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Abstract

The aim of this report is to show the flaws in methods such as simplest
counting when working with extreme values and therefore the need to use
the GEV distribution and the GPD. The data we have worked with consists
of hourly recordings of rainfall in tenths of millimetres over 63 from over 1000
sites across England and Wales. We have shown that hourly values have a
decrease in trend while the aggregated daily and 5 day totals have less trend
or no trend at all. These are shown, along with 100 year return levels, in
colour density plots.
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Chapter 1

Introduction

1.1 Motivation

Over the past few years there has been a growing need for an accurate way
to predict extreme weather. With Hurricane Katrina (2005) and Hurricane
Sandy (2012) devastating the east coast of America, together killing over
2,000 people and causing an estimated damage of over $140 billion; it is
clear that the current defences are inadequate. Extreme weather is not only
an international problem: in the UK, the 2007 summer floods damaged over
48,000 homes and nearly 7,000 businesses, while the winter period of 2013/14
was the wettest since records began. Although we can consider ourselves
lucky compared to our American neighbours, we are no better equipped to
deal with extreme weather. This is somewhat surprising since existing data
shows that the current flood defences are not enough to deal with storms
which would not even be considered extreme.

1.2 Example

Rainfall was recorded in Jesmond Dene over a 28-year period, where the
highest amount of rain in a single day per year was noted in Table 1.2.

Suppose Newcastle city council are interested in the probability that rain-
fall in a single day will exceed 35mm. The simplistic counting approach would
involve counting the number of exceedances and dividing that by the number
of observations:

Pr(rainfall exceeds 35mm) =
15

28
= 0.54
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415 280 565 520 455 280 325
265 530 480 182 432 372 216
384 672 472 268 250 276 432
420 234 332 550 460 300 292

Table 1.1: Annual maximum rainfall in tenths of mm in Jesmond Dean,
1984-2011.

But what if they require the probability that the rainfall exceeds 70mm?

Pr(rainfall exceeds 70mm) =
0

28
= 0

According to this method, there is no chance of more than 70mm of rain
in a single day. This is an unreasonable conclusion. Additionally, what if
they wanted to know how high to build flood defences to protect against a
flood they would expect to see once every 14 years? Since the data is annual,
an intuitive argument would be to find the value for which 1/14 ≈ 7% of
the data exceeds it. Here, we have 28 observations and 7% of these exceed
56.5mm. But what if they required the same information for a flood they
would expect to see once every 50 years? We would need the value for which
2% of the data is above, but with only 28 observations we need about half
on observation. So we do not have enough data to perform this calculation
using these simplistic counting methods. It is imperative that we be able to
estimate extremes that exceed those already observed; but we would require
a statistical model that can extrapolate beyond our range. For this, we need
to use extreme value theory.

1.3 The Extremal Types Theorem

The previous example shows daily rainfall totals with the annual maximum
recorded, so the number of observations (for non-leap years) is n=365. We
could use the notation M365,i, i = 1, ..., 28 to denote the 28 observations. A
more general approach to this is to suppose that X1, X2, ..., Xn are a sequence
of independent and identically distributed random variables with a common
distribution function F , then Mn = max{X1, X2, ..., Xn}. But what is the
distribution of Mn?

Pr(Mn ≤ z) = Pr(X1 ≤ z,X2 ≤ z, ..., Xn ≤ z)

= Pr(X1 ≤ z)× Pr(X2 ≤ z)× ...× Pr(Xn ≤ z)

= F n(z).
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But in practice, the distribution function F is unknown, so we have to look
asymptotically as n → ∞ and determine if there is a distribution function G
such that we can estimate Mn without referring to F . [Coles, 2001, p.45-46]

Taking the limit of the distribution Mn leads to a degeneracy as it con-
verges to a single point on the real line with probability 1. This is comparable
to the sample mean X̄ converging to the population mean µ by the Central
Limit Theorem. In that case the degeneracy is prevented by allowing a linear
rescaling, so that

X̄ − bn
an

D−−→ N(0, 1)

where bn = µ and an = σ/
√
n, where σ is the population standard deviation

and n is the sample size.
So applying the same method toMn, if there exists a sequence of constants

an > 0 and bn such that, as n → ∞

Pr

(
Mn − bn

an
≤ z

)
−→ G(z)

for some non-degenerate distribution G, then it can be shown that G is of
the same type as one of the following distributions:

I : G(z) = exp{− exp(−z)}, −∞ < z < ∞; (1.1)

II : G(z) =

{
0, z ≤ 0,

exp{−z−α}, z > 0, α > 0;
(1.2)

III : G(z) =

{
exp{−(−zα)}, z < 0, α > 0,

1, z ≥ 0.
(1.3)

The three distributions of the Extremal Types Theorem (I, II and III) are
known as the Gumbel, Fréchet and Weibull types respectively. These can all
model extreme data without the use of the parent distribution F , but how
do we know when to use each of these distributions? This is when they can
be combined to form the Generalised Extreme Value distribution. [Tippett,
1928]

1.4 The Generalised Extreme Value (GEV)

distribution

Working with three distributions is inconvenient, but there does exist a dis-
tribution which combines all three. This is referred to as the generalised ex-
treme distribution (GEV) and this was derived independently by Von Mises
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[1954] and Jenkinson [1955] and has the cumulative distribution function

G(z;µ, σ, ξ) = exp
{
−
[
1 + ξ

(z − µ

σ

)]−1/ξ}
. (1.4)

