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the two precessions are related intimately to not just the shape of the object the

gyroscope is orbiting, but also its angular momentum. These effects are discussed

in detail and then consequences of the angular momentum of a body on light scat-

tering are discussed. The basic equations of gravitoelectromagnetism are derived

through the electromagnetism analogy, starting with linearising the Einstein field

equations. These equations are solved meticulously to obtain the metric of a slowly

rotating spherical object and the Maxwell-like field equations. The results are then
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afterwards calculate the expected precession values in recent experiments.
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Chapter 1

Introduction

There are several well known tests of general relativity. Two of the less commonly

known effects involve spinning bodies in orbits around massive objects. There

are two such cases; the geodetic effect which is a spin-orbit coupling, and the

frame-dragging effect which is a spin-spin coupling. Both of these phenomenon

were predicted in one way or another shortly after Einstein published his theory of

general relativity in 1916, and in this paper we discuss, after a few preliminaries in

Chapter 2, these two effects with respect to the precession of the axes of an ideal

gyroscope. Chapter 3 gives an introduction to the larger of the two precessions,

the geodetic precession. We calculate a value for the precession in an idealised

situation where the gyroscope is in a stable circular orbit in the equatorial plane.

The method closely follow the methods in John Hartle’s book [1]. Chapter 4

investigates the second precession of the gyroscope, the Lense-Thirring precession.

Again a brief introduction is given to the precession before we get involved in any

mathematics. The solution for an idealised situation is once again derived in a very

similar manner, this time with the gyroscope free-falling down the rotational axis

of a slowly rotating massive object. The light bending effects of a massive spherical

body are then derived for two situations: one where the body is stationary and

one where the body is slowly rotating.

The most interesting mathematics comes in in Chapter 5. This chapter is based on

gravitoelectromagnetism (GEM). We set the scene by discussing the similarities

between electromagnetism and GEM and how the concept arose. We take a linear

perturbative approach to the Einstein field equations to derive a linearised set of

equations. The equations are then fully solved to produce the Maxwell-like GEM
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Chapter 1. Introduction 2

equations (aptly named due to the striking resemblance between these equations

and the Maxwell equations). Taking into account the aforementioned parallels in

electromagnetism and GEM, we re-derive the Lense-Thirring precession by using

techniques in electromagnetism and the results we found solving the linearised

field equations. The Lense-Thirring precession is then added to a quoted geodetic

precession formula to write down the Schiff equation; the equation that governs

the mathematics behind Gravity Probe B.

1.1 Gravity Probe B

Gravity Probe B (henceforth known as GP-B) is a NASA based mission to test the

theory of general relativity. Specifically, GP-B was commissioned to measure the

geodetic and frame-dragging (Lense-Thirring) effects of the Earth and therefore

provide another test of the theory of general relativity. Four spinning gyroscopes

were housed in a satellite orbiting the poles of the Earth at a height of 642 km.

The displacement angles of the spin axes were measured over the course of one

year and the results were compared with theoretical predictions.

The results [2] confirmed the predictions of general relativity to great accuracy.

The mean geodetic precession rate for the four gyroscopes was -6,601.8 ± 18.3

mas/year (the minus sign being there due to the method used to measure the

precession, we shall ignore it for our purposes) whilst general relativity predicted

-6,606.1 mas/year; and the mean frame-dragging precession rate was -37.2 ± 7.2

mas/year whilst general relativity predicted -39.2 mas/year (where mas is milli-

arcsecond). The calculated precessions are therefore accurate to 0.28% and 19%

respectively. The frame-dragging precession has been derived in Sec. 5.4. Al-

though we are not too concerned with the actual results of GP-B, they are included

as an indicator of the accuracy of general relativity.



Chapter 2

Preliminaries

2.1 Notation

We shall be using standard relativistic notation throughout. Greek indices run

from 0 to 3 whilst Latin indices run from 1 to 3 (hence imply purely spatial

components). The components are ordered such that (x0, xi) = (t, xi) for whatever

coordinate system we are in; this is simply so the zeroth component is time.

The metric is taken to be of the form (−+++) and hence has signature (3,1).

Contraction shall be performed over the first and third indices of the Riemann

tensor to form the Ricci tensor, that is Rµν = Rλ
µλν . A comma implies standard

derivative and a semi-colon implies covariant derivative as per normal. Numerical

indices shall be used interchangeably with symbolic indices, so x0 = xt. The

former implies some general coordinate system, whilst the latter is specific to

polar or Cartesian.

In Chapter 5 we shall take J to be the angular momentum of the massive rotating

object, and S to be the angular momentum of the gyroscope rotating this object.

It is for this reason in Chapter 4 we shall use J for the massive rotating objects

angular momentum.

2.2 Dimensionless Quantities

In general relativity we normally use geometrised units where we let c = G =

1 where c is the speed of light and G is the gravitational constant (although

3
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we are not too interested in letting G = 1 most of the time, so sometimes G

will appear even in these geometrised units). We shall be using this convention

throughout, unless otherwise specified. We shall represent the dimension of the

physical quantities mass, length and time by M, L and T respectively. The reader

should note that the dimension of mass, M, is different from the units metres

which is represented by m.

When we later analyse the affects a slowly rotating body has on the surrounding

spacetime, one ratio that we shall come across is 4GJ/c3r2. G is the gravitational

constant with units N m2 kg−2, J is the angular momentum with units N m s,

c has units m s−1 and r has units m. Dimensionally analysing this quantity we

obtain

4GJ

c3r2
∼
[
N m2 kg−2

]
[N m s]

[m s−1]3 [m]2

∼
(
M L T−2L2M−2

) (
M L T−2L T

)(
L3T−3

) (
L2
)

∼ 1

(2.1)

and so we can see that this quantity is dimensionless.

2.3 Coordinate System

Throughout this project, we will be using spherical polar coordinates, unless oth-

erwise stated. We shall use the normal convention (r, θ, φ) where r represents the

radial distance, θ represents the polar angle and φ represents the azimuthal angle.

The Cartesian coordinates of such a point may be retrieved from the following set

of equations:

x = r sin (θ) cos (φ)

y = r sin (θ) sin (φ)

z = r cos (θ)

(2.2)

where 0 ≤ r <∞, 0 ≤ θ ≤ π and 0 ≤ φ < 2π.
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2.3.1 Differential Equations

From the above sets of equations, (2.2), it is possible to derive the differentials

needed to transform line elements from one set of coordinates to another. The

total differential of a function is defined in summation notation by

dxi =
∂xi

∂xj
dxj (2.3)

So calculating our differentials we obtain

dx =
∂x

∂r
dr +

∂x

∂θ
dθ +

∂x

∂φ
dφ

= sin (θ) cos (φ) dr + r cos (θ) cos (φ) dθ − r sin (θ) cos (φ) dφ (2.4a)

dy = sin (θ) sin (φ) dr + r cos (θ) sin (φ) dθ − r sin (θ) cos (φ) dφ (2.4b)

dz = cos (θ) dr − r sin (θ) dθ (2.4c)

Considering (2.4a) and (2.4b) we can see that

x dy − y dx =
(
r sin2 (θ) cos (φ) sin (φ)− r sin2 (θ) cos (φ) sin (φ)

)
dr

+
(
r2 sin (θ) cos (θ) cos (φ) sin (φ)− r2 sin (θ) cos (θ) sin (φ) cos (φ)

)
dθ

+
(
r2 sin2 (θ) sin2 (φ) + r2 sin2 (θ) cos2 (φ)

)
dφ

= r2 sin2 (θ) dφ (2.5)

and hence observation shows

dφ =
x dy − y dx
r2 sin2 (θ)

(2.6)

which shall be used later when we consider the Lense-Thirring metric.

