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Abstract

Superfluids have fascinated the scientific community for nearly a century. Their unique proper-
ties were found to be caused by the phenomenon of Bose-Einstein condensation. We undertake
a quantitative study of a zero temperature weakly-interacting atomic Bose gas through nu-
merical simulation of the Gross-Pitaevskii equation. We introduce matter-wave dark solitons
into an inhomogeneous atomic condensate and show that for multiple solitons their dynamics
are modified by the exchange of sound energy. In this analysis we investigate an alternate
interpretation to published work on the matter. We extend our study to finite temperature
atomic Bose gases, which are best modelled by the stochastic Gross-Pitaevskii equation. This
configuration unifies the condensate with low-lying thermal modes. At equilibrium, we estab-
lished techniques from quantum optics to extract the condensate from the thermal cloud. We
see how the introductions of spontaneous solitons are analogous to defects at the early Universe
and how dissipation affects non-equilibrium excitations.
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Chapter 1

Introduction

1.1 A Brief History

The classical description of a particle is an object whose dynamics can be entirely described
through its position and speed, which was the only description before 1905. However, post 1905
it was discovered that a particle’s speed and position could not be a definite quantity, and was
instead described probabilistically as a “quantum” particle. During this time a cloud of gaseous
classical particles was well understood by describing the occupation of energy levels statistically,
as defined by Ludwig Boltzmann. This approach was extended to include a description of a
gas of quantum particles, which predicted the appearance of a Bose-Einstein condensate.

The road to Bose-Einstein condensation begins with a theoretical discovery made in 1924
by the Indian physicist Satyendra Bose [1] and Albert Einstein [2]. Bose sent Einstein a paper
on the topic of quantum statistics, which impressed Einstein so much that he submitted it
under Bose’s name, and went on to write two more papers on the subject. The now coined
Bose-Einstein condensate (BEC) is the result of their work.

A BEC is an unusual state of matter that can consist of millions of atoms, yet behave in
synchrony as a single giant atom. In a BEC the weird phenomena of quantum mechanical
systems, usually associated with the microscopic world, can be observed in the macroscopic
domain, which gives us a completely new perspective of these once elusive properties. In
this report we consider weakly-interacting, dilute (low density) atomic BECs. In order to
create these systems, experimentalists needed to be able to engineer temperatures very close
to absolute zero (zero Kelvin (0K) or −273◦C), which was an obstacle for nearly 70 years.
However, with advancements in cooling techniques through the 20th century the first BEC of
this kind was experimentally observed in 1995 when, now Nobel prize winners Cornell and
Wieman, succeeded in creating a condensate with rubidium-87 atoms (87Rb [3], where 87 is
the number of protons and neutrons in the nucleus of each atom) and Ketterle with sodium-23
atoms (23Na) [4]. It is important to note that Bose-Einstein condensation is not limited to cold
atoms, as we will see it comes about from a balance of density and temperature, such that if we
increase both quantities a BEC can still be created. This means that they are also predicted
to exist in neutron stars, where temperature is roughly 108 Kelvin [5]. As this discovery is so
recent we are still in the process of uncovering new properties and uses of BECs. This state of
matter is important in the field of physics because it has close analogies to many observable
systems in nature, such as neutron stars, or even black holes, but importantly it is controllable
in laboratory experiments.

The zero temperature dynamics of a BEC are accurately described by the Gross-Pitaevskii
equation (GPE) [6, 7] as derived in the late 1950s, which is a classical fluid interpretation
of the non-linear system. In the last 10 years much effort has also been put into describing
more experimentally comparable predictions of finite temperature dynamics using stochastic
methods. These introduce an element of random perturbation to our equation by considering
fluctuations, e.g. such as those arising from particle interactions between the condensate and
thermal particles.
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CHAPTER 1. INTRODUCTION

1.2 Properties of Quantum Mechanical Systems

Here we present a brief overview of the important results from quantum mechanics that will
be integral to our understanding of the BEC.

1.2.1 The Wavefunction and Phase

If we consider a particle described by classical mechanics we describe it by its position and
momentum and predict its evolution using Newton’s laws. The same cannot be said for quan-
tum particles. Quantum mechanics tells us that particles are smeared out, or delocalised, over
a region of space, referred to as small wavepackets. In order to describe this wave-like entity,
we introduce the wavefunction ψ(r, t), which is in general a complex function that depends
on time and position. For a single particle it defines the probability distribution, P (r, t), for
finding the particle at position r and time t according to

P (r, t) = |ψ(r, t)|2. (1.1)

However, when we are considering multiple particles this describes the particle density, n(r, t),
via

n(r, t) = |ψ(r, t)|2, (1.2)

by integrating over all space we obtain the total particle number, N , i.e.

N =

∫
d3r|ψ(r, t)|2. (1.3)

The wavefunction also holds properties relating to the systems phase. Phase is best explained
with an example. Take a system of atoms with magnetic dipole moments, if the magnetic
north of each atom is pointing in a random direction, the sum of the magnetic force across
the whole system will be close to zero (as a particle with north facing down will cancel out
with one facing up). In this system we call these particles out of phase. However, if we have
a system with each moment facing the same direction, the sum will be strongly magnetic and
the particles are in phase. When we cool a system down to a BEC the particles undergo a
phase transition such that they are in phase, if we perturb one particle in this configuration all
of the others react, hence they act collectively as one. It is this property of the BEC that gives
it its close links to laser light. Lasers are a stream of photons that are all in phase. It is this
similarity that gives a BEC the reputation of being an atom laser, or perhaps more jovially
a “boser”. We can define the phase by taking the definition of the density of particles from
equation (1.2) and rearrange in terms of the wave function

ψ(r, t) =
√
n(r, t)eiθ(r,t), (1.4)

where θ is the phase of the system. We can rearrange this equation for θ by using Euler’s
formula for exp(iθ) and separating the real and imaginary parts of the wavefunction to obtain

θ(r, t) = arctan

(
Im(ψ(r, t))

Re(ψ(r, t))

)
. (1.5)

1.2.2 Pauli Exclusion Principle and Quantum Statistics

In nature, particles exist in two distinct categories, as defined by their “spin” (the particle’s
intrinsic angular momentum): bosons (particles with integer spin, e.g. light particles, called
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CHAPTER 1. INTRODUCTION

photons) and fermions (particles with half-integer spin, e.g. electrons). Bosons are unbounded
in their ability to occupy a single energy state. Fermions, however, are limited to only one
particle per state by the Pauli exclusion principle, as discovered by Austrian physicist Wolfgang
Pauli in 1925. Thus Bose-Einstein condensation ensues, as the name suggests, only for bosons,
so that all of the particles can exist in the same state and behave as one. It is possible to
take a pair of fermions (called a Cooper pair), whose spin will then be an integer, and create
a condensate in a similar manner.

Figure 1.1: In each diagram the grey lines represent energy levels in a simple harmonic trap, a)
shows a system of non-interacting bosons at T = 0 (red) in the lowest energy level and b) shows the
same system with fermions (blue).

Statistics is used to describe large numbers of atoms, where it is not possible to track the
position and momentum of each atom. We will quote the results used in quantum statistics [1,
2]. The number of bosons in an energy level εi is

N(εi) =
gi

exp{(εi − µ)/kBT} − 1
=

gi
exp{β(εi − µ)} − 1

, (1.6)

where kB is Boltzmann’s constant, T is temperature, β = 1/kBT , gi is the degeneracy of
state i (degeneracy is a measure of how prominent the quantum properties of the system are)
and µ is the chemical potential, representing the energy required to add or remove particles
from the system. The “−1” in the denominator arises from the fact that the particles are
indistinguishable from one another. As εi → µ, N(εi) → ∞, thus as we lower the energy of
our system the number of particles in a lower energy level diverges. his means that bosons have
the capacity to occupy the lowest energy level in vast numbers, the benchmark of Bose-Einstein
condensation. This is in contrast to Fermi-Dirac statistics, where the number of fermions in
an energy level εi is

N(εi) =
gi

exp{β(εi − µ)}+ 1
, (1.7)

where if we reduce the energy of a system such that εi → 0 the number of Fermions in each
state becomes N(εi → 0) = 1, i.e. only one atom per state.

1.2.3 Commutators and Heisenberg’s Uncertainty Principle

An operator is an object that acts on the state of the system to give a value, or even change
the state, for example a derivative is an operator. Operators are often denoted with a “hat”
above a symbol. For two operators Â and B̂ the commutator is defined as

[Â, B̂] = ÂB̂ − B̂Â, (1.8)

which tells us whether the two values commute. If this quantity is zero for two observables
Â and B̂ then we can measure them simultaneously, otherwise we are limited to how much
information we can know about each of them at any instance in time. In quantum mechanics the
uncertainty principle gives us a limit on how much information we can know about a system
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CHAPTER 1. INTRODUCTION

at any given time. If we have two complimentary variables, for example in 1D a particle’s
position x and momentum px, then we have a lower bound on the precision to which we can
truly know the values of each property simultaneously. Mathematically this is expressed by

∆px∆x ≥
~
2
, (1.9)

where ~ is the reduced Planck’s constant and ~ ≈ 1.055 × 10−34Js. Or correspondingly in
operator notation, [p̂, x̂] 6= 0, i.e. the operators do not commute.

1.3 Superfluidity and Liquid Helium

Superfluidity is the name given to a system that exhibits a specific phase. This unique system
is observed at extremely low temperatures, as required for weakly-interacting Bose-Einstein
condensates and, as we will see, liquid helium. Superfluids have intrinsic properties that make
them distinctive, such as no internal friction (viscosity). Due to this a superfluid has the ability
to escape from an open top container, against the force of gravity, after applying some heat
from underneath. This is commonly called the fountain effect. The road to the discovery of
superfluid helium first started by the successful creation of liquefied helium in 1908 by Dutch
physicist H. K. Ohnes, for which he earned the Nobel prize in 1914, with the phase transition
occurring at around 4 Kelvin. A few decades later in 1937 Allen and Kapitza independently
unveiled new properties of the fluid, the superfluid properties, by achieving temperatures at
2 Kelvin [8]. Fritz London [9] suggested using BECs to explain superfluidity, and under this
assumption found the transition temperature of liquid Helium would be T = 3.13nK, which
fits with the observed change in properties. So, to explain superfluidity we require a definition
of Bose-Einstein condensation.

1.4 The Bose-Einstein Condensate

As shown in section 1.2.2, Bose-Einstein statistics tells us that the occupation of the ground
state is unbounded as the energy of the system decreases. For dilute systems this can be
achieved by reducing the temperature of a system below some critical T , given by Tc, such that
the particles want to be in the lowest state. For a free gas of non-interacting particles in 3D,
with particle mass m, this critical temperature is given by

Tc =
2π~2

mkB

(
n(r, t)

ζ(3/2)

)2/3

, (1.10)

where ζ is the Riemann zeta-function, defined as ζ(s) =
∑∞

n=1 n
−s, and ζ(3/2) ≈ 2.612. Below

this temperature we would expect the onset of Bose-Einstein condensation. As mentioned at
the beginning of the report a quantum particle is smeared out over a region of space as a
wavepacket. When we decrease the temperature of a system, these wavepackets (whose typical
size is given by the de Broglie wavelength) increase in length and begin to overlap, behaving
as one giant matter wave. We can derive the thermal de Broglie wavelength by equating the
quantum mechanical kinetic energy of free particles, EK = πkBT , with kinetic energy in terms
of momentum, Ekin = p2/2m, and using the standard de Broglie wavelength λdB = 2π~/p to
obtain

λdB =

√
2π~2

mkBT
, (1.11)
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CHAPTER 1. INTRODUCTION

where we note λdB ∝ 1/
√
T , so it increases in length as T decreases. Note that using equation

(1.10) in terms of λdB we can write nλ3
dB ∝ nT

−3/2
c ≈ 2.612. For Bose-Einstein condensation to

occur this relation must be satisfied, and this is how systems such as neutron stars are expected
to contain BECs because both density and temperature are much larger. The systems we are
going to deal with are weakly-interacting dilute atomic Bose-Einstein condensates. Dilute refers
to the low density, which means we require low temperatures. An important feature of dilute
BECs, that we will use heavily in this paper, is that their zero temperature dynamics can be
represented by a non-linear Schrödinger equation, which we derive in the next chapter. Figure
1.2 shows the BEC located in the lowest energy level of a simple harmonic trap.

