
Exploring the Behaviour of
Multiple Vortices and Hexagonal

Lattice Formations

by Hayley Bishop

MAS8091

Supervisor - Carlo Barenghi

1st May 2014

Abstract

Vortices can be found in our everyday lives, from tornadoes to stirring a cup
of tea. This report discusses simpler idealised vortices in 2D and how they
can affect the movements of all the other vortices around them in a plane. I
start by looking at how time stepping methods are used to numerically solve
ordinary differential equations. I then use this to replicate the behaviour
of two vortices and consider their predictability. I move on to modelling a
system of many vortices and observing its chaotic behaviour. Finally I in-
vestigate hexagonal lattice formations. I will be using Fortran 95 to simulate
the vortex systems.

Contents

1 Introduction 3
1.1 Definition . 3

1.1.1 Vorticity . 3
1.1.2 Types of Vortex . 4
1.1.3 Rotational Vortices . 5
1.1.4 Irrotational Vortices 6
1.1.5 Vortex Pairs . 6

1.2 Examples . 8
1.3 Assumptions . 8
1.4 Finding the Velocity . 8

2 Time Stepping Methods 11
2.1 The Euler Method . 11

2.1.1 The Euler Method . 11
2.1.2 Informal Geometrical Description 11
2.1.3 The Method . 12
2.1.4 Example . 12

2.2 The Runge-Kutta Methods . 14
2.2.1 The Fourth Order Method 14
2.2.2 The Second Order Method 17

3 Vortices 19
3.1 Two Vortices . 19

3.1.1 Vortex-Vortex Pair . 19
3.1.2 Vortex-Antivortex Pair 21

3.2 Multiple Vortices . 23
3.3 Chaotic Vortices . 24

4 Lattices 27
4.1 Definition . 27
4.2 Hexagon . 28

1

4.3 Double Hexagon . 28

5 Conclusion 31

Appendices 32
.1 Appendix A . 32
.2 Appendix B . 33
.3 Appendix C . 34
.4 Appendix D . 35
.5 Appendix E . 37
.6 Appendix F . 40

2

Chapter 1

Introduction

1.1 Definition

A vortex is defined as a region within a fluid where the flow is a spinning
motion about an imaginary axis, which can be either straight or curved.
Vortices can form in fluids such as liquids, gases and plasmas.

1.1.1 Vorticity

The vorticity is a vector that describes the spinning motion at a point in
the fluid, as it would be seen by an observer who is moving along with the
fluid. Imagine placing a tiny ball, free to move with the fluid, at the point
we wanted to look at, and examining how it rotates about its centre. The
vorticity, denoted ~ω is defined as the curl of the velocity field, ~v, of the fluid.

~ω = ∇× ~v

=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (vx, vy, vz)

=

(
∂vz
∂y
− ∂vy

∂z
,
∂vx
∂z
− ∂vz
∂x

,
∂vy
∂x
− ∂vx

∂y

)
.

In two dimensions, the vorticity is parallel to the z axis, so there is no z

3

component and the vorticity can be written as

~ω = ∇× ~v

=

(
∂

∂x
,
∂

∂y

)
× (vx, vy)

=
∂vy
∂x
− ∂vx

∂y
.

1.1.2 Types of Vortex

One type of vortex is a wingtip vortex. Wingtip vortices are circular patterns
of rotating air left behind a wing as it is creating lift. When a wing generates
aerodynamic lift, the air on the top surface has lower pressure relative to the
bottom surface. The air flows from below the wing, out around the edge of
the wing to the top of the wing in a circular fashion, which creates the vortex.
One wingtip vortex trails from the tip of each wing, in opposite directions.

Figure 1.1: A diagram of an aeroplane wing showing how
the air flow over the wing creates a wingtip vortex. (Source:
http://en.wikipedia.org/wiki/File:Tip vortex rollup.png)

Another type of vortex is a point vortex. A point vortex is an idealised
vortex in two dimensions so we assume no change in the z direction. Figure
1.2 shows a point vortex located at the origin on the xy plane, with the flow
of fluid depicted by the arrows, in this case in an anti clockwise direction.
The fluid will move around the point vortex but the vortex cannot move
itself. In this project, I will only be considering point vortices.

4

Figure 1.2: A point vortex located at the origin on the xy plane rotating
anti-clockwise.

1.1.3 Rotational Vortices

For rotational vortices, the fluid rotates like a rigid body. That is, the particle
speed v increases proportionally to the distance r. This means that the
further out in the flow we get, the faster the speed. We can see this in
Figure 1.3, which shows two balls rotating anticlockwise in the fluid around
a vortex. The outer ball is moving faster than the inner one, as it is further
away. A rotational vortex can be maintained for an indefinite amount of
time in that state through the application of some extra force that is not
generated by the fluid motion itself. For example, if a water bucket is spun
at constant angular speed about its vertical axis, the water will eventually
rotate in rigid-body fashion. In this situation, the rigid rotating enclosure
provides an extra force, in this case, an extra pressure gradient in the water,
directed inwards, that prevents the flow from becoming irrotational.

