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Abstract

When subjected to a magnetic field, a particle can display interesting
motion. If the particle is also in a central force, then the motion becomes a
lot more complicated and chaos occurs. In this project I will be observing
and analysing this motion in both two and three dimensions. I will start
by looking at 2 dimensional motion in a central force, then adding in the
magnetic field and observing how the motion has changed. I will then move
into three dimensions and plot the motion. This is where the particle begins
to display chaotic behaviour so I will analyse this motion and produce
Poincaré maps to analyse the chaos. I will also examine how the size of the
magnetic field affects how chaotic the motion is and try to determine how
the strength of the magnetic field affects the onset of chaos.
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Chapter 1

Introduction

Particles in a central force display fairly simple orbits, we know this from
observing the orbits of planets around the sun. However, if we add in a
magnetic field, it is less well known what the motion will look like. In fact
the motion becomes chaotic and this is what I will be looking at throughout
this project.

Throughout the project I will be assuming that the particle is an elec-
tron in a Rydberg atom. A Rydberg atom is an atom which has been
excited and whose furthest electron has a high radial quantum number n.
The radial quantum number is one of 4 quantum numbers used to describe
an electron of an atom, these are: the radial quantum number n, the an-
gular quantum number lq, the magnetic quantum number m and the spin
quantum number s. As n increases, the average position of an electron be-
comes further from the nucleus. This means that the length scales between
the outer electrons and the nucleus become so large, that the motion can
be represented classically, rather than using quantum mechanics. Rydberg
atoms behave in a similar way to hydrogen atoms as the outer electron is
shielded from the nucleus by the core electrons. The outer electron sees
the nucleus and all other electrons as one body and therefore the atom can
be treat as a hydrogen atom with only one electron.

Another case where the motion I will be studying may be observed is
the orbit around a black hole. Matter which orbits a black hole with a
magnetic field can display particle trajectories similar to those I will be
plotting in this project.

I will begin by focusing on the motion in two dimensions. Starting with
the motion in only a central force, I will derive some equations describing
the motion. I will use these to plot the orbits of the particle, as well
as looking at the energy and momentum of the system. Staying in two
dimensions, I will then add in a constant magnetic field. I will modify the
equations derived for the central force and plot the motion in the magnetic
field. I will briefly take a look at the case where the magnetic field is not
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constant, but depends upon the radial position of the particle. The next
thing to do is to move into three dimensions. I will derive the equations
and then make them dimensionless. Plotting them will allow me to see how
the three dimensional trajectories compare to the two dimensional motion
previously observed. Finally I will analyse the chaotic motion by looking
at Poincaré maps of the bound orbits. By reducing the strength of the
magnetic field I will find fixed points and periodic solutions of the system.
Increasing the field slightly will allow me to observe the transition into
chaos. I will also use the dimensionless parameters to determine the size
of the magnetic field in Tesla at each stage.

Analysis of a single Poincaré section has been carried out in previous
work on this system. [1] [2] However I will be using different Poincaré
sections which have a better structure and are more informative.
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Chapter 2

Central Force Motion

In this chapter we will be studying the motion of a particle under a central
force in 2 dimensions. We will start by examining the properties of a central
force. We will then find the momentum and energy of the particle. Finally
we are going to plot the motion of the particle.

2.1 Central Force

A central force acting on a particle is one which depends only on the posi-
tion of the particle relative to the origin. The force acts on the particle by
moving it towards or away from the origin.

An example of a central force is the gravitational field around the earth.
Gravity pulls objects towards the centre of the earth and gets stronger the
closer the object is to the origin.

The central force is given by

F = f (r) = f (r) r̂,

where F is the force and r is the position vector of the particle.
We can write the position of a particle as

r (t) = rr̂, (2.1)

and use this to find the velocity and acceleration. However, first we need
to know how to differentiate r̂ and θ̂ with respect to time. It can be shown
that

˙̂r = θ̇θ̂,

˙̂
θ = −θ̇r̂.

Now these can be used to differentiate (2.1) to get the velocity

ṙ (t) = ṙr̂ + rθ̇θ̂, (2.2)
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and again to get the acceleration

r̈ (t) =
(

r̈ − rθ̇2
)

r̂ +
(

2ṙθ̇ + rθ̈
)

θ̂. (2.3)

Newton’s 2nd Law of motion states that

F = ma = mr̈,

where m is the mass and a is the acceleration. Combining this with the
central force gives

mr̈ = f (r) r̂. (2.4)

So now we can substitute equations (2.1), (2.2) and (2.3) into this equation
to get

m
(

r̈ − rθ̇2
)

r̂ +m
(

2ṙθ̇ + rθ̈
)

θ̂ = f (r) r̂,

splitting this into separate components gives the radial component as

m
(

r̈ − rθ̇2
)

= f (r) , (2.5)

and the angular component as

2ṙθ̇ + rθ̈ = 0. (2.6)

There are two conserved quantities in central force motion, which will
be needed to simplify these equations and allow us to plot the orbits. These
quantities are the angular momentum L and the total energy E. Since they
are conserved, they are called constants of motion.

2.2 Angular Momentum

Angular momentum is the measure of rotation of an object or particle. In
classical mechanics it is defined as

L = r ×mṙ.

