection score: Used in collection processes, e.g. call centres. It
combines behavioural, collections and bureau data.

• Customer score: Combines behaviour on a number of accounts. It
is used for both account management and cross-sales to existing cus-
tomers.

• Bureau score: A score given by the credit bureau. It is usually a
number of missed payments or bankruptcy predictor that summarises
the data held by them.

These definitions of scores describe the borrowers’/customer behaviour. A
high number of lenders use a hybrid of their own scores and bureau scores.
Credit scoring is used in fields such as: [Anderson, 2007]

• Unsecured: credit cards, personal loans, overdrafts.

• Secured: Home loan mortgages, motor vehicle finance.

• Store credit: Clothing, furniture, mail order.

• Service provision: Phone contracts, municipal accounts, short-term
insurance.

• Enterprise lending: Working-capital loans, trade credit.

We will focus on unsecured credit scoring, particularly credit cards. Credit
scores trustworthiness varies according to data used in the development of
them. Decisions, in credit scoring, tend to be made using a scorecard. A
scorecard is a statistical model derived, using a large number of variables, to
predict the likelihood of an event occurring. These variables are chosen from
internally collected data and also credit bureau information. An example of
a decision made using a scorecard would be; “Do we accept this account for
a loan request?”. Custom-made scorecards can be adapted for a lender or
product to produce the best results. If this is not feasible, generic scorecards
can be applied. The vast number and diversity of the variables used in the
development of scorecards creates a problem when assigning reasoning to a
score.

4



Chapter 2

Data

The data collected by credit risk companies, both internally and externally,
make up the variables used in their modelling techniques. Companies usually
have around 8000 different variables available to create their models. The
data referred to throughout this document is a real dataset provided by a
financial company. The entries involved represents data from a 6 month state-
ment. There are variables available for each statement cycle and collective
data for the entire 6 months. The data is comprised of 34 000 accounts and
155 different variables. These 155 variables can be split into four categories:

1. Current general account information e.g. account age

2. Raw information for the last 6 months e.g. average daily balance on
the account

3. Transformations of the raw data e.g. average balance on the account
over the last 6 months

4. Application variables. These are variables only available for accounts
less than 12 months old and are taken from the initial application pro-
cess.

The dataset contains categoric, continuous and binary variables. The re-
sponse variable that will be estimated with modelling techniques is a binary
variable. It is named outcome and represents if an account holder misses a
payment in the next three months. The outcome value of 0 represents the
account holder not missing a payment and 1 is that they do. An example of a
categoric variable is their employment status. The variable which represents
employment, employ, can be one of seven characters defined below.

• EM: employed
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• SE: self employed

• HO: home maker

• RE: retired

• ST: student

• UN: unemployed

• O: other

The employment status of an account holder is only available for accounts
less than 12 months old, as it is classed as an application variable. A number
of variables will be used and referred to throughout. To ensure understanding
a list of them and their meanings are given below.

• outcome: The response variable used to estimate the data. It represents
if an account holder misses a payment within the next three months.

• delinq6: Delinquency value over the 6 month period. Delinquency is
the total number of missed payments over a given period.

• late6: The total number of late fees over the 6 month period.

• delinq1: Delinquency value for the first period/month.

• over6: The number of over-limit fees over the 6 month period.

• age: Age of the account in months.

• young: An indicator variable to show an account who is less than 6
months old. If the account is younger than 6 months old then it takes
a value 1 and 0 otherwise.

• employ: The employment status for accounts it is available for. The
status’ it can take were defined previously.

• fee.bal3: The fee balance of the account at the end of the statement
cycle 3, i.e. month 3.
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2.1 Missing data

When using a real dataset numerous procedures need to be implemented
before necessary analysis can take place. This includes dealing with missing
data. In the dataset some of the entries are missing, which is not uncommon
due to the raw nature of the data. Appropriate analysis cannot be performed
accurately when entries for variables are missing. A possible solution could be
to delete any observations where there are missing data entries, however this
should be considered as a final expedient for a number of reasons. We may
discard important information which might be useful in future explorations
and introduce bias. Misleading interpretation of results may also be made
as a consequence of deleting observations. Bayesian techniques, like data
augmentation, was considered to account for the missing data however the
missing entries can be explained when looking carefully at the variables to
which they were missing for. Had the data been missing at random (MAR)
then data augmentation would have been an appropriate method to use.
Generally, the missing data is for an account that has an age of only 1
month. This is because many of the variables depend on a previous month
or cycle in their calculation. Looking at Equation (2.1) the calculation of
Payment Percent 1 depends upon the previous month. Payment Percent
1 represents the payment made as percent of the total balance from the
previous statement. If the account is only 1 month old, this information is
not available.

Payment Percent (1) =
Payment Percent (0)

Total Balance (1)
(2.1)

Another explanation for missing data is due to division by zero in the cal-
culation of variables. Again, looking at Equation (2.1), if Total Balance 1 is
zero then NA would be produced in the calculation.