Figure 1.3: This picture shows 2 balls in the flow around a rotational vortex.
(Source: http://en.wikipedia.org/wiki/File:Rotational vortex.gif)

5

1.1.4 Irrotational Vortices

For irrotational vortices, the particle speed v is inversely proportional to the
distance r. This means that the further out in the flow we get, the slower the
speed. As we can see from Figure 1.4, the outer ball is moving slower than
the inner one, as it is further out. In this case, with the absence of external
forces, a vortex usually evolves fairly quickly towards an irrotational flow. For
that reason, irrotational vortices are also known as free vortices. However,
the ideal irrotational vortex flow is not physically realisable.

Figure 1.4: This picture shows 2 balls in the flow around an irrotational
vortex. (Source:http://en.wikipedia.org/wiki/File:Irrotational vortex.gif)

1.1.5 Vortex Pairs

A vortex-vortex pair is made up of two close vortices with the same circu-
lation. In Figure 1.5, we have one point vortex located at the red dot and
another located at the blue dot with the same circulation. Due to the mu-
tual interaction of their circulating velocity fields, the vortices rotate about
a point halfway between the two and they push each other round in a circle.

6

Figure 1.5: This diagram shows one vortex located at the blue dot, with
its respective vortex flow depicted by the blue arrows and simiarly another
vortex in red. Their combined vortex trail is shown by the dashed purple
line.

A vortex-antivortex pair is made up of two close vortices with opposing
circulations. Looking at Figure 1.6, we have a red vortex and blue vortex.
This time the circulations of the two vortices are in opposite directions,
therefore the pair move in a straight line with constant, self induced speed.
As the vortices in this case are flowing in towards each other, they push each
other down, which is shown by the purple arrows.

Figure 1.6: This diagram shows an anti-vortex located at the blue dot, with
its respective vortex flow depicted by the blue arrows and a vortex which has
the opposite circulation in red. Their vortex trails are shown by the dashed
purple line.

7

1.2 Examples

Tornadoes and whirlpools are vortices, with the fluid being air and water
respectively. Stirring a cup of tea creates a vortex with the fluid being the
tea, but this dissipates quickly when you stop stirring as there is no more
energy being put in. Hurricanes are examples of vortices and because of their
large scale, hurricanes can be considered as point vortices as their height is
such a small proportion of their width so we think of it as lying in a 2D plane.

Planes and formula 1 cars create wingtip vortices. Migratory birds often
use each other’s wingtip vortices by flying in a V formation. This would
mean that all but the leader are flying in the vortex trail from the wing of
the bird ahead. This means the bird has to put less effort in to support its
own weight, so they can fly for longer.

1.3 Assumptions

In order to make calculations possible, we must make some basic assumptions.

• The fluid flow is two dimensional - The basic flow pattern and char-
acteristics of the motion of the fluid are basically the same as in any
parallel plane. This allows us to focus on a single plane which we take
to be xy plane. We assume that this plane is the same for the whole of
the z axis so we can think of the xy plane to be a cross section of an
infinite cylinder.

• The flow is stationary - The velocity of the fluid at any point depends
only on the position (x, y) and not on time.

• The fluid is incompressible - The density, or mass per unit volume of
the fluid is constant.

• The fluid is non-viscous - A fluid is non-viscous if it has no internal fric-
tion. Viscosity is due to the friction in a fluid between nearby particles
that are moving at different velocities.

• The circulation can only be +1 or −1.

1.4 Finding the Velocity

We start with a vortex located at the origin on the xy plane. We pick a point
(x, y) somewhere in the fluid at a distance r from the vortex. Let V be the

8

tangential velocity, and u and v be the velocities in the x and y directions
respectively.

Figure 1.7: A diagram showing how the values for u and v are found.

Using trig ratios, we find

u = −V sin θ, v = V cos θ.

We have to take u to be negative as the x direction is defined to be the right,
which is positive, and u is in the opposite direction so we need the minus
sign. Next, the polar coordinates for x and y are

x = r cos θ, y = r sin θ,

where r =
√
x2 + y2. Rearranging these, we get

cos θ =
x

r
, sin θ =

y

r
.

We can sub these back into the equations for u and v to get

u = −V y
r
, v =

V x

r
.

Finally, we replace V with the formula for the tangential velocity emerging
from the point vortex, which is

V =
k

2πr
.

This gives us the final equations

u = − ky

2πr2
, v =

kx

2πr2
,

9

where r is the radius of the vortex and k is the strength of the vortex.

The equations we found for u and v are only valid for when the vortex is
situated at the origin. As this isn’t usually the case, we need to perform a
shift. Let the position of the vortex be given by (xi, yi), then our equations
for u and v become

u = −k(y − yi)
2πr2

, v =
k(x− xi)

2πr2
,

where r =
√

(x− xi)2 + (y − yi)2.

For two or more vortices, we calculate the velocity at a point by finding
u and v as before, but now we must sum over all vortices, so our equations
for u and v become

u = − 1

2π

N∑
i=1

ki(y − yi)
r2

v =
1

2π

N∑
i=1

ki(x− xi)
r2

where N is the total number of vortices.

If we want to find the velocity at a vortex point, to find, for example, how it
will move given the effect of all the other vortices, we sum over all vortices
except the one that we are looking at. Let (xj, yj) be the coordinates of the
vortex point where we want to find the velocity. The equations for u and v
become

u = − 1

2π

N∑
i=1,i 6=j

ki(yj − yi)
r2

,

v =
1

2π

N∑
i=1,i 6=j

ki(xj − xi)
r2

,

where r =
√

(xj − xi)2 + (yj − yi)2.