2.4 Christoffel Symbols

It is assumed that the reader has a background knowledge of general relativity

and will therefore know what Christoffel symbols are; though the definition of the

symbols and the calculations used to obtain the symbols are given below. The
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definition of the Christoffel symbols is

Γαβγ =
1

2
gασ

(
∂gσβ
∂xγ

+
∂gσγ
∂xβ

− ∂gβγ
∂xσ

)
(2.7)

Although it is possible to calculate the Christoffel symbols via the definition, in

many cases, for example when we have a non-diagonal metric, it is quicker and

easier to calculate them from the Lagrangian of the metric.

2.4.1 Christoffel Symbols from the Lagrangian

Let us start by defining the line element as a Lagrangian. We shall use L =
1
2
gµν ẋ

µẋν where the dot denotes s-derivatives (ẋµ = dxµ/ds). Using this La-

grangian and the Euler-Lagrange equation,

∂L

∂xµ
− d

ds

∂L

∂ẋµ
= 0 (2.8)

we can easily calculate the non-vanishing Christoffel symbols for a given metric.

Let us calculate the non-vanishing Γθµν symbols for the Schwarzschild metric. We

know that gµν = 0 when µ 6= ν, hence we only have gtt = (1− 2M/r), grr =

(1− 2M/r)−1, gθθ = r2 and gφφ = r2 sin2 (θ). So, for θ we get

0 =
∂L

∂θ
− d

ds

∂L

∂θ̇

=
1

2
r2 · 2 sin (θ) cos (θ) φ̇2 − d

ds

(
r2θ̇
)

= r2 sin (θ) cos (θ) φ̇2 − 2rṙθ̇ − r2θ̈

(2.9)

Factoring out −r2 and changing our notation of θ = xθ we find the differential

equation

0 =
d2xθ

ds2
− sin (θ) cos (θ)

(
dxθ

ds

)2

+
2

r

dr

ds

dθ

ds

=
d2xθ

ds2
− Γθφφ

(
dxθ

ds

)(
dxθ

ds

)
+
(
Γθrθ + Γθθr

) dr
ds

dθ

ds

(2.10)

Hence we can read off Γθφφ = − sin (θ) cos (θ) and Γθθr = Γθrθ = 1/r, where in the last

step we have simply expanded the geodesic equation (C.1) for the θ-component.



Chapter 3

Geodetic Precession

The following two chapters closely follow the methods use by John Hartle in his

book [1].

The geodetic precession/effect (also known as de Sitter precession/effect) is the

effect that a spherical mass has on the surrounding spacetime. The effect was pre-

dicted initially by Willem de Sitter in 1916 with respect to relativistic corrections

to the motions of the Earth-Moon system in the presence of the Sun’s gravita-

tional field [3]. Whilst it wasn’t exactly the geodetic effect that was calculated,

a corresponding effect was proposed independently by Fokker [4] and Eddington

[5]. The effect is to do with parallel transport along geodesics. For example, if

we were to spin a gyroscope about some axis and move it along a geodesic, the

spin axis will stay parallel with respect to the affine connection of the manifold.

This is fundamentally the definition of parallel transport. If the gyroscope were to

move in a circle in flat spacetime (note that this is not a geodesic) the axis would

return to its starting position (if we ignore the Thomas precession), but in curved

spacetime the axis will not return to its original position.

There are many different ways to obtain the geodetic precession, and complica-

tions arise when trying to compare these different methods. It is a well known

phenomenon that when a gyroscope has a constant circular orbit with an acceler-

ation perpendicular to this orbit, the axes of the gyroscope obtains a precession

called the Thomas precession (as mentioned above). Intuitively one would think

that we would therefore obtain a Thomas precession with a gyroscope orbiting

the Earth. Different authors have different views on this, but an analysis of this

is beyond the scope of this project. For this reason we shall not derive the exact

7



Chapter 3. Geodetic Precession 8

geodetic precession as predicted in the Schiff formula; instead we shall derive an

approximate value for the change in angle of the spin axes over one revolution (in

an idealised situation), and then quote the exact formula in Sec. 5.4.

Since the geodetic precession is caused by a spherical mass, we can use the

Schwarzschild metric to describe the geometry of spacetime around the mass. The

Schwarzschild metric is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 (θ) dφ2

)
(3.1)

Observation shows that the Schwarzschild metric is simple metric with four in-

dependent components; there are no cross terms which simplifies the resulting

algebra. To simplify the mathematics further we shall consider a gyroscope or-

biting the mass in the equatorial plane. The polar angle is therefore θ = π/2

hence gφφ = r2. Because of the spherical shape of the object, there is going to be

azimuthal symmetry. Let us also assume that the orbit has Schwarzschild radius

R. There is no radial movement of the gyroscope as it is in a stable circular orbit,

and it remains in the equatorial plane hence ur = uθ = 0. We therefore have that

u =
(
ut, 0, 0, uφ

)
. By definition,

uφ ≡ dφ

dτ
=
dφ

dt

dt

dτ
= Ωut (3.2)

where we have defined the orbital angular velocity as Ω ≡ dφ/dt.

It is possible for us to calculate ut by using the condition u · u = −1, but it turns

out that it is not needed hence we shall not do so.

Before we combine the gyroscope equation (C.2) with this Schwarzschild metric,

we should also take note that sθ = 0 initially. Considering the gyroscope equation,

one can see that

dsθ

dτ
= −Γθµνs

µuν

= −Γθrθ
(
sruθ + sθur

)
− Γθφφs

φuφ (3.3)

where the second step has used the non-zero Christoffel symbols for the Schwarzschild

metric, as given in Appendix A.1. Since sθ = 0 initially, and uθ = 0 due to the
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orbit being in the equatorial plane, equation (3.3) reduces to

dsθ

dτ
= −Γθφφs

φuφ

= cos (θ) sin (θ)

= 0

(3.4)

as the cos (θ) term vanishes when θ = π/2. Hence sθ starts and remains equal to

zero throughout the orbit.

Suppose we consider an inertial frame in which the gyroscope is at rest; that is

u = (1, 0, 0, 0) and s =
(
0, sr, sθ, sφ

)
. Clearly we have s · u = 0. In fact, it turns

out that this condition holds in any frame. Moving back to a general frame, using

this condition and ur = uθ = 0 again we can see that

0 = gµνs
µuν

= −
(

1− 2M

R

)
stut +R2 sin2 (θ) sφuφ

= −
(

1− 2M

R

)
stut +R2sφΩut

⇒ st = R2Ω

(
1− 2M

R

)−1
sφ (3.5)

We must now solve the gyroscope equation for sr and sφ, starting with the former.