The solution of missing data is dealt with by imputation. Missing data
imputation is a way of taking missing data and replacing it with an appro-
priate value. There are many ways to impute data, with varying degrees
of complexity. The imputation method choice is a fairly simplistic one due
to the small proportion of missing data and clear reasoning as to why it is
missing. Had there been a larger number of missing entries, then a different
imputation method would have been considered. The replication value is
dependent on the type of data it is. If the missing value is continuous then
it is replaced with the mean of that variable and if it is categoric data then
another level is created and the missing values are put into this category.
This means standard credit scoring procedures can now be followed to model
the data.
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2.2 Data behaviour

In credit risk scoring it is common to split the data into manageable seg-
ments. This grouping of data, i.e. segmentation, is usually done by looking
at its behaviour and intuitively choosing the grouping. When looking at
credit risk assessment the purposes of segmentation is to improve assessment
and ensure customers are offered the appropriate product, e.g. correct loan
rate for the level of risk they pose. The number of segments chosen should
always be kept to a minimum due to the increased risk of complication when
building multiple models. The validation and analysis of the models built
also increases, which could be costly for the company. When looking at the
dataset it is evident that a high proportion of account holders can intuitively
be classed as “good” accounts. The total of missed payments over the 6
month period, i.e. the delinquency value, is a good example. Figure 2.1
depicts this behaviour well.

Figure 2.1: Delinquency values over 6 month period

A high number of account holders never miss a payment over the time
period, so it is acceptable to assume that these account holders behave sim-
ilarly. With this assumption in mind, the data is segmented with accounts
who have a total delinquency value of zero grouped together and then the rest
grouped together. To see if this segmentation is beneficial “quick” models
are built and then segmented and non segmented models are compared. Not
segmenting the data is the better option despite Figure 2.1 demonstrating
a divide in the data. The choice to segment or not is based upon looking
at the mean square error for the models built. The mean square error is a
technique used in statistical modelling to determine how well the model fits
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the data. It can be used to determine if the model needs simplifying. It is a
quick way to compare models when segmenting. A lower MSE value is better
as it implies a better model fit to the data. When the data is grouped by
total delinquency value being zero the mean square error is slightly smaller
compared to the full sized dataset. However the remaining group, of total
delinquency value 1-6, has a much larger mean square error. In this instance
segmenting the data is not greatly beneficial when model building. To en-
sure the chosen grouping size isn’t too small, the data is split with one group
having a total delinquency value 0 or 1 and then total value 2-6. This pro-
duces even greater mean square errors than previously. The non segmented
model is a better choice and is graphically shown by ROC curves which will
be discussed later in §3.3.2.

2.3 Variable reduction

The number of variables is too large to perform analysis straight away. To
reduce the number of variables two methods will be explored; an ad-hoc ba-
sis and decision trees. Other methods used by credit risk companies include
principal component analysis (PCA) and stochastic gradient boosting. De-
cision trees are the preferred method over PCA because it is believed to be
more time efficient. Both methods are universally used to reduce the num-
ber of variables. Intuition based variable reduction is used as a comparative
baseline to the decision tree output. The intuitive chosen variables do give a
significant model, however it is not practical to use this method. The deci-
sion tree method can easily be adapted for other datasets, using a pre-built R
package. To reduce the number of variables an initial model is constructed,
using all 155 variables, to use in the R package rpart. This package pro-
duces the decision tree, Figure 2.2, which shows only two variables classed
as important within the model and how they can be classified into groups.
For example the first node has two branches, left and right. The path given
by the left branch is for accounts who have a delinquency value of less than
0.5, classed by group 0. The right path takes us to a decision node where
the question “is the total number of late fees less than 1.5?” is posed. If
so the account is classed as group 0 again, otherwise the account is grouped
as 1. The package also prints the variable importance determined from the
saturated model. The output printed by R is stated in Figure 2.3. The vari-
ables classed as important, by the variable reduction, can now be used in
regression analysis to find an appropriate model.
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Figure 2.2: Decision tree

1 Variable importance

2 delinq6

3 late6

4 flate.ind

5 late2

6 delinq1

7 late3

8 late4

9 late1

10 fee.bal3

11 employ

12 cashadv.ind

13 tenure

Figure 2.3: Variable importance output
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Chapter 3

Regression analysis

Regression analysis is used to build models and find the most parsimonious
model to estimate the relationship between the response variable and ex-
planatory variables (covariates). Box et al. [2013] suggested that the ‘princi-
ple of parsimony’ gives rise to a model with the smallest possible number of
parameters for adequate representation of the data. Parsimony is a desirable
trait when credit risk modelling as it reduces cost, keeps interpretations sim-
plistic and the errors small. The response variable may be the likeliness of
an event occurring and the covariates are associated variables which either
add or deter from the likeliness of the event.

3.1 Linear regression

In linear regression the response variable modelled is assumed to be continu-
ous. For example, the response variable might be the risk of a patient having
a heart attack and the explanatory variables may include age, blood pres-
sure and genetic issues. Once a model is built, the explanatory variables are
used to predict a person’s risk of having a heart attack. Regression analysis
estimates the conditional expectation of the response variable given the inde-
pendent variables. Denoting the response variable, Yi, and the explanatory
variables X1,i, X2,i, . . . , Xm,i the conditional expectation can be expressed by
Equation (3.1) where it is linear in βk, for k in 0, 1, . . . ,m, where m is the
number of covariates.