10

Chapter 2

Time Stepping Methods

2.1 The Euler Method

2.1.1 The Euler Method

The Euler method, named after Leonhard Euler, is a numerical method which
is used for solving ordinary differential equations (ODEs) given an initial
value. It is known to be the most basic method of numerical integration of
ODEs and is the simplest of the Runge-Kutta methods. The Euler method
is a first order method of numerical integration. This means that the error
per step is proportional to the square of the step size, and the error at a
given time is proportional to the step size. I have started by looking at the
Euler method as it provides a basis on which to construct more complicated
methods.

2.1.2 Informal Geometrical Description

Consider the problem: we are trying to determine the shape of an unknown
curve. We are given the point at which the curve starts and the differential
equation that it satisfies. This differential equation is the formula by which
the gradient of the tangent line to the curve can be computed at any point
on the curve, once the position of that point has been found. We know the
starting point of the curve, let us call this x0. Now using the differential
equation, the gradient of the curve at x0 can be calculated and therefore
a tangent line can be drawn. Next we take a small step up this tangent
line to a point x1. As we haven’t moved very far, x1 will still be close to the
unknown curve. If we pretend that x1 is actually on the curve, we can use the
same method we used to find the gradient for x0 and therefore find a tangent
line at x1. After several steps like this, a polygonal curve x0, x1, x2, x3 . . . is

11

constructed. This curve does not differ too much from the original curve so
we can use it as an approximate solution, as shown in Figure 2.1. The error
between the two curves can be decreased by making the step size smaller.

Figure 2.1: The red line shows the exact solution of an ODE. The blue line
shows the numerical approximation.

2.1.3 The Method

Given the initial value problem

dy

dt
= y′(t) = f(t, y(t)), y(t0) = y0.

We want to approximate the solution. We choose a step size h and set
tn = t0 + nh where n is the total number of steps. One step of the Euler
method from tn to tn+1 = tn + h is

yn+1 = yn + hf(tn, yn).

The value of yn is an approximation of the solution to the ODE at time tn.

2.1.4 Example

Given the initial value problem

dy

dt
= y′(t) = yt, y(0) = 1.

We will use the Euler method to approximate the value of y(2). Set the step
size h = 0.5. The Euler method is yn+1 = yn + hf(tn, yn). In this differential

12

equation, the function f is defined by f(t, y) = ty. We start by finding
f(t0, y0) and from the initial conditions we have t0 = 0 and y0 = 1 so

f(t0, y0) = f(0, 1) = 0× 1 = 0.

Then using the Euler method for the first step we get

y1 = y0 + hf(t0, y0) = 1 + 0.5× 0 = 1.

We can now work out the next few terms:

y2 = y1 + hf(t1, y1) = 1 + (0.5× 0.5× 1) = 1.25,

y3 = y2 + hf(t2, y2) = 2 + (0.5× 1× 1.25) = 1.875,

y4 = y3 + hf(t3, y3) = 6 + (0.5× 1.5× 1.875) = 3.28125.

Using the Euler method, we get the answer y4 = 3.28125. The exact solution

of the differential equation is y(t) = e
t2

2 . So the exact solution at t = 2
is y(2) = e2 ≈ 7.389. This gives a 55.6% error which is not a very good
approximation.

Figure 2.2: The blue line shows the exact solution of an ODE. The red line
shows the numerical approximation using the Euler method using a step size
of h = 0.5.

As mentioned earlier, decreasing the step size h will make the approximation
more accurate. Let us try the same problem with a step size of 0.1. Using
the code in Appendix A, we find y(2) ≈ 5.97323 using this step size. Now we
have an error of 19.2%. If we keep decreasing the step size, the approximation
becomes more accurate. See table.

13

h y(2) % Error
0.5 3.281 55.6
0.1 5.973 19.2
0.01 7.220 2.3

Figure 2.3: The blue line shows the exact solution of an ODE. The red line
shows the numerical approximation using the Euler method. The left graph
uses a step size of h = 0.1 and the right graph using a step size of h = 0.01.

2.2 The Runge-Kutta Methods

The Runge-Kutta methods are an important family of iterative methods
used for the approximation of solutions of ordinary differential equations.
They are single step methods with multiple stages per step. They do not
require derivatives of the function f(t, y) as the Taylor methods do, and are
therefore general purpose initial value problem solvers. These techniques
were developed by C. Runge and M. W. Kutta. The most common of these
methods is the Runge-Kutta method of order 4, also known as RK4 or the
classical Runge-Kutta method. I will also be looking at a simplified version
of this, the Runge-Kutta method of order 2.

2.2.1 The Fourth Order Method

The Method

Given the initial value problem

dy

dt
= y′(t) = f(t, y), y(t0) = y0.

We want to approximate the solution. We choose a step size h and set
tn = t0 + nh where n is the total number of steps. One step of the RK4

14

method from tn to tn+1 = tn + h is

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4),

where

k1 = f(tn, yn),

k2 = f(tn +
1

2
h, yn +

h

2
k1),

k3 = f(tn +
1

2
h, yn +

h

2
k2),

k4 = f(tn + h, yn + hk3).