Figure 1.2: A BEC confined in a bowl shaped simple harmonic trap. The BEC is found in the
lowest energy level shown by the red line and the thermal cloud is the name given to the system of
particles in the higher energy levels. The red line depicts the BEC density, where it is mainly found
in the centre of the trap.

1.4.1 Experimental Realisation of BECs

Between prediction to experimental realisation of the atomic Bose-Einstein condensate there
was a period of about 70 years. This is because in order to get cold atoms weakly-interacting
we need low temperatures. For example, the temperature required for the rubidium experiment
was Tc ≈ 100nK. So, how was this achieved back in 1995? We will discuss the cooling methods
here, and how the images were taken that depict the phenomena. Typical atom numbers for a
BEC experiment can vary between N ∼ (103 − 108), for example an experiment in 2007 with
sodium atoms produced a BEC with atom number N = 120 × 106 [10]. The information for
this section was sourced from a talk given by one of the 1995 rubidium group’s senior members,
and Nobel prize winner, Eric Cornell [11].

Laser Cooling - T< 1µK

All light carries a small momentum, when you stand outside on a sunny day there is a small
force being applied to your body from the direction of the sun. This can be exploited by
arranging this force so that it applies itself in all directions and keeps the individual atoms
still, thus they will lose energy and cool. What we want is for an atom moving to the right
to absorb a photon coming from the left in order to slow down. This is engineered using
Doppler shift. Consider two lasers, one arrives at the north side of an atom and another south.
Modulating the frequency of these lasers makes it possible to hold the atom still along this axis.
By increasing the frequency (more “blue”) slightly on one side, and decreasing the frequency
on the other (more “red”), the atom is more likely to absorb the photon from the blue side and
less likely to absorb the other from the red side. So, applying experimentally we use six lasers,
two opposing lasers on each axis, and modulate the frequency accordingly. In the rubidium
experiment this method cooled the system of bosons to be about T ≈ 300nK. The only thing
that really stops this method from achieving lower temperatures is Brownian motion, which
is where the atom absorbs a photon and spontaneously emits it in a random direction, giving
rise to an observed jiggling motion.
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Evaporative Cooling - T∼ 100nK

The next method begins by turning off the lasers that got us this far and instead using magnetic
fields to hold the condensate in place in a bowl-like potential. In this configuration where the
atoms with the most energy will be able to escape from the bowl, and those with the lowest
energy sink into the bottom of the bowl. This is the premise of evaporative cooling. Cornell
offers a simple analogy for this with coffee. When making a coffee there is often a lot of
steam effervescing from the cup, atoms with high enough energy are leaving the surface of the
liquid, evaporating away, leaving behind a coffee with a lower average energy. Thus, the coffee
becomes colder after evaporation. Using this method only 2% of the density is lost after cooling
by 20%. This is applied to the trapped BEC when the thermal atoms escape from the edges
of the bowl-like trap, leaving colder atoms behind. We can effectively control the height of
the bowl in time by using the properties of the atom to couple to controlled external radiation
(in radiofrequency domain). Thus the trap is loosened slightly, removing higher energy atoms.
What we are left with is a condensate of atoms at about T ≈ 100nK, as was the case for the
rubidium experiment, but with a lower density than what was originally input into the system.

Imaging the Condensate

After creating the condensate we have to image it. These days it is possible to perform phase-
contrast imaging [12], which lets us image the condensate without disturbing it. However, in
1995 a different method was used. In the rubidium experiment the atom number was too small
to identify through conventional imaging techniques. To account for this the trap is turned off,
letting the atoms fly apart. Then a laser light is shone onto the growing atomic cloud and the
shadow created by the atoms is captured. This is called the expansion method of imaging. The
condensate must first be destroyed before it can be imaged. This can lead to complications
when wanting to experimentally verify non-equilibrium dynamics; any experiment will typically
have to be destroyed and recreated multiple times to observe any time-dependent properties.

Figure 1.3: Images of the velocity distributions for the trapped atoms. On the left is the distribution
for the thermal cloud, taken when the system is at a larger temperature than the critical temperature
for BECs, the centre frame is a point in between that is part condensate and part thermal, and the
final image is purely condensate within the density peak. The physical size of each image is 200µm
×270µm and is taken after a period of about 0.04s. The colour represents density, with red as low
density and white as high density and the lower the peak the more the atoms have moved since being
released from the trap.

Figure 1.3 shows an image from the 1995 experiment depicting the velocity distribution; as
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the time that the trap was released and the time of imaging is known, the velocity distribution
is easily calculable. In this image the latitudinal axis (increasing to the right) in the rectangular
image was under less confinement than the longitudinal axis. Observe how in the first image
(left), where we just have a cloud of thermal atoms, the shape of the distribution is even in
both planes (same radius from centre in all directions). However, in the final image (right), the
condensate atoms are more “cylindrical” (larger radii along longitudinal lines) in shape. This
is because in the thermal cloud we have the classical picture where the velocity distribution
will be the same in each direction, irrespective of the confinement strength. The condensate is
a quantum mechanical object, so Heisenberg’s uncertainty principle takes hold. Heisenberg’s
says that the more you know a particle’s position, the less you know its momentum, and
vice versa. There is more confinement in the longitudinal axis, so we are more sure of the
condensate’s position and, as the object is more bunched up in coordinate space, it will spread
out in momentum space. Hence, when we release the condensate from the trap it spreads out
quicker in the confined axis, showing quantum mechanical behaviour in a macroscopic system.

1.5 Outline of Research

In this report we will discuss zero temperature models, for which an outline of the derivation is
provided, describing weakly-interacting atomic BECs and we will present numerical models for
a one-dimensional system. These were coded by the author in Fortran 95 and all subsequent
figures from this output were created in MATLAB. Within this section of the report we derive
analytic solutions through certain approximations and compare these to numerical equilibrium
states. We then discuss time-dependent behaviour when we perturb the harmonic trap and
consider the evolution of a system that contains macroscopic excitations of the Bose field called
dark solitons. From this analysis we provide an alternate interpretation of an article published
in Physical Review A.

We will also introduce finite temperature models, which arises from using theory from
quantum optics to describe the differences between condensate and thermal particles. We
need to introduce sophisticated techniques to extract the condensate contribution from the
total density. In this section of the report the code used to generate the finite temperature
realisations was kindly provided by the supervisor, Prof. Proukakis. The code is written in
both Fortran 95 and C++ and has a complex web of multiple subroutines. All simulations were
generated by the author, which required learning a new operating system, Unix, and learning
how to apply this to the software Condor in order to run parallel jobs on up to 200 computers
simultaneously. Using the numerical simulations we can reproduce similar perturbations to the
zero temperature model, however whilst considering more realistic phenomena such as energy
loss, collisions between the thermal and condensate particles, and particle fluctuations.
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Chapter 2

Theoretical Framework

2.1 Derivation of the Gross-Pitaevskii Equation

Within the assumption of a dilute, weakly-interacting atomic Bose-Einstein condensate we can
write down a Hamiltonian operator, Ĥ, of a closed system with N atoms, which defines the
total energy of the system. In the BEC we will only consider two contributions: single particle
effects (ĥ0, where a particle might change state through interactions with the trap or random
particle fluctuations) and from elastic binary collisions (V̂int, where “elastic binary” means we
are assuming billiard ball like collisions and there is no energy loss from these collisions). Using
these assumptions we can write down [13]

Ĥ =
N∑
k=1

ĥ0(rk) +
1

2

N∑
k,l=1

V̂int(rk, rl), (2.1)

where the summations are over the positions of every particle in the system and the factor
of 1/2 is necessary to prevent counting collisions between particles twice. From this we re-
define the problem using what is known as the “occupation number representation” of second
quantisation [14]. In this method we are no longer interested in the positions of the particles,
but how many particles occupy each energy level and how they transition from level to level.
There is a detailed discussion of this method in [13], from which we quote

Ĥ =

∫
drΨ̂†(r)ĥ0(r)Ψ̂(r) +

1

2

∫∫
drdr′Ψ̂†(r)Ψ̂†(r′)Vint(r− r′)Ψ̂(r′)Ψ̂(r), (2.2)

where Ψ̂ and Ψ̂† are the Bose field operators that destroy and create a particle, respectively,
and describe the whole field including the condensate and thermal atoms. Generally Ψ̂(r, t) =∑

i ψi(r)âi(t), where ψi is the eigenstate wavefunction, â and â† are the operators that destroys
and creates a particle, respectively [15]. Vint(r− r′) is the exact two-body interaction potential
and ĥ0 = (~2/2m)∇2+Vext is the single particle Hamiltonian, where m is the individual particle
mass, Vext is the potential energy, used to confine and control the system, and (~2/2m)∇2 is
the kinetic energy operator (compare to Ekin = p̂2/2m, with p̂ = −i~∇). In equation (2.2) we
read these terms from right to left, as they are operators. So the first term destroys a particle
in one state Ψ̂, acts upon that particle with the operator ĥ0, which may change the state the
particle lies in, and recreates it in the new state with Ψ̂†. Similarly for the second term we
remove two particles from their initial states, they interact with some potential Vint, and they
are then created in their new states.

We are working under the assumption of binary collisions, so our interaction potential can
be expressed as Vint(r − r′) = g3Dδ(r − r′), where δ is the Dirac delta function, defined as∫

dxf(x)δ(x − x0) = f(x0), and g3D = 4π~2as/m is the coupling constant that defines the
particle interactions. The constant as is the s-wave scattering length, which determines the
size of the atomic interactions and is characterised by the atom used. We define a system as
weakly-interacting if as � λdB. Substitution of the interaction potential into equation (2.2)
then gives

Ĥ =

∫
drΨ̂†(r)ĥ0(r)Ψ̂(r) +

g3D

2

∫
drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r), (2.3)
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CHAPTER 2. THEORETICAL FRAMEWORK

where the dependence on r′ has been integrated out through the δ function. Now we state the
Bose commutation relations[

Ψ̂(r′), Ψ̂†(r)
]

= δ(r− r′), and
[
Ψ̂(r′), Ψ̂(r)

]
=
[
Ψ̂†(r′), Ψ̂†(r)

]
= 0, (2.4)

which also hold for r = r′. The first relation tells us that if one particle is created in one
position and another destroyed in a different position, this cannot happen simultaneously. The
second relation tells us that any two particles can be simultaneously destroyed or created, as
long as they are both destroyed or both created.

Now we state and use the Heisenberg equation of motion to derive the system’s dynamics,
this equation describes a system where the state vector remains stationary and the operators
evolve in time, giving

i~
∂Ψ̂(r′)

∂t
=

[
Ψ̂(r′), Ĥ

]
,

= Ψ̂(r′)Ĥ − ĤΨ̂(r′),

= Ψ̂(r′)Ĥ −
∫

drΨ̂†(r)ĥ0(r)Ψ̂(r)Ψ̂(r′)

− g3D

2

∫
drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)Ψ̂(r′),

= Ψ̂(r′)Ĥ −
∫

dr
[
Ψ̂(r′)Ψ̂†(r)− δ(r′ − r)

]
ĥ0(r)Ψ̂(r)

− g3D

2

∫
dr
[
Ψ̂(r′)Ψ̂†(r)− 2δ(r′ − r)

]
Ψ̂†(r)Ψ̂(r)Ψ̂(r),

= Ψ̂(r′)Ĥ − Ψ̂(r′)Ĥ +

∫
drĥ0(r)Ψ̂(r)δ(r′ − r)

+ g3D

∫
drΨ̂†(r)Ψ̂(r)Ψ̂(r)δ(r′ − r).