E(Yi|X1,i = x1,i, . . . , Xm,i = xm,i) = β0 + β1x1,i + . . .+ βmxm,i (3.1)

The error of the model is a random variable and a classical assumption for lin-
ear regression analysis is that the errors are distributed Normally with mean
zero and variance which is constant. This normality assumption is checked
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Figure 3.1: Example of a QQ plot

using Q-Q plots. An example of a Q-Q plot that satisfies this assumption is
shown in Figure 3.1.

Using linear regression to model the response variable, outcome, gives
the diagnostic plots in Figures 3.2 and 3.3. From both plots we see that the
linear regression model is not a good model choice. The main issues with the
diagnostic plots are the errors are not Normally distributed and the fitted
values cannot be derived, as the response can only take the values 0 or 1.

Figure 3.2: Residual plots Figure 3.3: Q-Q plot for residuals
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These issues are due to the nature of the response variable being binary.
Therefore a better suited distribution for binary data needs to be found, as
the Normal is not a good fit.

3.2 Logistic regression

A logistic regression model is differentiable from a linear regression model
when the response variable is binary or dichotomous as opposed to Gaus-
sian. [Hosmer Jr and Lemeshow, 2004] When the data being modelled is
Binomially distributed, the response variable takes one of two values char-
acterising success and failure. The response variable modelled throughout,
named outcome, is whether an account holder misses a payment within the
next three months. The outcome is either yes or no, indicated by 1 or 0
respectively. If we let the response variable, outcome, be denoted by Yi,
then it is classed as a Bernoulli variable with parameter πi, or alternatively
a Binomial variable;

Yi ∼ Bin(mi, πi), (3.2)

with mi = 1 and where πi is the probability of an account holder missing a
payment in the next three months for i = 1, 2, . . . , n, where n is the number
of accounts. Therefore, E(Yi) = πi and V ar(Yi) = πi(1 − πi). In linear
regression analysis the conditional expectation is expressed by Equation (3.1)
however this model is unsuitable when modelling binary data. The problem
arises due to the right hand side of Equation (3.1) being able to take any
value, where as E(Yi|Xi) = πi is a probability thus restricting the values to
[0, 1]. The solution is to find a function, denoted h, which maps the real line
to [0, 1] i.e. h : IR→ [0, 1], such that

E(Yi|Xi) = πi = h(β0 + β1x1,i + . . .+ βmxm,i) (3.3)

or likewise
g(µi) = g(πi) = β0 + β1x1,i + . . .+ βmxm,i (3.4)

where µi = E(Yi|Xi) = πi and g(·) = h−1(·) is the inverse function of h(·).
The function g(·) is called the linkfunction. The role of the link function
is to allow the response variable to be used whilst associating it with the
linear model. For data which is distributed Binomially, a prominent choice
of link function is derived from Equation (3.5) giving Equation (3.6), where
η = β0 + β1x1,i + . . .+ βmxm,i is called the linear predictor.

h(η) =
exp(η)

1 + exp(η)
(3.5)
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g(µ) = h−1(µ) = log

(
µ

1− µ

)
(3.6)

The link function given by Equation (3.6) is called the logit link function,
and hence the model is called the logistic model. To estimate the unknown
parameters β0, β1, . . . , βN we use maximum likelihood estimation. However,
these estimates cannot be found analytically and this is why R is used. To
model the response variable, outcome, modelling techniques are implemented
in R using the glm command. This command carries out inference for Gener-
alized Linear Models (GLMs) due to logistic models being a type of GLM. A
typical glm model used in R has a standard format, shown in Equation (3.7).

glm(formula, family = (), data) (3.7)

For this dataset the family used is Binomial due to the response variable
modelled being a probability of success or failure. The chosen link function
we will be using to relate models to the linear model is logit, where µ is
the probability of an account holder missing a payment in the next three
months. Logistic regression is a modelling choice used in 80 to 90% of credit
companies to build and develop scorecards. [Anderson, 2007]

3.2.1 Model selection

We will be using the variables that are classed important in the decision tree
analysis, listed in Figure 2.3, to perform forward step-wise regression. This
is a favourable method when the number of variables trying to be modelled is
large. Forward step-wise regression involves initially modelling with no vari-
ables and testing the significance after each variable addition. This process
is repeated until no more additions improve the model. Analysis of Variance
methods and Akaike information criterion will be analysed after a variable is
added in order to select a favourable model. In credit scoring a high predic-
tive model is favoured over probabilistic power, due to rank ordering being
classed as a more important model property.

Kullback-Leibler information (K-L information)

The Kullback-Leibler information is a way to measure the difference between
two models. It is particularly useful to look at how close an approximating
model, g, is to the true model, f . The K-L information between f and g is
defined for discrete distributions by Equation (3.8),

I(f, g) =
k∑

i=1

pi · log

(
pi
πi

)
, (3.8)
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where k are the possible outcomes, pi is the true probability of the ith out-
come and π1, π2, . . . , πk represents the approximating model. For discrete
distributions, both pi and πi lie in the range (0, 1) and represent f and g
respectively. The information lost when g is used to estimate f is denoted by
I(f, g) in Equation (3.8). The Kullback-Leibler information is only available
when the true model, f , is known. [Burnham and Anderson, 2002]

Akaike information criterion (AIC)

The Akaike information criterion (AIC) is way of looking at information lost
when a particular model is used by estimating the Kullback-Leibler infor-
mation (K-L information). [Posada and Buckley, 2004] It is an estimate of
the K-L information because the true model, f , is unknown. The AIC is
only classed a valid estimate asymptotically, i.e. for a large sample. The
AIC is thought of as information lost when models are used, hence the lower
the AIC value computed the better the model is considered. However, the
Akaike information criterion cannot be solely regarded in model selection as
it is not a qualitative test. In theory if only the AIC was observed, the best
model found may have a low AIC value but perhaps not be a good fit to the
data. The Akaike information criterion is defined by Equation 3.9, where l is
the log-likelihood of the model and p is the number of estimable parameters.