Here yn+1 is determined by the current value yn and the weighted average of
four increments. k1 is the increment based on the slope at the beginning of
the interval, k2 and k3 are the increments based on the slope at the midpoint
of the interval and k4 is the increment based on the slope at the end of the
interval. When averaging the four increments, greater weight must be given
to the increments at the midpoint.

Example

Let us look at the example we had in the previous section:

dy

dt
= y′(t) = yt, y(0) = 1.

As before we shall start with a step size h = 0.5. Using the code in Appendix
B, we get

y1 = 1.13314,

y2 = 1.64853,

y3 = 3.07798,

y4 = 7.36680.

The exact solution is the same as before, y(2) ≈ 7.389. Using the new value
for y4, this gives an error of 0.3% with the step size of h = 0.5.

15

Figure 2.4: The blue line shows the exact solution of an ODE. The red line
shows the numerical approximation using the Runge-Kutta method of order
4 using a step size of h = 0.5.

As before, decreasing the step size will make the approximation more accu-
rate. See table.

h y4 % Error
0.5 7.3668 0.3
0.1 7.3890 0
0.01 7.3890 0

Figure 2.5: The blue line shows the exact solution of an ODE. The red line
shows the numerical approximation using the Runge-Kutta method of order
4 using a step size of h = 0.1. The graph of h = 0.01 looks exactly the same
as this.

16

2.2.2 The Second Order Method

The Method

Given the initial value problem

dy

dt
= y′(t) = f(t, y), y(t0) = y0.

We want to approximate the solution. We choose a step size h and set
tn = t0 + nh where n is the total number of steps. One step of the RK2
method from tn to tn+1 = tn + h is

yn+1 = yn + h(1/2k1 + 1/2k2),

where

k1 = f(tn, yn),

k2 = f(tn + h, yn + hk1).

As before, yn+1 is determined by the current value yn but this time only uses
the weighted average of two increments. k1 is the increment based on the
slope at the beginning of the interval and k2 is the increment based on the
slope at the end of the interval.

Example

As before, we will use the differential equation dy
dt

= y′(t) = yt with the initial
condition y(0) = 1 and we shall start with a step size h = 0.5. Using the
code in Appendix C, we get

y1 = 1.125,

y2 = 1.58203,

y3 = 2.71912,

y4 = 5.60818.

The exact solution is the same as before, y(2) ≈ 7.389, which gives an error
of 24% with the step size of h = 0.5.

17

Figure 2.6: The blue line shows the exact solution of an ODE. The red line
shows the numerical approximation using the Runge-Kutta method of order
2 using a step size of h = 0.5.

As before, decreasing the step size will make the approximation more accu-
rate. See table.

h y4 % Error
0.5 5.6082 24
0.1 6.6209 10.4
0.01 7.2931 1.3

Figure 2.7: The blue line shows the exact solution of an ODE. The red line
shows the numerical approximation using the Runge-Kutta method of order
2. The left graph uses a step size of h = 0.1 and the right graph using a step
size of h = 0.01.

18

Chapter 3

Vortices

3.1 Two Vortices

I wrote a Fortran program, attached in Appendix D, to simulate the move-
ment of two vortices. It takes the current position of the vortex and moves it
according to the velocity experienced at that position due to the flow of the
other vortex. As with the examples in the time stepping methods chapter,
I started with the Euler method and worked up to using the Runge-Kutta
method of order 4. I used a time step of h = 0.001 and plotted the position
of the vortices at each time step.

3.1.1 Vortex-Vortex Pair

I talked briefly in chapter 1 about how we would expect a vortex-vortex pair
to behave. I placed one vortex at (1, 0) and the other at (−1, 0) and used
a circulation of +1 for both vortices, so they are both rotating in the same
direction.

19

Figure 3.1: The first graph shows partial trails of each vortex, where the
initial position of the vortex is located at the ×’s. The second graph is the
full trail of the vortices showing how they push each other round in a perfect
circle. The final graph show the displacement of a vortex over time. The
red line shows the position of the x coordinate and the blue line shows the
position of the y coordinate.

As we can see from the first two pictures in Figure 3.1, the vortices behave
like we would expect. Due to the fact that they have the same direction of
flow, they push each other around in a circle. The last picture in Figure 3.1
shows the position of the x and y coordinates of one of the vortices plotted
against time. This was done in order to work out the speed at which the
vortices are moving. It does not matter which vortex we look at as they are
both moving at the same speed. To work the speed out, we take the time
between two peaks on either of the curves, and input this into the formula,

ωnum =
2π

τ
,

where ω is the speed and τ is the difference in time between the peaks. This
gives a value of ω = 0.07956. As this is just an numerical approximation, we
can compare this to the exact value for the speed. Using the formula,

ωexact =
k

πd2
,

where k is the circulation and d is the distance between the two vortices. In
this case, k is 1 as both our vortices have a circulation of 1 and the distance
is 2. This gives an exact speed of,

ωexact =
1

π × 22

= 0.07958.

20

Next we can work out the percentage error using

Error =

∣∣∣∣ωnum − ωexact

ωexact

∣∣∣∣× 100%

= 0.02047%.