Here we have used the commutation relations to manipulate the order of the operators to move
Ψ̂(r′). This then simplifies to

i~
∂Ψ̂(r′)

∂t
= ĥ0(r′)Ψ̂(r′) + g3DΨ̂†(r′)Ψ̂(r′)Ψ̂(r′). (2.5)

Now we have an equation that describes the motion of the whole field, however we want to
extract information just on the condensate. We do this by splitting the Bose field operator
into two parts [16]

Ψ̂(r, t) = ψ̂(r, t) + δ̂(r, t), (2.6)

which corresponds to an operator for the condensate part (ψ̂) and the non-condensed, or
thermal, atoms (δ̂). Under the approximation that there are a large number of atoms in
the condensate the “hat” is dropped from the condensate operator and we are left with the
condensate wavefunction ψ (and ψ̂† → ψ∗), which is a classical field approximation to the
problem. This is because the operator acts on single particles, so when the particle number is
large it will have no visible effect. If we substitute equation (2.6) into (2.3) we obtain

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (2.7)

11



CHAPTER 2. THEORETICAL FRAMEWORK

where,

H0 =

∫
dr
[
ψ∗ĥ0ψ +

g3D

2
|ψ|4

]
, (2.8)

Ĥ1 =

∫
dr
[
δ̂†
(
ĥ0 + g3D|ψ|2

)
ψ + ψ∗

(
ĥ0 + g3D|ψ|2

)
δ̂
]
, (2.9)

Ĥ2 =

∫
dr
[
δ̂†
(
ĥ0 + 2g3D|ψ|2

)
δ̂ +

g

2

(
(ψ∗)2 δ̂δ̂ + ψ2δ̂†δ̂†

)]
, (2.10)

Ĥ3 = g3D

∫
dr
[
ψδ̂†δ̂†δ̂ + ψ∗δ̂†δ̂δ̂

]
, (2.11)

Ĥ4 =
g3D

2

∫
drδ̂†δ̂†δ̂δ̂. (2.12)

Each term is categorised by the number of δ̂ terms it contains. If we take an ideal system,
i.e. no interactions, in the limit of zero temperature we find that all of the particles are in the
condensate so our non-condensate operator δ̂ can be ignored. This is a valid approximation
for T � Tc and when the system is weakly-interacting. Thus if we take the Heisenberg motion
equation (2.5) and substitute Ψ̂ = ψ we obtain the Gross-Pitaevskii equation (GPE) [6, 7]

i~
∂ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + Vext(r) + g3D|ψ(r, t)|2

)
ψ(r, t). (2.13)

Here the energy density for any point in space is given by equation (2.8), thus the total energy
of the BEC in this approximation is given by

E =

∫
dr

[
~2

2m
|∇ψ(r, t)|2 + Vext(r)|ψ(r, t)|2 +

g3D

2
|ψ(r, t)|4

]
. (2.14)

The GPE conserves both particle number, N , and energy, E. Note that if g3D < 0 the
interactions between particles are attractive as it reduces energy to put particles together,
if g3D > 0 the interactions are repulsive as it costs energy to put particles together and if
g3D = 0 there are no interactions. This equation with g3D = 0 is simply called the Schrödinger
equation, which models the dynamics of a single particle. It is also a good approximation to a
multiple, interacting, particle system of bosons because bosons act as a single entity and can
be considered as one large particle.

We will be analysing equilibrium properties of the system. We can extract static solutions
by making the substitution ψ(r, t) = ψ0(r)e−iµt/~, where ψ0(r) is the time-independent system
eigenstate and µ is the chemical potential, as appearing in the Bose-Einstein distribution
function. Inserting this into equation (2.13) we obtain the time-independent GPE

µψ0(r) =

(
− ~2

2m
∇2 + Vext(r) + g3D|ψ0(r)|2

)
ψ0(r). (2.15)

We note that this equation is identically satisfied when the Hamiltonian of this equation is
equal to µ. Thus, as the energy of the system approaches the chemical potential we obtain
equilibrium solutions. Using this result the equation that we will take forward is a slightly
modified GPE, given by

i~
∂ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + Vext(r) + g3D|ψ(r, t)|2 − µ

)
ψ(r, t). (2.16)

In this model we have used several assumptions: for our interaction parameter we assume that
collisions between only two atoms have occurred, which realistically depends on the density of

12
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the fluid. We also assumed that collisions do not alter the systems energy (elastic collisions).
The error involved with making these assumptions however is decreased by the nature of the
system we are looking at. For a system of lower density, collisions will be infrequent and
affect our approximation less. In a dilute BEC the density is of the order (1013 − 1015)cm−3,
comparable to air at room temperature of the order 1022cm−3 [17].

In this report we will consider the evolution of a 1D system. In this case (2.16) becomes [18]

i~
∂ψ(x, t)

∂t
=

(
− ~2

2m

∂2

∂x2
+ V (x) + g|ψ(x, t)|2 − µ

)
ψ(x, t) = ĤGPψ(x, t), (2.17)

and we define ĤGP = −~2(∂2/∂x2)/2m+V (x)+g|ψ(x, t)|2−µ. We have now introduced g as the
one dimensional interaction constant, which is scaled as g = g3D/2πl

2
⊥, where l⊥ =

√
~/mω⊥

and ω⊥ are the harmonic oscillator width and trapping frequency in the y and z directions,
respectively.

2.1.1 Potential

We will consider two cases for the form of the potential: a uniform background potential
Vext(r) = 0, in which the Bose-Einstein condensate is not constrained in any space and
will spread out, and the case with a simple harmonic trap by setting the potential to be
Vext(r) = 1

2
m
[
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
]
, where ωj is the angular trapping frequency in the j direc-

tion (sometimes called the quantum harmonic oscillator frequency). To model the homogeneous
zero potential in 1D we consider a box of finite length, such that the walls of the box have
infinite potential. This confines the system within the walls, such that in between there is zero
potential. In a non-interacting case we solve Schrödinger’s equation to find that the nth energy
level is En = (~2π2/2mL2)n2, for a box of length L. The ground state energy for this system
comes from substituting n = 1 into the energy relation. Note that E1 > 0. This is a powerful
result, because it tells us that even at zero temperature there will still be some energy. Figure
2.1 shows this schematically.

Figure 2.1: The energy is shown for the first three states, with the equivalent wavefunction solutions.
These are given by ψn =

√
2/L sin(knx) exp {−iωxt}, with wavenumber kn = nπ/L.

For the 3D simple harmonic oscillator, in a non-interacting system, the discrete energy for the
nth level can be shown to be Ejn = ~ωj(n + 1/2). Again, the lowest energy possible still has
some energy with Ej0 = ~ωj/2 (for n = 0). For both of these potentials in an interacting sys-
tem the energy relation is to all intents and purposes similar, but the levels are closer together
for low n.

We are working in 1D, so we need to reduce this into trapping solely in the x direction.
Consider the case where ωy = ωz = ω⊥ and ωx � ω⊥. This produces the situation in the figure
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Figure 2.2: A simple harmonic trap, in the interacting case, with the trap frequency in the x
direction set to be much lower than y and z, i.e. ωx � ω⊥. Each green line represents a energy level
and the red line is the energy of the system E.

2.2. Here we see that the energy levels in the traps defined by ω⊥ are bound by the energy
relation E ≈ ~ω⊥(n+ 1/2)� ~ωx(n+ 1/2) and thus each level is further apart. In the figure
we have placed a red line across some energy level E. If the energy of the system is at this
level much of the condensate will settle in the lower levels in the x direction and on the lowest
possible level in the y and z traps. If we were to try and force the system into the next energy
level in ω⊥ we would require a high influx of energy, so we are confining the condensate into
changes in the x-direction only. Thus, we can model a simple harmonic trap in 1D by setting
V (x) = 1

2
mω2

xx
2, if we take ωx � ω⊥, such that the transversely it remains in the harmonic

oscillator (Gaussian) ground state.

2.1.2 Dimensionless Gross-Pitaevskii Equation

Many of the parameters in the GPE are cumbersome to work with numerically, for example
~ ∼ 10−34Js, and for rubidium m ∼ 10−25kg and g ∼ 10−39Jm. We note that ~ωx has units of
energy, Joules, and we define the harmonic oscillator ground state width lx =

√
~/mωx as a

length scale. Using these we can transform

µ→ µ̃ =
µ

~ωx
, x→ x̃ =

x

lx
, g → g̃ =

g

~ωxlx
,

ψ → ψ̃ =
√
lxψ and t→ t̃ = ωxt.

We can substitute these into equation (2.17), with a simple harmonic trap potential, to give

i
∂ψ̃

∂t̃
=

(
−1

2

∂2

∂x̃2
+

1

2
x̃2 + g̃|ψ̃|2 − µ̃

)
ψ̃. (2.18)

We can also derive a similar equation for a uniformly zero potential, which is identical but
without the x̃2/2 term. We will use this equation when solving numerically, as it is more
convenient. The values we obtain from this analysis will then be rescaled so that they have
physical meaning and can be compared to experimental observations.

2.2 Finite Temperature Theory

In this section we will outline some of the theory required for finite temperature models. At
T > 0 there are particles that exist in both condensate and thermal states, which means that
when estimating the density of the condensate we have to take certain measures to make sure
we separate the two. With the thermal excitations there is an element of random noise that
will be different each time the experiment, or numerical simulation, is run. To account for
this numerically we run as many simulations as possible and average over them by taking the
“ensemble average”. This will show us the most common outcome and reduces the effect of
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random perturbation. There is a link between energy dissipation and these random perturba-
tions called fluctuation-dissipation theory. This means that fluctuations drive the strength of
the noise and vice versa.

2.2.1 Quantum Correlation Functions

Correlation functions are used in quantum optics to define a system’s coherence, where a
perfectly coherent system is one that has equal phase throughout, such as a laser. Penrose and
Onsager [19] gave the precise definition of a Bose-Einstein condensate as

lim
|r−r′|→∞

〈Ψ̂†(r)Ψ̂(r′)〉 → constant, (2.19)

between two positions r and r′. This means the condensate is coherent through off-diagonal
long-range order (ODRLO, i.e. in the limit |r− r′| → ∞). To acquire the true density from by
the Penrose-Onsager definition one must numerically diagonalise the matrix to find the largest
eigenvalue; this eigenvalue will correspond to the macroscopically populated state, the BEC.

The correlation functions were derived to help distinguish between coherent laser light and
normal light. For the BEC, they highlight the differences between condensate and thermal
atoms. In classical systems, particles are coherent up to a length scale of λdB, whereas for a
pure homogeneous BEC in an infinite system we would expect the coherence length to tend
to infinity, i.e. when we perturb one particle in the system all of the other particles should
react. The, normalised, first-order correlation function is a measure of coherence length, and
is defined as [20]

g(1)(r, r′) =
〈Ψ̂†(r)Ψ̂(r′)〉√

〈Ψ̂†(r)Ψ̂(r)〉〈Ψ̂†(r′)Ψ̂(r′)〉
, (2.20)

where 〈. . . 〉 represents the ensemble average over simulations. When we are just considering
the condensate wavefunction this is

g(1)(r, r′) =
〈ψ∗(r)ψ(r′)〉√
〈|ψ(r)|2〉〈|ψ(r′)|2〉

=
〈ψ∗(r)ψ(r′)〉√
〈n(r)2〉〈n(r′)2〉

. (2.21)

This is measured between two particles at positions r and r′, where we are measuring at equal
time, so there is no time dependence. When analysing this function we plot the value of g(1)

against the distance between the two particles, |r − r′|. If g(1) = 1 then we have perfect
coherence between the two particles, g(1) then tends to zero when their separation is greater
than their coherence length. If the Bose gas has undergone condensation this value should to
tend to a constant as |r − r′| → ∞, which defines the appearance of a condensate through
ODLRO, as described above.

Now we introduce the second-order coherence function. In quantum optics, this is used to
determine the correlation of two separate photon-detection events and highlights the difference
between a classical and quantum-mechanical system [21]. It is used in BECs to provide a
contrast to a system that could be either described by the classical mechanics of matter waves
from a thermal source or those that have the theoretical properties associated with the quantum
field of a BEC. So, the second-order coherence function is defined as [20]

g(2)(r, r′) =
〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)〉
〈Ψ̂†(r)Ψ̂(r)〉〈Ψ̂†(r′)Ψ̂(r′)〉

. (2.22)
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Generally this is evaluated at zero separation (r = r′). So, for the condensate wavefunction
only this reads

g(2)(r, r) =
〈|ψ(r)|4〉
〈|ψ(r)|2〉2

=
〈n(r)4〉
〈n(r)2〉2

. (2.23)

This result takes on the value g(2) = 2 for normal light (thermal particles), and g(2) = 1 for
laser light (condensate particles).