AIC = −2l + 2p (3.9)

Burnham and Anderson [2002] said Equation (3.9) can be thought of as a
trade off between bias and variance or a trade off between over-fitting and
under-fitting. The term −2l decreases as more estimable parameters are
added to the model and 2k increases as more parameters are added which
helps to avoid over-fitting.

Analysis of Variance (ANOVA)

Analysis of Variance is a way to analyse models and perform statistical hy-
pothesis testing. It is readily used to make decisions, especially in model
selection. Let the current model found, with q covariates, be denoted Model
C and the current model with a new variable added be denoted, Model CA.
Model CA has p covariates such that q < p. Therefore Model C is classed as
a nested model of Model CA, thus the likelihood ratio test can be performed
to calculate the Deviance, D∗. The deviance is a measure of how close the
model is to a perfect fit and has an asymptotic chi-squared distribution. The
difference in deviance between Model C and Model CA, D∗

C −D∗
CA

, is used
to compare the two models, i.e. testing H0: Model C versus H1: Model CA
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and forming an Analysis of Deviance table. H0 is rejected if the p-value is
small, i.e. p ≤ 0.05, where

p-value = Pr(χ2
p−q > D∗

C −D∗
CA

).

Thus, to compare two models in R an Analysis of Deviance table is obtained
using the anova function, where test="Chisq" is specified. A variable added
to the current model is classed insignificant if it has a p-value≥ 0.05. At each
step of regression performed, the significance of the variable added is checked
using Analysis of Variance (ANOVA). The variables found significant gives
the model in Equation (3.10).

outcome ∼delinq6 + late6 + flate.ind+ delinq1 + late1 + over6 + age+ young

+ fee.bal3 + employ + cashadv.ind+ tenure (3.10)

Now that the single terms are found to be significant, the interaction terms
between the variables are added. Similarly, the interaction terms are removed
in order of significance. The terms with the highest p-value are removed and
the model is then fitted again. This method is repeated until a final model is
found, where all terms are found to be significant. This model is represented
by Equation (3.11).

outcome ∼delinq6 + late6 + delinq1 + over6 + age+ young + employ

+ fee.bal3 + delinq6 ∗ late6 + delinq6 ∗ over6
+ age ∗ young + late6 ∗ over6 + delinq6 ∗ age (3.11)

3.3 Model adequacy

In credit risk scoring, companies want to know the predictive power a model
has. To test how powerful a model is at predicting if an account holder will
miss a payment we will look at two things; the Somers’ D value it yields and
the area under an ROC curve.

3.3.1 Somers’ D

Somers’ D is used by credit risk companies to determine the discriminative
strength of a model. It is a key aspect used in rank statistics. Somers’
D is usually defined in terms of Kendall’s tau coefficient, τa, [Kendall and
Gibbons, 1990] which tests the strength of association between two ordinal
variables.

Definition 1 (Kendall’s τa coefficient). Kendall’s τa coefficient is defined as,

τa =
nc − nd

n0

, −1 < τa < 1 (3.12)
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where nc is the number of concordant pairs, nd is the number of discordant
pairs and n0 is total number of pair combination given by n(n− 1)/2. For
a set of joint random variables X and Y , the set of observations is given by
(x1, y1), (x2, y2), . . . , (xn, yn). Any pair of variables, (xi, yi)and (xj, yj), are
said to be concordant if both xi > xj and yi > yj or xi < xj and yi < yj
is true. Similarly, they are classed as discordant if xi > xj and yi < yj or
xi < xj and yi > yj. There is said to be no association between the pair if
xi = xj or yi = yj.

Kendall’s τa can be redefined as

τXY = E[sign(X1 −X2)sign(Y1 − Y2)],

where (X1, Y1) and (X2, Y2) are bivariate random variables independently
sampled from a population. This is the difference between the probability of
two pairs X, Y being concordant and discordant. Thus Somers’ D is defined
by Newson [2006], given in Equation (3.13), where DY X is the difference
between the two conditional probabilities, τXY and τXX , given that the two
X values sampled are different.

DY X =
τXY

τXX

(3.13)

It looks at the strength of a relationship between pairs of variables. In terms
of Somers’ D a value of -1 means all the pairs completely disagree and 1
they completely agree. It can also be expressed in terms of Harrell’s c index,
such that D = 2c − 1. Somers’ D is sensitive to event rates, meaning a
segmented model cannot be compared to a model built using the full sized
dataset. The value of Somers’ D is calculated in R using the Hmisc package.
It calculates the rank correlation between the fitted values for the model and
the binary response variable. This gives a Somers’ D value of 0.4442 which
is an acceptable value in terms of model association strength.