This gives

L = rr̂ ×m
(

ṙr̂ + rθ̇θ̂
)

,

and calculating this cross product gives

L = mr2θ̇. (2.7)

This is the angular momentum of the particle, and is one of the con-
stants of motion of the particle. Also, note that the time derivative of this
is the angular component of the force.
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We can now show that angular momentum is conserved by differentiat-
ing this to give

L̇ = mr
(

2ṙθ̇ + rθ̈
)

,

and if we compare this to equation (2.6) it can easily be seen that

L̇ = 0.

So the angular momentum is constant and therefore is a conserved quantity.
Another way to show that the angular momentum is conserved is to

consider the Torque. Torque is the force which causes rotation and is
defined as

τ = L̇ = r × F .

Calculating this gives

L̇ = r ×mr̈.

= mr
(

r̈ − rθ̇2
)

As before, if we compare this to (2.6) we can see that L̇ = 0 and L is
constant so the angular momentum is conserved.

2.3 Energy

The second constant of motion to look at is the energy. The total energy
of a system is made up of the kinetic energy and the potential energy.

Kinetic energy is the energy generated by motion, and is defined as

K =
1

2
mṙ

2.

The potential energy of an object is determined by its spatial position.
Potential energy is defined using the force as

F = −∇V .

As we are working in two dimensions and we have a central force, this can
be written as

f (r) = −
∂V

∂r
. (2.8)

Now, the total energy of our system is given by

E =
1

2
mṙ

2 + V. (2.9)
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Calculating ṙ
2 = ṙ · ṙ and substituting in gives

E =
1

2
m

(

ṙ2 + r2θ̇2
)

+ V.

We can now show that the energy is a conserved quantity. Differentiat-
ing equation (2.9) gives

Ė = m
(

ṙr̈ + rṙθ̇2 + r2θ̇θ̈
)

+ V̇ .

Now note that
ṙ · r̈ = ṙr̈ + rṙθ̇2 + r2θ̇θ̈,

and equation (2.8) implies that

V̇ =
∂V

∂t
=

∂V

∂r

∂r

∂t
= −f

∂r

∂t
= −f ṙ.

Substituting both of these into Ė leaves

Ė = mṙ · r̈ − f ṙ,

= ṙ · F − f ṙ,

= ṙf − f ṙ,

= 0.

Therefore, integrating this implies that E is constant, so the energy is
conserved.

2.4 Orbits

2.4.1 Predicting the Motion

We are now going to use the energy to think about what we expect the
motion of the particle to look like and to make some predictions about
what forms the orbits might take.

We can now take the total energy in equation (2.9), and rearrange it
using equation (2.7) to get

E =
1

2
m

(

ṙ2 +W
)

,

where

W = W (r) =
L2

m2r2
+

2V

m
.

We can now plot W . This will enable us to predict what the orbits will
look like.
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Figure 2.1: Plot of W which can be used to predict the form of the orbits.
The blue lines represent positive and negative energy.

In figure 2.1 we have plotted W and then added in two horizontal lines,
one at positive W and one at negative W . These correspond to the particle
having positive and negative energy respectively.

From the plot, you can see that the line corresponding to negative
energy cuts the line for W twice. This shows that the orbits will be closed.
Therefore we expect the orbits to be either circular or elliptical. Now
looking at the line corresponding to positive energy, we can see that it cuts
W only once. This means that the orbits will not be closed, but instead be
open. Hence we expect that they will be hyperbolic curves.

2.4.2 Orbits

I am now going to plot the trajectories of the particle, but to do this we
need an equation for the position of the particle. We can start by taking
the angular momentum and rearranging it to get θ̇. We can then substitute
into equation (2.5) to get

mr̈ −
L2

mr3
= f (r) . (2.10)

We can now use this to plot some orbits under different conditions.
We have first chosen the energy to be positive and plotted the trajectory

of the particle. Looking at figure 2.2, you can see that the particle comes
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Figure 2.2: A hyperbolic orbit oc-
curs when the energy is positive.

Figure 2.3: Elliptical orbit in neg-
ative energy.

Figure 2.4: Circular orbits can
also appear in negative energy.

down from far away. As it enters the central force, it changes direction
and finally leaves again, going back the way it came in. This is indeed a
hyperbolic curve, just as we predicted.

Next, we made the energy negative and plotted the trajectory again,
which can be seen in figure 2.3. This is an elliptical orbit which stays inside
the central force forever.

Finally, we adjusted the boundary conditions and plotted one more
orbit, figure 2.4. This time the trajectory is circular.

Once again, our prediction was correct that orbits would be circular or
elliptical when the energy is negative.
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Chapter 3

Central Force Motion in a

Magnetic Field

We can now add in a magnetic field and observe how this affects the motion
of the particle.

3.1 Magnetic Field

Introduce a magnetic field in the z direction

B = Bẑ.

The force on the particle is now made up of the central force as before and
the Lorentz force of the magnetic field. It is given by

F = f (r) r̂ + eṙ ×B, (3.1)

where e is the charge of the particle. Using this with Newton’s 2nd Law
gives

f (r) r̂ + eṙ ×B = mr̈. (3.2)

Since the magnetic field is in the z direction, note that

r̂ ×B = −Bθ̂,

θ̂ ×B = Br̂.

Substituting equations (2.2), (2.3) and (2.4) into equation (3.2) gives

F = f (r) r̂ − eṙBθ̂ + erθ̇Br̂,

= m
(

r̈ − rθ̇2
)

r̂ +m
(

2ṙθ̇ + rθ̈
)

θ̂.