2.2.2 Onset of Bose-Einstein Condensation in One and Three Di-
mensions

Equation (1.10) is the temperature at which the onset of Bose-Einstein Condensation begins
in 3D for an ideal gas in a trap, and corresponds to the point at which phase and density
fluctuations are suppressed. Lower temperatures mean a higher proportion of the atoms will
become in phase. Consider figure 2.3, where we have compared the proportion of atoms in the
ground state, N0/N against temperature for both 1D and 3D systems [22]. In the left graph

Figure 2.3: a) Schematic for the 3D case. As the temperature drops below Tc the atoms, N , begin
populating the ground state, N0, until they are equal at T = 0. b) In 1D we always find some particles
in the ground state, but the rate at which they are affected by temperature is different.

(a) we find the gradient to steepen as the temperature decreases below Tc, this highlights the
aforementioned point that the particles want to be in the ground state. However in our 1D
system, b), we find a linear relationship, so this phenomena is suppressed. In our 1D system we
do not have the same critical temperature given by T = Tc, instead we have three temperatures
of note for an ideal 1D gas. Firstly, Ketterle and van Druten [23] considered non-interacting
particles found within a harmonic potential. They found that macroscopic occupation of the
ground state occurs at

TQC =
~ωx
kB

N

log(2N)
, (2.24)

which is only valid for large, but finite, N . The subscript QC stands for quasi-condensate,
which signifies a state in which pockets of condensate are in phase, but not all pockets are
identical. The behaviour of this state is much like the BEC, however it does not have long-
range order. In the interacting case there are two temperatures that characterise 1D quantum
degenerate gases [24]. The degeneracy temperature is

Td =
N~ωx
kB

, (2.25)
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and below this temperature density fluctuations are suppressed. The third temperature is
defined to reduce fluctuations in the phase and density, as given by

Tφ =
N(~ωx)2

µkB
=

~ωx
µ
Td � Td. (2.26)

Note that Td > TQC > Tφ. The effects these temperatures create will be important when
discussing finite temperature models. We can analyse these effects by comparing the first order
correlation functions for each of them. In figure 2.4 we look at the effects of dimensionality for

Figure 2.4: a) Schematic for a 3D first order correlation function for two particles, at r and r′,
confined in a trap of length L. b) A 1D schematic. See [25] for more details.

g(1) on the coherence length (Lcoh). We find that in a 3D system thermal particles are coherent
only when they overlap, i.e. the distance between them is less than the deBroglie wavelength,
and that when T � Tc we see the onset of Bose-Einstein condensation across the length of our
system. The value of the constant g(1) plateaus to is determined by the proportion of density
in the lowest energy level. This can be expressed as nBEC/ntot, where nBEC is the density of the
Bose-Einstein condensate and ntot is the total density of the system. In 1D, the temperature
region Tφ < T < TQC produces a quasi-condensate, where the coherence length is longer than
the deBroglie wavelength but does not stretch to the entire length of the system. We see that
any coherence length greater than the red diagonal line, given by T ' Tφ, is considered to be
a good approximation to a “true” BEC, with lower temperatures giving larger portions of the
density in nBEC. In both cases g(1) never becomes completely constant because of the limited
size of the system, only if L→∞ can we observe ODLRO.

2.2.3 Approximate Condensate Extraction

When considering finite temperature models we note that some of the density profile, n(x),
we generate will be thermal particles, and the rest will be the BEC, which we are interested
in extracting. We observe the quasi-condensate when the temperature is reduced below the
threshold TQC . In this range density fluctuations are suppressed, such that pockets of the
solution are in phase and considered as Bose condensed, but the system as a whole is not
completely in phase. We can use the second order correlation function to extract the proportion
of the condensed density, that falls within these conditions, by taking [26]

nQC(x) = ntot(x)
√

2− g(2)(x, x), (2.27)

because for thermal particles g(2) = 2 and condensed particles g(2) = 1. Now we have a model
for the quasi-condensate, but for a full model we must find an approximation suppressing phase
fluctuations too. These phase fluctuations are defined by the first coherence function, g(1). So
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we can define [27]

nBEC(x) = lim
|x|→∞

ntot(x)g(1)(0, x)
√

2− g(2)(x, x). (2.28)

This method suppresses both density and phase fluctuations and leaves us with just the BEC.
However, this is just an approximation as it is defined for large distances only. For short range
analysis this method loses information. This is because the first order correlation function must
give g(1)(0, 0) = 1, as well as the minimum coherence length being the deBroglie wavelength,
so density near the centre is generally over-estimated at all temperatures.

2.3 Numerical Analysis

2.3.1 Imaginary Time Propagation

We introduce a handy trick which we will use for numerically solving the Gross-Pitaevskii
equation. Consider the wavefunction as a superposition of eigenstates, where ψm(x) is an
eigenstate of the wavefunction Ψ(x, t), and expressed as in terms of eigenenergies Em. We
write

Ψ(x, t) =
∑
m

ψm(x)e−iEmt/~, (2.29)

where it is important to note that each next eigenstate has higher energy than the previous
one, or Em > Em−1. Now make the substitution t→ −it, then we have

Ψ(x,−it) =
∑
m

ψm(x)e−Emt/~. (2.30)

Crucially, the eigenenergy governs the decay rate, and so the eigenstate with the lowest energy
(the ground state of the system) decays slowest. This can be easily seen by taking exp (−E0t/~)
out as a factor of equation (2.30), then

Ψ(x,−it) = e−E0t/~
(
ψ0 + ψ1e

−(E1−E0)t/~ + ψ2e
−(E2−E0)t/~ + . . .

)
, (2.31)

and here it is clear that the terms with greater exponents will decay quicker as t increases.
Thus by taking an approximation of the initial profile of the wavefunction during propagation
in imaginary time the thermal states will dissipate, leaving behind the ground state. However,
as the factor of exp (−E0t/~) is also tending towards zero as t → ∞ we have to limit the
number of simulations in imaginary time before we lose the condensate as well.

2.3.2 The Crank-Nicolson Method

We introduce the notion of finite differences by considering the familiar first derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (2.32)

In this case, the finite difference is the expression f(x+ h)− f(x), when we divide by h we get
the difference quotient. We could similarly use f(x+ h/2)− f(x− h/2), which is easier to use
when defining the second derivative. When evaluating the derivative numerically we will not
be able to reduce the value of h to zero, however we will obtain more accurate solutions for a
smaller step size. For second order differentiation we obtain

f ′′(x) = lim
h→0

f ′(x+ h/2)− f ′(x− h/2)

h
= lim

h→0

f(x+ h)− 2f(x) + f(x− h)

h2
. (2.33)
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The Crank-Nicolson method uses finite differences to numerically solve partial differential dif-
ferential equations. It was developed by John Crank and Phyllis Nicolson in the 1950s [28].
For a partial differential equation, in one dimension, it can be said

∂u

∂t
= F

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
. (2.34)

Letting u(j∆x, n∆t) = unj the Crank-Nicolson method is the calculation of

un+1
j − unj

∆t
=

1

2

[
F n+1
j

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
+ F n

j

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)]
. (2.35)

Note that the numerical calculation of a second order derivative defined in equation (2.33) is
now given by

∂2u

∂x2
=
unj+1 − 2unj + unj−1

(∆x)2
+O(∆x2). (2.36)

In many cases the algebraic problem is a tridiagonal matrix, which is zero everywhere except
in the main diagonal and the diagonals above and below (often reffered to as sup- and sub-
diagonals). These matrices can be solved with the tridiagonal matrix, or Thomas, algorithm [28]
(see appendix A for example). From this reference we note that the method only converges
if the relation ∆t/(∆x)2 < 1/2 holds. Consider equation (2.18) in the form i∂ψ(x, t)/∂t =
ĤGPψ(x, t), for the Hamiltonian ĤGP . Direct integration gives

ψ(x, t+ ∆t) = exp{−i∆tĤGP}ψ(x, t) +O(∆t2), (2.37)

assuming the Hamiltonian is fixed during the time interval. We can replace the exponential
function using a finite difference approximation called Cayley’s form [29]

exp{−i∆t(H − µ)} =
1− i∆t

2
ĤGP

1 + i∆t
2
ĤGP

+O(∆t2). (2.38)

We now have the tools to evolve our solution in time and space. On letting ψ(j∆x, n∆t) = ψnj
the full time evolution step is

− i∆t

4(∆x)2
ψn+1
j−1 −

i∆t

4(∆x)2
ψn+1
j+1 +

[
1− i∆t

2

(
µ− 1

(∆x)2
− Vext(x)− g|ψn+1

j |2
)]

ψn+1
j

=
i∆t

4(∆x)2
ψnj−1 +

i∆t

4(∆x)2
ψnj+1 +

[
1 +

i∆t

2

(
µ− 1

(∆x)2
− Vext(x)− g|ψnj |2

)]
ψnj , (2.39)

which can be written as a tridiagonal matrix and solved using a simple algorithm. However,
in the left hand side of this equation we have a non-linear term that depends on the value
of ψn+1. We can get around this by letting ψn+1 = ψn for one iteration and substituting the
newly obtained ψn+1 back into the original equation. This intermediate process is repeated
until convergence of the new wavefunction, although we find that one iteration gives sufficient
accuracy.
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Chapter 3

Equilibrium Solutions to the 1D GPE

We have introduced all of the necessary notation and methods to numerically solve the 1D,
dimensionless, GPE at zero temperature. Everything we consider in this chapter will be a
condensate, as we are not accounting for the thermal particles. When solving numerically we
will use some typical experimental parameters to try and obtain realistic results. An example
recent experiment with rubidium atoms had a system of N = 1700, with trapping frequencies
(ωx, ω⊥) = (53 Hz, 890 Hz). The mass and scattering length of rubidium is m = 1.44×10−25kg
and as = 5.05× 10−9m, respectively. We will use (ωx, ω⊥) = (2π × 20 Hz, 2π × 500 Hz), which
using our equation for the interaction strength corresponds to g = 0.1046~ωxlx. The particle
number depends on our choice of the chemical potential and trapping frequency, we derive a
formula for this quantity later in the chapter.

3.1 Uniform Solution

Firstly we will look at the analytical solution for a problem where we have a uniform potential,
defined by taking Vext(x) = 0. In this form there is no trap confining the BEC. As such the
background potential is homogeneous, i.e. there are no spatial variations, thus any derivatives
in x are zero. In this case equation (2.15) becomes µψ = g|ψ|2ψ, which has solution ψ(x) =
ψ∞ =

√
µ/g, or, in terms of the density

n(x) = n∞ = |ψ∞|2 = µ/g. (3.1)

Thus the BEC wavefunction and density are constant in space in an infinite-sized Vext(x) = 0
system. We will use this result when plotting solutions to the wavefunction, as we know that
gn(x) should have a value of µ away from any potential confinement, thus we have an immediate
check for our solution.

3.2 Wall Solution

The uniform solution will only match up with experiments far away from a barrier either side
of the condensate. However, to have something reasonable to compare with experiments we
must analyse that happens within a confined BEC. Consider an infinite hard wall placed at
x = 0, with potential defined by Vext(x) = 0, for x > 0 and Vext(x) = ∞, for x ≤ 0. We note
that no particles can exist outside of the range x ≤ 0, as to pass through the barrier would
require infinite energy. This gives the boundary condition ψ(0) = 0. Meanwhile away from the
wall the potential energy is zero, so ψ will return to its bulk wavefunction giving the second
condition ψ(x → ∞) = ψ∞ =

√
µ/g. We are currently considering static properties, so our

∂/∂t term is zero, however for x ≥ 0 the wavefunction obeys

− ~2

2m

∂2ψ

∂x2
+ g|ψ|2ψ = µψ. (3.2)

We prove the solution to this equation in appendix B, however we just state it here to be

ψ(x) = ψ∞ tanh

(
x

ξh

)
, (3.3)
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where we define ξh as the healing length and ξh = ~/√mgn∞, or in dimensionless units (on

noting ξh is a length) ξ̃h = 1/µ̃. The healing length is defined as the thickness of the layer from
zero density at the wall to the equilibrium value, due to particle interactions with the barrier
wall.