3.3.2 ROC curves

Receiver operating characteristic curves (ROC) were originally used in statis-
tical decision making. Objects were assumed to belong to a known category
and based upon the information on the objects they were ideally assigned to
the correct category. Examples of two-group classification tasks include:

• determining incoming emails as spam or not,

• diagnosing of a patient having a particular disease,
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• analysing credit card expenditures to decide if its fraudulent or genuine
behaviour.

Credit risk companies use receiver operating characteristic curves to deter-
mine whether an account holder will miss a payment in the next three months.
They can also be used to test the discriminative power of models found. An
ROC curve is useful in the analysis of logistic models found because it demon-
strates the performance of a binary classification system. It plots sensitivity
vs 1-sensitivity where they are defined by Equation (3.14) and (3.15) respec-
tively. These definitions arose from signal detection theory where the aim
was to detect a signal and assign each event into the signal or noise group.

sensitivity = probability of detecting true signal (3.14)

specificity = 1− sensitivity = probability of detecting false signal (3.15)

According to Anderson [2007], the sensitivity, STP , and specificity, SFP , can
be thought of more generally as the ability to mark true positives and the
ability to identify true negatives respectively. The ROC curve is a plot of X
versus Y , defined by Equations (3.16) and (3.17), where the chosen cut-off is
varied.

X = Pr[SFP ≤ Scut-off] (3.16)

Y = Pr[STP ≤ Scut-off] (3.17)

To test the discriminative power of a model, the area under a receiver oper-
ating characteristic curve (AUROC), or the c-statistic is analysed, stated by
Equation (3.18). The equation states that the area under the curve is equal
to the probability that the true positive rate is less than the true negative
rate, with the addition of 50% of the probability that the two rates are equal.

AUROCcP,N
= Pr[STP < STN ] + 0.5Pr[STP = STN ] (3.18)

The idealistic area under the curve for a model found is 1. As the curve
tends to an area of 1, the more powerful the model is at correctly classifying
if an account holder will miss a payment or not. An area under the ROC
curve of 0.5 implies the model is like making a random guess at classifying.
Figure 3.4 depicts a number of ROC curves. The red dotted curve shows the
“perfect” ROC curve, due to its AUROC being 1. The green line is classed
as the least powerful classifying model and as the lines tend to the red dotted
curve they increase in discriminating power.

The logit model obtained, given by Equation (3.11), is an estimation of
the data and will not correctly classify 100%. Thus an acceptable range
for the area under the ROC curve is considered to be between 0.5 and 1.
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Using the R package, ROCR, to plot an ROC curve for the chosen model gives
an area of 0.7221. This value lies in the acceptable range and implies the
model found is a fairly powerful discriminator. The subsequent plot, shown
in Figure 3.5, depicts the ROC curve produced for the logit model obtained.
The red dotted curve shows a perfect discriminating model whose AUROC
is equal to 1. The black line is the ROC of the model found. The y-axis of
the graph, true positive rate, is defined by Equation (3.14) and similarly the
x-axis, false positive rate is defined by Equation (3.15). Figure 3.6, shows
graphically the strength of the segmented model and the non segmented
model. It is clear that the choice not to segment the data is a good one. The
curve which depicts the non segmented model is more powerful as it has an
area under the ROC greater than the segmented curve.

Figure 3.4: ROC curve examples
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Figure 3.5: ROC curve for model found

Figure 3.6: Segmented model versus non segmented model
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Chapter 4

Defining an account

From the logistic model found, the outcome will be transformed using the
logit link function, expressed in Equation (3.6), to calculate the predicted
probability of missing a payment. Thus the probability of missing a payment
is given by

p =
exp(outcome)

1 + exp(outcome)
. (4.1)

By developing an R function we can take each individual and calculate the
probabilities from the transformed link function. From such probabilities a
cut-off point can be chosen, which determines if an account holder defaults
on a payment. The chosen cut-off point should not be too low such that
account holders are declined when they should not have been. Alternatively,
the cut-off point should not be too high to ensure no accounts are classified
as declined. Either situation would not be financially beneficial for the credit
company. An optimal cut-off point will be chosen by considering cost-benefit
analysis.

This cut-off point is found by looking at a number of plots. The cut-off
values in Figures 4.1, 4.2 and 4.3 represent 1−p, where p is the chosen cut-off
point in the R function. Thus, if an account has a probability of missing a
payment in the next three months greater than p it is classed as defaulting.
The R package ROCR produces Figure 4.1, which shows the sensitivity and
the specificity versus cut-off values. The sensitivity is thought of as the true
positive rate, tpr, at which accounts are correctly classified and alternatively
the specificity is the false positive rate, fpr, that represents the rate accounts
are misclassified. The point at which the curves intersect is a good cut-off
point as it is where the rate at which accounts are correctly classified as
defaults is at its maximum and the rate at which accounts are misclassified
is minimised, simultaneously. To reduce financial cost, misclassification will
tried to be avoided.
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Figure 4.1: True and false positive rate vs cut-off