Using the appropriate non-zero Christoffel symbols from Appendix A.1 we see that

0 =
dsr

dτ
+ Γrtts

tut + Γrφφs
φuφ

=
dsr

dτ
+

(
M

R2

)(
1− 2M

R

)
stut − (R− 2M) sin2 (θ) sφuφ

=
dsr

dτ
+ ut

[(
M

R2

)(
1− 2M

R

)
st − (R− 2M) sφΩ

]
=
dsr

dτ
+ utsφ

[(
M

R2

)(
1− 2M

R

)
R2Ω

(
1− 2M

R

)−1
− (R− 2M) Ω

]
⇒dsr

dt
− (R− 3M) Ωsφ = 0 (3.6)

where we have used utdt = (dt/dτ) dτ = dt in the last step. Using a similar

method for sφ we can show that

dsφ

dt
+

Ω

R
sr = 0 (3.7)
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Hence we have two coupled equations. Let us differentiate (3.7) and substitute in

(3.6) to obtain
d2sφ

dt2
+

(
1− 3M

R

)
Ω2sφ = 0 (3.8)

This is a second order differential equation describing the time evolution of sφ. In

fact, this is just the equation for a simple harmonic oscillator. Let us define the

frequency of the solution as

Ω′ =

(
1− 3M

R

) 1
2

Ω (3.9)

Clearly something strange is happening. If the axes of the gyroscope were to

return to their original orientation after one orbit, the solutions frequency would

be the same as the orbital frequency, but it is not. The axes of the gyroscope are

being affected by the curvature of spacetime and hence are precessing. Using Ω′

we are able to write down the general solution of (3.8) as

sφ = A sin (Ω′t) +B cos (Ω′t) (3.10)

where A and B are some constants. At time t = 0, the spin is pointing in the

r-direction, hence we must have B = 0. In the same way that Hartle does, let us

normalise the solution such that (s · s)1/2 = s∗. Clearly s∗ is just the magnitude

of the spin (which is also time-independent). Noting that when t = 0, we can see

that the only spin component that has value is sr. This normalisation condition

must still be satisfied hence substituting our current solution for sφ into equation

(3.6) we obtain

0 =
dsr

dt
− Ω (R− 3M)A sin (Ω′t)

⇒ sr = − Ω

Ω′
(R− 3M)A cos (Ω′t)

= − R− 3M

(1− 3M/R)1/2
A cos (Ω′t) (3.11)

So when t = 0 we have

sr (0) = − R− 3M

(1− 3M/R)1/2
A (3.12)
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Now applying the normalisation condition we find

s2∗ = grrs
rsr

= −
(

1− 2M

R

)
(R− 3M)2

1− 3M/R
A2

⇒ A = −
(

1− 2M

R

) 1
2 (1− 3M/R)1/2

R− 3M
s∗ (3.13)

Substituting this value for A back into our solutions for sr and sφ we can now see

that

sr = s∗

(
1− 2M

R

) 1
2

cos (Ω′t) (3.14a)

sφ = −s∗
(

1− 2M

R

) 1
2
(

Ω

Ω′R

)
sin (Ω′t) (3.14b)

So our full set of equations are given by sθ = 0 and equations (3.5), (3.14a) and

(3.14b).

Using the dot product definition, A · B = AB cos (θ), we can see that if we take

the dot product of a unit vector at time t = 0 with a unit vector at time t = 2π/Ω

(where 2π/Ω is the time it takes for one complete orbit), we will obtain the cosine

of the angle the spin has been rotated by. Hence

êr ·
(

s (2π/Ω)

s∗

)
= cos

(
2π

Ω′

Ω

)
= cos

(
2π

(
1− 3M

R

) 1
2

)
(3.15)

The difference between a full rotation of 2π and the value in the cosine term will

give us the angle the spin has been rotated by per orbit where the rotation is in

the same direction as the orbit. The angle is

∆φ = 2π

[
1−

(
1− 3M

R

) 1
2

]
(3.16)



Chapter 4

Lense Thirring Precession

The Lense-Thirring precession, named after Josef Lense and Hans Thirring [6]

(citation is the English translation), is the effect that a rotating spherical mass has

on the surrounding spacetime. There are in in fact two effects; the dragging of the

orbital plane around the mass, and the precession of the axes of a gyroscope. The

effects are often called frame-dragging due to the inertial frames around the mass

being dragged by the rotation. We shall only consider the gyroscopic effect. The

former effect causes spinning bodies to not follow geodesics as shall be discussed

briefly later. The only difference between this effect and the geodetic effect is that

the mass is rotating in this case, but the Lense-Thirring precession is orthogonal

to the geodetic precession. As we are assuming a very small rotation velocity,

we can derive the Lense-Thirring metric which describes the geometry around a

slowly rotating spherical object. The metric is

ds2 = ds2Schwarz −
4GJ

c3r2
sin2 (θ) (rdφ) (cdt) + O

(
J2
)

(4.1)

By observation one can see that we have acquired cross terms in the metric. It is

also straight forward to see that letting the angular momentum J = 0 we recover

the Schwarzschild metric. This Lense-Thirring metric can be used along with the

gyroscope equation (C.2) to analyse the precession of the axis of a gyroscope free

falling down the rotation axis of the spinning mass. The metric has been given

in polar coordinates, but we find that it is easier to work in regular Cartesian

coordinates due to the singularity of the polar coordinates along the z-axis. Using

the coordinate transformations that were given in equation (2.2), we can use the

differential for dφ we derived in Sec. 2.3.1 and hence the Lense-Thirring metric in

12
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Cartesian coordinates is

ds2 = ds2Sch-Cart −
4GJ

c3r2
(cdt)

(
xdy − ydx

r

)
+ O

(
J2
)

(4.2)

where ds2Sch-Cart is the Schwarzschild metric in Cartesian coordinates. Clearly here

we have a more complicated metric than in the case of a spherical mass.

It must be emphasised that we are working to first order in angular momentum,

J , since the rotation is slow, so we can ignore the second order angular momentum

affects on the shape of the mass. The quantity 4GJ/c3r2, which is dimensionless as

was shown in Sec. 2.2, is the ratio that governs the affects of the rotation. It can

be shown using dimensional analysis that the amount of curvature is dependant

on the objects (rotational) velocity in addition to its mass. We also find that the

effects are of order c−3.

If we replace the Schwarzschild part of the metric with the Minkowski metric, we

will get a metric described by equation (A.2). There are only four non-vanishing

Christoffel symbols for this metric. They are found in Appendix A.2. Using these

symbols and noting that r = z since the gyroscope is falling down the z-axis, we

find that the gyroscope equation reduces down to two coupled equations

dsx

dt
+

2GJ

c2z3
sy = 0 (4.3a)

dsy

dt
− 2GJ

c2z3
sy = 0 (4.3b)

Combining these two equations gives us

d2sx

dt2
+

4G2J2

c4z6
sx = 0 (4.4)

and the same equation results if we combined the two equations in the other way.

Once again this is just an equation of simple harmonic oscillation. By looking at

the frequency of the solution, we therefore find that the gyroscope axes precess in

the same direction as the object is rotating with an instantaneous rate

ΩLT =
2GJ

c2z3
(4.5)

We revisit this solution in Chapter 5 where we derive a more general result that

includes lateral positions.
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Although the Lense-Thirring effect is minuscule for objects orbiting the Earth (42

mas/year), for black holes the effect is enormous. The methods used here cannot

be used to describe the motions of black holes since the large angular momentum

causes geometrical changes to the shape of the object that we cannot simply ignore.

The object goes from being a spherical mass to an oblate spheroid (a sphere that

has been compressed along its z-axis).

4.1 Light Bending Effects

We shall now consider one of the main implications of the Schwarzschild geometry

which is also one of the great tests of relativity. Due to the body’s effect on the

surrounding spacetime, and also due to the fact that light follows geodesics, we can

infer that a massive body must deflect light as it passes by the object. Although it

is true that massive bodies follow geodesics, ones that are spinning do not follow

geodesics, they follow very slightly modified paths (for example [7, 8]). Say we were

considering the precession of Mercury’s perihelion; the geodesic equation we use

to describe the motion of Mercury is not completely true, but since planets have

non-relativistic spin, these approximations describe their orbits to a very great

degree of accuracy. In relativistic situations, for example if we had a spinning

neutron star orbiting a massive black hole, the path that it follows could be very

different from what the geodesic equation would describe.

4.1.1 Spherical Non-Rotating Mass

There are many routes we could take to derive the angle at which light is deflected

by an object. The method described here shall derive the motion of the particles

of light via the geodesic equation. An alternate method could involve the use of

integrals of conserved quantities [1, 9]. Since we are also going to be calculating

the extra deflection due to the effect of the rotation of a body, we shall only

produce an approximate value for the deflection. A full derivation can be found

using Jacobi elliptical functions [10].