Now we will consider the numerical simulation for this problem. Let us consider a wall
placed at x = 0 and take the dimensionless chemical potential to be µ̃ = 30, which means
physically we have µ = 30~ωx and Vext = 0 for the wall solution at x > 0. We know, using
equations (3.1) and (3.3), the dimensionless analytical solution to the right of the barrier is

ψ̃(x̃) =
√

1500 tanh
(√

30x̃
)
. (3.4)

Figure 3.1 a) shows the analytical and numerical results, with one overlaying the other. Here
we only see little discrepancy between the two, giving us confidence with the accuracy of our
numerical results. For our parameters the healing length is ξh ≈ 0.2lx, which we have marked
on the figure as a red dotted line. So, it is at this point that particle-wall interactions stop
having an effect and we return to the n∞ solution. This solution can also be redefined for a

Figure 3.1: a) The numerically obtained wall solution in (solid) black with the analytical solution
overlaid in (dashed) blue are in good agreement. We have marked the point of the healing length from
the wall as a dotted red line. b) The density (red) for the an infinite potential well with g̃ = 0.1046 > 0,
with same solution for g = 0 (blue).

square well of width L � ξh, i.e. a barrier placed at x = 0 and x = L. As long as the well is
wide enough the wavefunction tends to zero at both edges with the same tanh-like behaviour,
and tends to n∞ in the centre. Figure 3.1 b), shows the infinite box solution both with and
without interactions. Note how we obtain the ground state solution as shown in figure 2.1 for
the non-interacting case. When g > 0 the interactions broaden and flatten the density profile
since they introduce an energetic cost to having a high density of atoms in one place, however
if there are no interactions the particles will be more inclined to move to the centre.

3.3 Thomas-Fermi Approximation

In this section we use the form of the potential as described in section (2.1.1) as a harmonic trap.
Now we consider the interactions to be strongly repulsive. Under this assumption the effect
of the kinetic energy, ∇2ψ-term, is negligible in comparison. This is known as the Thomas-
Fermi approximation. The time-independent GPE then simplifies to µψ = g|ψ|2ψ + Vextψ.
Rearranging for the density n(x) = |ψ|2 and inserting Vext(x) = 1

2
mω2

xx
2 gives

n(x) =
2µ−mω2

xx
2

2g
. (3.5)
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CHAPTER 3. EQUILIBRIUM SOLUTIONS TO THE 1D GPE

We note that as |x| → ∞ the density will become negative, which is non-physical, so we
truncate this beyond the n(x) = 0 boundary. This boundary is called the Thomas-Fermi
radius, and, from substitution of x = RTF into equation (3.5), satisfies µ = mω2

xR
2
TF/2. The

corrected Thomas-Fermi density profile (with RTF being substituted in) is then

n(x) =
mω2

x (R2
TF − x2)

2g
Θ(R2

TF − x2), (3.6)

where Θ(x) is the Heaviside function, defined as Θ(x) = 0 for x < 0 and Θ(x) = 1 otherwise.
This gives us an inverted parabola with the greatest density at the centre. When we substitute
x = 0 we obtain gn(x) = µ, so the maximum density should be equal to the chemical potential.
We can use this relation for the density to find the number of atoms within the Thomas-Fermi
profile

N =

∫
x

n(x)dx =

∫ RTF

−RTF

mω2
x (R2

TF − x2)

2g
dx =

4m

6g
R3

TFω
2
x. (3.7)

Then substituting in the relation for RTF we can solve this in terms of µ to give

N =
2

3

(2µ)3/2

gωx
√
m
. (3.8)

Substituting the parameter transformations from the dimension analysis we find this simplifies
to N = 25/2 µ̃3/2/3g̃. When considering problems in a simple harmonic oscillator we should now
know how many atoms we expect to find in our condensate, given our experimental parameters.
If we choose µ = 30~ωx we can use equation (3.8) to find that we are modelling a system with
N ≈ 3000 particles. Next, we show the numerical realisation of the dimensionless equation for
a simple harmonic oscillator with the same parameters as previous, this gives equation (3.6) to
be n(x̃) = 25(60− x̃2)Θ(60− x̃2). Figure 3.2 shows this simulation, with the analytical results
and the harmonic trap potential overlaid. We note the slight difference at the Thomas-Fermi

Figure 3.2: a) Numerical density (black solid line) with the Thomas-Fermi profile (green dot-dashed
line) overlaid. The harmonic trap is also shown (red solid line) with a separate axis (red). b) The size
of the discrepancy at the Thomas-Fermi radius, which we find is equal to the healing length ξh. c)
The phase (blue solid line) of the system.

radius, i.e. at x = ±
√

60lx, highlighted in figure 3.2 b). These discrepancies are given by
the healing length, ξh, where particle interactions give enough thermal energy to move slightly
further out of the trap than the Thomas-Fermi limit allows. These simulations are useful in
our discussion of the equilibrium states of BECs, however the important factor is whether
we are observing a thermal cloud or a Bose-Einstein condensate; this is why we plotted the
phase of the system. We see from figure 3.2 c) that there is a strong indication that we are
observing a system with a BEC as the particles have undergone a phase transition and, within
the Thomas-Fermi radius, are completely in phase.
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Chapter 4

Non-Equilibrium Dynamics of the
GPE Solution

Any non-equilibrium analysis where we make a sudden change to the energy is called a quench.
Here we will perform a variety of quenches that have all been experimentally achieved in the
last twenty years and serve as a good test of the Gross-Pitaevskii theory. We use the same
parameters as the previous chapter for consistency.

4.1 Opening the Trap

In this section we will instantaneously change the trap frequency: ωx → 0.9ωx, which in
experimental terms means reducing the frequency of the laser confining the BEC. Numerically
we account for this by taking Vext(x̃) = x̃2/2 → Vext(x̃) = 0.92x̃2/2. The trap potential is
parabolic, by reducing the frequency we are essentially “widening” the trap, creating less of
a hold on the condensate. This quench will be performed after running in imaginary time
and obtaining the equilibrium ground state solution. Figure 4.2 shows how the trap potential
changes. Consider how this scenario would work classically if we had fluid contained in a bowl,

Figure 4.1: The original trap for the simple harmonic oscillator (black dotted line) and the trap
after the frequency has been modulated (blue solid line). The change in frequency creates a wider
trap and forces the discrete energy levels to be lowered and forced closer together.

in a somewhat rounded shape such as the harmonic oscillator. If the bowl is suddenly widened
then we would expect to see the fluid fill the gaps created around the rim, and to see the fluid
oscillate briefly between the newly defined rim and the centre, until internal viscosity causes
the system to come to a halt. In figure 4.2 we see what happens to the density of the BEC after
this quench. Plot a) is a carpet plot, which shows the density profile changing over time, with
red as high density and blue as low. The profile “breathes” in and out with each oscillation.
From equation (3.8) we note that N ≡ N(µ, ωx). Thus, if we change the trap frequency we
should also change the particle number. However, this value does not change because in the
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CHAPTER 4. NON-EQUILIBRIUM DYNAMICS OF THE GPE SOLUTION

Figure 4.2: a) A carpet plot that follows the density over time. For t < ω−1
x we ran in imaginary

time to reach the equilibrium solution then we propagate in real time after applying the quench. We
see periodic peaks and troughs where the density profile becomes broad and flat, then returns to the
thinner density with a higher peak. b) This plot shows how the central density, n(0), oscillates in
height over time.

GPE particle number is conserved. Instead all that we have done is reduce the confinement on
the BEC and reduce the value of the lowest energy level (E0 ≈ ~ωx). The BEC wants to relax
at the lowest density, as shown in b), but as there is no energy or particle loss it is forced to
oscillate indefinitely. When the central density is at a trough in b) we see a wider profile in a),
due to the constant number of atoms.

4.2 Dark Solitons

A dark soliton is a local decrease in wave amplitude and has the following properties: they
move along the density profile without changing shape, they are localised within a region and
two solitons can interact with each other and come out of the collision unchanged, except for a
slight phase shift [30]. In a classical fluid this non-linear wave would dissipate through viscous
damping, but in a superfluid or BEC there is no viscosity, so these disturbances remain.

4.2.1 Experimental Creation of Dark Solitons

Atomic dark solitons have been achieved experimentally by either perturbing the atomic den-
sity [31] or by phase imprinting [32, 33]. Phase imprinting is where a laser beam illuminates
a small portion of the condensate such that that portion acquires a phase shift, but it is not
left on long enough to perturb the density as a whole. Dark solitons are also expected to
appear after the collision of two condensates [34, 35]. In 3D solitons have been observed to
exist up to lifetimes of the order 10ms, however in 1D systems they are expected to remain in
the condensate to the order of several seconds [36].

4.2.2 Dark Soliton Solution

We can simulate the instantaneous introduction of a soliton into the system by multiplying the
steady condensate solution, as produced at the end of the imaginary time propagation, by the
solution for a soliton. The wavefunction will then maintain its shape but have a sharp decline
in density at a point x = x0 and as we propagate through time this point will oscillate along
the profile. A dark soliton is described by the wavefunction [32]

ψds(x, u, t) =
√
n∞ exp

{
−iµt

~

}(√
1− u2 tanh

[
x− x0

ξh

√
1− u2

]
+ iu

)
, (4.1)
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where: n∞ is the homogeneous background density, as described in section (3.1); u = v/c, v
represents the velocity of the soliton, c =

√
n∞g/m is the Bogoliubov speed of sound in the

medium and u is contained in the range 0 ≤ u ≤ 1 (i.e. 0 ≤ v ≤ c); and x0 represents the
initial central position of the soliton. The soliton will always be implemented at t = 0, so the
exponential term can be neglected and we will write ψds(x, u, 0) ≡ ψds(x, u). It is important
to note that if u = 0 then the soliton created is called a black soliton and has zero density in
the BEC, but maximum soliton energy (conversely a u = 1 soliton has zero soliton energy).
This type of soliton cuts the density profile in half and due to its non-dispersive nature has
been compared to a particle with negative mass. In fact, for weak forces to a first order, this
categorisation has been shown to hold [37] and it is this idea that a tells us that the dark soliton
will oscillate back and forth under harmonic confinement. As we have effective negative mass
the momentum of the soliton is given by p = −mdsu. Thus from the balancing of the forces
from Newton’s second law (F = ma) and the harmonic oscillator restoring force (F = −kx, for
some positive constant k) to first order, we can state the harmonic equation of motion as [38]

d2xds

dt2
= −ω

2
x

2
xds, (4.2)

which has oscillatory solutions with frequency ωds = ωx/
√

2 , and thus period τds = 2π
√

2/ωx.
The solution for ψds produces a soliton in a uniform potential, but works as a good estimate

for dark solitons in a simple harmonic trap. Figure 4.3 shows a range of velocities of dark

Figure 4.3: a) Dark solitons in a uniform background density, in separate runs, with ψds(x, u = 0)
(black solid), ψds(x, u = 0.25) (blue dotted), ψds(x, u = 0.5) (green dot dashed) and ψds(x, u = 0.75)
(red dashed). b) The phase profile for each dark soliton.

solitons created in a Vext(x) = 0 background potential. There is a relationship between the
depression density (nd), change in phase (S referred to as the phase slip) and soliton speed
(u), expressed as u =

√
1− (nd/n) = cos(S/2). Hence a phase slip S = π gives u = 0 and

corresponds to a black soliton. Smaller phase slips correspond to solitons that are not as deep
but propagate at greater speeds. If we were to leave the solution to propagate in real time in
figure 4.3 a) each soliton would oscillate back and forth through the medium, as opposed to
dissipating or remaining stationary.

