
NEWCASTLE MARCH 23-25, 2015

JOHN ERIK FORNÆSS

Contents

1. Introduction 1

2. Holomorphic Functions 2

3. Domains of holomorphy 3

4. Hartogs figures 4

5. Envelopes of Holomorphy 4

6. Jorickes Theorem 5

7. Subharmonic Functions 5

8. Plurisubharmonic Functions 5

9. − log d 6

10. Hilbert spaces with weights 7

11. Hormanders theorem 8

12. unbounded operators on Hilbert space 8

13. Hormander in L2 spaces 9

14. The proof of the Theorem of Hormander 10

15. Solution of the Levi problem 10

15.1. An extension theorem 10

15.2. The Levi problem 11

1. Introduction

In this lecture series I will give an introduction to complex analysis in
higher dimension. I will introduce 3 topics. I will also mention open prob-
lems.

1. The Levi problem
2. Plurisubharmonic functions
3. Hormanders dbar theory
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2. Holomorphic Functions

We introduce some notation.
Let C denote the complex plane, with complex variable z = x+ iy.

We recall that a holomorphic function in several variables, z = (z1, . . . , zn)
is a function f(z) : Cn → C, such that f is analytic in each variable sepa-
rately. It is a classical result that such a function is real analytic and locally
is given by a power series:

f(z) =
∑
α

aαz
α.

We use the following notation: α = (α1, . . . , αn) where each αj = 0, 1, . . . .
Each aα is a complex number and zα := zα1

1 · · · zαnn .

We have the n-dimensional analogue of the Cauchy integral formula.

f(z1, . . . , zn) =
1

(2πi)n

∫
|η1|=1,...,|ηn|=1

f(η1, . . . , ηn)

(η1 − z1) · · · (ηn − zn)
dη1 · · · dηn

Notation: Let f(x, y) = u(x, y) + iv(x, y). Then f is analytic if and only
if

ux = vy

uy = −vx

It is convenient to define ∂f
∂z = 1

2(fx + ify). Then

∂f

∂z
=

1

2
((ux − vy) + i(uy + vx))

Hence f is holomorphic if and only if ∂f∂z = 0. Similarly, in Cn, f(z1, . . . , zn)
is holomorphic if and only if

∂f

∂z1
= · · · = ∂f

∂zn
= 0.

For ease of notation, it is easier to write this as ∂f = 0 where we write
∂f =

∑
i
∂f
∂zi
dzi. We say that the expression

∑
i aidzi = 0 if all ai = 0. We

can write dz = dx+ idy.
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3. Domains of holomorphy

Let Ω denote a domain in the complex plane, a connected open set. If
z0 is a boundary point, then the function 1

z−z0 is a function on Ω which
is singular at the boundary point z0. Using this one can actually find a
holomorphic function f(z) on Ω which is singular at every boundary point.
For this reason we say that every domain in the complex plane is a domain
of holomorphy.

The problem is to generalize this to higher dimension. This is the Levi
problem.

Let Bn denote the unit ball in Cn, Bn(0, 1) = {(z1, . . . zn); ‖z‖2 = |z1|2 +
· · ·+ |zn|2 < 1}

Lemma 3.1. (Hartogs extension) Let f be a holomorphic function on the
punctured unit ball: Bn \ {0}, n > 1. Then f extends to a holomorphic
function on Bn.

Proof. Use the formula

f(z1, . . . , zn) =
1

2πi

∫
|η|=1/2

f(η, z2, . . . , zn)

η − z1
dη

If (z2, · · · , zn) 6= 0, then the Cauchy integral formula says that this equal-
ity holds. Then it holds by continuity also for (z2, . . . , zn) = 0. Moreover
this formula provides an analytic extension across 0 ∈ Cn. �

We say that a bounded domain Ω in Cn with smooth boundary is strongly
convex if for every boundary point, the tangent plane is tangent to second
order. Basic example is the ball.

Let Ω be a strongly convex domain in Cn and let p be a boundary point.
Then we know that there is a real linear functional L(z) =

∑
j(ajxj + bjyj)

so that L takes it maximum value on Ω exactly at p. We can then write
L(z) = Re(

∑
(aj − ibj)(xj + iyj)) = Re(L̂(z)). Here L̂ is a holomorphic

function. Then the function 1
L̂(z)−L̂(p)

is singular at p. The function f =

eL̂(z)−L̂(p) is also a useful holomorphic function. It is a peak function, f(p) =
1, |f(q)| < 1, q ∈ Ω \ {p}. We say then that every such domain is a domain
of holomorphy.