We start with the Schwarzschild metric as found in Appendix A.1. Noting that

dτ 2 = −ds2, we define a new variable ε = (dτ/dσ)2 where σ is a parameter along
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a geodesic. This turns our metric into the Lagrangian

ε =

(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1
ṙ2 − r2θ̇2 − r2 sin2 (θ) φ̇2 (4.6)

where the dot denotes derivative with respect to σ. Since the Schwarzschild so-

lution describes a spherically symmetric body, we shall orient the body in such a

way that we have θ = π/2. This reduces the equation down to

ε =

(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1
ṙ2 − r2φ̇2 (4.7)

From observation we can see that there is no φ dependence. We can therefore

define the new constant variable l = r2φ̇. This turns the final term in the equation

into l2/r2. There is also no t dependence since the solution is static. Let us rescale

σ in a way such that (1− 2M/r) ṫ = 1. Putting both of these back into the

equation and solving for ṙ2 will give us

ṙ2 = 1− ε
(

1− 2M

r

)
− l2

r2

(
1− 2M

r

)
(4.8)

To simplify the equation further, we can recast the equation to get r as a function

of φ. Once we have done this we will define a new variable u = r−1.

ṙ =
dr

dσ
=
dr

dφ

dφ

dσ

=
l

r2
dr

dφ

= − l

u2r2
du

dφ

= −l du
dφ

(4.9)

Substituting this equation into (4.8) will give us(
du

dφ

)2

=
1− ε
l2

+
2Mε

l2
u− u2 + 2Mu3 (4.10)

It is from this step that we could solve the equation exactly using Jacobi elliptical
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functions. Instead we shall find an approximate solution. We start by differenti-

ating through with respect to φ to get

2

(
du

dφ

)(
d2u

dφ2

)
=

2Mε

l2
du

dφ
− 2u

du

dφ
+ 6Mu2

du

dφ
(4.11)

We are assuming that the light has a non-circular orbit (it should be noted that

in fact light can have a circular orbit, but the orbit is unstable) hence r is non-

constant so (du/dφ) is never zero. This allows us to divide through by (du/dφ) to

get
d2u

dφ2
+ u =

Mε

l2︸ ︷︷ ︸
Newtonian gravity

+ 3Mu2︸ ︷︷ ︸
GR

(4.12)

This equation describes the approximate orbit of an object around a spherically

symmetric body. The non-linear term is due to general relativity; the rest of the

equation can be found through Newtonian gravity. Our definition of ε means that

massive particles have ε > 0 and for massless particles we have ε = 0. Since light

is made up of photons and photons are massless particles, we can remove the term

with ε from the equation to get

d2u

dφ2
+ u = 3Mu2 (4.13)

Let us also assume that the light passes by the object and at closest approach the

radial distance (or the impact parameter) is b. This is illustrated in Figure 4.1.

Due to the symmetry it is obvious that the light is going to be deflected by the

same amount each side of the object.

We are going to seek a solution in the form u = u0 +u1 +u2 + . . .. We also assume

that the non-linear term contributes significantly less than the linear term in the

equation. The lowest order solution of the differential equation will therefore be

d2u0
dφ2

+ u0 = 0 (4.14)

which has the solution u0 = A sin (θ + θ0). This is the same as solving the entire

equation in special relativity. We orient our axes in a way such that at the point

of closest approach is in the plane φ = π/2. This gives us our boundary condition

that r = b at φ = π/2 and so we get θ0 = 0 and A = 1/b. Our next lowest order
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Figure 4.1: Light bending around a star

differential equation will be

d2u1
dφ2

+ u1 = 3Mu20 =
3M

b2
sin2 (φ)

=
3M

2b2
(1− cos (2θ)) (4.15)

We shall use a trial solution of the form

u1 =
3M

2b2
+B cos (2θ)⇒ d2u1

dφ2
= −4B cos (2θ) (4.16)

Substituting this in and solving for we find that B = M/2b2 hence our overall

solution is

u ' 1

b
sin (φ) +

M

2b2
(3 + cos (2θ)) (4.17)

Let δ be the angle by which the light is deflected from a straight line on one side

of the object. We expect that δ � 1. As the radial distance from the object

increases, the gravitational effects of the object are going to decrease. Hence as

r →∞ we have u→ 0 and φ→ −δ. Using the small angle formulas in Appendix

C we see that

0 ' −δ
b

+
M

2b2
(3 + 1)

⇒ δ ' 2M

b
(4.18)

So the total bending angle of an object to lowest order and with factors of c and

G restored is

θ ' 4GM

rc2
(4.19)

In the case of light grazing the surface of the Sun, we take the values to be
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r = 6.966 · 108 m and M = 1.99 · 1030 kg. Inserting these values and converting

the answer from radians to arcseconds, we find a value of approximately 1.75

arcseconds. The exact solution is also 1.75 arcseconds [10].

4.1.2 Spherical Slowly Rotating Mass

Since a rotating body alters the surrounding spacetime, relativity predicts that

light passing by this body will be deflected by an amount additional to the amount

calculated when considering simple Schwarzschild geometry.

Since the body is slowly rotating the frame dragging effects are extremely small.

We are therefore expecting a result of lower order than the one we just calculated.

As most of the steps are the same, only the important parts shall be written down.

The metric we are using is described in Appendix A.2. The result we are cal-

culating is to lowest order in c hence we note that the GM/rc2 terms will not

contribute. Therefore, our Lagrangian (using geometrised units) for the system

takes the form

ε = ṫ2 − ṙ2 − r2θ̇2 − r2 sin2 (θ) φ̇+
4J

r
φ̇ṫ (4.20)

We orient the axes so that we have θ = π/2. Our rescaling is different for this

metric. We rescale the conserved quantities. If we let L = ε/2 (the factor of 2

being there for convenience, it is possible to do this without redefining in terms of

L) then we see that ∂L/∂ṫ and ∂L/∂φ̇ are non-zero. Using these two equations

allow us to define again a constant l and rescale σ such that

2J

r
ṫ− r2φ̇ = l, ṫ+

2J

r
φ̇ = 1 (4.21)

This is our justification for why we scaled the factors in the way we did in Sec.

4.1.1, except in that case we didn’t have to solve any simultaneous equations.

Solving these two equations to lowest order in J gives us

φ̇ =
2J

r3
− l

r2
, ṫ = 1 +

2Jl

r3
(4.22)

Substituting these values into equation (4.20) and solving for ṙ2 we find that to

lowest order in J

ṙ2 = 1− ε− l2

r2
− 4Jl

r3
(4.23)
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Once again we reformulate r in terms of φ and substitute in u = r−1. In this case

we get the differential equation(
du

dφ

)2

=
1− ε
l2
− u2 − 4J

l
u3 (4.24)

Differentiating and cancelling common factors gives us the second order equation

d2u

dφ2
+ u = −6J

l
u2 (4.25)

Solving this in the same way as before with our series solution method we find

u =
1

b
sin (φ)− J

lb2
(3 + cos (2φ)) (4.26)

and hence we find that the total bending angle is

θ = −8J

lb
(4.27)

The two main differences between this value of bending angle and the value that we

found in equation (4.19) are the presence of the l constant and the minus symbol.

The rotation of the object in fact causes the light to be bent by an slightly less

than if the object were not rotating. We cannot compare the two values properly

until we explicitly calculate l.