Another useful plot is the ROC curve for the model colourised according
to the cut-off value, shown by Figure 4.2. The gradient colour legend repre-
sents the change in cut-off values. This is a useful plot as it shows that as
the cut-off point is lowered both the true and false positive rate increases. As
the false positive rate is increased to its maximum, almost all accounts will
be deemed defaults, thus the true positive rate is maximised. Alternatively,
if the cut-off is too high then very few accounts are classified as defaults,
resulting in the tpr and fpr to become negligible. The choice of cut-off value
should be a point in Figure 4.2 where the percentage increase in true posi-
tive rate is much greater than that of the false positive rate. As the cut-off
value in the plot decreases the relationship between the two rates becomes
almost linear. A lower cut-off value implies a high percentage of the sample
classified as defaulting accounts, which gives effect to the true positive rate
increasing. If a larger percentage of the sample is classed as defaulting the
rate at which accounts are misclassified will also increase alongside the tpr.
If we look at a cut-off value around 0.25 in Figure 4.2, i.e. p ≥ 0.75, where
accounts are classed as defaults in R the change in true positive rate is much
greater than the false positive rate which is desirable. However, the change
in true positive rate should not completely outweigh the false positive rate
because it would not be economically viable for credit companies. There
should still be a margin in which the company can profit whilst minimising
wrongful classification.

The accuracy of the model, in terms of discriminative strength, is also
calculated and plotted. The accuracy of the final model is plotted against
possible cut-off values shown by Figure 4.3. The accuracy is shown to be
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maximised around a cut-off value of 0.3. Therefore, if the probability of an
account holder missing a payment is greater than 0.7, the accuracy of being
correctly classified should be maximum.

Figure 4.2: Colourised ROC curve

Figure 4.3: Accuracy versus cut-off
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Chapter 5

Decline reasoning

We now test the logistic model found, expressed in Equation (3.11), to an
acceptable predictive power. Using this model the estimated probability of
missing a payment in the next three months is calculated for all accounts.
Analysis is implemented to find an optimal cut-off probability. This cut-off
point is where accounts are defined as one of two categories; default or non-
default. If they are default they are statistically thought to miss a payment
in the next three months. Once this categorisation has occurred, decline
reasoning will be produced. This decline reasoning gives the customer an
idea as to why they were treated a certain way. For example why they were
declined for a certain action dependent on them being classed as defaulting.
This decline reasoning is a legal requirement for credit companies in the
United States, but in the UK it is currently optional.

5.1 Decline reasoning for whole data

To predict a chosen number of reasons, k, that contribute to decline reasoning
for the whole dataset an R function needs to be created. It will predict the
coefficients of the variables in the final logistic model, and sort the coefficient
values in order of importance. It will then match the coefficient value to the
variable and give the top k variables. The number one reason, for decline,
changes dependent upon the cut-off point chosen in §4. This change in decline
reason for different cut-off points is depicted by Figure 5.1. It can be seen
that for the four different cut-off values, the main decline reason is the total
number of late fees over the 6 month period, late6. Now that the top decline
reason has been predicted, the second and third most common decline reason
can also be predicted. For the whole dataset the three most common decline
reasons are described by the delinquency value over 6 months, number of late
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Figure 5.1: Decline reasons for different cut-off points

fees over 6 months and the age of the account in months. The second most
common top decline reason is the age of the account, shown in Figure 5.2. It
seems that the younger the account age poses more of a risk when lending.
This is a sensible deduction, as older accounts can be thought of as loyal,
paying customers who are low risk of defaulting. If older accounts missed
payments and were a high risk to lend to, from a business perspective credit
companies would try to minimise the risk, possibly by terminating high risk
accounts. It would not be profitable for credit companies to keep accounts
for a significant period of time if the account holder defaults regularly. The
third, most common, top decline reason is the age of the account.

Figure 5.2: Top 3 decline reasons for whole dataset
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5.2 Decline reasoning for declined accounts

The three most common top decline reason will then be looked at for accounts
who are classified as defaults. The chosen cut-off point for the analysis is 0.75.
The number of different top decline reason increases when predicted for ac-
counts that are already classified as defaulted. Having accounts that are a
low risk of defaulting, masks decline reasons for high risk accounts. This
is beneficial to credit companies, as it gives them more insight as to which
variables contribute to accounts defaulting. A high number of defaulted ac-
counts are declined by three common top reasons; delinquency value for the
first payment period, number of over-limit fees for the 6 months and the
interaction term between the number of late and over-limit fees for the 6
months. The other top three most common decline reasons are employment
status, fee balances for payment cycle 3 and young accounts. This is shown
in Figure 5.3. The R function also outputs the top k variable combinations

Figure 5.3: Top 3 decline reasoning for declined accounts

for decline reasoning. For example, the top 3 reasons for decline. For the
complete dataset the majority of the accounts are described to be declined
by the variable combination; age ∗ young, delinq6 ∗ late6, late6 ∗ over6. This
combination is a reasonable prediction of decline reasoning. If the account
holder is a young account and has high numbers of over-limit fees and delin-
quency interacted with a high number of late fees, the account is discernibly
going to pose a high risk of defaulting in the future three month period. The
credit company can explain to the account holder they were declined for an
action due to their unreliability with payments in relation to them being a
juvenile account. A high delinquency value over 6 months may not necessar-
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ily be an issue if the account is older. This may be because in past cycles the
older accounts have a low risk profile. However, when an account is classed as
young, there is no past information of how they behaved. Thus, the 6 month
period, in which the analysis has taken place, young accounts behaviour is
impressionable to the company. The top 3 reasons for decline change when
the function is applied to accounts pre-determined as defaults. There are 286
possible combinations that could produced decline reasons. Out of the 286
possibilities, 13 combinations account for around 70% of defaulting accounts.
These top decline reasons, grouped alphabetically, and their frequencies are
shown in Figure 5.4. The alphabetized groups in Figure 5.4 represent the