In complex analysis, one prefers to study properties which are independent
of holomorphic coordinate system.

Definition 3.2. A bounded domain Ω in Cn with smooth boundary is
called strongly pseudoconvex if there is a biholomorphic map defined in a
neighborhood of any given boundary point such that the local image of Ω
becomes strongly convex.
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The following problem was a main motivator of several complex variables.
It was solved in this form about 1950 or so. More general versions are still
open, for example in complex spaces with singular points.

Problem 3.3. (LEVI PROBLEM) If Ω is strongly pseudoconvex and p is
a boundary point, does there exist a holomorphic function on Ω which is
singular at p? (A peak function would suffice).

A more general definition of pseudoconvex domain in Cn.

Definition 3.4. A domain Ω in Cn is pseudoconvex if there exists for every
compact K ⊂ Ω, a strongly pseudoconvex domain U with K ⊂ U ⊂ Ω.

The classical formulation of the Levi problem was to find functions with
boundary singularities for any pseudoconvex domain. So this was solved
affirmatively.

Here is an open question:

Problem 3.5. Let Ω be a bounded pseudoconvex domain in C3 which has
real analytic boundary. Then is every boundary point a peak point?

4. Hartogs figures

Definition 4.1. (Hartogs skeleton) Let S = S1 ∪ S2 be the union of two
compact sets in C2. S1 = {(z, w); |z| ≤ 1, w = 0} is a disc in the z axis.

S2 = {(z, w); |z| = 1, |w| ≤ 1}, is a cylindrical wall. The set Ŝ := ∆
2

:=
{(z, w); |z|, |w| ≤ 1} is called the hull of S. It is also the convex hull.

Lemma 4.2. Suppose that f(z, w) is a holomorphic function defined in an

open set containing S. Then f extends to Ŝ.

Proof. One uses the Cauchy integral formula f(z, w) = 1
2πi

∫
|η|=1

f(η,w)dη
η−z .

This expression defines a holomorphic function. Because S1 is in the skele-
ton, the function agrees with the given f when |w| is small. Then the rest
follows from the uniqueness theorem. �

5. Envelopes of Holomorphy

The Levi problem is about characterizing the domains of holomorphy.
Not all domains are domains of holomorphy, as we have seen, for example
the punctured ball.

Lemma 5.1. Assume that a domain U in C2 contains the Hartogs skeleton
S. If U is a domain of holomorphy, then the domain must also contain Ŝ.

Proof. Not every boundary point in the interior can be singular by the pre-
vious lemma. �
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If one has a domain Ω and take a Hartogs skeleton S contained in Ω, then
Ω ∪ Ŝ is contained in the envelope of holomorphy. It can be shown that if
one does this countably many times one gets the envelope of holomorphy.
Not much is known about the shape of the envelope of holomorphy. Explain
non schlichtness.

Problem 5.2. Let Ω be a domain in C2 with real analytic boundary. Is the
envelope of holomorphy finitely sheeted?

6. Jorickes Theorem

Joricke has a recent result on envelopes of holomorphy: (Inventiones
2009). This concerns the question about how necessary it is to use addition
of Hartogs figures infinitely many times.

Let Ω be a domain in C2, and let V denote the envelope of holomorphy.
Then if p ∈ V \Ω, there is a disc in V through p such that the boundary is
in Ω.

7. Subharmonic Functions

A harmonic function h(x, y) in the complex plane is one for which ∆h =
hxx + hyy = 0. A smooth function is said to be subharmonic if ∆h ≥ 0.
The function is called strongly subharmonic if ∆h > 0. Subharmonicity can
be generalized to nonsmooth functions. In that case one can define subhar-
monicity by the condition ∆h ≥ 0 in the sense of distributions.

Let f be a function in L1. Then the derivative ∂f
∂x in the sense of dis-

tributions are given by ∂f
∂x (ψ) = −intf ∂ψ∂x for all smooth functions ψ with

compact support.

In that case the condition of subharmonicity can also be stated as ∆h
being a nonnegative measure.

One can approximate subharmonic functions by smooth ones. hε converg-
ing down to h pointwise. This is done by convolution. Let χ(z) = χ(|z|) ≥ 0
be a smooth function with compact support in the unit disc. Assume that∫
C χ = 1.

Then define

hε(z) =
1

ε2

∫
h(z + w)χ(

w

ε
)dw.

8. Plurisubharmonic Functions

A smooth function ρ(z1, . . . , zn) in Cn is called plurisubharmonic if the
restriction to any complex line is subharmonic, h(z + τw) is subharmonic
as a function of the complex variable τ ∈ C for any given z, w ∈ Cn. This
definition also applies to nonsmooth functions. But one adds the condition
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that the function is upper semicontinuous. Similarly to one variable one can
smooth plurisubharmonic functions.