Now we can split this into separate components to get

f (r) + erθ̇B = m
(

r̈ − rθ̇2
)

, (3.3)

−eṙB = m
(

2ṙθ̇ + rθ̈
)

. (3.4)
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3.2 Angular Momentum

We can now calculate the angular momentum by finding something that
differentiates to give the angular component of the force in equation (3.4).
This is

L = mr2θ̇ +
1

2
eBr2. (3.5)

Differentiating this gives

L̇ = mr
(

2ṙθ̇ + rθ̈
)

+ eBrṙ,

and using (3.4) we can see that

L̇ = 0.

so the angular momentum is conserved.

3.3 Energy

Equation (3.5) can be rearranged to get θ̇

θ̇ =
L− 1

2
eBr2

mr2
. (3.6)

We know that the total energy can be rearranged to give

E =
1

2
m

(

ṙ2 +W
)

,

where this time

W =

(

L− 1
2
eBr2

)2

m2r2
+

2V

m
.

Substituting W back into the energy gives

E = constant,

so the energy is conserved.

3.4 Orbits

3.4.1 Predicting the Motion

Once again we can use W to predict what form the orbits will take.
Figure 3.1 shows a plot of W and, like in section 2.4.1, some lines have

been added in corresponding to positive and negative energy. This plot
shows that the orbits are always closed, whether the energy is positive or
negative. However, as the central force and the magnetic field are interact-
ing with each other, we cannot predict the exact form of the orbits.
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Figure 3.1: Plot of W with magnetic field to try to predict the form of the
motion. Blue lines correspond to positive and negative energy.

3.4.2 Orbits

We now want to plot the trajectories of the particle under different condi-
tions. Before we do this, we will first introduce some parameterizations to
simplify the equations

l =
L

m
, (3.7)

b =
eB

2m
. (3.8)

Also, the force can be written as

f (r) =
Ze2

4πǫ0r2
,

which can be parameterized as

f (r) =
gm

r2
, (3.9)

to make the equations simpler. Here, Z is the atomic number of the atom
and e is the charge of the electron.

We can substitute these parameterisations and equation (3.6) into equa-
tion (3.3) to give

r̈ −
l2

r3
+ b2r −

g

r2
= 0. (3.10)
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We can now use this equation to plot some orbits.

3.4.3 Magnetic Field Only

We can first try getting rid of the central force, i.e. setting F = 0, to see
what the motion will look like under only a magnetic field. This corresponds
to setting g = 0 in equation (3.10).

Before plotting this orbit, we will derive an equation for the form the
motion will take. We will begin with equation (3.2) and set f (r) = 0,
leaving

mr̈ = eṙ ×B.

Integrating this leaves

mṙ = er ×B + constant. (3.11)

If we assume that ṙ is perpendicular toB, then this means that the constant
on the right hand side is also perpendicular to B. Therefore we can write

constant = −er0 ×B,

where r0 is constant. We can substitute this into equation (3.11) and
rearrange to get

m (ṙ − ṙ0) = e (r − r0)×B.

Multiplying through by (r − r0) and rearranging gives

1

2
m

∂

∂t
(r − r0)

2 = 0.

Integrating this equation leaves

(r − r0)
2 = constant. (3.12)

This is clearly the equation of a circle with the centre depending on the
value of the constant. Different initial conditions will position the circle in
different places.

We can now plot the motion using equation (3.10) to see if we are correct
about the shape of the orbit.

You can see from figure 3.2 that motion in only a magnetic field is
indeed circular as we predicted from equation (3.12). This is very similar
to the motion under only a central force, as seen in chapter 2. This is
because, in both cases, there is only one force acting on the particle.

We can now combine these two cases and observe the motion under
both a central force and a magnetic field.
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Figure 3.2: Motion in a magnetic field without a central force is just circu-
lar.

3.4.4 Central Force and Magnetic Field

Now we can look at the orbits in both a central force and magnetic field.
Looking at figures 3.3, 3.4 and 3.5, you can see that the motion of

the particle is more complicated when there are two forces acting on the
particle. The particle seems to loop around itself while orbiting around the
origin.

3.5 Magnetic Field depending on r

Previously, we have only looked at the case where the magnetic field is
constant. However, this is not the only possibility. We are now going
to briefly look at the case where the magnetic field is not constant, in
particular we will look at the case where it is a function of the position of
the particle.

Before looking at this case, we will first need to consider the vector
potential.
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Figure 3.3: Motion in a central
force and magnetic field.

Figure 3.4: Motion in a central
force and magnetic field.

Figure 3.5: Motion in a central
force and magnetic field.

3.5.1 Vector Potentials

The vector potential is a vector field A and is defined as

B = ∇×A, (3.13)

where B is the magnetic field.
Note that taking the divergence of this gives

∇ ·B = ∇ · (∇×A) = 0.

Which leads to the Maxwell equation

∇ ·B = 0.
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The definition of the vector potential is not uniquely defined, since we
can add terms to A which still satisfy equation (3.13). These must be terms
such that when we take the curl, it still gives 0, meaning that the magnetic
field remains unchanged. A gradient term is an example of one that would
work. For example

A+∇φ,

is also a vector potential, for some scalar function φ. This property is called
gauge invariance.

3.5.2 The Magnetic Field

We can now introduce the magnetic field which depends on position.

B = B (r) .

We know that the magnetic field is in the z direction, which means that
the components of B are

B = (0, 0, B) .

We can make a guess at the vector potential. We will try using

A = (0, A, 0) .