4.2.3 One Soliton Solution

Now we can use this to model a dark soliton in a simple harmonic trap. Figure 4.4 shows a
dark soliton with dimensionless speed u = 0.4 inserted into the equilibrium solution at real
time t = 0 then left to oscillate in the BEC. We see that the dimensionless period is given
by τds/ωx = τ̃ds = 2π

√
2 ≈ 8.89. The dark soliton propagates to the right with dimensionless

speed u = 0.4 until the central point of the soliton has zero density at some point x = xc, where
xc is a critical x value. Then it cannot move any further to the right so changes direction until
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it reaches the opposite critical value of x = −xc on the left. This process repeats and the dark
soliton is seen to be oscillating with period τ̃ds. After the soliton oscillates freely for a while
there is a small build up of density on top (hence the maximum density is gn(x) ≈ 31~ωx in
d)), this is energy being transferred as sound waves. It is important to note there is no energy
loss in these systems, any energy given up by the soliton as sound is often reabsorbed later
from the background medium. In figure 4.5 we plot the same time evolution as figure 4.4, but

Figure 4.4: A dark soliton created in the Thomas-Fermi profile with ψds(x, u = 0.4). We follow
the solution in time from its inception (t = 0), to the point where it hits zero density and begins to
oscillate back towards the centre (t = 2.2ω−1

x ), the same point on the other side (t = 6.7ω−1
x ) and

back to the centre for one full oscillation (t = 8.9ω−1
x ).

showing the phase of the system at each snapshot. As the phase is calculated through an arctan
function the possible values are restricted between the range (−π/2, π/2). As such, plots b)
and c) show phase slips for black solitons, as the density is zero at these points, hence why
there is a sudden π phase shift in each of these plots. We note that initially there is a clean
phase slip across the centre of the profile. However after propagating in time, outside of the
Thomas-Fermi radius is very noisy. This is because the solution ψds is clean for a homogeneous
background and picks up noise when applied to the harmonic trap.

Figure 4.5: Evolution of the phase of the dark soliton, at the same times and positions shown in
figure 4.4.

We can also demonstrate that the oscillation period is the same, irrespective of the value
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u in ψds. Figure 4.6 shows the central position of a dark soliton for three different values
of u. Here we see that the change in soliton depth is proportional to the change in soliton
speed, given by the gradient of the trajectory, thus giving each soliton a different amplitude
but the same period of oscillation. From this figure it can also be confirmed that the period is
τ̃ds ≈ 8.89.
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Figure 4.6: The oscillatory motion of the dark soliton, observed with ψds(x, u = 0.2) in blue (solid),
ψds(x, u = 0.4) in green (dashed) and ψds(x, u = 0.6) in red (dotted).

4.2.4 Sound Mediated Dark Soliton

In this section we model the case where two solitons are inserted simultaneously into the
condensate. We look at a paper published by Allen et al. [39], where the authors consider one
black soliton in the centre of the density profile and another dark soliton placed off-centre. We
have used the same parameters as the paper to try and recreate the results as much as possible.
Figure 4.7 shows the nature of this solution as a carpet plot. If we follow the dark soliton,

Figure 4.7: The density, indicated by colour, changing over time with the introduction of two
solitons, one near black (x0 = 0, u = 0.1) and one dark (x0 = −3lx, u = 0.3). We have used the
variables µ = 30~ωx and g = 0.1046~ωxlx.
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which is the soliton with a wide amplitude when introduced, we see that it gains energy, thus
it slows down and its amplitude decreases. The system we are modelling has constant energy,
so if one soliton is gaining some energy the other must be losing the same amount. This is
exactly what happens as the black soliton we started with, u = 0.1, has near maximum energy
and gives some of it up to begin oscillating with a wider amplitude. This energy transfer is
due to sound waves. Unlike the single soliton case, the sound is not reabsorbed by the same
soliton but is absorbed by the soliton with lower energy.

The explanation given in Allen et al. says that this energy transfer continues until the
solitons become comparable in energy and then the process reverses. In this interpretation the
soliton that is initially black (has the lowest amplitude) bounces off of the dark soliton at the
point of equal energy. However, on looking at the simulations in figure 4.7 the author of this
report believes that this interpretation is incorrect. Instead, the solitons do not bounce off each
other, but instead they pass through each other; as described by Drazin and Johnson [30]. In
this scenario the energy transfer continues until the soliton that starts with the least energy,
gains the maximum amount of energy allowed by the system. When it has obtained maximum
energy this process starts to reverse (in figure 4.7 this first occurs at t ≈ 150ω−1

x ). We can
analyse this accuracy of this interpretation by considering the period of the solitons. The
correct interpretation will have a roughly constant period (roughly due to soliton collisions),
as derived for the single soliton case.

Figure 4.8: The period of oscillation for each soliton. The black solid line shows the period for
the soliton that is initially black and the blue dashed line shows the period for the soliton that is
initially dark. We extended the simulation to t = 300ωx for a broader analysis. a) The Allen et
al. interpretation of results. b) The author’s approach.

So, in figure 4.8 we have plotted the period of oscillation over time for each soliton. From
the Allen et al. interpretation the period has a large and unexpected increase, with a cor-
responding decrease, in each soliton repeated every t ≈ 100ω−1

x . This gives strong evidence
for our interpretation of the results. These jumps do not occur in our interpretation, so are
explained if the solitons pass through each other. However, we also find a sharp increase in the
length of the period at several times (i.e. t ≈ 125ω−1

x ) in both interpretations. When referring
back to the carpet plot these times correspond to one soliton with maximum, and the other
minimum, energy. For two optical solitons in a system, it has been shown that soliton period
scales inversely with amplitude [40], i.e. τ1/τ2 ∼ A2/A1, for amplitudes A1 and A2. Thus
as the black soliton has the shorter amplitude (A1 < A2) it will also have the longest period
(τ1 > τ2), which is exactly what we observe in figure 4.8. A further investigation is required
to fully understand the meaning of the results. For example, we could look at the speed of
each soliton to determine why these changes in period are sometimes sudden and other times
exhibit gradual change.
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Chapter 5

Stochastic GPE

5.1 The Finite Temperature Model

In this chapter we analyse finite temperature systems. We can model this by considering the
following approximate split: we define the system (φ) as the condensate and low-lying thermal
cloud (found below an appropriate cut-off energy level), and the heat bath, which contains
purely thermal particles. This is shown schematically in figure 5.1. Again, in this formulation
we are not interested in the individual positions of each particle, rather the number of atoms
at each energy level.

Figure 5.1: We have split up our field into two parts, beneath the cut-off point (Ecut, thick black
line) is taken to be the BEC and the low thermal particles, and above the cut-off energy level is a
purely thermal part. We have also shown a particle transfer/collision, which we will describe as each
particle being annihilated from their initial states and created in their new states.

Consider the following analogy: imagine going to the river Tyne with a kettle of boiling water.
After pouring the kettle water into the river the water will reach a very quick thermal equi-
librium with no overall change to the river’s temperature. This analogy is similar to our set
up here, we have a system of a much lower temperature to its surroundings that will have no
effect on the heat bath’s dynamics other than particle transfer at the edge of our cut-off point.
Hence we take the heat bath to be steady. We are now trying to solve the system defined by
a Langevin equation called the stochastic Gross-Pitaevskii equation (SGPE) [41]

i~
∂φ(x, t)

∂t
= ĤGPφ(x, t)− iR(x, t)φ(x, t) + η(x, t), (5.1)

where −iR is the dissipation of atoms from the system (represented by the transfer of atoms
between the system and bath; mathematically it is calculated assuming the instant destruction
of a particle in one state and creation of a particle in another state) and η represents fluctuations
in the system, which is an additive stochastic term. This means every individual run will be
different because we are adding a random number to each time-step. We then take the average
over runs to analyse the data.

5.1.1 Fluctuation and Dissipation

The dissipation can be calculated by setting [41]

−iR =
1

2
~Σk(x) [1 + 2N(ε)]−1 , (5.2)
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where Σk, which is a fluctuation term (called the Keldysh self energy), and N(ε) is the Bose-
Einstein distribution from section (1.2.2). We can expand this to first order as

−iR ' β

4
~Σk(ε− µ), (5.3)

where β(ε − µ) � 1 and (ε − µ) is comparable to the Hamiltonian ĤGP . We can write our
stochastic GPE as

i~
∂φ

∂t
= (1− iγ)ĤGPφ+ η, (5.4)

where −iγ = β~Σk/4. This parameter is an approximation for the dissipation of our system.
When simulating data we will take a constant value of γ to be

γ =
12ma2

skBT

π~2
, (5.5)

as derived in [42]. We note that γ ∝ a2
sT and γ ∼ 10−2 for the considered temperature range.

This also governs the rate that our solution reaches equilibrium, which will be slower for lower
temperatures. We take this small constant to be our initial condition for φ, because in an
experiment we would start with no condensate atoms and the BEC density will grow with
time, which is what we will see later. However, when we are looking at equilibrium dynamics
we can speed up this growth process by multiplying γ by a factor of 10, say. The rate at
which the solution reaches equilibrium under this regime will be entirely non-physical, but the
final steady state solution shall be the same, which we have checked to be the case. Equation
(5.4) without noise is the dissipative Gross-Pitaevskii equation (DGPE), which describes the
dynamics of the condensate in the presence of a steady thermal cloud. The solution of the
DGPE is the average outcome of the SGPE.

The Gaussian noise has correlations in the Langevin field equations given by [41]

〈η∗(x, t)η(x′, t′)〉 = 2~γkBTδ(x− x′)δ(t− t′). (5.6)

This relation represents the fluctuation-dissipation theorem for the system, as it describes the
magnitude of the relationship between the fluctuation strength and damping parameter, γ. In
general, a stochastic ODE is of the form

dx(t) = −Ωx(t)dt+ σdw(t), (5.7)

where w(t) is a random noise and Ω is a constant. We can calculate a solution from an initial
time t0 to be

x(t) = e−Ω(t−t0)x(t0) + σe−Ωt

∫ t

t0

eΩt′dw(t′). (5.8)

To apply this method to the SGPE we must first write equation (5.4) as

dφ(x, t) = − i
~

[
αĤGPφ(x, t)dt+ η(x, t)dt

]
, (5.9)

where α = 1− iγ. Then to solve this we use the approach described by Bijlsma and Stoof [43],
but first discussed in [44], to solve for a time increment from tj to tj + ∆t. They derived the
time step

φ(xj, tj + ∆t) = exp
[
−iαĤGP∆t/~

]{
φ(xj, tj)− ξ(xj, tj)

}
, (5.10)
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where

ξ(xj, tj + ∆t) =
i

~
exp

[
−iαĤGP∆t/~

] ∫ tj+∆t

tj

dt′ exp
[
−iαĤGP∆t/~

]
η(xj, t

′). (5.11)

Here ξ is the redefined fluctuation term whose correlations now take the form

〈ξ∗m(x, t)ξn(x′, t′)〉 = 2~γkBTδ(x− x′)δmn∆t+O(∆t2), (5.12)

where δmn is the Kronecker delta, defined as δmn = 1 if m = n or δmn = 0 otherwise. Follow-
ing [45] the classical field ξ ∝

√
iΣk
√

∆t/∆x when simulating numerically, so smaller spatial
discretisation creates larger noise. We see from equation (5.10) that to implement the noise we
subtract the random number from φ at each time step.

5.1.2 Choosing the Energy Cut-off Point

The energy cut-off point, Ecut, between the low thermal and purely thermal energy levels is
defined as

Ecut =
2π

(∆x)2
. (5.13)

So, in this approximation the amount of low thermal levels we include depends on our dis-
cretisation. Smaller ∆x gives more particles in our simulation, and the more noise we simulate
through ξ. This means we have to keep ∆x low enough so that we don’t include too much of the
thermal cloud, but high enough so we satisfy the convergence properties of the Crank-Nicolson
method (highlighted in section 2.3.2).

5.1.3 Condor High Throughput System

To simulate the data we used a program called Condor, which makes use of idle processors
on the University campus to calculate many parallel jobs. Once a program is ready to go it
is sent to the Condor collector, which then distributes jobs to machines as soon as they are
available. If someone logs onto a computer that is currently being used by Condor the job
breaks. It is then sent back to the collector and resubmitted to a new processor, continuing
the simulation from the breaking point with no loss of data. This system also uses a seed to
make sure the random variable is consistent after being restarted. Once the data is collected
it is averaged over runs to infer the mean behaviour of the gas. Without access to Condor this
last chapter would not have been possible. To give an idea of how much of a difference access
to this package has made, one simulation from the SGPE at a low temperature could take 20
minutes. To get a smooth average we typically run 1000 simulations. If each run was being
made one after another this would take just under 2 weeks to simulate. However, with Condor
we generally have access to at least 200 processors at any given time, so this takes less than 2
hours.