Figure 5.4: Decline combinations for declined accounts

combination of variables, produced for decline reasons. The first five groups
are defined in Table 5.1, where behavioural characteristics can be deduced. It
is unsurprising that the most popular decline reason is a combination involv-
ing high values of delinquency, late fees and over-limit fees over the 6 month
period. The 3 variables are high in significance in the final logistic model.
In a credit risk viewpoint, a delinquency value of 3 or more is an indicator
of a “bad” account. Group B demonstrates that the primary decline reason
for young aged accounts is due to the number of over-limit fees in their first
6 months and their delinquency value in the first month. It can be thought
that for young accounts, a missed payment in their first month is crucial as
to whether they are declined for future actions.
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Group Combination
A delinq6 ∗ over6; late6 ∗ over6; delinq6
B over6; age ∗ young; delinq1
C delinq6 ∗ over6; late6 ∗ over6; age ∗ young
D over6; delinq6 ∗ late6; age ∗ young
E over6; age ∗ young; late6

Table 5.1: Combination classes

5.3 Decline reasoning for accepted accounts

We will now consider that accounts who are accepted can also be incorrectly
defined as declined, especially if they have a probability of defaulting close to
the chosen cut-off point. Decline reasoning can also be produced, using the
same prediction function as previously, for accepted accounts. The number
one reason for possible decline is looked at first, with a chosen cut-off value
as 0.75, depicted in Figure 5.5. This cut-off point is chosen to be consistent
with the declined accounts analysis. The number one reason for decline, on
accepted accounts, is the indicator variable young. This suggests that if an
accepted account is classed as young, i.e. less than or equal to 6 months, it
is most likely to be falsely declined due to this reason.

Figure 5.5: Top decline reasoning for accepted accounts
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The top 3 possible decline reasons cna now be looked at for accounts
classed as accepted. It is shown in Figure 5.6 that when the top 3 decline rea-
sons are predicted for accepted accounts, the top reason for decline changes
to the age of the account. After age, the variables delinq6, late6 and over6
have a similar frequency for the top decline reason. This is unsurprising as
they are considered highly significant terms in the logistic model. For both
accepted and declined accounts the variable over6 has a high frequency for
the top decline reason, suggesting no matter what the status of the account
a high number of over-limit fees is a general decline reason. For the second
and third most common decline reason, the interaction term between the
delinquency value over 6 months and the number of late fees over 6 months
has the highest frequency. The interaction term between the delinquency
value over 6 months and the number of over-limit fees over 6 months also
has a high frequency. This is not unexpected, as all three terms separately
can be considered risky behaviour when high in value. A high number of
missed and late payments largely suggests that the account holder will miss
another payment in the next three months. If the number of over-limit fees is
high, it may be a possibility that the account holder is spending more than
their means, which poses a risk of them being unable to make a payment
also. Similarly, with accounts who are pre-determined as defaults, the com-

Figure 5.6: Top 3 decline reasons for accepted accounts

bination of possible decline reasons can be produced for accounts who are
classed as accepted. There are still 286 possible combinations that could give
potential decline reasons. Out of these combinations, 6 of them account for
around 70% of accepted accounts. The top decline reasons are categorised,
and their subsequent frequencies plotted in Figure 5.7. The categories give
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the combination of variables that attribute to decline reasoning. The defini-
tions of these categories are given in Table 5.2, where the decline reasoning
can be inferred. It is not unexpected that the top combination of decline
reasons, in category U, is late6 ∗ over6; delinq6 ∗ late6; delinq6 ∗ over6. All
three interaction terms are undesirable for credit companies who are lending.
A company wants an individual who repays on time and does not always
over spend, not a person who is over-spending and unreliable on payments.
The category W is very similar, in decline reasons, to category C for declined
accounts. This reiterates that the spending and repayment behaviour of an
account who is young is very important. Thus, if a young account has high
values in delinquency and high numbers of over-limit and late fees it is very
likely that is the reason for them being declined whether they are predicted
to default or not. This is helpful for the credit company, as they may charge
younger accounts a higher interest who do have high numbers of fees to com-
pensate for potential missed payments. An interesting decline combination
is category X, where the reasons are due to the age of the account and the
account holder’s employment status. This may imply that a young account
where the account holder is unemployed is the reason they were declined.
Alternatively, an older account may be risky to lend to if they are retired,
with a limited income. This category gives a broad range of decline reasoning
due to the different types of employment status.