However, ξ = 0 is not defined in Equation (1.4), so it is taken as the limit as
ξ → 0, given by

G(z;µ, σ) = exp
{
− exp

(z − µ

σ

)}
. (1.5)

Here µ(−∞ < µ < ∞) is the location parameter, σ(> 0) is the scale pa-
rameter and ξ(−∞ < ξ < ∞) is the shape parameter. Different values of ξ
determine which of the three extreme value distributions will be used. ξ = 0
corresponds to Equation (1.1), ξ > 0 corresponds to Equation (1.2) and ξ < 0
corresponds to Equation (1.3). [Coles, 2001, p. 47-48] Now we can get the
probability density function of the GEV if we differentiate Equation (1.4).
This is given by

g(z;µ, σ, ξ) =
1

σ

[
1 + ξ

(z − µ

σ

)]−1/ξ+1

exp
{
−
[
1 + ξ

(z − µ

σ

)]−1/ξ}
. (1.6)

Now if we wanted to calculate the r-year return level, we have to calculate
Pr(annual maximum > zr) = 1/r, i.e.

1− Pr(annual maximum ≤ zr) = 1−G(ẑr; µ̂, σ̂, ξ̂) = 1/r (1.7)

which gives

exp
{
−
[
1 + ξ̂

( ẑr − µ̂

σ̂

)]−1/ξ̂}
= 1− 1/r. (1.8)

Solving Equation (1.8) for ẑr gives the r-year return level as

ẑr = µ̂+
σ̂

ξ̂

{
[−log(1− r−1)]−ξ̂ − 1

}
. (1.9)

Now we need to find the values for µ̂, σ̂ and ξ̂. To do this, we use the method
of maximum likelihood estimation and this can be implemented using the R
package ismev.

So if we revisit the example from Section 1.2, we can easily obtain these
estimates from the following output:

> library(ismev)

> jesmond=c(415 ,280 ,565 ,520 ,455 ,280 ,325 ,246 ,530 ,480 ,182 ,

+ 432 ,372 ,216 ,384 ,672 ,472 ,268 ,250 ,276 ,432 ,420 ,

+ 234 ,332 ,550 ,460 ,300 ,292)

> gev.fit(jesmond)

$conv
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[1] 0

$nllh

[1] 173.3856

$mle

[1] 328.0209356 106.7688494 -0.1141183

$se

[1] 23.8781901 18.0003544 0.1899403

Looking at this output, $cov=0 tell us that convergence has occured while$nllh=173.3856
gives us an estimate for the log—likelihood. $mle tells us that µ̂ = 328.02,
σ̂ = 106.77 and ξ̂ = −0.1141183 and we are also given their standard errors.
Putting these values back into Equation (1.9) we find that the 14-year return
level z14 = 56.8mm and the 50-year return level z50 = 66.4mm. Also, using
Equation (1.7) we can now calculate that Pr(rainfall exceeds 35mm) =
0.556 and Pr(rainfall exceeds 70mm) = 0.012 i.e. once every 1.7 years and
once every 85 years respectively.

The r-year return levels can also be calculated in R using the package
extRemes and can even return a plot with confidence regions. The years in
question are arbitrary but we have selected 14, 50, 100 and 1000 for this
example. The output is as follows:

> library(extRemes)

> return.level(x,rperiods=c(14 ,50 ,100 ,1000))

$conf.level

[1] 0.05

$return.level

[1] 568.4022 664.2344 710.1394 838.2564

$return.period

[1] 14 50 100 1000

$confidence.delta

lower upper

[1,] 476.6302 660.1743

[2,] 489.2706 839.1983

[3,] 475.1873 945.0916

[4,] 362.0964 1314.4165
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Figure 1.1: Return levels for Jesmond Dene.

As you can see from Figure 1.1, the R command uses the existing data you
have to estimate r-year return level. It is important to point out that this
does not show what we expect to happen once every r years, rather the
probability of this occuring in the next year is 1/r.
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Chapter 2

UK rainfall data

2.1 Overview

The data we will be working with consists of 1281 sites from across 7 regions
divided into 19 sub-regions of England and Wales:

• Anglian: Anglian Central(AC),Anglian Eastern(AC) and Anglain North-
ern(AN);

• Midlands: Midlands Central (MC), Midlands East(ME) and Midlands
West(MW);

• North-East: North-East North-East(NENE) and North-East Yorkshire
(NEY);

• North-West: North-West-North (NWN) and North-West-South(NWS);

• South-East: South-East Kes (SEK), South-East Net(SEN), South-East
Ssd(SES) and South-East WT(SEW);

• South-West: South-West D&G(SWD) and South-West Wessex(SWW);

• Wales: Wales Northern(WN), Wales South-East(WSE) andWales South-
West (WSW).

Each of these have hourly rainfall measured in tenths of millimeters. For
consistency all sites begin at midnight on 1st January 1949 and run through
till midnight on 31st December 2011 so there is a total of 63 years of data.
However, most sites don’t actually have complete recordings–they begin later
and finish earlier-as shown in Figure 2.1.

9



Figure 2.1: Hourly rainfall for Arnfield Reservoir.