Other vector potentials will also work as long as they have r or θ compo-
nents. Using equation (3.13) to combine these we get

B = r−1 ∂

∂r
(rA) . (3.14)

We can also calculate the angular momentum of a particle in this mag-
netic field. This is done by starting with equation (3.4) as before and
substituting in equation (3.14). Then rearranging leaves

∂

∂t

(

mr2θ̇ + erA
)

= 0.

We know that the angular momentum is conserved so this means that the
angular momentum is given by

L = mr2θ̇ + erA. (3.15)

We can clearly see that the angular momentum contains a component of
the vector potential.

When given a magnetic field B as a function of position, it can be
substituted into equation (3.14) and solved to obtain the vector potential
A. From there, we can substitute A into equation (3.15) to obtain the
angular momentum of the system. All other analysis of the motion can
follow the same way as previously demonstrated
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Chapter 4

Motion in 3 Dimensions

We have looked in detail at the motion in two dimensions. We can now
generalise these ideas to 3 dimensions and analyse the motion.

4.1 The Equations

We are going to begin with the force in three dimensions and use this to
derive three equations that will be used to plot some particle trajectories
In this chapter we will be using the notation

R = (r, θ, z) ,

where R is the position in 3 dimensional space.
If we now let the force be

F = f
(

R̂

)

=
−Ze2

4πǫR2
R̂, (4.1)

where Z is the atomic number of the atom and e is the charge of an electron.
Now we can rearrange this force to get

F = f (r, z) r̂ +G (r, z) ẑ,

where

f (r, z) =
−Ze2r

4πǫ (r2 + z2)
3

2

, (4.2)

G (r, z) =
−Ze2z

4πǫ (r2 + z2)
3

2

. (4.3)

If we follow the same method as we have previously done in chapters 2 and
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3 we can split the force into three components

m
(

r̈ − rθ̇2
)

= f (r, z) + erθ̇B, (4.4)

m
(

2ṙθ̇ + rθ̈
)

= −eṙB, (4.5)

mz̈ = G (r, z) . (4.6)

Since the angular component, equation (4.5), is exactly the same is it was
in chapter 3, then the angular momentum will also be exactly the same.

L = mr2θ̇ +
1

2
eBr2.

We have already shown that this quantity is constant and hence the angular
momentum is conserved.

If we now rearrange the angular momentum to get θ̇ we get

θ̇ =
L− 1

2
eBr2

mr2
. (4.7)

Using the parameterizations defined in equations (3.7), (3.8) and (3.9) this
becomes

θ̇ =
l

r2
− b. (4.8)

Now we can substitute equation (4.7) into equation (4.4) and use the
parameterizations again to obtain a differential equation in r.

r̈ −
l2

r3
+ b2r −

gr

(r2 + z2)
3

2

= 0. (4.9)

Notice that here I have substituted the form of f (r, z) from (4.2) back in
and then simplified. Here g is the same parameterization of the force as
was used in equation (3.9).

Finally we can substitute G (r, z) into (4.6) which gives

z̈ =
gz

(r2 + z2)
3

2

. (4.10)

These three differential equations describe the motion of the particle through
space.

4.2 Dimensionless Equations

Now that we have the equations to describe the motion, we can make them
dimensionless before we plot them.
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First consider equation (4.9). Ignoring the z term, this leaves

r̈ −
l2

r3
+ b2r −

g

r2
= 0.

If we let

r′ =
r

R
, t′ =

t

T
,

and substitute in, we get

r̈′ −
T 2

R4

l2

r′3
+ T 2b2r′ −

T 2

R3

g

r′2
= 0.

Now we can define the parameters

l′ =
T l

R2
, b′ = bT, g′ =

gT 2

R3
, (4.11)

where l′, b′, g′ are dimensionless. Substituting these in and dropping the
primes on the variables leaves

r̈ −
l′2

r3
+ b′2r −

g′

r2
= 0. (4.12)

This is the dimensionless equation that we will use to plot the particle
trajectories. I will also use this again in section 5.5.

4.3 Energy

Before we plot the motion, we can calculate the energy in 3 dimensions.
From equation (2.9) we know that

E =
1

2
mṘ

2
+ V.

Now, substituting in Ṙ
2
and simplifying gives

E =
1

2
mṙ2 +

1

2
mż2 +

(

L− 1
2
eBr2

)

2mr2
+ V. (4.13)

Recall the definition of the potential energy V from (2.8)

f (r) = −
∂V

∂r
.

This can be combined with the definition of F in equation (4.1) to find the
potential as

V = −
Ze2

4πǫ0 (r2 + z2)
1

2

. (4.14)

Substituting this back into equation (4.13) gives the total energy of the
system to be

E =
1

2
mṙ2 +

1

2
mż2 +

(

L− 1
2
eBr2

)

2mr2
−

Ze2

4πǫ0 (r2 + z2)
1

2

. (4.15)
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4.4 Orbits

We can now plot the motion of the particle under certain conditions, using
the three equations that we have just derived.

4.4.1 Central Force Only

We will start by observing the motion in a central force without a magnetic
field. We can do this by setting b′ = 0 in equations (4.8) and (4.9).

Figure 4.1: 3D motion in only a
central force with positive energy.

Figure 4.2: 2D projection of mo-
tion onto r,θ plane.

Figures 4.1 and 4.3 show the trajectories of a particle under different
conditions. Figure 4.1 represents motion under positive energy and 4.3
shows negative energy.