Figure 5.7: Decline combinations for accepted accounts
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Group Combination
U late6 ∗ over6; delinq6 ∗ late6; delinq6 ∗ over6
V age ∗ young; late6 ∗ over6; delinq6 ∗ late6
W over6; late6 ∗ over6; delinq6 ∗ late6
X age ∗ young; age; employ
Y age; employ; late6 ∗ over6
Z late6; delinq6; delinq6 ∗ age

Table 5.2: Combination classes

5.4 Risk-based pricing

Regardless of an account missing a payment in the next three months, there is
always risk when lending. This is where the concept risk-based pricing (RBP)
is useful. Once a credit company can predict who will miss a payment and
have an idea as to why, they can implement appropriate interest rates and
fees charged to compensate for the specific risks. Anderson [2007] stated that
Edelman [2003] found practical issues associated with risk based pricing and
its implementation. He indicated that lenders progress from a flat rate to
RBP through the following stages:

1. Increase in rates for high risk customers who were near the cut-off.

2. Decreased standard rate and lower rates for low risk customers.

3. Decrease in cut-off and acceptance of accounts previously declined.

The lenders use RBP to vary prices according to the predicted risk. Cost-
recovery pricing is the most obvious way to do risk-based pricing. This
tries to allocate costs to every single application and charge accordingly to
the risks. Anderson [2007] suggests that high risk accounts should still be
considered, because they could become loyal, profitable customers. An ex-
ample of this may be students; initially they are a high risk to lend to but
once they graduate and become earners they could bring high revenue to the
credit company. The cut-off point which is used to determine if accounts
are accepted/rejected can be moved by the lender to maximise their profits.
Lowering the cut-off point gives more decline reasons, shown in Figure 5.1,
which gives the lender more variables to consider. Thus, by lowering the cut-
off the lender could price a loan higher due to the risk posed by the variables
considered decline reasons. For example, lenders could use RBP to charge
account holders high interest rates should they have high delinquency values
in the categories given in Table 5.1. This use of RBP helps to outweigh any
costs of miss-classification of accounts.
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Chapter 6

Conclusions

In credit risk scoring statistical models are built, namely scorecards, which
produce risk scores. These scores are used by credit companies to make
decisions. The decisions made then drive some sort of action, for example the
lowering of a credit card spending limit. The problem with these statistical
models is the vast number of variables used to produce them. Due to the high
number of variables it makes it difficult for the company to assign a reason to
a score. The objective of the analysis was to explore methods into assigning
reasons to a “bad” score such that the company could give an explanation
to their customers as to why they receive the treatment they do.

Before any statistical analysis could take place a number of possible issues
with the data had to be dealt with, the first of which was missing data entries.
It was unsurprising that a number of data entries were missing due to the
large dataset being real, raw data. Upon careful inspection it could be seen
that the missing entries were not missing at random and could be explained
as to why they were missing. As a result of this and the small proportion
of missing entries, the chosen solution to deal with the missing data was
imputation. Once the missing data issue was dealt with, the behaviour of
the data was investigated. In credit risk modelling it is common to split or
segment the data into groups. When looking at the data it could be argued
that there was a possible segmentation for the total delinquency value over
the 6 month period. There was a large proportion of customer accounts that
had a delinquency value of zero. The data was segmented into two groups;
one for a total delinquency value of zero and one for a total delinquency
value of 1-6. Using the two groups “quick” models were built and analysed
to see if segmentation was worthwhile. The benefit of segmentation did not
outweigh the issues of analysing more than one model, thus the data was not
segmented in further model building.

The number of variables needed to be reduced before logistic regression
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could be applied. The chosen method to reduce the number of variables
was the use of decision trees. Once the number of variables were reduced
to a manageable size standard logistic regression analysis could take place.
Forward step-wise regression was used where models were chosen by looking
at the AIC value it yielded and significance deduced by ANOVA tests. A
model was found, where all the terms were considered significant. The logistic
model found then needed to be tested to ensure its predictive power was
sufficient. This was done by looking at two methods used in credit risk
scoring; the area under ROC curves and Somers’ D. Both the area under the
ROC curve and the Somers’ D value, for the model, were found to be an
acceptable value.

The logistic model found was able to produce probabilities as to whether
an account holder would miss a payment in the next three months. These
probabilities were used to determine a cut-off point where accounts were clas-
sified as accepted or rejected. If the account holders probability of defaulting
on a payment was higher than the cut-off point, they were deemed declined.
The chosen cut-off point was a value of 0.75. This was determined by looking
at the effect the chosen cut-off point had on the accuracy of the model, the
rate of correctly classifying an account and the rate of falsely classifying an
account. Once a cut-off point was chosen the model could then be used to
predict decline reasons. The main decline reasons for accounts involved a
combination of total delinquency value, over-limit fees and late fees for the 6
month period. This was unsurprising as the three variables were classed as
highly significant in the logistic model and are seen as undesirable lending
traits.

Bayesian techniques could have been applied had their been more time
for in depth analysis. An example of applicable Bayesian analysis would have
been the use of Bayesian networks to look at the relationships between the
available variables. It may have been a better tool to reduce the number
of variables, before logistic regression took place. Further analysis could
have taken place to try and group accounts into different risk categories
so that risk-based pricing could be applied. If analysis were to continue,
other techniques for assigning reasons could be explored with the intention
of minimising miss-classification, especially when accounts where near the
cut-off threshold.
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