We have a percentage error of only 0.02047%. This means that our approx-
imation is very good. I tried a few different values for the time step h to
see how much difference having a small time step has on the accuracy of our
approximation. As we can see in the table below, the smaller the value of h,
the smaller the percentage error and therefore the better the approximation.

h ω % Error
0.5 0.07181 9.76376
0.1 0.07795 2.03791
0.01 0.07941 0.20622
0.001 0.07956 0.02047

3.1.2 Vortex-Antivortex Pair

Earlier I talked about a vortex-antivortex pair and how they would propel
each other in a straight line. This was confirmed when I placed a vortex at
the point (1, 0) with the circulation k = 1 and the other at (−1, 0) with the
opposite circulation of k = −1.

Figure 3.2: The first picture shows the two vortex trails with their initial
positions located at the ×’s. The second picture shows the position of the y
coordinate of the first vortex over time. The x coordinate does not change
so there is no need to plot it.

The vortices are now rotating towards each other and as a result push each
other downwards which can be seen in the first picture of Figure 3.2. The
second picture in Figure 3.2 shows the position of the one of the vortices

21

plotted against time. Again it doesn’t matter which vortex we look at. This
time we measure the displacement over time,

vnum =
distance

time
,

where v is the speed. This gives a value of v = 0.07939. As this is just
a numerical approximation, we can compare this to the exact value for the
speed. Using the formula,

vexact =
k

2dπ
,

where k is the circulation and d is the distance between the two vortices. In
this case, we take k to be 1 as I used the data from the vortex at (1, 0) which
had the circulation of 1. We could have used the other vortex data and the
circulation of −1, this would just give a negative value for the speed which is
because of the opposite flow of this vortex. Again the distance between the
two vortices is 2. This gives an exact speed of,

vexact =
1

2× 2× π
= 0.07958.

Next we can work out the percentage error using

Error =

∣∣∣∣vnum − vexactvexact

∣∣∣∣× 100%

= 0.23455%.

We have a percentage error of only 0.23455%. This means that our approxi-
mation is very good. Again I tried a few different values for the time step h
to see how much difference having a small time step has on the accuracy of
our approximation. As we can see in the table below, the smaller the value
of h, the smaller the percentage error with the exception of the last value
which increases again slightly. This could be due to rounding errors.

h ω % Error
0.5 0.07542 5.2233
0.1 0.07855 1.2942
0.01 0.07946 0.1402
0.001 0.07939 0.2346

22

I have chosen to use h = 0.001 for the rest of the simulations, even though the
value of h = 0.01 is better in the vortex-antivortex simulation, the difference
between the two percentage errors is very small compared to the difference
in percentage errors for the vortex-vortex simulation of the same two step
sizes.

A point to note is that the closer the vortices are to each other, the faster
they will move. The vortex-vortex pair will push each other round faster and
the vortex-antivortex pair will propel away faster.

3.2 Multiple Vortices

We have just looked at how two vortices can effect each other and how
predictable they are. There are some other specific arrangements of vortices
for which we can predict the behaviour. An example of this is an equilateral
triangle formation, each vortex with the same circulation. By amending the
code in Appendix D for three vortices, we can plot the vortex trail for a
triangle formation.

Figure 3.3: This graph shows the vortex trail of three vortices initially placed
at the ×’s.

Another example is a square formation, where each vortex has the same
circulation.

23

Figure 3.4: This graph shows the vortex trail of four vortices initially placed
at the ×’s.

This is true for all regular shapes i.e. regular pentagons, hexagons, octagons
etc, where each vortex in the arrangement has the same circulation.

3.3 Chaotic Vortices

Most arrangements of many vortices are not predictable. To show this, I
chose six random positions for six vortices to sit inside a two by two square.
I randomly selected three of the vortices to have a circulation of +1 and the
other three to have circulation −1. To do this I amended the earlier code for
two vortices, now having six vortices and six circulations, see Appendix E.
Figure 3.5 shows the movements of the vortices over 150, 000 steps.

24

Figure 3.5: This diagram shows six vortex trails, the initial position of each
denoted by an ×.

Whilst the overall appearance of the graph looks random and chaotic, there
are some aspects which replicate what we looked at in section 3.1. For ex-
ample, the purple and orange vortex trails pair up and shoot off together.
This is similar to the vortex-antivortex pairing we saw in section 3.1.2. This
happens here because the two vortices become so close and due to their op-
posing circulations, they propel away in a straight line. As they are moving
so fast, they become so far away that the other vortices have no effect on
them and they just continue to travel away.

Another display of interesting behaviour is the interaction of the pink and
green vortices; they spiral around each other. This must mean they have
the same circulation but as this just propels them around each other and
not out away from the group, they are still susceptible to the flow of other
vortices. This leads to the spiraling and the curving at the end of the trail,
which appears to be due to the blue vortex as it follows a similar shape itself.

Another way of showing chaos is by perturbing the formation of vortices
we have and seeing how different the trails become. For this I changed the
x coordinate of the first vortex from 0.2 to 0.2001, 0.201 and 0.21. As we
can see in Figure 3.6, even these small changes can make a big difference.
A perturbation of only one coordinate of one vortex by just 0.01 makes a
drastic change to the trails of all six vortices.

25

Figure 3.6: Graph 1 shows the original graph where x = 0.2. Graph 2 shows
the change to x = 0.2001. Graph 3 shows the change to x = 0.201. Graph 4
shows the change to x = 0.21.