This particular site is Arnfield Reservoir and as you can see the data
starts around 1990 and runs through till 2011. You will also notice that
when the data is not recorded the missing value is denoted −10, but this
is only to aid the understanding of Figure 2.1, in the actual data they are
denoted −999. This is fine when working with hourly values, but becomes
problematic when we sum over 24 values to make daily totals. This issue
is that if a day has large values in it but also missing values, then the day
may not be recorded as the maxima even though it may be. This problem
will be addressed further in Section 2.2. The data is sorted into regions and
sub-regions to make analysis easier so for the majority of the work we will
be focusing on the North-West-South sub region.

2.2 GEV fit to annual maxima of daily totals

To begin the analysis of annual maxima of daily totals we must first prepare
the data to fit the model. This will first start with summing over 24 values
and determining the appropriate method to deal with missing data, then
finding the max value per year-which will also involve building a model to
incorporate leap years. We must also decide the cut off point for when a year
has too many missing values to be considered valid. This is just arbitrary so
we will decide that if a year is missing 1/6 of its values then it is not valid
and hope that the data is robust.

So first, we will set up a function to deal with leap years. The following
code will set up vector with each value the first day of each year and the final
value is the last day of the data:

> leap=c(rep(c(365 ,365 ,366 ,365) ,15) ,365 ,365 ,364)

> func=function(x){

+ y=vector ()

+ y[1]=1

+ for(i in 1: length(x)){
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+ y[i+1]=y[i]+x[i]

+ }

+ return(y)

+ }

> leaps=func(leap)

> leaps

[1] 1 366 731 1097 1462 1827 2192 2558 2923

[10] 3288 3653 4019 4384 4749 5114 5480 5845 6210

[19] 6575 6941 7306 7671 8036 8402 8767 9132 9497

[28] 9863 10228 10593 10958 11324 11689 12054 12419 12785

[37] 13150 13515 13880 14246 14611 14976 15341 15707 16072

[46] 16437 16802 17168 17533 17898 18263 18629 18994 19359

[55] 19724 20090 20455 20820 21185 21551 21916 22281 22646

[64] 23010

Next we will find the number of missing values are in each year and
remove any years that we deem void, this is done with a function that sums
up the number of values denoted by -999 and removes the year if there is
more than 1460 (1/6 of 8760). If the site passes this test then we will classify
the remaining missing values as 0. This choice is again arbitrary as we don’t
know the cause of the missing value (it could be human error, damage due
to extreme weather etc.). We have also decided that if a site has less that
5 years of valid data, then it will be void. If all of these are complied with,
then we shall fit the GEV. The code to calculate this is quite lengthy so
will not be placed here. Figure 2.2 shows the diagnostic plots of GEV fitted
to Arnfield Reservoir’s annual maxima. We have achieved convergence and
considering we only have 17 data points in the particular site, the quantile
plot shows that the data fits reasonably well to a straight line suggesting a
reasonable fit.
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Figure 2.2: Diagnostic plots indicating the goodness-of-fit of the GEV to
Arnfield Reservior rainfall.

2.3 GEV with trend

In the previous sections we have assumed that there is no time dependence
in this data. Considering there are up to 63 years worth of data it is pretty
naive of us to not consider it. The procedure to check if time has an influence
is pretty straightforward once we have the previous code. We will now create
a vector with standardised years from 1949 to 2011 and input that into the
GEV model when fitting the data. This will now give us slope and intercept
parameters instead of a location parameter. Applying this method to a whole
sub-region and looking at the slope parameter will help us determine whether
of not the sub-region is changing over time. For this i will use North-West-
South and show my findings in a histogram along with the 95% confidence
interval for the slope:

12



Figure 2.3: Histogram of slope parameters from North-West-South.

> c(mean(matout [ ,3]) -1.96*sd(matout [,3])/length(matout [,3]),

+ mean(matout [ ,3])+1.96*sd(matout [,3])/length(matout [,3]))

[1] 9.291649 11.367545

So the North-West-South region has an average slope of 10.33 (9.29,11.37)
so it is clear from both the confidence interval and Figure 2.3 that this partic-
ular region has a positive slope on average which suggests that the extreme
weather is increasing over time. This theory will be further examined in
Secion 3.4. The final code for this section is in Appendix A
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Chapter 3

Generalised Pareto
Distribution

3.1 GPD derivation

When working with extreme values we have to determine what we consider
extreme. A simple way of determining this is to set a threshold and all values
greater than this value can be considered, but to determine this threshold
efficiently we must consider the asymptotic theory that would be appropiate
for this problem.

Recall Sections 1.3 and 1.4 where we showed that Pr
(
Mn ≤ z

)
≈ G(z),

where G(z) is defined in Equation (1.4). For a large enough threshold u, the
distribution function of (X-u) conditional on X > u, is approximately

H(y) = 1−
(
1 +

ξy

σ̄

)−1/ξ

, (3.1)

defined on y > 0, where
σ̃ = σ + ξ(u− µ). (3.2)

However, just like with Equation (1.4), this is not defined when ξ = 0 so we
take the limit ξ → 0, giving

H(y) = 1− exp
(
− y

σ̃

)
, y > 0; (3.3)

i.e. an exponential distribution with rate 1/σ̃ Any distribution that is definded
by Equation 3.1 is a member of the Generalised Pareto family and the distrib-
tion itself is known as the Generalised Pareto Distribution (GPD). Picklands
[1975]
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3.2 Threshold selection

We know from the threshold stability property Coles [2001] of the GPD that
if a chosen threshold allows for the GPD to be a valid model then it is also
valid for all values above the threshold. The expected value of our threshold
is given by

E[X − u|X > u] =
σu0 + ξu

1− ξ
,

where u0 is some threshold and σu0 is the GPD scale parameter for excess
over the threshold u0. This is better described using the mean residual life
(MRL) plot citetcoles01, where a plot is produced modelling the data above
each potential threshold and the aim is to find where the data is most stable.