Figure 4.1 shows the particle coming in in a straight line and then
changing direction as it gets near the centre. It then leaves again in a
straight line. This behaviour is similar to the 2 dimensional case where
the trajectory is a hyperbola, as seen in figure 2.2. We have plotted the
projection of this onto the r,θ plane, which can be seen in figure 4.2. The
similarities between this and the 2D hyperbolic case can be seen easily.

Figure 4.3 shows a simple elliptical orbit in 3 dimensional space. This
directly corresponds to the 2 dimensional case where the energy is negative,
as can be seen in figures 2.3 and 2.4. A projection of this orbit onto the
r,θ plane would show an ellipse like the plots in chapter 2.
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Figure 4.3: 3 dimensional ellipti-
cal orbit in a central force only
with negative energy.

Figure 4.4: 2D projection of ellip-
tical motion onto r,θ plane.

4.4.2 Magnetic Field Only

We are now going to produce a plot of the motion of the particle in only
a magnetic field. We will put b′ back into equations (4.8), (4.9) and (4.10)
and this time set g′ = 0 to remove the central force.

Figure 4.5: 3D orbit in a magnetic
field without a central force.

Figure 4.6: 2D projection of fig-
ure 4.5 onto r,θ plane.

Figure 4.5 shows the motion in this case. The plot shows that the
particle is travelling in a spiral in the vertical direction. This is consistent
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with what we would expect, since the 2 dimensional plot, figure 3.2, shows
circular motion. If we remember that the magnetic field is in the z direction
then the obvious thing to expect is circular motion travelling upwards,
which is indeed what has been observed.

If we plot the projection of the motion onto the r,θ plane, we would
expect to see only a circle as all other external forces have been removed,
therefore leaving nothing to force the motion away from the vertical motion
of the magnetic field. Figure 4.6 shows this projection and we can see that
it is indeed a circle, similar to figure 3.2

4.4.3 Central Force and Magnetic Field

Finally we are going to plot the motion when the particle is in both the
central force and the magnetic field. To do this we will use equations (4.8),
(4.9) and (4.10) with both b′ and g′ left in the equations.

Figure 4.7: 3D motion in central
force and magnetic field.

Figure 4.8: Projection of figure
4.7 into 2 dimensions.

Figures 4.7 and 4.9 show trajectories of the particle under different
conditions.

Figure 4.7 is one possible trajectory. It shows the particle moving up-
wards in a spiral, similar to the motion without the central force. As it
passes the origin, it changes direction and begins to spiral downwards. The
particle continues to change direction, this is because the central force is
pulling it towards the centre once it has passed the origin. This force causes
the particle to change direction when it is stronger than the magnetic field
at some point. Eventually, the particle manages to break free of the central
force and then finally spirals upwards in only the magnetic field.
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We have plotted the projection of this motion in the r,θ plane, which
can be seen in figure 4.8. As you can see, it looks like the particle is
spiralling round in a arc. Also, the spirals are not distributed uniformly,
they look chaotic.

This seems to imply that motion in both a central force and magnetic
field is chaotic. To see if this is the case we can look at the other trajectory.

Figure 4.9: Bounded 3D orbit in
central force and magnetic field.

Figure 4.10: 2D projection of the
bounded motion onto r,θ plane.

Figure 4.9 shows the motion under different conditions. This time the
particle begins inside the central force and moves around inside the force.
In this case, the motion is bounded, as the particle never manages to break
free of the central force. It simply moves around inside the range of the
force. Looking at this plot it is difficult to see any similarities with the 2
dimensional plots in chapter 3.

For this trajectory we have also produced a plot of the projection on
the r,θ plane. Figure 4.10 shows this plot. We can see that this plot looks
similar to those seen in section 3.4.2, although we couldn’t see the link
when looking at the 3 dimensional plot. However, this plot looks a lot less
predictable those in chapter 3 and also looks quite chaotic. If we continued
to observe and plot the motion, we would expect that the particle would
continue to loop around, without ever breaking free of the force.
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Chapter 5

Chaotic Motion

5.1 Poincaré Map

We have just seen that there are cases where the motion is bound and never
escapes a certain area. A useful thing to look at in this case is a Poincaré
map.

The Poincaré map is named after the french mathematician and physi-
cist Henri Poincaré. It is a plot of all points where a trajectory in 3 di-
mensional space intersects with a 2 dimensional plane. The resulting map
can have a structured form, showing that the motion is structured and
not random. On the other hand, the map can look like a lot of randomly
distributed points, showing that the motion is chaotic.

5.1.1 Map in the r,θ Plane

We are going to focus on the motion plotted in figure 4.9. We will produce
a Poincaré map of when this trajectory passes through the z = 0 plane. In
section 4.4.3, when looking at the motion, we pointed out that the particle
seemed to be behaving chaotically. Therefore we should expect the Poincaré
map to look random.

Figure 5.1 shows the Poincaré map. From the plot we can see that
this does indeed look like a lot of points which are distributed randomly.
However, we can see that they are actually bounded in the region between
two circles centred on the origin. Looking at figure 5.1 we can see that this
behaviour could have been predicted as the 2D projection of the motion
also lies between 2 circles.

Although the points seem to be randomly distributed, and therefore
implying chaos, this is not necessarily proof that the motion is actually
chaotic. Consider a particle which moves in a circular orbit but one which
is shifted by a small fixed amount each time. After a long time period, we
could produce a Poincaré map and this would show a map very similar to
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Figure 5.1: Poincaré map on the r,θ plane.

the one above. We know that the motion was not chaotic but uniform all
of the time. Even so, it produced a Poincaré map which implied chaotic
motion. Therefore we need to find another way to prove that the motion
is chaotic.