I wrote a program, see Appendix F, to find the overall difference between the
original graph and a perturbed graph. I started by finding the difference in
distance between vortex 1 in the original graph and vortex 1 in the perturbed
graph, and repeated this for the rest of the vortices then added all these
differences together. Next I took the average of these and took log of the
result, and repeated this for each time step. Figure 3.7 shows the differences
over time for each of the different perturbed graphs.

Figure 3.7: These graphs show the difference over time between the points
from the original graph and the perturbed graph.

26

Chapter 4

Lattices

4.1 Definition

A lattice is a regular, periodic configuration of points throughout an area.
The most common lattices are equilateral triangle lattices, rhomic lattices,
square lattices and parallelogrammic lattices. A lattice is usually the ar-
rangement of molecules in a crystalline solid. The word lattice is also used
for regular arrangements of magnetic flux tubes in superconductors and vor-
tex lines in rotating superfluids, such as liquid helium and Bose-Einstein
condensates.

Figure 4.1: These diagrams show just a few different types of lattice for-
mation. (Source: Hassan Aref, 2007, ’Point vortex dynamics: A classical
mathematics playground’)

27

4.2 Hexagon

I started with a simple hexagonal lattice. Using a graph of equilateral trian-
gles with side lengths of 1 on top of an xy plane, I was able to work out the
coordinates of the corners of a regular hexagon. These become points for six
vortices and I included one in the centre of the hexagon at (0, 0), all with a
circulation of +1.

Figure 4.2: This graph shows the vortex trail of these seven vortices in a
hexagonal formation with a centre vortex. The initial positions of each vortex
are given by ×’s.

This arrangement of vortices is similar to those in section 3.2. As we can see
in Figure 4.2, the vortices push each other round and their trails fall perfectly
on top of each other.

4.3 Double Hexagon

Next I extended the hexagon by adding 12 more points in a hexagon around
the first, again each with the same circulation of +1, making a hexagonal
lattice. As before the vortices push each other round, however this time the
trails do not fall perfectly on top of each other.

28

Figure 4.3: This picture shows the position of each of the nineteen vortices
at different points in time. I highlighted the top vortex in red and showed its
new position in each picture over time. The top left graph being when t = 0,
then moving across the row to the next time step then continuing down the
figure to the bottom right graph which is the final time step which shows
almost a complete rotation of the lattice.

The lattice still rotates like a rigid body even though the trails do not fall
directly on top of one another. To show this I removed one point from the
formation and plotted the new vortex trails. As we can see in Figure 4.4,
even though various points have been removed in each of the various pictures,
the trails still follow each other round and the overall movement is that of a
solid object rotating.

29

Figure 4.4: Graph 1 is the original graph with all nineteen points. In graph
2, I removed the centre vortex. In graph 3, I removed the top right vortex of
the inside hexagon. In graph 4, I removed the top right vortex of the outside
hexagon.

30

Chapter 5

Conclusion

In this report I have looked at how vortices interact with one another, and
how the predictability of two vortices comes into play when looking at sys-
tems of chaotic vortices. I have also seen how lattices rotate like a rigid body.

In my first meeting with my tutor for this project, he was explaining to
me what the project would entail in the form of a similar example of a real
vortex that I would be familiar with. Jupiters atmosphere has many vor-
tices interacting with each other which are similar to hurricanes. Jupiters
Great Red Spot is counter-clockwise vortex measuring 30,000km east to west,
12,000km north to south, and as the atmosphere is such a thin layer around
the planet in comparison to the depth of the planet itself, we can think of it
as being on a 2D plane i.e. a point vortex. I could go on to look further into
Jupiter’s Red Spot and how it relates to what I have looked at.

Another element I could go on to look at would be to enclose the vortices
in a finite space. The boundary would prevent the vortices from pairing up
and propelling off together indefinitely so it would be interesting to see what
happens. I would expect that as the paired vortices would rebound off the
boundary back into the rest of the vortices, at some point they would get
broken up by another vortex getting closer.

Finally I would have liked to go on to look at other lattice formations to
see how similar or how different they are from the hexagonal formation.

31

.1 Appendix A

program euler

!Aim to solve dy/dt = ty = f(t, y) using the Euler method

implicit none

integer :: nsteps, n

real :: t, y, told, yold, h, fold

!Output file

open(unit=7, file=’euler.dat’)

t = 0.0 !Initial t

y = 1.0 !Initial y

h = 0.01 !Time step

nsteps = 200 !Number of steps

write(unit=7, fmt = "(2d17.9)") t, y

do n=1, nsteps !Time loop

told = t !Update old t

yold = y !Update old y

call getsub(told, yold, fold)

t = told + h !Get new t

y = yold + h*fold !Get new y

print*, t, y !Print to screen

write(unit=7, fmt = "(2d17.9)") t, y

enddo !Close time loop

close(unit=7) !Finish

end program euler

subroutine getsub(t, y, f)