Here we will use Arnfield Reserviour once again as an example and I will
use the MRL plot to determine the best threshold. Again the R package
ismev provides handy code for this and also lets us determine a confidence
interval:

mrl.plot(ar,umin=0,conf =.95)

We have decided to use the 95% confidence interval as is the norm and
since there are missing values in the data (denoted -999) we have set the
minimum to be zero as we don’t want a negative threshold. The rough idea
is to determine the left most point of the Figure such that a straight line can
be drawn out to the end of the data without crossing the confidence intervals.
For Figure 3.1 we have already drawn the line on to show what we beleive is
the best threshold. [Coles, 2001, p. 78-80]

Figure 3.1: Mean residual life plot of Arnfield Reservior.
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Looking at Figure 3.1 we have determined that the optimal threshold is
35 (3.5mm), but also it is important to note that the right hand side of the
plot is unreliable, the data is limited so the variability is very high. when it
is clearly visible that the variability is high we can disregard the data. We
can repeat this method for several sites in the region to determine a constant
threshold for this sub region:

Figure 3.2: MRL plots from first 6 sites in North-West-South.

Obviously this method is time comsuming and there is no method to
efficiently and effectively determine a threshold so for the purposes of this
project we will consider two different thresholds for each site which we fix at
the 95th and 99th percentile of each site.

3.3 Fitting the GPD

To fit the GPD we will once again find the maximum likelihood estimates
for the parameters. We can do this by again using R package ismev but with
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the threshold being decided by a percentile of the data, we must remove the
initial and final sections of the data where no recording takes place. The
method of doing this and the output are given below:

> ar=read.table (" Arnfield_Reservoir_LOG.txt ")[ ,7]

> start=which(ar!= -999)[1] #find where data starts beings recorded

> missing=which(ar!= -999) #locate all missing value

> finish=missing[length(missing )] #find when data ends

> ar1=(ar[start:finish ])

> threshold=quantile(ar1 ,.95)

> fit=gpd.fit(ar1 ,threshold)

$threshold

95%

8

$nexc

[1] 7597

$conv

[1] 0

$nllh

[1] 26173.71

$mle

[1] 10.95005532 0.05183838

$se

[1] 0.165932584 0.009914643

So for this particular site we have σ̂ = 10.950 and ξ̂ = 0.052. Once again
we can test the model adequacy:

gpd.diag(fit)

Figure 3.3 indicates that the threshold exceedences have a reasonable fit to
the GPD, but as with the GEV we need to determine whether or not there
is a time dependence in the data. This will involve adding a time vector to
the fit but as this distribution has no locaton parameter, we will add it to
the scale parameter.
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Figure 3.3: Diagnostic plots indicating goodness of fit of the GPD to Arnfield
Reservior

3.4 GPD with trend

This part is very similar to that of Section 2.3 where we will have an intercept
and slope parameter and leave the shape parameter alone. The difference will
be that instead of using standardised years we will make each time increment
1/8766 (8766 being the average number of hours in a year) and run this from
the beginning before we cut the useless parts of the data away. Applying this
method to the whole sub-region for thresholds at the 95% and 99% levels we
can determine whether they have a time dependence.

> ci95

[1] 0.03683099 0.04134837

> ci99

[1] 0.06727490 0.07924716

So again, with the 95th percentile confidence interval at (0.037,0.041) and the
99th percentile confidence interval at (0.067,0.079), along with Figure 3.4, we
can see that this particular region shows an increase in the amount of extreme
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Figure 3.4: Histogram of slope parameters from North-West-South with
threshold at 95% (left) and 99% (right)

rainfall over time. However, with GPD and thresholds, it is important to
check extreme dependence.

3.5 Dependence in extreme values

When values exceed the threshold, the chances are that they will exceed
several times in quick succession because there happens to be a storm. This
raises the issue of the observations no longer being independent of each other
as they were deemed to be in Section 1.4 and therefore their standard errors
will be inaccurate. There are three commonly used methods to deal with
these issues:

1. Fit all exceedences with GPD and ignore the dependence but adjust
the standard errors accordingly.

2. Model the dependence in the process.

3. Filter the exceedences to achieve approximate independence.

We shall focus on the third approach, which is the most commonly used,
referred to as declustering. This involves picking a declustering parameter
κ for which a storm is deemed to have ended if there are κ consecutive
values below the threshold after the threshold has been exceeded and then
we record the maximum value from that storm. This works as it is regarded
that exceedences from different storms are independent of each other. The
aim in choosing κ is to make sure it is large enough so that we can assume
independence but small enough so that there are sufficient cluster exceedences
to form the inference (the Goldilocks principle).
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The value of κ is often chosen arbitrarily based on inferences from the
data so we have κ = 10 for hourly data (i.e. one storm is considered to have
ended and another has began if there are 10 consecutive points below the
threshold). The R code for this has been taken from Fawcett [2013, p. 66]
and is given below:

cluster10values=function(dataset ,threshold ){

x=list()

z=list()

j=1

{

for(i in (11): length(dataset )){

if(dataset[i-10]> threshold

& dataset[i-9]<= threshold & dataset[i-8]<= threshold

& dataset[i-7]<= threshold & dataset[i-6]<= threshold

& dataset[i-5]<= threshold & dataset[i-4]<= threshold

& dataset[i-3]<= threshold & dataset[i-2]<= threshold

& dataset[i-1]<= threshold

& dataset[i]<= threshold ){

x=max(dataset[j:i])