5.2 Hamiltonian System

A dynamical system is called a Hamiltonian system if it obeys Hamilton’s
equations

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
, i = 1, . . . , n. (5.1)

If a system is a Hamiltonian system then it has a Hamiltonian H which
is related to the energy. For our system the Hamiltonian is

H =
p2r
2m

+
p2z
2m

+

(

L− 1
2
eBq2r

)2

2mq2r
−

Ze2

4πǫ0 (q2r + q2z)
1

2

, (5.2)

and we can show that this does indeed satisfy Hamilton’s equations.
Suppose we let

pr = Aṙ, pz = Bż, qr = r, qz = z.

where A and B are constants. We also have that qθ = θ but we don’t
need this as the angular momentum L is conserved. These four can be
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substituted into equation (5.2) to give

H =
A2ṙ2

2m
+

B2ż2

2m
+

(

L− 1
2
eBr2

)2

2mr2
−

Ze2

4πǫ0 (r2 + z2)
1

2

.

Notice that if we set A = B = m then this becomes

H =
mṙ2

2
+

mż2

2
+

(

L− 1
2
eBr2

)2

2mr2
−

Ze2

4πǫ0 (r2 + z2)
1

2

,

and this is precisely the energy which was derived in equation (4.15).
Therefore, we have a Hamiltonian defined using the variables

pr = mṙ, pz = mż, qr = r, qz = z. (5.3)

Therefore we have 4 parameters, pr, pz, qr, qz. However, since the
energy is conserved, only 3 of these parameters are independent. I could
freely choose any 3 of the values and substitute them into equation (4.15) to
obtain the value of the fourth parameter. Therefore we have a 4 dimensional
system consisting of three independent parameters and this can be used to
analyse the chaotic motion.

5.3 Showing Chaotic Motion

We are now going to show that the motion is indeed chaotic. To do this
we will create more Poincaré maps, but this time we will plot them on
different axes, rather than on the r,θ plane. This approach has also been
used to analyse the motion of a charged particle around a black hole. [5]

We can ignore motion in the θ direction by remembering that the an-
gular momentum is constant, hence the θ motion can be eliminated. This
leaves four variables, so we are working in four dimensional space. We
also know that the energy is conserved meaning that we have a constraint
on these four dimensions. This means that points can be plotted in 3 di-
mensional space. There is a possibility that the points could land on a 2
dimensional surface and this surface has the topology of a torus, this is an
invariant torus.

As before, there are different behaviours that we can expect to see.
There could be just two points on the plot, which corresponds to a circular
or elliptical orbit. The points could trace a closed curve, which corresponds
to an invariant torus. Finally the points could have no structured form and
appear randomly distributed, in this case there is chaos.

Before producing the Poincaré sections, we can first consider Lyapunov
exponents. Lyapunov exponents are a way of describing the rate of sepa-
ration of trajectories after an initial perturbation. The separation rate of
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two trajectories can be written as

|δx (t)| ≈ eλt|δx (0)|.

Here λ is called the Lyapunov exponent. Rearranging this leads to

λ ≈
1

t
ln

(

δx (t)

δx (0)

)

This can be written as

λ = lim
t→0

δx(0)→∞

1

t
ln

(

δx (t)

δx (0)

)

In our case there would be two Lyapunov exponents as we have three
independent parameters. The signs of these Lyapunov exponents determine
the qualities of the motion. There are three main cases that could occur.
Firstly, if both exponents are negative, then we would have stable closed
orbits, i.e. circular or elliptical orbits. If one was positive and one negative,
the orbits would lie on an invariant torus in the phase space. Finally, both
exponents could be positive, which corresponds to having unstable orbits
which lead to chaos. These three possibilities directly correspond to the
three possibilities of the Poincaré sections.

Since we have just a small number of dimensions, there is no need
to calculate the Lyapunov exponents. We can see which case we have
simply by looking at the Poincaré maps. This means that performing the
calculations would be pointless and time consuming. If we had a larger
number of dimensions, then calculating the Lyapunov exponents would be
necessary as the Poincaré sections alone would not give enough information
about what is going on.

We can now produce the Poincaré maps on the r,ṙ plane, the r,ż plane
and the ṙ,ż plane. These can be seen in figures 5.2, 5.3 and 5.4.

In each of these plots we can see that there are still a lot of randomly
distributed points. This shows that the motion is indeed chaotic as there is
no well defined shape. Figure 5.2 shows the Poincaré map in the r,ṙ plane,
this plot was done in the paper by H. Jaio.[1] However the other two plots
are new and these plots show how the structure changes when looking at
different Poincaré sections.

5.4 Transition to Chaos

We can now reduce the magnetic field to see how the trajectories behave
and see if the motion tends to a periodic solution. We are still focusing in
the case where the energy is negative and the motion is bounded.
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Figure 5.2: Poincaré map on the
r,ṙ plane.

Figure 5.3: Poincaré map on the
r,ż plane.

Figure 5.4: Poincaré map on the
ṙ,ż plane.