Lemma 8.1. .
1. Convex functions are plurisubharmonic.
2. If ρ is plurisubharmonic and f is biholomorphic, then ρ ◦ f is plurisub-
harmonic.

9. − log d

The crucial connection to several complex variables comes from the fol-
lowing result. Let Ω be a domain in Cn. Let d : Ω→ R+ be the distance to
the boundary:

d(z) = min
w∈∂Ω

‖z − w‖.

Theorem 9.1. The domain Ω is pseudoconvex if and only if the function
− log d is plurisubharmonic.

Proof. (One dimension). Let w ∈ ∂Ω. Then − log |z − w| is harmonic in Ω.
Hence d(z) = supw∈∂Ω(− log |z − w|) is subharmonic. �

Proof. (Several variables) We assume first that Ω is strongly pseudoconvex.

Lemma 9.2. Let Ω be a bounded smooth strongly pseudoconvex domain.
Then there exists a continuous function ρ on Ω such that ρ = 0 on ∂Ω and
ρ < 0 and plurisubharmonic on Ω.

Proof. Let r be a smooth function which is 0 on the boundary and negative
inside. Also assume that ∇r 6= 0 on the boundary. Locally we can compose
with a biholomorphic map f so that the domain is strongly convex. Then
(r+Ar2)◦f will be a convex function if A > 0 is a large constant. Hence the
function r+Ar2 will be plurisubharmonic. Next define ρ = max{r+Ar2,−ε}
which extends to all of Ω and satisfies the requirements of the Lemma. �

Next pick a unit vector ξ. We define a distance in the ξ direction: For
z ∈ Ω, we set dξ(z) := sup{t; z + τξ ∈ Ω,∀ τ ∈ C, |τ | < t}. We show
that − log(dξ) is plurisubharmonic. Assume not. Then there is a complex

line L and a disc D ⊂ L so that dξ has value at the center strictly larger
than the average value on the boundary. We can assume that L is the z1

axis and D is the unit disc. We can choose a holomorphic polynomial P (z)
with h = <(P (z)) so that h > − log dξ on the boundary of the disc and
h(0) < − log dξ(0). Consider the complex discs Dt(ζ) for t ∈ C, |t| ≤ 1 and

for ζ ∈ C, |ζ| ≤ 1. Dt(ζ) = (ζ, 0, . . . , 0) + tξe−P (ζ). If ζ is on the boundary

of the unit disc, we have that − log dξ(ζ) < h(ζ) and hence |te−P (ζ)| =

|t|e−h(ζ) < elog dξ(ζ) = dξ(ζ). It follows that the boundaries of the discs are
all in Ω. For t = 0 the interior of the disc is in Ω. Consider the function
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ρ restricted to the discs. For those t for which the whole disc is in Ω, we
have by the maximum principle a uniform strictly negative upper bound.
Hence no such disc gets too close to the boundary. So it follows that also
for |t| = 1 the disc is in Ω. Let ζ = 0, |t| ≤ 1. Then Dt(0) = tξe−P (0) ∈ Ω.

Hence |e−P (0)| < dξ(0), so − log dξ(0) < h(0), a contradiction.

So we have shown that if Ω is a strongly pseudoconvex domain, then
− log(dξ) is plurisubharmonic. Hence when we take the sup over all unit
vectors, we see that − log d is plurisubharmonic. Finally, if Ω is an increasing
union of strongly pseudoconvex domains, this is still true.

It remains to show that if − log d is plurisubharmonic then Ω can be
exhausted by strongly pseudoconvex domains.

To see this, we can smooth the function with convolutions. This gives
smooth plurisubharmonic functions. Then add ε‖z‖2 to make the smooth-
ings strongly plurisubharmonic. Then for generic sublevel sets these are
strongly pseudoconvex domains. Here one uses Sard’s Lemma which en-
sures that the gradient is nonzero on almost level sets of the function.

�

Corollary 9.3. Let Ω be a pseudoconvex domain. If s : Ω → R is a con-
tinuous function, then there is a smooth plurisubharmonic function ρ on Ω
so that ρ > s. Also there is a sequence of smooth plurisubharmonic function
ρn so that ρn ↘ 0 uniformly on compact sets so that ρn > s close enough to
the boundary.