ifelse(i != length(dataset), j<-i+1, NA)

z=c(z,x)}}}

return(z)}

Figure 3.5: Diagnostic plots indicating goodness of fit of the GPD to Arnfield
Reservior with declustering)
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Of course this code isn’t very efficient, but for the purposes of what we want
to do it is sufficient and can be easily edited if we wish to change the value
of κ. Now if we combine this with our previous code we can we can check
the goodness of fit and compare it to our previous code. Looking at this
Q-Q-plot, the data appears to fit worse to the line in Figure 3.5 than it does
in Figure 3.3 which is not what we expected to see. The fit should have
improved. This could be accounted to the lack of data after declustering.

3.6 Dependence in extreme values with trend

Now we must combine the previous methods from Sections 3.4 and 3.5 to
find if there is a trend in the data now that it has been declustered. All this
requires is for us to decluster the associated times of the data and fit the
these to the GPD. Again we shall check if there is a trend using a confidence
interval and histogram. With the confidence intervals at (0.05,0.11) and
(0.03,0.16) along with Figure 3.6 it is clear that there is a positive trend in
the data suggesting that when extreme rainfall occurs, it is likely to be more
extreme than in previous years. The final code is located in Appendix B

> ci95

[1] 0.04981116 0.11165395

> ci99

[1] 0.02974833 0.15978580

Figure 3.6: Histogram of slope parameters from North-West-South with
threshold at 95% (left) and 99% (right) with declustered data
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Chapter 4

Full Data Analysis

4.1 Hourly Data

Now we shall run the final function from Section 3.6 for the entire data and
determine how rainfall have behaved across the country for the 63 years. The
means and confidence intervals are given below:

Hourly 95% threshold Hourly 99% threshold

Mean Mean

AC(a) -0.141 ( -0.234 , -0.047) -0.230 ( -0.401 , -0.058)

AE(b) 0.011 (-0.074, 0.095) 0.029 (-0.061, 0.119)

AN(c) -0.159 ( -0.259 , -0.060) -0.292 ( -0.460 , -0.124)

MC(d) -0.201 ( -0.330 , -0.072) -0.050 (-0.165, 0.064)

ME(e) -0.012 (-0.196, 0.171) 0.032 (-0.182, 0.247)

MW(f) -0.290 ( -0.457 , -0.122) -0.249 (-0.511, 0.013)

NENE(g) -0.018 (-0.168, 0.133) 0.060 ( 0.120 , 0.240)

NEY(h) -0.110 (-0.278, 0.058) -0.263 (-0.611, 0.084)

NWN(i) 0.117 ( 0.077 , 0.158) 0.100 ( 0.042 , 0.159)

NWS(j) 0.081 ( 0.050 , 0.112) 0.095 ( 0.030 , 0.160)

SEK(k) 0.018 (-0.042, 0.079) 0.002 (-0.079, 0.083)

SEN(l) -0.071 ( -0.119 , -0.022) 0.003 (-0.065, 0.070)

SES(m) 0.011 (-0.164, 0.186) 0.049 (-0.185, 0.283)

SEW(n) -0.104 ( -0.194 , -0.013) -0.007 (-0.083, 0.069)

SWD(o) -0.657 ( -0.852 , -0.462) -0.506 ( -0.745 , -0.267)

SWW(p) -0.381 ( -0.594 , -0.169) -0.075 (-0.283, 0.133)

WN(q) -0.268 ( -0.449 , -0.087) -0.253 (-0.515, 0.009)

WSE(r) -0.397 ( -0.644 , -0.150) -0.389 (-0.807, 0.029)

WSW(s) -0.239 (-0.639, 0.160) -0.162 (-0.939, 0.615)

It is clear that using the North-West region has been somewhat misleading
in the results we expected to what have actually been found. While the
North-West suggests there has been a positive trend in the data, the rest of
the country suggests that there is in fact no trend or a negative one.
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Figure 4.1: Colour density plots of Hourly values at 95% threshold (left) and
99% threshold (right)

Figure 4.2: 100 year return levels of Hourly values at 95% threshold (left)
and 99% threshold (right)

Figure 4.1 shows the mean slope of the sub-region in a colour density plot,
however the software available isn’t advanced enough for a high resolution
image, but it still shows to an extent what is happening. As you can see the
south west of the uk has had the most change in rainfall over the years while
Wales and the east coast also have a slight negative slope. We can also form a
return level plot for these two thresholds and this is given in Figure 4.2. This
shows the 100 year return levels from 2011. So in 2011 we would expected to
see weather this extreme with probability 1/100. Looking at these plots it
appears that the weather gets more extreme as we move from the west coast
to the east coast and the least extreme weather is in the south-west. This
fits in with Figure 4.1 as the south west is suggested to have have a decrease
in extreme weather. We will now investigate what happens if we increase the
the length of time for each recording.
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4.2 Daily data

Now that we have evidence to suggest that the amount of extreme weather we
expect to see ever hour changes over time, we want to investigate whether
this change applies over a longer observation time. We will check this by
summing over 24 hour periods and applying the GPD with time. this raises
the problem of missing values. This wasn’t a problem before because the
threshold removed missing values as they were all denoted −999, but if a 24
hour period has a missing value it will surely be dragged below the threshold
and excluded even if it has extreme values in it. We will therefore set a limit
of how many values we will allow to be missing then set them all the 0 and
scale by 24/(number of missing values). The number of missing values is
again arbitrary so we have chosen 4 and the R code for this is given below:

data2=data1[data1 [,1]>-999*4,]