5.2 Equilibrium Analysis of SGPE

In this section we will begin to analyse data from the SGPE code. Note that the analytical GPE
solutions from chapter 3 are still the benchmark for comparison, as they contain information
of the pure BEC. The first experiment that required stochastic analysis was done in 1998 with
sodium-23 atoms (23Na) [46]. So, in this chapter we will use the parameters for sodium, which
are an atomic scattering length as = 2.75nm and mass m = 3.818 × 10−23kg. We will also

31



CHAPTER 5. STOCHASTIC GPE

use the trapping frequencies (ωx, ω⊥) = (2π × 150 Hz, 2π × 400 Hz), unless stated otherwise,
which makes g = 0.0364~ωxlx. However, we are now considering the effect of temperature
as well, which is dependent on µ. The atom number also is temperature dependent, so in
the SGPE we will only use equation (3.8) as an approximation to the true value. Using the
formula for Tφ in equation (2.26) with µ = 30~ωx we calculate that Tφ = 275nK. Often when
considering temperature analysis it is useful to make comparisons to T/Tφ, as if T/Tφ < 1 we
are considering systems in the region where both phase and density fluctuations are suppressed.

Before analysing the effect of each variable in the SGPE, we will show a simple equilibrium
solution. Figure 5.2 shows a single run against its averaged counterpart, over 200 simulations.

Figure 5.2: a) A single, noisy, simulation from the SGPE (black) and an ensemble average over runs
(red). b) A few snapshots taken from the numerics as the density grows in time. Parameters chosen
were µ = 35~ωx andT = 100nK (T/Tφ = 0.33, for chosen µ), corresponding to a system of N = 1400
sodium atoms.

We see that the shape of the density profile is much like the expected zero temperature equiv-
alent, however as we will see, part of this density is condensate, part thermal cloud. Figure 5.2
b) shows the increase in density in time, with the particle number equilibrating at t ≈ 200ω−1

x .
Now we are considering finite temperature models the main difficulty is in distinguishing

between the condensate and the thermal particles. We have already mentioned much of the
theoretical framework required to extract the condensate in chapter 2, so here we will implement
these models.

5.2.1 Effect of Temperature

To analyse the temperature dependence we will plot three averaged results from the SGPE
with T = 100nK (T/Tφ = 0.3), T = Tφ and T = 600nK (T/Tφ = 1.89). We will use µ = 40~ωx,
which corresponds to a system with N = 1760. The density plots, shown in figure 5.3 a), are
remarkably similar. This emphasises the point that it is difficult to immediately see which one
of these has the largest proportion of condensed atoms. We can see that for higher temperatures
the central density is lower, and the density profile is wider. This is because there are more
thermal particles for larger T . The thermal particles are forced to the edges of the trap, due
to repulsive interactions, and thus create a larger density in the region |x| > RTF ≈ 7.7lx.

We have also plotted the first order correlation function, figure 5.3 b), that shows the
coherence length, (Lcoh), from the centre of the trap outwards, where we have just plotted for
positive x. We see that for Tφ the condensate is coherent up to the Thomas-Fermi radius, as
expected from section 2.2.1. We also see that for T < Tφ we have a strong coherence up to
about x = 6lx, where the value dips because of the finite size of the system. Similarly, for
T > Tφ we see that the coherence length is much shorter than the Thomas-Fermi radius, and
is within the quasi-condensate range because TQC/Tφ = 4.9.

The second order correlation function for the various temperatures in shown in figure 5.3 c).
We note that for a true BEC this should be precisely 1 within the Thomas-Fermi radius and
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Figure 5.3: a) The density profile for three different temperatures, as shown as proportions of Tφ.
b) The first order correlation function for these three realisations of the SGPE. c) The corresponding
second order correlation function, where we have also overlaid the value for a pure BEC (red dashed
line) within the Thomas-Fermi radius.

2 within the thermal cloud. What we observe is similar for the lower temperatures, however
as we increase the temperature we see more thermal particles, and greater noise, within the
Thomas-Fermi range as well.

Within a finite system it is difficult to tell what the true coherence length is for the condensed
particles. For every temperature shown, g(1) is forced to tend to zero as the solution approaches
the Thomas-Fermi radius. We can, however, use the behaviour before the coherence length
is affected by the boundary to extrapolate an approximation to the “true” coherence length
in an infinite system. The shape of the curve changes from a Gaussian relationship to an
exponential one with increasing temperature, implying the change from a true condensate to
a quasi-condensate [47]. From figure 5.3 b) we can see that g(1) has an exponential slope for
temperatures T � Tφ and a Gaussian for T � Tφ, so when fitting the curves we will use the
function f(x), which contains information on both types. f(x) is defined by [27]

f(x) = e−[x/Lcoh+α(x/Lcoh)2], (5.14)

where Lcoh is the coherence length and α is a parameter that defines how much control the
Gaussian profile has over the estimation. We expect large α for Bose condensed particles and
small α for thermal particles. We applied this fit to the range of temperatures shown above

Figure 5.4: a) The coherence length obtained by fitting the data to a Gaussian-exponential fit to
predict the behaviour at infinity. b) The linear relationship between the central point of the second
order correlation function and temperature, or g(2)(0, 0) ∝ T .

and included two extra points for T = 10nK (T/Tφ = 0.03) and T = 900nK (T/Tφ = 2.83) to
obtain a slightly wider range of effects. Figure 5.4 a) shows the results for the values of Lcoh

against temperature. We note that for temperatures greater than Tφ we have low coherence
lengths. However, as TQC/Tφ = 4.9 all of the data shown is in the quasi-condensate range, so
much of the cloud is condensed in separate pockets of matter. Each of these pockets has a
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different phase, hence the lack of coherence through the system as a whole. For temperatures
less than Tφ we see these regions of quasi-condensate become in phase and there is a steep
increase in the coherence length. Another interesting by-product of this analysis is the linear
relationship between the central value of g(2) and temperature, shown in figure 5.4 b). We find
that the number of thermal particles entering the central region is directly proportional to T ,
which can be derived analytically to be [48]

g(2)(0, 0) = 1 +
4
√

2

3

(
T

Td

)
. (5.15)

5.2.2 Approximate Penrose-Onsager Solution

From the last discussion we have seen how the temperature affects the correlation functions.
If we return to the formulae as presented in section 2.2.3 we saw that these functions extract
the condensate from the thermal cloud. As mentioned, this approximation is valid for particle
separations tending to infinity. So, using this we show the approximate Penrose-Onsager profile
for the case T = 100nK in figure 5.5. From this figure we see that the profile maintains mostly

Figure 5.5: Approximate Penrose-Onsager solution for T/Tφ = 0.3 (blue) and the thermal particles
from the same data (red). This stresses the point made earlier that the thermal particles are pushed
to the sides of the density profile. The low thermal cloud solution was calculated by taking the
total density (black dashed) and subtracting the approximate Penrose-Onsager density, leaving only
particles outside of the ground state.

the same shape, except has a “spike” at the top, which is non-physical. This is because the
approximation always multiplies the central density by g(1)(0, 0) = 1, when really there will
be some thermal particles included in that region. Currently we are forcing the number of
thermal particles in the centre to be near zero, which as shown in figure 5.4 b) is only true for
T = 0. Despite this, the approximation itself is very accurate, and becomes more so for larger
x. Hence we can conclude that we have extracted the Bose-condensed atoms from the thermal
cloud to a high degree of accuracy.

5.2.3 Effect of Varying ∆x

In this section we are going to compare some numerical results with those found in a paper
published by Bijlsma and Stoof [43]. In this paper they used the SGPE in the way we have
described in this chapter, however the figure in question is testing the numerics to make sure
they match for a non-interacting thermal cloud and assessing the effects of changing the pa-
rameter ∆x for fixed ∆t. To create a non-interacting thermal cloud we need to set g = 0 and
µ < 0 as these correspond to no interactions and to thermal particles, respectively. From figure
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Figure 5.6: A steady density profile of a non-interacting gas, above the critical temperature Tc.
Here we used ∆t = 0.002ω−1

x and the discretisation ∆x varied from the green line: ∆x = 0.05lx, blue
line: ∆x = 0.2lx and the red line: ∆x = 0.8lx. As the problem we are simulating is entirely classical
we have overlaid the exact solution expected. The chemical potential used was µ = −5~ωx, the
temperature was set to T = 400nK. The one-dimensional trapping frequency was set to ωx = 2π×13Hz
and ω⊥ = 2π × 500Hz. We modelled this system based on Sodium atoms (23Na), with an atomic
scattering length as ≈ 2.75nm and m = 3.818 × 10−23kg. Compare with [43], where they have used
more averaging to get smoother results.

5.6 we see that if we decrease the value of ∆x the density profile grows, this is because we are
including higher energy levels and thus more thermal particles. We also see an increase in the
noise, even after averaging over one thousand simulations, due to the relation for ξ. It can
be shown that the density distribution for thermal particles is a Gaussian curve, however the
slope in figure 5.6 can be described by a Lorentzian curve. This is a limitation of the SGPE
due to the classical approximation for the field ξ. This Lorentzian curve appears for the higher
temperatures in figure 5.3 a), describing the growing thermal cloud. In figure 5.3 a) we could
find a Gaussian fit over the condensate particles (between the Thomas-Fermi radius) and use
the relation for the thermal contribution, shown in [43], to provide a fit for |x| > RTF.

5.3 Non-Equilibrium Analysis of the DGPE

For this analysis the code was written by the author, as we do not require Condor for a
single observation. We already have a GPE model, so to extend into the DGPE multiply the
Hamiltonian by the factor (1− iγ) and set γ = 0.01.

5.3.1 Solitons in the DGPE

In the previous chapter we obtained a non-equilibrium solution for a dark soliton. If we
now progress in the same fashion with a damped system we can follow the soliton’s progress
through the density, as demonstrated in figure 5.7. We see that the period of oscillation remains
constant, which is what we would expect as the size of the soliton does not affect this value.
However, the amplitude of the soliton increases as the soliton loses energy, until the soliton
is damped out at around t ≈ 30ω−1

x . From figures 5.7 b) and c) we can see that the jump in
phase reduces at later times, corresponding to a lower energy soliton.
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Figure 5.7: a) Following the central position of the soliton (the point with the lowest density) as
it oscillates through the BEC. b) The inital phase profile when the soliton is introduced and moving
right. c) The phase of the system at t = 18.5ω−1

x , when the soliton is moving left.

5.3.2 Opening the Trap in the DGPE

Consider the GPE solution where we quenched the trapping potential, in section 4.1. In a
real system we would expect some energy loss after time has passed, whereas figure 4.2 shows
the solution returning to the maximum density after each oscillation. If we use the DGPE
for a system of rubidium atoms, with the same parameters as section 4.1, we can simulate
this dissipation by taking γ = 0.01. We display the central density against time in figure 5.8.
Here we see that the system loses energy and slowly tends to a natural resting point after
approximately seven oscillations. We see N reduces to a new value as N ≡ N(µ, ω), and we

Figure 5.8: a) Following the central density at gn(x = 0, t) for a damped system. Perturbation
applied at the end of the imaginary time propagation. After several oscillations the density settles on
a new value gn(0, t) = 21.42~ωx. Parameters were µ = 30~ωx and g = 0.1046~ωxlx. b) The particle
number changing with time. c) The near-constant nature of the ratio N/n(0).

have reduced the trapping frequency. Note that for a system without noise the ratio of N/n(0)
remains constant, suggesting both variables change proportionally.