We find l by considering equation (4.23). For light ε = 0 so we can immediately

remove this term. We also have ṙ = 0 when r = b since this is the turning point for

light (due to the symmetry of the object). Hence we can rearrange the equation

to get

l2 +
4J

b
l − b2 = 0 (4.28)

Solving this by means of completing the square and then binomially expanding we

find

l = −2J

b
±
(
b2 +

4J

b2

) 1
2

' −2J

b
±
(
b+

2J

b4

)
' b (4.29)

We can justify the last line by noticing that |b| � |2J/b| � |2J/b4| which becomes
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even more apparent when the factors of G and c are restored. The square root

is taken to be positive for light moving past the object in the same direction as

its rotation; we take the negative square root for light moving past the object in

the opposite direction to its rotation. This implies that for light passing by in

the rotational direction the light is bent by a smaller angle that in the case of no

rotation. Substituting this back into equation (4.27) and restoring the constants

we find that

θ ' −8GJ

r2c3
(4.30)

Comparing the ratio of the magnitudes of equations (4.30) and (4.19), and using

a standard Newtonian description of angular momentum

J ∼ IΩ ∼MR2Ω ∼MRV (4.31)

it is straightforward to see∣∣∣∣8GJr2c3

∣∣∣∣ / ∣∣∣∣4GMrc2
∣∣∣∣ ∼ J

Mrc
∼ v

c
� 1 (4.32)

Hence the rotational effect is minute in comparison with the non-rotating spherical

body effect. For the Sun v ' 2000 m s−1 which is of many orders lower than c.

In the case of light passing by in the opposite direction to the objects rotation, we

simply take the negative value of equation (4.30). In this case the light is therefore

bent by a greater angle than in the case of no rotation.

We know from the original calculation that M/r is small (when r is the distance of

closest approach); it is half the Schwarzschild radius which for the Sun is around

three kilometres; its physical radius is comparison is just shy of seven hundred

thousand kilometres. This shows an obvious problem trying to do calculations

as such when working with black holes. With stars, the Schwarzschild radius

is significantly smaller than the physical radius and so terms like M/r can be

ignored, but with black holes the physical radius is the Schwarzschild radius hence

the terms are of the same order and cannot be ignored.



Chapter 5

Gravitoelectromagnetism

Historically there has long been speculation of similarities between Newtonian

gravity and Coulomb’s law of electricity. This led to a theory which was a gravito-

electric description of Newtonian gravity. The field of electrodynamics progressed

vastly during the nineteenth century, mainly due to the Maxwell equations being

published. Once it was realised that electric and magnetic fields are intrinsically

related, speculation was made as to an extra (magnetic) force acting in Newto-

nian gravity. This force would be the corrections to observed quantities that we

see; for example the precession of Mercury’s perihelion which cannot be correctly

predicted by Newtonian gravity. Einstein’s theory of relativity provided this cor-

rection to Mercury’s perihelion precession leaving any Newtonian magnetic forces

redundant as the correction was shown to be completely relativistic.

In a weak gravitational field where the velocities are small, we can decompose

spacetime in what’s called a “3+1 split”; that is we can split the four dimensional

metric into a scalar time-time component, a vector time-space component and a

tensor space-space component. In our case of the weak field we call the scalar

component the gravitoelectic potential, and the vector component the gravito-

magnetic potential. We ignore the space-space tensorial components as they are

of negligible order. The combination of these is known as gravitoelectromagnetism

(which shall henceforth be known as GEM). The individual components describe

fields analogous to the electric and magnetic fields in electromagnetism.

Due to the similar nature of GEM and electromagnetism, we are able to deter-

mine results in relativity by looking at the paralleled results in electromagnetism,

although we may need to rescale some results as they are often out by a factor.

21
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This is due to the fact that approximations in classical electromagnetism involve

a spin-1 field, whilst in linearised gravity we have a spin-2 field (this is only true

for linearised gravity [11]). From the GEM field equations we are able to derive

the Lense-Thirring metric as used in Chapter 4, and also the Schiff equation [12].

The subject of GEM is not free of controversy and whether or not the gravitoelec-

tric and gravitomagnetic fields exist is currently under debate. We shall not be

discussing this in this article, we shall simply assume that the fields do exist.

5.1 Gravitoelectromagnetic Field Equations

We start by noting that this solution is only valid in a weak field approximation.

Since we are in a weak field, we are able to take a linear perturbation of the

Minkowski metric such that gµν = ηµν + hµν where |hµν | � 1. We shall work to

first order in hµν throughout. The inverse metric is obviously gµν = ηµν + hµν

but we can simply ignore the hµν terms as this will give us non-linear terms.

Therefore raising and lowering of indices is performed by the Minkowski metric.

Our Christoffel symbols (2.7) are therefore

Γαµν =
1

2
ηασ (hµσ,ν + hσν,µ − hµν,σ)

=
1

2

(
h α
µ ,ν + hαν,µ − h ,α

µν

)
(5.1)

Next we must calculate the relevant Ricci tensors. Defining the trace of the

Minkowski metric as h = ηµνhµν = hνν we find

Rµν = Γαµν,α − Γαµα,ν

=
1

2

(
h α
µ ,να + h α

ν ,µα − h α
µν,α − h,µν

)
(5.2)

And contracting this with the Minkowski inverse metric we find the trace of the

Riemann tensor is

R = hµα,µα − h µ
,µ (5.3)
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Substituting all these values into the Einstein field equations (C.5) and relabelling

some indices we obtain

h α
µ ,να + h α

ν ,µα − h α
µν,α − h,µν

− ηµν
(
hαβ,αβ − h

β
,β

)
=

16πG

c4
Tµν (5.4)

Next we define the trace-reversed perturbation variable, hµν ≡ hµν− 1
2
ηµνh. Noting

that h = −h (hence the apt nomenclature) we find that

hµν = hµν +
1

2
ηµνh (5.5)

= hµν −
1

2
ηµνh (5.6)

Using this result we can calculate each term in (5.4) and obtain

h α
µα,ν =

(
hµα −

1

2
ηµαh

) α

,ν

= h
α

µα,ν −
1

2
h,νµ (5.7a)

h α
να,µ = h

α

να,µ −
1

2
h,µν (5.7b)

h α
µν,α = h

α

µν,α −
1

2
ηµνh

α

,α (5.7c)

h,µν = −h,µν (5.7d)

h ,αβ
αβ = h

αβ

αβ, −
1

2
h

β

,β (5.7e)

h β
,β = −h β

,β (5.7f)

where we have used h α
µ ,να = h α

µα,ν (simply so we don’t have to raise or lower any

indices in the h terms). This turns the field equations (5.4) into

− h α

µν,α + h
α

µα, ν + h
α

να, µ − ηµνh
,αβ

αβ =
16πG

c4
Tµν (5.8)

We recognise the first term as the d’Alembertian operator in relativistic notation

(� = ∂µ∂µ); the other three terms simply keep the equations gauge-invariant. If

we apply the Lorentz gauge condition h
µα

,α = 0, it is immediately obvious that

the last three terms vanish (after raising some indices). This allows us to write

the linearised Einstein equations to first order in hµν as

h
α

µν,α = �hµν = −16πG

c4
Tµν (5.9)
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This is equation only valid if the Lorentz gauge exists. The proof of existence can

be found in Appendix B. As a side note we can see the striking resemblance with

electromagnetism where we find the Maxwell equations are �Aµ = − (4π/c) Jµ.