# removes all data with more that 4 missing values

for(i in 1: length(data2 [ ,1])){

if(data2[i,1] >( -999)& data2[i,1] <0) data2[i,1]=

(( data2[i ,1]+999)*(24/23))

} #adds on 999 and scales by 24/23

for(i in 1: length(data2 [ ,1])){

if(data2[i,1] >=(2* -999)& data2[i,1] <( -999)) data2[i,1]=

(( data2[i ,1]+2*999)*(24/22))

} #adds on 2*999 and scales by 24/22

for(i in 1: length(data2 [ ,1])){

if(data2[i,1] >=(3* -999)& data2[i,1] <(2* -999)) data2[i,1]=

(( data2[i ,1]+3*999)*(24/21))

} #adds on 3*999 and scales by 24/21

for(i in 1: length(data2 [ ,1])){

if(data2[i,1] >=(4* -999)& data2[i,1] <(3* -999)) data2[i,1]=

(data2[i ,1]+4*999)*(24/20)

} #adds on 4*999 and scales by 24/20

Now we will again find the confidence intervals when the threshold is at 95%
and 99% along with a colour density plot. However this time we experianced
a few problems, namely convergence and scale. When summing over 24
hours we will therefore have less data to work with and fewer still when
the threshold is set. This can lead to a lack of data in some sites and the
GPD wont converge. Since the function is built in to the ismev package we
are unable to change the starting values to help achieve convergence so at
this stage we must remove these sites to stop them distorting our confidence
intervals. Also, with the colour density plots, we can no longer use the same
scale for both graphs as there is a set colour chart and with larger values
the spread of the slope means is greater leading to different values being
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shown with different colours. This is shown in Figure 4.3 and the means and
confidence intervals are given below:

Daily 95% threshold Daily 99% threshold

Mean Mean

AC(a) -0.461 ( -1.164 , 0.242) 0.674 ( -2.697 , 4.045)

AE(b) -0.386 ( -0.833 , 0.062) -1.921 ( -3.361 ,-0.480)

AN(c) 0.012 ( -3.897 , 3.921) -1.013 ( -2.951 , 0.924)

MC(d) 0.339 ( -0.003 , 0.681) -1.882 ( -5.060 , 1.295)

ME(e) -0.846 ( -1.989 , 0.297) -0.541 ( -2.360 , 1.277)

MW(f) -0.961 ( -2.792 , 0.869) -0.185 ( -1.681 , 1.311)

NENE(g) 0.110 ( -1.417 , 1.636) 0.975 ( -2.807 , 4.756)

NEY(h) -2.574 ( -4.282 ,-0.866) 1.411 ( -2.497 , 5.319)

NWN(i) 1.107 ( 0.660 , 1.554) 0.621 ( -0.880 , 2.122)

NWS(j) 0.769 ( 0.477 , 1.060) 0.850 ( -0.711 , 2.411)

SEK(k) 0.372 ( -0.125 , 0.869) -0.286 ( -1.514 , 0.941)

SEN(l) -0.397 ( -0.664 ,-0.131) -1.068 ( -1.872 ,-0.264)

SES(m) 0.848 ( -1.020 , 2.715) 1.032 ( -0.967 , 3.032)

SEW(n) 0.203 ( -0.118 , 0.524) 0.883 ( 0.191 , 1.575)

SWD(o) 0.893 ( -0.960 , 2.747) 6.764 ( 1.518 , 12.010)

SWW(p) -6.827 ( -17.746 , 4.093) -4.600 (-12.354, 3.154)

WN(q) -1.667 ( -7.870 , 4.535) 9.568 (-17.019, 36.156)

WSE(r) -3.312 ( -6.190 ,-0.435) -5.502 ( -12.791, 1.787)

WSW(s) -4.832 ( -19.458 , 9.793) -1.972 (-18.670, 14.726)

Figure 4.3: Colour density plots of Daily values at 95% threshold (left) and
99% threshold (right)

As you can see from Figure 4.3, the scales are very different and so could
not be shown on the same scale effectively. Looking at what this figure
actually tells us, at daily totals the data is showing more negative slopes on
average but looking at the table, most confidence intervals contain zero so
we cannot say with any confidence that the slope is changing over time. You
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may have also noticed that the software to create these colour density plots
isnt performing as well as we would have liked, with some of the colours not
matching up to what the data tell us it should be (e.g. Wales Northen should
be around 9 on the right plot but is shown to be nearer −0.5). Again this
is just down to the lack of advancement in the software. It is interesting to
see that the trend appears to be disappearing as the time interval increases.
This suggests that although the level of extremes seems to be decreasing at
the hourly level, we are not detecting this trend at the daily level. We shall
investigate one more time interval later to see if the pattern continues.

Now we shall check the 100 year return plot for these daily totals. This
is given in Figure 4.4. It is surprising to discover that now the east coast
appears to have the least extreme weather while the west coast has the most
extreme. So the east is expected to have the return of rain per hour but the
least per day and the opposite for the west.