5.4 Non-Equilibrium Analysis of the SGPE

5.4.1 Solitons in SGPE

In this analysis we introduce noise to the system and include particles with low thermal energy
into the non-equilibrium analysis. Figure 5.9 shows a single run of the SGPE code, a), and
an averaged run over 200 simulations, b). We used T = 100nK and µ = 30~ωx to produce
these graphs, and introduced the perturbation at t = 0. In the individual run, we observe that
at t = 4ω−1

x the soliton’s lowest density is n(x) = 12.28/g ~ωx, but n(x) = 17.49/g ~ωx in
the averaged one. This difference is caused by of the random noise. Every simulation will be
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affected by the noise differently, as the fluctuations will interfere with the soliton’s oscillations
at random. So, in some runs the soliton will be damped out quicker than others. In figure 5.9
b) we are observing the most common trajectory. However, in this figure the averaged soliton
appears to get wider as time goes on, which is an effect caused by the averaging. Cockburn et

Figure 5.9: a) A single run of the SGPE code, where we have marked the lowest density of each
soliton with a black square to avoid confusion with the background noise. b) The same code averaged,
the soliton is no longer as deep in this density plot due to the random nature of each individual run.

al. [49] investigated the decay rate by running a vast number of simulations, and produced a
normalised histogram of the decay times for each run. We have displayed this in figure 5.10. It
was discovered that the histogram could be fitted to a lognormal distribution, where the most
common decay time reduced as temperature was increased. Note that the mean decay time

Figure 5.10: Normalised histogram of soliton decay times in SGPE from ref [49].

matches our results for the DGPE. This is because the noise causes the SGPE to fluctuate
away from this mean value, which the DGPE does not contain.

5.4.2 Opening the Trap in the SGPE

Extending our results from section 5.3.2, we change the trapping potential in the full SGPE
for sodium atoms. Figure 5.11 shows the central density, the norm and the ratio of the two,
N/n(0). The quench was applied at t = 600ω−1

x . We see that the central density returns to its
equilibrium state after the initial perturbation (from the initial system of N = 1140 particles),
and after the quench the number of particles increases. This is because we lower the spacing
between energy levels in the harmonic trap, after decreasing the trapping potential, thus there
will be more levels under the cut-off energy. The extra particles now included in the simulation
cause the central density to return to its equilibrium value. The third graph shown, the inset,
shows the ratio of N/n(0). Unlike the DGPE case, this quantity increases after the quench.

Consider a slightly different analysis, where at the point of applying the perturbation we
“turn off”, or stop simulating, the noise and dissipation. In this scenario we cut the link with

37



CHAPTER 5. STOCHASTIC GPE

Figure 5.11: a) Change in central density against time. b) Particle number against time. Inset: The
ratio of particle number and central density.

the thermal bath after changing the trapping potential, essentially changing the code from
running the SGPE, to the GPE instead. Figure 5.12 repeats the previous analysis under this
regime. The central density follows a very similar pattern to that observed for the DGPE in

Figure 5.12: a) Change in central density against time. b) Particle number against time. Inset: The
ratio of particle number and central density.

figure 5.8, with the new equilibrium value being lower than before the quench. This happens
because we force the system into a zero temperature model, where the thermal particles cannot
exist in the centre of the trap and are forced outside of the Thomas-Fermi radius. After applying
the quench we force the atom number to be fixed for the new trapping potential. The most
interesting part of this analysis is that the ratio between the particle number and central density
has exactly the same behaviour as the full SGPE, however further analysis is required to explore
this phenomena. In the full SGPE, noise damps out the oscillating behaviour quicker, which
appears to be the only discernible quantity between the two.

5.4.3 Spontaneous Solitons in the Initial Quench

In this section we consider a single run from the SGPE, however instead of starting from a
steady solution and analysing the effects, we instead look at the early stages of the simulation
where the particle number is growing into equilibrium. Under the finite temperature regime
there are high levels of fluctuations and these manifest themselves as dark solitons, in the one-
dimensional case. When considering higher dimensions these fluctuations create vortices. Due
to averaging these spontaneous solitons are lost in the SGPE, however they have close analogies
to the early Universe. Soon after the Big Bang it has been postulated that there should have
been an equal amount of matter and anti-matter. It is predicted that vortices formed through
random perturbation to create clumps of matter, that later formed to be the galaxies and other
stellar objects we see today, due to the Kibble-Zurek mechanism [50, 51]. In figure 5.13 we have
plotted a carpet plot for the density, which clearly shows the spontaneous introduction of dark
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Figure 5.13: The spontaneous introduction of solitons in the early simulation period. The parame-
ters were chosen for Sodium atoms, with µ = 40~ωx and T = 100nK, which corresponds to a system
of about N = 1760 particles

solitons. For lower temperatures these solitons move with oscillation frequency ωds, with an
error up to a few percent [38]. However, as the temperature increases soliton-soliton collisions
have more of an effect, making it impossible to track individual solitons. We can observe that
there are many solitons of different amplitudes appearing and decaying randomly throughout
the simulation, the most clear of these are the solitons of highest energy at t ≈ 200ω−1

x and
t ≈ 220ω−1

x . We can make analogies to real systems even before a BEC is created. This type
of behaviour makes the study of Bose-Einstein condensation so diverse.
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Chapter 6

Conclusions and Further Work

During the course of this report we have unravelled some of the mystery behind Bose-Einstein
condensation and its role in superfluids. Focusing on zero temperature weakly-interacting
atomic BECs we discussed the role of the governing equation of motion for these systems,
the GPE, and found solutions analytically and numerically. Within this part of the report
we discussed both equilibrium and non-equilibrium dynamics of the GPE for systems that
have been seen experimentally. In our analysis we examined how to perturb the trap to cause
an oscillating behaviour of the condensate and we introduced and controlled dark solitons of
varying speeds and depths through the medium. We also saw how two solitons interact with
each other in the presence of a harmonic trap. A soliton propagating in an inhomogeneous
background causes energy to escape in the form of sound waves. In a two soliton system this
sound energy is transferred between the them, causing them to undergo a periodic change in
amplitude. After comparing our results with Allen et al. [39] we found a disagreement between
the two, and presented evidence for our interpretation by considering the period of oscillation
for each soliton.

We also presented aspects of the theory for the SGPE, which enables us to more accurately
describe a realistic system that has energy loss, random perturbation and finite temperature.
Using this new theory we tested its efficacy against the already well established zero tem-
perature model and went through the arduous process of removing the condensate from the
thermal cloud. This was proceeded by a description of the non-equilibrium dynamics of the
DGPE, where we ignored the random noise, to observe the effect of dissipation on the trapping
potential quench and dark solitons. In both of these cases the perturbations were damped out
into the background medium. We then went on to introduce random noise to the simulations,
which involved connecting the system to the thermal bath. After repeating the non-equilibrium
analysis for the SGPE we found that the noise caused perturbations to be washed out in the
ensemble average, with the time scales appearing to change at random [49]. We also considered
the spontaneous introduction of solitons in the initial quench, as predicted by the Kibble-Zurek
mechanism [50, 51], which has close analogies to vortices in the early Universe.

Due to time constraints on the project there were some areas left unexplored. For exam-
ple, the removal of the noise analysis performed on the trapping potential quench could have
been applied to more systems, such as the Josephson effect. The Josephson effect [52] allows
a current to flow indefinitely without any voltage applied across a Josephson junction, which
is two superconductors coupled by a weak link. This effect has been observed in BECs by
splitting it into two adjacent condensates and changing the trapping potential to allow a flow
of “atomic current” between the two. Also, if time permitted, we would have compared the
SGPE soliton solutions with the experiments by Becker et al. [53], who found that they lost
the soliton after one oscillation. This is a phenomenon that could perhaps be described by the
random noise of the SGPE.
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Appendix A

Numerical Solution to a 1D Diffusion
Equation

Here we state the tridiagonal matrix algorithm, and provide a simple example of its use. For
an equation of the form

aixi−1 + bixi + cixi+1 = di, (A.1)

where a1 = 0 and cn = 0, we can cast this into matrix form as
b1 c1 0
a2 b2 c2

a3 b3
. . .

. . . . . . cn−1

0 an bn




x1

x2

x3
...
xn

 =


d1

d2

d3
...
dn

 . (A.2)

The solution for xi is given by the following method, firstly we modify the coefficients as follows

c′i =


ci
bi
, for i = 1,

ci
bi − aic′i−1

, for i = 2, 3, . . . , n− 1,
d′i =


di
bi
, for i = 1,

di − aid′i−1

bi − aic′i−1

, for i = 2, 3, . . . , n− 1.

Then the solution is calculated through

xn = d′n, xi = d′i = c′ixi+1, for i = n− 1, n− 2, . . . , 1. (A.3)

Here we demonstrate the accuracy of the code for a simple problem with an easily attainable
analytic solution, and we will show the tridiagonal matrix algorithm used to solve it. The
diffusion equation solved for the field u(x, t) with −1 ≤ x ≤ 1 and t ≥ 0 is

∂u

∂t
=
∂2u

∂x2
, (A.4)

with boundary conditions: u(x = ±1, t) = 0 and u(x, t = 0) = cos (πx/2). Firstly, by using the
method of separation of variables, we can find the analytical solution to this equation. From
this method we obtain

u(x, t) = cos
(πx

2

)
exp

{
−π

2t

4

}
. (A.5)

Using the results from section 2.3.2 we can write equation (A.4) as a Crank-Nicolson discreti-
sation, given by

un+1
i − uni

∆t
=

1

2(∆x)2

[
(un+1

i+1 − 2un+1
i + un+1

i−1 ) + (uni+1 − 2uni + uni−1)
]
, (A.6)

with i = 1, 2, . . . , I and n = 1, 2, . . . , N . If we take r = ∆t/ [2(∆x)2] equation (A.6) becomes

−run+1
i+1 + (1 + 2r)un+1

i − run+1
i−1 = runi+1 + (1− 2r)uni + runi−1, (A.7)
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which can be cast into matrix form
1 + 2r −r 0
−r 1 + 2r −r

−r 1 + 2r
. . .

. . . . . . −r
0 −r 1 + 2r





un+1
1

un+1
2

un+1
3
...

un+1
I



=


1− 2r r 0
r 1− 2r r

r 1− 2r
. . .

. . . . . . r
0 r 1− 2r




un1
un2
un3
...
unI

 , (A.8)

where the right hand side is now a matrix of known variables at each time step. The tridiagonal
matrix on the left hand side is invertible with the tridiagonal matrix algorithm, using ai = ci =
−r and bi = 1 + 2r. With all of this information we can write the appropriate Fortran code
to solve this equation. For this we took the time steps to be ∆t = 0.001s, and spatial steps to
be ∆x = 0.01m. Figure A.1 shows the numerical solutions at chosen time intervals with the
analytical solution overlaid, and shows how the error changes over time.

Figure A.1: a) The numerical solutions (solid lines), and overlaid analytical (dashed lines), solutions
to this particular differential equation with time as indicated for each line. b) How the percentage
error of the point at x = 0 differs over time.
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Appendix B

Origin of Wall Solution

Here we prove the solution for the condensate wavefunction at an infinite hard wall, starting
from

− ~
2m

∂2ψ

∂x2
+ g|ψ|2ψ = µψ. (B.1)

We know the solution is real, thus |ψ|2 = ψ2, and that n∞ = µ/g. So we can re-write equation
(B.1) as

− ~2

2mg

∂2ψ

∂x2
− n∞ψ + ψ3 = 0. (B.2)

In order to solve this equation we set ψ =
√
n∞ψ̄, then we have

− ~2

2mgn∞

∂2ψ̄

∂x2
− ψ̄ + ψ̄3 = 0. (B.3)

This is similar to the ODE
1

2
f ′′ − f + f 3 = 0, (B.4)

which is known to have a tanh solution. So, we will try the solution ψ̄ = A tanhBx + C,
for constants A, B and C to be determined. Immediately we note that as the barrier is
placed at x = 0 then C = 0. The second derivative of ψ̄ can be calculated as ψ̄xx =
2AB2

[
tanh3(Bx)− tanh(Bx)

]
. Upon substitution we have to balance the equation[

A2 − ~2

mgn∞
B2

]
tanh3(Bx) +

[
1− ~2

mgn∞
B2

]
tanh(Bx) = 0, (B.5)

which gives A = 1 and B = 1/ξ, for ξ = ~/√mn∞g as the healing length. Thus substituting
the equation for ψ̄ gives

ψ = ψ∞ψ̄ = ψ∞ tanh

(
x

ξ

)
, (B.6)

as required.
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