We have seen that the motion is ordered when there is no magnetic
field and chaotic when there is a magnetic field. Therefore there must be
a point in between, where the motion is partly chaotic and partly regular.
We have reduced the magnetic field to a value of b′ = 0.01 and we are
going to produce a Poincaré map of the motion on the ṙ,ż plane, similar
to figure 5.4. As the motion will be mostly structured and almost chaotic,
we expect the Poincaré map to look like a closed curve which is sensitive
to initial conditions. This is the second case described at the beginning of
the previous section, the case where the map traces out an invariant torus.
We will produce a lot of these Poincaré sections under different conditions
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and plot them all on the same axes. This will give an indication of how the
motion changes and will identify any fixed points in the motion.

When producing these plots we will be keeping the energy constant for
each curve. This is because the energy is conserved and changing it for each
plot would give different behaviours, therefore not identifying the correct
fixed points. To do this we can use the energy to output the value of ż
when the values of the energy E, r and ṙ are inputted. Also, it is easier to
set z = 0 to reduce the number of dimensions of the problem by 1.

Figure 5.5: Many Poincaré maps
of the motion in a small magnetic
field.

Figure 5.6: Zoomed in image of
the Poincaré maps in figure 5.5.

Figure 5.5 shows a plot containing many of these Poincaré maps. There
are large loops around the outside but it is difficult to see what is happening
towards the middle. Figure 5.6 shows this plot zoomed in to the centre.
This plot contains many closed curves. Each of these curves is in fact a non
chaotic invariant torus around a fixed point, lying on a surface of constant
energy.

We can see that there are four positions where the tori gradually get
smaller under different initial conditions. Eventually there will be condi-
tions which cause them to tend to a single point, this is the fixed point.
These fixed points correspond to periodic solutions when the magnetic field
is small. When producing these plots, it was clear that opposite quadrants
of the plot correspond to the same conditions, so at each of the two fixed
points, the motion repeatedly passes through the same two points. Clearly
this corresponds to elliptical or circular motion, similar to that seen in
chapter 2.

Looking at the plot, we can see that there are two more interesting
points, in between the two fixed points both above and below the ṙ axis.
Here we can see the lines seem to be touching or crossing over each other.
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These two points are also fixed points, however it is more difficult to see
from this plot what is happening. We have zoomed in again to focus on
one of these points, which can be seen in figure 5.7. This seems to resemble
a saddle point.

Figure 5.7: Figure 5.6 zoomed in on the top centre fixed point.

We have found 6 fixed points in the motion of the particle. Four of
these correspond to periodic solutions and the other two are saddle points.
The periodic solutions can be classed as stable fixed points and the saddles
can be classed as unstable fixed points.

We can now define two different types of orbit, heteroclinic orbits and
homoclinic orbits. We have just seen that the curves which approach the
saddle points result in unstable fixed points. If an orbit begins on one
of these curves it is called a heteroclinic orbit. On the other hand, a
homoclinic orbit is one which starts on one of the closed tori. That is,
those corresponding to stable periodic solutions.

Finding these periodic orbits in the small magnetic field is an example
of the KAM theorem. The KAM theorem states that when a parameter is
slightly perturbed, some of the invariant tori present in the unperturbed
case, will still be present but may be slightly distorted. In our case the
parameter is the magnetic field. As it was increased slightly, invariant tori
have formed around the stable fixed points. So when the magnetic field is
small, orbits will lie close to the periodic solutions.

Clearly there is very little chaos in a small magnetic field, so the next
thing to do is to increase b′ to see what happens during the transition into
chaos.

Figure 5.8 shows the Poincaré map of the motion in the case where
b′ = 0.5. There are no longer any clearly defined closed loops, but a
few clear lines surrounded by a lot of individual points. The shape is
approximately similar to that of the previous case, but much less clear.
This shows the midway point between the example above and fully chaotic
motion.
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Figure 5.8: Poincaré map showing
motion in an increased magnetic
field.

Figure 5.9: Zoomed in figure 5.8
to show the onset of chaos in an
increased magnetic field.

We can zoom in on the centre as we did above and this plot can be seen
in figure 5.9. The outer regions are well defined but between these regions
are a lot of random points indicating that the motion is becoming chaotic.

Figure 5.8 looks similar in structure to figure 5.6. There are four clear
areas surrounded by points in the same way that previously there were
four fixed points surrounded by invariant tori. This shows that, even in
an increased magnetic field, there are still periodic solutions. In the small
magnetic field, these solutions were stable fixed points. The fact that they
are still present in the increased magnetic field verifies that they are indeed
stable. Previously there were also two unstable saddle points. Figure 5.9
shows that these fixed points are no longer present but instead we now have
chaos. This also confirms that they were indeed unstable fixed points as
they have quickly broken up into chaos with an increase in magnetic field.

If we increase the magnetic field again we will receive a plot which
looks identical to figure 5.4 showing that the transition to chaotic motion
is complete.

5.5 Magnetic Field Strength

In equation (4.11) we defined some dimensionless parameters l′, b′ and g′.
We can use these values to calculate the size of the magnetic field and
see how large the magnetic field needs to be before the motion becomes
chaotic.
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We can cancel R by considering

l′3

g′2
=

T 3l3

g2T 4
=

l3

g2T
,

which can also be written as

1

T
=

g2l′3

g′2l3
. (5.4)

Recall the definition of g from equation (3.9)

gm

r2
=

Ze2

4πǫ0r2
.

We can set Z = 1 since Rydberg atoms behave in a similar way to hydrogen
atoms, which leaves

g =
e2

4πǫ0m
.