Figure 4.4: 100 year return level plots of Daily values at 95% threshold (left)
and 99% threshold (right)

4.3 Aggregating over 5 days

The final time interval we have chosen to investigate is 5 days. This will be
120 hours of values so summing over this many values will potentially give
us a large number of missing values so we have decided to discard any with
more than 20 values missing (as this is 1/6 and that appears to be the magic
number) and as before we will scale the values to show what we would have
expected the totals to be. Once again the convergence is an issue so we will
remove any that fail.
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5 Days 95% threshold 5 Days 99% threshold

Mean Mean

AC(a) -0.518 ( -3.476 , 2.440 ) -10.548 (-28.674, 7.578)

AE(b) -3.578 ( -5.974 ,-1.181 ) -4.999 (-11.611, 1.614)

AN(c) -0.032 ( -1.791 , 1.728 ) -1.400 ( -5.511 , 2.711)

MC(d) 0.027 ( -2.169 , 2.223 ) 0.383 ( -2.096 , 2.862)

ME(e) -0.872 ( -4.616 , 2.872 ) -4.665 (-32.053, 22.722)

MW(f) -0.007 ( -4.051 , 4.038 ) -13.977 (-33.373, 5.419)

NENE(g) -0.007 ( -7.707 , 7.693 ) 5.079 ( -3.608 , 13.766)

NEY(h) -3.523 ( -8.713 , 1.667 ) -0.839 ( -19.418, 17.740)

NWN(i) 3.531 ( 1.301 , 5.761 ) -8.763 ( -43.753, 26.228)

NWS(j) 5.907 ( 0.227 , 11.587) 7.991 ( -0.918 , 16.900)

SEK(k) -1.410 ( -4.362 , 1.542 ) -4.948 ( -11.313, 1.417)

SEN(l) -1.756 ( -2.871 ,-0.642 ) 1.689 ( -6.018 , 9.396)

SES(m) 1.874 ( -0.593 , 4.340 ) 2.583 ( -4.530 , 9.695)

SEW(n) 2.227 ( -1.064 , 5.517 ) 9.359 ( 0.655 , 18.062)

SWD(o) -4.585 ( -11.287 , 2.117 ) -1.052 ( -11.553, 9.449)

SWW(p) -13.516 ( -24.720 , -2.311 ) -14.938 (-50.006, 20.129)

WN(q) -1.841 ( -11.019 , 7.338 ) -18.905 (-41.769, 3.958)

WSE(r) -3.124 ( -9.318 , 3.070 ) -5.266 ( -21.589, 11.057)

WSW(s) -0.1535 ( -12.754 , 12.447) 9.359 ( 0.655 , 18.062)

Figure 4.5: Colour density plots of 5 day aggregated values at 95% threshold
(left) and 99% threshold (right)

Looking at the confidence intervals and Figure 4.5 the majority of sub regions
now include 0 which suggests that there is virtually no change in slope over
the period at the 5 days level. This confirms what was stated in Section 4.2,
that although there appeared to be a change at hourly values, there is little
to no change over longer periods. It is also worth noting that the confidence
intervals are a lot larger than they were at the hourly level suggesting that
there are huge ranges of values recorded and when there is little data at a site,
the recorded values don’t necessarily represent what is actually happening.
Finally, Figure 4.6 shows the 100 year return level plots for these aggregated
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5 day values. These two plots show contrasting results, with the threshold
at 95% showing that the south-west is expected to have the least amount of
rain and the amount gradually increases as you move towards the north-east.
However, the 99% threshold plot shows the least in the east and inceasing
as you move west. This shows that the choice of threshold is clearly very
important.

Figure 4.6: 100 year return level plots of 5 day aggregated values at 95%
threshold (left) and 99% threshold (right)
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Chapter 5

Conclusion

In conclusion, when working with extreme data we cannot use elementary
methods such as simplistic counting as these lead to misleading results or
in some cases fail to produce a result. This is why we use the Generalised
Extreme Value distribution as it has been specifically designed to only deal
with the maximum values and uses them to predict beyond the scope of the
data. Also the Generalised Pareto distribution goes that one step further and
allows us to work with all extreme values above a threshold while keeping
the independence assumption through various methods, such as declustering.
Each of these methods also allow to easily adapt from stationary to non-
stationary to investigate the presence of trends.

The data set we have been working with is extremely large, with there
being potentially 63 years worth of hourly values from over 1200 sites. This
is actually larger than the data set used in the Flood Estimation Handbook.
Of course we found out that many sites did not actually have all of this data
and complications arose with uncooperative sites (such as failure to converge
mainly down to lack of data) but there was still plenty to work with.

As for the results, we found some quite interesting patterns in regards
to the final chapter. The return level plots told us that for hourly results,
the east coast is expected to see larger rainfall than the west coast, but this
is reversed (to an extent) at the daily and aggregated 5 days totals. As
for the trends in the data, the data has shown us that when the threshold is
exceeded, the values tend to be lower per hour now than they were in the past,
suggesting a negative trend. However when the length of the recordings are
increased to 24 and 120 hours, this negative trend becomes less noticeable and
in some case disappears completely. This implies that although the hourly
rainfall is less extreme now, the length of these ”‘storms”’ has increased so
on average we see the same amount of rainfall. This theory is known by
Haby [2010] as a change in precipitation from convective (short and intense)
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to dynamic (long and gentle) and is one way NASA describes how global
warming will change the planet. [Riebeek, 2010]

further investigation into this area could be to test the robustness of the
methods. Throughout the analysis we worked with values chosen on ac hoc
(such as amount of data we allowed to be missing and size of threshold) and
didn’t investigate whether or not these arbitrarily chosen values affected the
behavior of the data. So testing different values for these would have helped
to confirm our calculations. We also skimmed over goodness-of-fit and the
convergence issue, where we could have investigated further about choice of
threshold and even created our own function to fit the distributions which
would allow us to choose our own starting values. Another idea would be
to take a Bayesian approach to the dataset, perhaps looking at hierarchical
models and random effects as well as Monte-Carlo Markov Chain methods.
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Appendix A