Proof. The key fact is that if ξ is convex and increasing and ρ is plurisub-
harmonic, then ξ ◦ ρ is also plurisubharmonic. �

10. Hilbert spaces with weights

Let Ω be a domain in Cn and let φ be a plurisubharmonic function on Ω.

We let L2(Ω, φ) := {f ;
∫

Ω |f |
2e−φdV =: ‖f‖2φ < ∞}. This is a Hilbert

space of measurable functions. We can introduce an inner product

< f, g >φ:=

∫
Ω
fge−φdV.

We note that C∞0 , the smooth functions with compact support, are dense
in L2(Ω, φ).

Another useful fact is that if f is a measurable function on a pseudoconvex
domain Ω, and f is in L2 on each compact subset of Ω, then there exists a
plurisbharmonic function φ on Ω such that f ∈ L2(Ω, φ). We say that such
functions are in L2(Ω)loc.
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11. Hormanders theorem

Lemma 11.1. Suppose that u is a smooth function on Ω in Cn. Set fi = ∂u
∂zi
.

Then ∂fi
∂zj

=
∂fj
∂zi

for all i, j.

Proof. This is true because it holds for derivatives with respect to real vari-
ables. �

The following is a theorem by Hormander (1964).

Theorem 11.2. Let {fi}ni=1 be smooth L2 functions on a bounded pseudo-

convex domain Ω. Suppose also that ∂fi
∂zj

=
∂fj
∂zi

for all i, j. Then there exists

a smooth L2 function u on Ω such that ∂u
∂zi

= fi for all i.

12. unbounded operators on Hilbert space

Given two complex Hilbert spaces, H1, H2 and a dense linear subspace
D ⊂ H1. We assume that T : D → H2 is a linear operator. Here T is not
assumed to be continuous. We can write DT instead of D if we have several
operators. Let <,>1, <,>2 denote the inner products and ‖‖j denote the
norms.

Definition 12.1. The operator T is said to be closed if the graph GT =
{(x, Tx) ∈ H1 ×H2} is a closed subspace.

Adjoint operator T ∗ : H2 → H1:

Definition 12.2. A ψ ∈ H2 is in DT ∗ if there exists a constant C such that
| < Tφ,ψ >2 | ≤ C‖φ‖1 for all φ ∈ DT .

Proposition 12.3. If ψ ∈ DT ∗, then there exists a unique element T ∗ψ ∈
H1 so that

< φ, T ∗ψ >1=< Tφ,ψ >2

for all φ ∈ DT .

We get a new linear operator T ∗ : H2 → H1.

Lemma 12.4. The operator T ∗ is closed. If DT ∗ is dense, then T ∗∗ = T.

Lemma 12.5. Let T : H1 → H2 be a closed, densely defined operator.
Suppose also that T ∗ is densely defined. Let F ⊂ H2 denote a closed subspace
containing T (H1). Then T (H1) = F if and only if there is a constant C such
that

(1) ‖f‖H2 ≤ C‖T ∗(f)‖H1 ∀ f ∈ DT ∗ ∩ F.

The crucial point in Hormanders theorem is that (1) implies that T is
onto. We explain the main idea:
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Let z ∈ F. We need to write z = Tx. Define a linear functional φ by
φ(T ∗y) =< y, z >2 . By the inequality (1) this is bounded. Hence by
Hahn-Banach it extends to a continuous linear functional φ on H1. A linear
functional on a Hilbert space can be identified with one element of the
Hilbert space, x. So < T ∗y, x >1=< y, z >2 for all y ∈ DT ∗∩F. This implies
that x ∈ DT ∗∗ and therefore x ∈ DT . Hence < y, z >2=< T ∗y, x >1=<
y, Tx >2 which implies that z = Tx.

13. Hormander in L2 spaces

Theorem 13.1. Let {fi}ni=1 be L2 functions on a bounded pseudoconvex

domain Ω. Suppose also that ∂fi
∂zj

=
∂fj
∂zi

for all i, j Then there exists an L2

function u on Ω such that ∂u
∂zi

= fi for all i. Here all derivatives are in the
sense of distributions.

Let φ denote a plurisubharmonic function on a pseudoconvex domain Ω.
We can then define weighted Hilbert spaces:

L2(Ω, φ) = {u;

∫
Ω
|u|2e−φ = ‖u‖2φ <∞}.

Let f = (f1, . . . , fn) denote an n-tuple of measurable functions.

L2(Ω, φ, n) = {f ;
n∑
i=1

∫
Ω
|fi|2e−φ = ‖f‖2φ <∞}.

The Theorem of Hormander works in weighted L2 spaces: Let φ be any
plurisubharmonic function (not necessarily smooth) on a pseudoconvex do-
main Ω in Cn (not necessarily bounded.)