!RHS of equation

implicit none

real :: t, y, f

f = t*y

end subroutine getsub

32

.2 Appendix B

program rk4

!Aim to solve dy/dt = yt = f(t, y) using the numerical method

Runge-Kutta order 4

implicit none

integer :: nsteps, n

real :: t, y, told, yold, h, k1old, k2old, k3old, k4old

!Output file

open(unit=7, file=’rk4.dat’)

t = 0.0 !Initial t

y = 1.0 !Initial y

h = 0.01 !Time step

nsteps = 200 !Number of steps

write(unit=7, fmt = "(2d17.9)") t, y

do n=1, nsteps !Time loop

told = t !Update old t

yold = y !Update old y

call getsub(told, yold, h, k1old, k2old, k3old, k4old)

t = told + h !Get new t

y = yold + (h/6)*(k1old+(2*k2old)+(2*k3old)+k4old) !Get new y

print*, t, y !Print to screen

write(unit=7, fmt = "(2d17.9)") t, y

enddo !Close time loop

close(unit=7) !Finish

end program rk4

subroutine getsub(t, y, h, k1, k2, k3, k4)

!RHS of equation

implicit none

real :: t, y, h, k1, k2, k3, k4

k1 = t*y

k2 = (t+(0.5*h))*(y+(0.5*h*k1))

k3 = (t+(0.5*h))*(y+(0.5*h*k2))

k4 = (t+h)*(y+(h*k3))

end subroutine getsub

33

.3 Appendix C

program rk2

!Aim to solve dy/dt = yt = f(t, y) using the numerical method

Runge-Kutta order 2

implicit none

integer :: nsteps, n

real :: t, y, told, yold, h, k1old, k2old

!Output file

open(unit=7, file=’rk2.dat’)

t = 0.0 !Initial t

y = 1.0 !Initial y

h = 0.01 !Time step

nsteps = 200 !Number of steps

write(unit=7, fmt = "(2d17.9)") t, y

do n=1, nsteps !Time loop

told = t !Update old t

yold = y !Update old y

call getsub(told, yold, k1old, k2old, h)

t = told + h !Get new t

y = yold + 0.5*(k1old + k2old) !Get new y

print*, t, y !Print to screen

write(unit=7, fmt = "(2d17.9)") t, y

enddo !Close time loop

close(unit=7) !Finish

end program rk2

subroutine getsub(t, y, k1, k2, h)

!RHS of equation

implicit none

real :: t, y, k1, k2, h

k1 = h*y*t

k2 = h*(y+(h*k1))*(t+h)

end subroutine getsub

34

.4 Appendix D

!Aim to find the velocity at a point and use this to move a

vortex, using the numerical method Runge-Kutta order 4

module parameters

!set parameters

implicit none

real, parameter :: h = 0.1

integer, parameter :: nsteps = 1500

integer, parameter :: nv = 2

end module

program vortex

use parameters

implicit none

integer :: n,skip,i

real, dimension(nv) :: xv,yv,cv,xvold,yvold,xvcall,yvcall

real :: u,v,uold,vold,t

!vortex 1

xv(1)=1.0

yv(1)=0.0

!vortex 2

xv(2)=-1.0

yv(2)=0.0

!circulations

cv(1)=1.0

cv(2)=-1.0

n=0

t=n*h

open(unit=7, file=’vortex.dat’)

do n=1, nsteps

do i=1,nv

xvcall=xv

yvcall=yv

xvold=xv

yvold=yv

skip = i

call getvelocity(xvcall(i),yvcall(i),&

&xvold,yvold,cv,skip,uold,vold)

k1u=uold*h

k1v=vold*h

35

call getvelocity(xvcall(i)+(0.5*k1v),yvcall(i)+(0.5*k1u),&

&xvold,yvold,cv,skip,uold,vold)

k2u=uold*h

k2v=vold*h

call getvelocity(xvcall(i)+(0.5*k2v),yvcall(i)+(0.5*k2u),&

&xvold,yvold,cv,skip,uold,vold)

k3u=uold*h

k3v=vold*h

call getvelocity(xvcall(i)+k3v,yvcall(i)+k3u,&

&xvold,yvold,cv,skip,uold,vold)

k4u=uold*h

k4v=vold*h

xv(i) = xvold(i)+ k1u/6 + k2u/3 + k3u/3 + k4u/6

yv(i) = yvold(i)+ k1v/6 + k2v/3 + k3v/3 + k4v/6

enddo

t=n*h

write(unit=7, fmt = "(5d17.9)") t,xv(1),yv(1),xv(2),yv(2)

enddo

close(unit=7)

end program vortex

subroutine getvelocity(x,y,xv,yv,cv,skip,u,v)

!Finding the velocity at a point in the plane

use parameters

implicit none

real :: u,v,r,vv,pi,x,y,u1,v1

real, dimension(nv) :: xv,yv,cv

integer :: j,skip

pi = 4.0*atan(1.0)

u=0.0

v=0.0

do j=1,nv

if (j/=skip) then

r = sqrt((x-xv(j))**2+(y-yv(j))**2)

vv= (cv(j))/(2*pi*(r**2))

u1 = -vv*(y-yv(j))

v1 = vv*(x-xv(j))