The two important equations describing linearised gravity are the field equations

(5.9), and the metric

gµν = ηµν + hµν −
1

2
ηµνh (5.10)

For our calculations we shall now raise the indices of the metric and the linearised

field equations. The reason for why is we use the conservation of the stress-energy

tensor with upper indices. It can be shown that the exact solution to this equation

can be given in terms of retarded potentials of the stress-energy tensor via the use

of Green’s function (for example see Sec. 7.5 of [13]). It is given by

h
µν

=
4G

c4

∫
T µν (t− |x− x′| /c,x′)

|x− x′|
d3x′ (5.11)

To evaluate the integral in equation (5.11), as follows from [14], we shall first use

a Taylor-series expansion for 1/ |x− x′| about x′ = 0. This gives

1

|x− x′|
=

1[
(x− x′)2 + (y − y′)2 + (z − z′)2

]1/2
=

1

r
+
x′kxk

r3
+

1

2

(
3x′kx′l − r′2δlk

) xkxl
r5

+ · · · (5.12)

where r = (x2 + y2 + z2)
1/2

as usual. We shall keep only the first two terms for our

calculation. We also ignore the time completely in the integral since the solution

is static, that is we shall consider T µν (t− |x− x′| /c,x′) = T µν (x′). This means

we must integrate the equation

h
µν

=
4G

c4r

∫
T µν (x′) d3x′ +

4Gxk

c4r3

∫
x′kT µν (x′) d3x′ (5.13)

We shall work in geometrised coordinates for the integral calculations and restore

the factors of G and c afterwards. Considering the first integral,∫
T µν (x′) d3x′ =

∫
T 00 (x′) d3x′ +

∫
T iµ (x′) d3x′ (5.14)

it is straight forward to see that the first term is simply M . This is because

T 00 is defined as the energy density (T 00 = c2ρ), hence we are integrating the

energy density over the volume of the system, which is by definition the mass of
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the system M . For the next part of the integral, we start with the stress-energy

tensor conservation law. In linearised gravity the covariant derivative is equal to

the normal derivative (as we are only retaining the lowest order and we already

have small T µν anyway). The conservation law thus reduces to

0 = T µν;ν = T µν,ν

= T µ0,0 + T µj,j

= T µj,j (5.15)

where T µν;ν = T µν;ν (x′) and we have used the fact that we have no time dependence

in the last line. Multiplying this last line by x′k and integrating over the volume

of the system we have

0 =

∫
x′kT µj,jd

3x′ (5.16)

To evaluate this we must integrate by parts. Starting with the total derivative

integral we see ∫ (
x′kT µj

)
,j
d3x′ =

∫
δkj T

µjd3x′ +

∫
x′kT µj,jd

3x′

=

∫
T µkd3x′ +

∫
x′kT µj,jd

3x′ (5.17)

Since the left hand side of the equation is a total derivative, this integrates to be

zero. Therefore using equations (5.16) and (5.17) we find∫
T µkd3x′ = 0 (5.18)

Hence the first integral term of (5.13) only has value for h
00

.

Using the same method as before, we split the second integral in equation (5.13)

into ∫
x′kT µν (x′) d3x′ =

∫
x′kT 00 (x′) d3x′ +

∫
x′kT 0j (x′) d3x′

+

∫
x′kT ij (x′) d3x′ (5.19)

The first integral term in this equation is zero since it is simply stating that the

coordinate origin is centred at the centre of the mass. An alternate way of looking

at this is the integral will produce a rank one tensor, but it is not possible for a

rank one tensor to exist in this system, hence it must be equal to zero. For the
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second term, we start by multiplying equation (5.15) by x′kx′n and then integrate

over the volume. Using the same integration by parts method we find the identity

0 =

∫
x′kx′nT µj,j

= −
∫
x′nT µkd3x′ −

∫
x′kT µnd3x′ (5.20)

In relativity, angular momentum is defined as the integral of the cross product of

the position vector, xk with the momentum density, T i0. That is,

Jn =

∫
εnkix′kT i0 (5.21)

so for example, the x-component of spin angular momentum is defined as (and

similarly for the other components)

J1 =

∫ (
x′2T 30 − x′3T 20

)
d3x′ (5.22)

but equation (5.20) reduces this equation to

J1 = 2

∫
x′2T 30d3x′ (5.23)

or in general

Jn = 2

∫
εnkix′kT i0d3x′ (5.24)

hence to obtain our integral, we must multiply through by 1/2εnki. Putting all of

this together shows that the second integral of equation (5.19) becomes∫
x′kT 0j (x′) d3x′ =

1

2
εkinJn (5.25)

For the third integral term in equation (5.19), we use the identity

T ij =
1

2

∂

∂x′n
(
x′jT in + x′iT jn

)
(5.26)

Substituting this into the integral and integrating by parts will give us a term

that completely vanishes as a consequence of equation (5.20). Once again it is

immediately apparent without the above identity that this term vanishes as it will

produce a rank three tensor which is not possible in this system. This is because

the stress-energy tensor is symmetric and the natural rank three tensor is the
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alternating tensor which is anti-symmetric (a similar argument is used in the case

of the rank one tensor).

Putting all of these integrals back into equation (5.13) and restoring factors of c

and G (for just this set of equations) we find

h
00

=
4GM

c2r
(5.27a)

h
i0

= h
0i

=
2G

c3r3
εkinxkJn (5.27b)

h
ij

= 0 (5.27c)

There are no space-space h
ij

components as they were omitted in our approxima-

tion. If we had used more terms in the Taylor series expansion (5.12) then we

would have had these non-zero. Their order makes the effects of them negligible.

Considering first the case of no rotation, we have only h00 to be non-zero. If we

define the Newtonian gravitational potential (in this case also the gravitoelectric

scalar potential which is essentially the time-time part of the metric), Φ, to be

defined by

Φ = −GM
r

(5.28)

We can immediately see that upon lowering indices h00 = −4Φ in the Newtonian

limit (Φ→ 0 as r →∞). Also noting that h = −h00, we can thus determine from

the definition of the trace linear perturbation that

hµν = hµν −
1

2
hηµν =


−2Φ if µ = ν = 0

−2Φ if µ = ν 6= 0

0 otherwise.

(5.29)

We can therefore write the approximate metric for a non-rotating spherical body

(the approximate Schwarzschild metric), by making note of the definition of the

metric gµν from equation (5.10), as

ds2 = − (1 + 2Φ) dt2 + (1− 2Φ)
(
dx2 + dy2 + dz2

)
(5.30)

Now let us consider the rotational effects on the metric. These are the contribu-

tions from the non-diagonal terms. The trace linear perturbation for this case is
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simply hi0 = hi0 as the Minkowski metric is diagonal. If we define the gravitomag-

netic vector potential (which is essentially the time-space part of the metric),

A =
G

c

J× x

r3
(5.31)

where r = |x| then we immediately see, using the anti-symmetric property of the

cross product, that equation (5.27b) becomes

hi0 = h0i = −2

c
A (5.32)

once we have lowered the time index which causes a change in sign due to our

metric signature. In fact, hi0 = gi0 due to the Minkowski metric again being

diagonal. All we need to do is compute the dot product of this with (dx dt) and

we find our non-diagonal metric terms. Although in general dxµ⊗dxν 6= dxν⊗dxµ,

in this case it is true for obvious reasons. Inserting this rotational component in

the non-rotating metric with all factors of c restored we obtain

ds2 = −c2
(

1 +
2Φ

c2

)
dt2 − 4

c
(A · dx) dt+

(
1− 2Φ

c2

)
δijdx

idxj (5.33)

The split of the metric into a time-time scalar, a time-space vector and a space-

space vector (which has negligible order) is the relativity analogue of the decompo-

sition of an electromagnetic four-vector potential into an electric scalar potential

and a magnetic vector potential. If we hadn’t defined this gravitomagnetic po-

tential, using equation (5.27b) it is possible to derive the Lense-Thirring metric

straight away. We derive the Lense-Thirring metric in Sec. 5.3. The reason we

omit this for now is because in most articles on GEM they do not explicitly solve

the linearised field equations. They write down the retarded time solution and

define the potentials (hence they would not derive the spin terms), afterwards

simply writing down the linearised metric for a slowly rotating body. Although

we could have gone immediately from our cross term definitions to the metric, it

therefore makes more sense to start from the metric and work backwards.
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Using the Lorentz gauge condition we find that when we substitute in our metric

values we shall obtain

0 = h
µν

,ν = h
00

,0 + h
0j

,j

=
∂

∂t

(
4Φ

c2

)
+

∂

∂xj

(
2Aj

c

)
=

1

c

∂Φ

∂t
+

1

2
∇ ·A (5.34)

In the same manner as we would in electromagnetism, we define the time inde-

pendent GEM fields by the equations

g = −∇Φ, H = ∇×A (5.35)

The reader should note that in some papers the letter B is used instead of H.