GEV code

hourgev=function(x){

print(x)

data=read.table(x)[,7]

totmiss=matrix(0,ncol=2,nrow=length(data )/24)

maxmiss=matrix(0,ncol=2,nrow =63)

max=vector ()

j=1

for(i in 1:( length(data )/24)){

totmiss[i,2]= sum(data[seq ((24*i) -23 ,(24*i))] >=0)

}

for(i in 1: length(data )){

if(data[i]<0)data[i]=0

}

for(i in 1:( length(data )/24)){

totmiss[i,1]= sum(data[seq ((24*i) -23 ,(24*i))])

}

for(i in 1:63){

maxmiss[i,1]= max(totmiss[seq(leaps[i],leaps[i+1] -1) ,1])

maxmiss[i,2]= sum(totmiss[seq(leaps[i],leaps[i+1] -1) ,2])

if(maxmiss[i ,2] >7300){

max[j]= maxmiss[i,1]

j=j+1

}

}

if(length(max )>=5){

fit=gev.fit(max)

gev.diag(fit)

}

else if(length(max)<5)

{return (1:9)}

}

hourgev (" Arnfield_Reservoir_LOG.txt")
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yearfit=function(x){

data=read.table(x)[,7]

totmiss=matrix(0,ncol=2,nrow=length(data )/24)

maxmiss=matrix(0,ncol=2,nrow =63)

max=vector ()

years=vector ()

year =1948

j=1

k=1

for(i in 1:( length(data )/24)){

totmiss[i,2]= sum(data[seq ((24*i) -23 ,(24*i))] >=0)

}

for(i in 1: length(data )){

if(data[i]<0)data[i]=0

}

for(i in 1:( length(data )/24)){

totmiss[i,1]= sum(data[seq ((24*i) -23 ,(24*i))])

}

for(i in 1:63){

year=year+1

maxmiss[i,1]= max(totmiss[seq(leaps[i],leaps[i+1] -1) ,1])

maxmiss[i,2]= sum(totmiss[seq(leaps[i],leaps[i+1] -1) ,2])

if(maxmiss[i ,2] >7300){

max[j]= maxmiss[i,1]

j=j+1

years[k]=year

k=k+1

}

}

standyears =(years -mean(years ))/sd(years)

fit=gev.fit(max ,ydat=matrix(standyears ,ncol=1),mul=c(1))

return(c(fit$conv ,fit$mle ,fit$se ))

}
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Appendix B

GPD code

fit=function(dataset ){

full=read.table(dataset)

time=seq(1,length(full [,7]))

data=cbind(full ,time)

start=which(data [ ,7]!= -999)[1]

missing=which(data [ ,7]!= -999)

finish=missing[length(missing )]

data1=subset(data[start:finish ,])

threshold=quantile(data1[data1 [ ,7]!=( -999) ,7] ,.95)

cluster10values=function(dataset ,threshold ){

x=list()

z=list()

j=1

{

for(i in (11): length(dataset )){

if(dataset[i-10]> threshold

& dataset[i-9]<= threshold & dataset[i-8]<= threshold

& dataset[i-7]<= threshold & dataset[i-6]<= threshold

& dataset[i-5]<= threshold & dataset[i-4]<= threshold

& dataset[i-3]<= threshold & dataset[i-2]<= threshold

& dataset[i-1]<= threshold

& dataset[i]<= threshold ){

x=max(dataset[j:i])

ifelse(i != length(dataset), j<-i+1, NA)

z=c(z,x)}}}

return(z)}

cluster.peaks.values=as.numeric(cluster10values(data1[,7],

threshold ))

cluster10times=function(dataset ,threshold ,time){

x=list()

z=list()

t=list()

j=1
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{

for(i in (11): length(dataset )){

if(dataset[i-10]> threshold

& dataset[i-9]<= threshold & dataset[i-8]<= threshold

& dataset[i-7]<= threshold & dataset[i-6]<= threshold

& dataset[i-5]<= threshold & dataset[i-4]<= threshold

& dataset[i-3]<= threshold & dataset[i-2]<= threshold

& dataset[i-1]<= threshold

& dataset[i]<= threshold ){

x=max(dataset[j:i])

t=max(time[j:i])-10

ifelse(i != length(dataset), j<-i+1, NA)

z=c(z,t)

}

}

}

return(z)

}

cluster.peaks.times=as.numeric(cluster10times(data1[,7],

threshold ,data1 [,8]))

cluster.peaks=cbind(cluster.peaks.values ,cluster.peaks.times)

fit = gpd.fit(cluster.peaks[,1],threshold ,ydat=matrix(

cluster.peaks [ ,2]/8766 , ncol=1),sigl=c(1))

return(c(fit$conv ,length(data1 [ ,7])/8766 , fit$thresh ,

fit$nexc ,fit$mle [1], fit$se [1], fit$mle [2],

fit$se [2], fit$mle [3], fit$se [3]))

}
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