Using quantum mechanics, the angular momentum can be written as

L2 = lq (lq + 1) h̄2,

where lq is the angular quantum number of the Rydberg atom. In a Ryd-
berg atom, lq ≈ n and we know from the definition of the Rydberg atom
that n is large. This means that we can rewrite the above equation as

L2 = l2q h̄
2 ≈ n2h̄2,

therefore
L = nh̄,

Using this in the parameterization (3.7) leaves

l =
nh̄

m
.

Substituting l and g into equation (5.4) gives

1

T
=

e4m

16π2ǫ20h̄
3

l′3

g′2n3
.

Now substituting this into b from equation (4.11) gives

b =
b′

T
=

e4m

16π2ǫ20h̄
3

l′3b′

g′2n3
.

Finally, rearranging equation (3.8) and substituting in b leaves

B =
2mb

e
=

e3m2

8π2ǫ20h̄
3

l′3b′

g′2n3
. (5.5)
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This can now be used to calculate the strength of the magnetic field. To
do this we will need some values for each of the variables in the above
equation. We will use the following values written in SI units

e = 1.6× 10−19As,

m = 9.1× 10−31kg,

ǫ0 = 8.85× 10−12A2 s4 m−3 kg−1,

h̄ = 1.055× 10−34kgm2 s−1.

These can now be substituted into equation (5.5) to give

B = 4.67× 105
l′3b′

g′2n3
kg s−2 A−1,

= 4.67× 105
l′3b′

g′2n3
Tesla.

The only terms left are the dimensionless terms which we used to produce
plots of the orbits. Substituting these in would give the strength of the
magnetic field.

For example, using the values for l′ and g′ that we have kept constant,
choosing a large value of n, say n = 100, and increasing b′ in the same way
we have done throughout this chapter, we can calculate the strength of the
magnetic field at each stage of the onset of chaos. This gives the strength
of the magnetic field when there is very little chaos, as seen in figures 5.5,
5.6 and 5.7, around 0.146Tesla. The strength of the field during the onset
of chaos from figures 5.8 and 5.9 is around 7.297Tesla. Finally, when the
motion has become fully chaotic, as seen in chapter 4 and the beginning of
chapter 5, the magnetic field is around 14.594Tesla.
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Chapter 6

Conclusion

We have seen that the motion of a particle can be complicated and chaotic
when there is both a central force and magnetic field present.

I began this project by looking at particle motion in two dimensions.
In only a central force the particle displayed circular and elliptical orbits.
This was as expected since we have observed similar orbits in the physical
world, such as in outer space. When the magnetic field was added to the
central force, the motion became more complicated. After generalising to
three dimensions, I related the trajectories to the 2D orbits and found
some similarities. However, I also found that the motion could be either
bounded or unbounded. This fact could not be seen in two dimensions.
Both cases resulted in chaotic motion. I focused on the bounded case and
produced Poincaré maps to show the chaos. I plotted Poincaré sections
on many different planes, where previous work has focused on only one.
This has been more informative as it has allowed me to see more detailed
structure of the motion. I then adjusted the magnetic field to be very
small, then plotting more Poincaré maps at fixed energy. This allowed me
to find four fixed points which correspond to periodic solutions and two
more fixed points which are saddle points. Increasing the magnetic field
strength slightly showed the transition of the motion into chaos.

Moving on from this project, the next thing to look at would be the
unbound orbits. In particular, the case of scattering would be interesting to
consider. A particle would begin by spiralling upwards along the magnetic
field lines. As the particle approaches the origin, it would come into the
range of the central force causing the motion to become chaotic as we have
seen. The case of scattering is where the trajectory as it exits the force is
different to the trajectory as it enters. An interesting thing to look at is
how much the particle becomes shifted and whether it is possible for the
particle to be reflected back the way it came.

This work has also been extended by moving from classical motion to
semi classical and even considering quantum mechanics.
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Appendix A

MAPLE Code

Figure A.1:

This is the code that I used to produce the orbits in chapters 2 and 3. I
integrated the system of two equations under certain boundary conditions
using the command dsolve. I then used this to create a plot of the orbit
when the conditions were given.
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Figure A.2:

Here is the code used to produce the plots of W which can be seen in
figures 2.1 and 3.1

Figure A.3:

This code was used to plot the 3 dimensional orbits in chapter 4. I
used the dsolve command to integrate the 3 equations in the same way
as for the 2D orbits. I then used the output to produce two plots, one 3
dimensional trajectory and one 2 dimensional projection onto the r,θ plane.
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Figure A.4:

Here I have written some code to produce the Poincaré map seen in
figure 5.1. I began by defining a procedure to integrate the 3 dimensional
equations using dsolve. However, this time I used the events parameter
to stop the integration whenever the motion passed through the z = 0
plane. I then created another procedure which saved the values of r and θ
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to an array each time the integration was stopped. Finally I plotted these
values, producing the Poincaré map.

This code was easily adjusted to produce figures 5.2, 5.2 and 5.2. I
simply had to change the values that were saved to the array.

Figure A.5:

This is the code that was used to produce the Poincaré maps in section
5.3 which were used to find fixed points and periodic orbits through the
transition into chaos. First I created a procedure which outputted the value
of z when the energy and all other parameters were inputted, as described
in section 5.3 . I then used this in the procedure to create a Poincaré
map, looping through and saving the ṙ and ż values after each iteration. I
created many of these Poincaré maps and saved them. Finally I used the
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display command to put all plots in one figure resulting in figures 5.5 and
5.8.

This code was then adjusted slightly to zoom in on certain points by
modifying the view in the plot command. This allowed me to produce
figures 5.6, 5.7 and 5.9.
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