We use H in following with [15] and also to emphasise the difference between the

gravitomagnetic field and the magnetic field. The letter g is used instead of the

electromagnetic equivalent E once again to emphasise the difference, but mainly

because g is simply the Newtonian gravitational force.

For the time-time component of the linearised field equations (5.9), using the

definition of g, h00 = −4Φ and T00 = ρ, we find

∇2h00 = −16πρ⇔ ∇2Φ = 4πρ

⇔ ∇ · g = −4πρ (5.36)

The time-space components imply

∇2h0i = −16πT0i ⇔ ∇2Ai = −16πji

⇔ ∇×
(

1

2
H

)
= −4πj (5.37)

where we have used identity (C.6) in the last line. j is the current-mass density

defined as j = ρv. The final two Maxwell-like equations arise directly from taking
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the dot and cross products of H and g respectively. We thus arrive at the time-

independent, first order GEM field equations (with constant factors restored):

∇× g = 0 (5.38a)

∇ ·
(

1

2
H

)
= 0 (5.38b)

∇ · g = −4πGρ (5.38c)

∇×
(

1

2
H

)
= −4πG

c
j (5.38d)

These equations are consistent with [16] removing the time dependence. There

are a few important differences between our GEM field equations and the Maxwell

equations. The presence of the factor 1/2 is once again due to the spin-2 field. The

obvious presence of the minus symbols simply indicate that gravity is attractive,

rather than repulsive. If the equations weren’t limited to first order (and also not

time independent), equation (5.38a) would have −(1/c)(∂H/∂t) on the right hand

side.

Using very similar methods, one can find the time-dependent Maxwell-like field

equations [16, 17]. We are not interested in these as all of our work assumes no

time dependence.

To complete our GEM theory we must have some kind of equation that is the

Lorentz force equivalent in electromagnetism. We compute this by starting with

the geodesic equation. Non-relativistic motion implies that dx0/ds ' 1 and so

the velocity of the particle is vi/c ' dxi/ds. We shall ignore terms of order c−2

and apply the time independence condition. Once we have calculated the relevant

Christoffel symbols we can produce an equation that turns out to be the same as

the electromagnetic Lorentz force, except for replacing q with m [17] (the proof of

which has been omitted).

F = mg +mv ×H (5.39)

A similar method is used in [16], except a Lagrangian is used to produce a slightly

modified Lorentz force equation. A gravitational version of Larmor’s theorem [18]

is then used to calculate the Lense-Thirring precession.

Before we proceed, we can note some properties about these GEM fields. In elec-

tromagnetism the electric field is a monopole radial field, and the magnetic field

is a dipolar field. In the analogy we have been using, we therefore find that the
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gravitoelectric field is a monopole (inwards) radial field and the gravitomagnetic

field is a dipolar field. We can also infer that rotating gravitoelectric fields induce

gravitomagnetic fields that have a strength proportional to the angular momen-

tum.

5.2 Lense-Thirring Precession

We now consider once again the Lense-Thirring precession, but now from a more

general viewpoint considering the mathematics in this chapter. To understand the

mathematics in this section, we must briefly re-visit electromagnetism. The Lense-

Thirring precessions is the most commonly known gravitomagnetic effect, and lots

of research has been done on it. For a gyroscope it is what’s known as spin-spin

coupling since both the gyroscope and the object it is orbiting are rotating. The

precession in GEM is the analogue of the precession of the angular momentum of

a charged test particle orbiting around some magnetic dipole in electromagnetism.

In electromagnetism, the magnetic field applies a torque on the magnetic dipole

moment in the situation as described above. This torque is given by Γ = µ×B and

causes the angular momentum of the particle to precess. The precession amount

is given by the Larmor frequency ω = −γB where µ = γJ. The GEM equivalent

of this is given by µ→ S/2c (because µ = 1
2

∫
x× jd3x whereas S = c

∫
x× jd3x

where T i0 = cji) and B→ H. Hence the torque on the angular momentum of the

gyroscope, S, is

τ =
1

2c
S×H (5.40)

Torque is defined as the first derivative of angular momentum with respect to time.

Hence

dS

dt
=

S

2c
×H

= ΩLT × S (5.41)

where we have defined the precession ΩLT = −H/2c. All that we need to do is

calculate the gravitomagnetic field. Noting our definition of H in equation (5.35),
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we find that

H = ∇×A = −G
c
∇×

(
J× x

r3

)
= −G

c

[
J
(
∇ · x

r3

)
− (J · ∇)

x

r3

]
(5.42)

and by using some simple vector analysis we obtain

∇ · x

r3
=

∂

∂xi

(
xi

r3

)
=

3

r3
− 3

2

2xixi

r5
= 0 (5.43)[

(J · ∇)
x

r3

]
i

= J j
∂

∂xi

(
xj

r3

)
= J j

(
δij
r3
− 3

2

2xixj

r5

)
=
J i

r3
− 3 (J · x)xi

r5

⇒ (J · ∇)
x

r3
=

1

r3

(
− 3

r2
(J · x) x + J

)
(5.44)

Substituting these values into equation (5.42) gives us the equation describing the

magnetic field in electromagnetism. Due to the presence of the factor 1/2 in the

Maxwell-like equations (5.38), it makes sense to multiply our result by 2 to find the

GEM analogue of the magnetic field equation, the gravitomagnetic field equation.

Our gravitomagnetic field is therefore

H = −2G

r3c

(
3

r3
(J · x) x + J

)
(5.45)

Using our definition of ΩLT , we arrive at the conclusion that the Lense-Thirring

precession of the gyroscope obeys the equation

ΩLT =
G

r3c2

[
3 (J · x) x

r2
− J

]
(5.46)

The positive sign confirms our earlier statement that the precession is in the ro-

tational direction of the object.
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5.3 Lense-Thirring Metric

In Sec. 5.1 we derived the general metric of linearised gravity for a slowly rotating

body. This was

ds2 = −c2
(

1 +
2Φ

c2

)
dt2 − 4

c
(A · dx) dt+

(
1− 2Φ

c2

)
δijdx

idxj (5.47)

Clearly, when we set the angular momentum, J, to be equal to zero, we recover

the linearised gravity solution for the Schwarzschild metric.

First let us consider the cross term in the metric. In our discussion of the Lense-

Thirring precession in Chapter 4, we assumed the object to be rotating slowly,

and we oriented the axes in a manner such that the spin was about the z-axis,

or J = (0, 0, Jz) = Jzẑ. This means that we only need the ẑ component of

r × dr = x dy − y dx which we identified in Sec. 2.3.1 to be r2 sin2 (θ). So

substituting our definition of the gravitomagnetic potential, A, into the above

metric, the cross term becomes

(A · dx) dt =
G

c

(
J× x

r3
· dx

)
dt

=
G

cr3
(J · x× dx) dt

=
G

cr3
(Jzẑ · (x dy − y dx) ẑ) dt

=
G

cr

(
Jz sin2 (θ) dφ

)
dt (5.48)

Substituting (5.48) back into (5.47) we get

ds2 = −c2
(

1 +
2Φ

c2

)
dt2 − 4GJ

c3r2
sin2 (θ) (rdφ) (cdt) +

(
1− 2Φ

c2

)
δijdx

idxj

where we have dropped the z index from the angular momentum.