Let φ be a plurisubharmonic function in a pseudoconvex domain Ω. As-
sume that κ is a continuous function which is a lower bound for the plurisub-

harmonicity of φ. (
∑

jk
∂2φ

∂zj∂zk
tjtk − eκ|t|2 is a nonnegative measure for all

t ∈ Cn.)

Theorem 13.2. Let f = (f1, . . . , fn) ∈ L2(Ω, φ + κ, n). Suppose also that
∂fi
∂zj

=
∂fj
∂zi

for all i, j. Then there is a u ∈ L2(Ω, φ) such that ∂u
∂zi

= fi for all

i and

q

∫
Ω
|u|2e−φdV ≤

∫
Ω
|f |2e−(φ+κ)dV

Recall that if f = (f1, . . . , fn) are in L2
loc then there is a plurisubharmonic

weight φ going to infinity fast enough that f ∈ L2(Ω, φ, n) ⊂ L2(Ω, φ+κ, n).
Hence one can also find u when the data f are in L2

loc. The solution u is also
in L2

loc.
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14. The proof of the Theorem of Hormander

For the proof one needs to use weights that go suffiently fast to infinity
at the boundary. One get constants independent of the weight used. Then
pass to weak limits to get solutions for any weight: Let φ be any weight.
Write φ as limit of φn where φn are smooth plurisubharmonic and changed
near boundary to go suffiently fast to infinity there.

For the proof we use two suitable plsurisubharmonic weight functions.

H1 = L2(Ω, φ1)

H2 = L2(Ω, φ2, n)

F ⊂ H2 = {f = (f1, . . . , fn);
∂fi
∂zj

=
∂fj
∂zi
∀ i, j.}

We set Tu = ( ∂u∂z1 , . . . ,
∂u
∂zn

). This is densely defined and linear. We notice
that F is a closed subspace which contains the image of T.

Then one proves by integration by parts that

‖f‖2 ≤ ‖∂
∗
f‖1 ∀ f ∈ DT ∗ ∩ F.

In this argument is it crucial to be able to calculate with smooth functions
and then pass to limits in L2 spaces. Here using plurisubharmonic functions
going to infinity sufficiently fast is essential.

Then one can use Lemma 2.5 to show existence of solutions.

15. Solution of the Levi problem

15.1. An extension theorem.

Theorem 15.1. Let Ω be a pseudoconvex domain in Cn. Let g(z1, z2, . . . , zn−1)
be a holomorphic function on H = {(z1, . . . , zn−1, 0) ∈ Ω}. Then g extends
to a holomorphic function on Ω.

Proof. Let G be a smooth extension of g to Ω so that G(z1, . . . , zn) =

g(z1, . . . , zn−1, 0) in a neighborhood U of H. Define the f ′i = ∂G
zi
, i = 1, . . . , n.

The f ′i vanish in a neighborhood of H. Also,
∂f ′i
∂zj

=
∂f ′j
∂zi

for all i, j.

We next define fi =
f ′i
zn

on Ω by defining fi = 0 on H. Then the fi are

smooth functions on Ω and ∂fi
∂zj

=
∂fj
∂zi

for all i, j. They are also in L2
loc. Hence

there exists a function u in L2
loc such that ∂u

∂zi
= fi for all i.

Define next G− znu on Ω. This extends g from H. Moreover, we see that
∂(G−znu)

∂zi
= f ′i − znfi = 0 for all i. Hence G− znu is holomorphic.

�
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15.2. The Levi problem. Recall that a domain Ω is a domain of holo-
morphy if there is for every boundary point a holomorphic function which
is singular there. (Pay attention to precise statement when boundary is not
smooth) We can restrict to the smooth case for simplicity.

Theorem 15.2. Let Ω be a pseudoconvex domain. Then Ω is a domain of
holomorphy.

Proof. In dimension 1, this is true because all domains are domains of holo-
morphy. Suppose true in dimension n−1. Let Ω be a pseudoconvex domain
in Cn. Pick a point p in the boundary. Assume for simplicity that the bound-
ary is smooth near p and that p = 0 and that H = Ω ∩ {zn = 0} clusters at
p. Then H is pseudoconvex in Cn−1 and there is a holomorphic function f
on H which is singular at p. Then any extension to Ω is singular at p. (If
the boundary is not smooth, then we can still do this on a dense set in the
boundary, which will suffice) �

Department for Mathematical Sciences, Norwegian University of Science
and Technology, Trondheim, Norway

E-mail address: john.fornass@math.ntnu.no