u=u+u1

v=v+v1

endif

enddo

end subroutine getvelocity

36

.5 Appendix E

!Aim to find the velocity at a point and use this to move a

vortex, using the numerical method Runge-Kutta order 4

module parameters

!set parameters

implicit none

real, parameter :: h = 0.001

integer, parameter :: nsteps = 150000

integer, parameter :: nv = 6

end module

program vortex

use parameters

implicit none

integer :: n,skip,i

real, dimension(nv) :: xv,yv,cv,xvold,yvold,xvcall,yvcall

real :: u,v,uold,vold,t,k1u,k2u,k3u,k4u,k1v,k2v,k3v,k4v

!vortex 1

xv(1)=0.21

yv(1)=0.0

!vortex 2

xv(2)=1.0

yv(2)=-0.25

!vortex 3

xv(3)=-1.0

yv(3)=0.5

!vortex 4

xv(4)=0.5

yv(4)=-0.5

!vortex 5

xv(5)=0.0

yv(5)=-1.0

!vortex 6

xv(6)=-0.75

yv(6)=0.0

!circulations

cv(1)=1.0

cv(2)=-1.0

cv(3)=1.0

cv(4)=-1.0

37

cv(5)=-1.0

cv(6)=1.0

n=0

t=n*h

open(unit=7, file=’vortex.dat’)

do n=1, nsteps

do i=1,nv

xvcall=xv

yvcall=yv

xvold=xv

yvold=yv

skip = i

call getvelocity(xvcall(i),yvcall(i),&

&xvold,yvold,cv,skip,uold,vold)

k1u=uold*h

k1v=vold*h

call getvelocity(xvcall(i)+(0.5*k1v),yvcall(i)+(0.5*k1u),&

&xvold,yvold,cv,skip,uold,vold)

k2u=uold*h

k2v=vold*h

call getvelocity(xvcall(i)+(0.5*k2v),yvcall(i)+(0.5*k2u),&

&xvold,yvold,cv,skip,uold,vold)

k3u=uold*h

k3v=vold*h

call getvelocity(xvcall(i)+k3v,yvcall(i)+k3u,&

&xvold,yvold,cv,skip,uold,vold)

k4u=uold*h

k4v=vold*h

xv(i) = xvold(i)+ k1u/6 + k2u/3 + k3u/3 + k4u/6

yv(i) = yvold(i)+ k1v/6 + k2v/3 + k3v/3 + k4v/6

enddo

t = n*h

write(unit=7, fmt = "(12d17.9)") xv(1),yv(1),xv(2),yv(2),&

&xv(3),yv(3),xv(4),yv(4),xv(5),yv(5),xv(6),yv(6)

enddo

close(unit=7)

end program vortex

subroutine getvelocity(x,y,xv,yv,cv,skip,u,v)

!Finding the velocity at a point in the plane

38

use parameters

implicit none

real :: u,v,r,vv,pi,x,y,u1,v1

real, dimension(nv) :: xv,yv,cv

integer :: j,skip

pi = 4.0*atan(1.0)

u=0.0

v=0.0

do j=1,nv

if (j/=skip) then

r = sqrt((x-xv(j))**2+(y-yv(j))**2)

vv= (cv(j))/(2*pi*(r**2))

u1 = -vv*(y-yv(j))

v1 = vv*(x-xv(j))

u = u+u1

v = v+v1

endif

enddo

end subroutine getvelocity

39

.6 Appendix F

!Aim to find the average difference between the same points

in time on two graphs

module parameters

!set parameters

implicit none

real, parameter :: h=0.001

integer, parameter :: nsteps = 150000

integer, parameter :: nv = 6

end module

program difference

use parameters

implicit none

real, dimension(nv,nsteps) :: x,y,xx,yy

real :: d,a,t,l,sum d,diff

integer :: i,j

open(unit=7, file=’chaos1.dat’)

open(unit=8, file=’chaos2.dat’)

open(unit=9, file=’chaos3.dat’)

open(unit=10, file=’chaos4.dat’)

open(unit=11, file=’difference.dat’)

!read files

do i=1,nv

read(7,*) (x(i,j),j=1,nsteps)

enddo

do i=1, nv

read(8,*) (y(i,j),j=1,nsteps)

enddo

do i=1, nv

read(9,*) (xx(i,j),j=1,nsteps)

enddo

do i=1, nv

read(10,*) (yy(i,j),j=1,nsteps)

enddo

j=0

t=j*h

40

sum d=0.0

do j=1, nsteps

do i=1, nv

a=(x(i,j)-xx(i,j))**2+(y(i,j)-yy(i,j))**2 !difference

between two vortices

d=sqrt(a)

sum d=sum d+d !sum of difference between all six vortices

enddo

diff=sum d/nv !average difference in summmed distance

l=log10(diff) !log of average difference

t=j*h !time step

write(unit=11, fmt=’(2d17.9)’) t,l

print*, t,l

enddo

close(unit=7)

close(unit=8)

close(unit=9)

close(unit=10)

close(unit=11)

end program difference

41

Bibliography

[1] Hassan Aref, 2007, ’Point vortex dynamics: A classical mathematics play-
ground’

[2] Hassan Aref, 1983, ’Integrable, chaotic and turbulent vortex motion in
two-dimensional flows’

[3] D. Bernard, G. Boffetta, A. Celani and G. Falkovich, 2006, ’Conformal
invariance in two-dimensional turbulence’

[4] http://en.wikipedia.org/wiki/Vortex

[5] http://en.wikipedia.org/wiki/Wingtip vortices

[6] Point vortex dynamics in two dimensions,
http://www2.ims.nus.edu.sg/Programs/09fluidss/files/Report GroupB.pdf

[7] Richard L Burden and J Douglas Faires, Numerical Analysis, 9th Edition

42