It has already been shown that the diagonal terms in the metric are simply the

linear approximation of the Schwarzschild metric. We can now see that the metric

here is the same as we had for the metric in Chapter 4. One could also derive

this metric from the Kerr metric by applying the weak field and non-relativistic

motion limits.
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5.4 Schiff Equation

The predictions of Gravity Probe B are based on the precession described by the

so called Schiff equation [19]. The Schiff equation was originally derived from the

equations of motion, but the analysis gets very complicated and lengthy. The

method we used to derive the Lense-Thirring precession is a lot more accessible.

Adding together the geodetic precession [12, 19] with the Lense-Thirring (5.46)

precession we obtain the Schiff equation

Ω =
3GM

2c2r3
(x× v) +

G

c2r3

(
3x

r2
(J · x)− J

)
(5.49)

Let us discuss the last term in the equation. We shall consider a gyroscope orbiting

the Earth in a polar orbit. It is obvious that the angular momentum of the Earth

only has a z-component, and we shall also orient the x-axis such that polar orbit

is in the xz-plane. The position of the satellite is thus

x = (r sin (θ) , 0, r cos (θ)) (5.50)

Substituting this into the second term in the Schiff equation leaves us with only

the z term (due to the single angular momentum component)

Ω =

(
0, 0,

GJ

c2r3
(
3 cos2 (θ)− 1

))
(5.51)

where we have used J = (0, 0, J). We take the average over one orbit giving us

Ωav =

∫ 2π

0
Ωdθ∫ 2π

0
dθ

=
GJ

c2r3

∫ 2π

0
3 cos2 (θ)− 1

2π

=
GJ

2c2r3
(5.52)

This is a very similar answer to the one we found earlier in equation (4.5). The

factor of 1/4 comes from the fact that in Chapter 4 we had the gyroscope falling

down the z-axis, whilst we now have a polar orbit hence there are latitude effects

to consider.

Using the values for the Earth of r = 7020.1 km (6378.1 km + 642 km) and

J = 2.661 · 1030 J s in equation (5.52) and multiplying by 365 days, we find the

average precession over one year to be 37.5 mas/year.
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Conclusion

In this project we have shown that instead of using the complicated equations of

motion to derive the precessions, we can simply use the analogies between electro-

magnetism and GEM. Approximate methods can also be used, as in Chapters 3

and 4, to obtain fairly accurate results. The project showed how linearised gravity

can be used to describe many situation, and though it was not discussed, we can

use the linearised metrics to discuss phenomenon such as light bending and gravi-

tational waves [13]. The theory of GEM is a controversial theory and is only true

in the weak field limit. For this reason, in much of the top level research, GEM is

not applicable. For this reason, GEM is not a very widely studied subject. The

simple act of working to lowest order vastly reduces the number of avenues that

we are able to proceed down.

The obvious next route to take on the precession of a gyroscope would be to

consider more general (elliptical) orbits and orbits around more general objects.

More complicated mathematics arise when we consider relativistically rotating and

charged black holes, but the effects are much more pronounced [20, 21]. Another

option would be to look at the orbital effects of frame-dragging. One can show

that there is an induced orbital precession of identical amount as the gyroscopic

precession. The frame-dragging causes the orbit to very slowly rotate with the

Earth. Some interesting phenomenon occur such as the perigee in an elliptical

equatorial orbit precesses a similar amount, except in the opposite direction to

the object’s rotation. Another effect in such an orbit is that the orbital speed

decreases if its in the same direction as the objects rotation, and increases in the

opposite direction, which is at first counter-intuitive.

35



Appendix A

Christoffel Symbols

The general equation for a metric is ds2 = gµνdx
µdxν .

A.1 Schwarszchild Metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 (θ) dφ2

)

gµν =


−
(
1− 2M

r

)
0 0 0

0
(
1− 2M

r

)−1
0 0

0 0 r2 0

0 0 0 r2 sin2(θ)

 (A.1)

Christoffel Symbols:

Γttr =

(
M

r2

)(
1− 2M

r

)−1
Γrtt =

(
M

r2

)(
1− 2M

r

)
Γrrr = −

(
M

r2

)(
1− 2M

r

)−1
Γrθθ = − (r − 2M)

Γrφφ = − (r − 2M) sin2 (θ) Γθrθ =
1

r

Γθφφ = −cos (θ) sin (θ) Γφrφ =
1

r

Γφθφ = cot (θ)
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A.2 Lense-Thirring Metric (Flat, Cartesian)

ds2 = −c2dt2 + dx2 + dy2 + dz2 − 4GJ

c3r2
(cdt)

(
xdy − ydx

r

)
+ O

(
J2
)

gµν =


−c2 4GJ

c2r3
y −4GJ

c2r3
x 0

4GJ
c2r3

y 1 0 0

−4GJ
c2r3

x 0 1 0

0 0 0 1

 (A.2)

Christoffel Symbols (to lowest order):

Γxty = Γxyt =
2GJ

c2r3
(A.3)

Γytx = Γyxt = −2GJ

c2r3
(A.4)
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Existence of the Lorentz Gauage

Considering a change in coordinates such that x′µ = xµ + ξµ where ξµ is small (in

the sense that
∣∣ξµ,ν∣∣� 1), we can relate the metrics of the two coordinate systems

via

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

=
∂

∂x′µ
(x′α − ξα)

∂

∂x′ν
(
x′β − ξβ

)
gαβ

=
(
δαµ − ξα,µ

) (
δβν − ξ

β
,ν

)
gαβ

= gµν − ξν,µ − ξµ,ν (B.1)

where we have removed the non-linear term in the final line. This is called our

gauge transformation. In linearised gravity when we transform hµν like this it

remains small provided that ξµ is small as was required.

We defined our Lorentz gauge as h
µν

,ν = 0. Suppose that in some coordinate

system h
′µν
,ν 6= 0. Using the above gauge transformation, we find that

h
′
µν = hµν − ξµ,ν − ξν,µ + ξηµν (B.2)

where ξ = ξµµ. Taking the derivative and raising the µ and ν indices by multiplying

through by ηµβηνγ gives us

h
′βγ
,α = h

βγ

,α − ξ
β,γ

α − ξ
γ,β

α + ξ,αη
βγ (B.3)
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Contracting over γ and α will give us

h
′βα
,α = h

βα

,α − ξ
β,α

α − ξ
α,β

α + ξ,αη
βγ

= h
βα

,α −�ξβ (B.4)

If we can choose �ξβ = h
βα

,α then the gauge exists. For any well behaved function

F we can always find a solution to F = �f [22]. Hence we can always find some

ξµ to transform our metric to the Lorentz gauge.

We can in fact take some vector ηµ that satisfies �ηµ = 0 and add this to ξµ and

the result will still hold. Hence, the Lorentz gauge is technically a class of gauges.



Appendix C

Other Equations

Geodesic Equation:
d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= 0 (C.1)

Gyroscope Equation:
dsα

dτ
+ Γαµνs

µuν = 0 (C.2)

sµ is the spin 4-vector, uµ is the velocity 4-vector.

Small Angle Formulae:

sin (θ) ' θ (C.3)

cos (θ) ' 1 (C.4)

Einstein Field Equations :

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν (C.5)

We have taken the cosmological constant, Λ, to be zero. In the case of using

geometrised units we simply omit the terms G and c from the equation.

Vector Triple Product :

A× (B×C) = B (A ·C)−C (A ·B) (C.6)

∇× (∇×A) = −∇2A (C.7)
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