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1. Introduction

These lectures will give an introduction to several complex variables. We
will generally follow the classical book by Hormander, An Introduction to
complex analysis in several variables. The notes will add some more
details to the text of Hormander, especially after the introductory material.
We generally follow the numbering of results as in Hormanders book, but
results in Hormander might be broken up into smaller steps, for example,
Lemma 4.1.3 in Hormanders book is broken up into 4.1.3a to 4.1.3j in these
notes.

We follow Chapter 1.1, 1.2 and 1.6
and then Chapter 2.1, 2.2, 2.5 and 2.6.

Afterwards we move to Chapter 4.1, 4.2. We deviate a little by consid-
ering Lp spaces for general p for a while, before restricting to L2 spaces.
We prove the existence of solutions to ∂ on pseudoconvex domains in Cn in
L2
loc and give the solution of the Levi problem. At the end we go through

the recent proof by Bo-Yong Chen of the Ohsawa-Takegoshi Theorem. This
requires first that we discuss a version of Hormanders solution of the ∂ equa-
tion in L2 as in Theorem 1.1.4 in the 1965 Acta paper of Hormander.

Some additional material that is not needed for the presentation are in
the Appendices. For example, the solution of ∂ in a polydics of section 2.3
is in an appendix, since it is not needed in the proof of the L2 theorem
of Hormander. There are also some remarks on Lp spaces there, such as
Ohsawa-Takegoshi in Lp and the strong openness conjecture in Lp.

The author thanks the Beijing International Center for Mathematical Re-
search, BICMR, for its hospitality during the Spring Semester of 2014.

The course can also be downloaded from

http://www.bicmr.org/news/2014/0221/1386.html
1.7may2014.pdf

Preliminaries for the course is some knowledge of one complex variable
and some functional analysis.

2. Hormander, Section 1.1-1.2

Chapter I: Analytic functions of one complex variable.
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1.1 Preliminaries:

Here holomorphic (=analytic) functions are introduced. These are C1

functions on domains in C which satisfy the Cauchy-Riemann equation

∂u

∂z
= 0

The set of all such functions is denoted by A(Ω).

Here

∂u

∂z
=

1

2

(
∂u

∂x
− i

∂u

∂y

)
∂u

∂z
=

1

2

(
∂u

∂x
+ i

∂u

∂y

)

Generally,

du =
∂u

∂x
dx+

∂u

∂y
dy =

∂u

∂z
dz +

∂u

∂z
dz.

For analytic functions, du = ∂u
∂z dz, i.e. du and dz are paralell. For analytic

functions we write ∂u
∂z = u′.

Examples of analytic functions are all polynomials P (z) =
∑

i aiz
i and

the exponential function ez = ex(cos y + i sin y). We have that products,
compositions and inverses of analytic functions are analytic.

1.2 Cauchy’s integral formula and its applications.

Let ω be a bounded open set in C with boundary consisting of finitely
many C1 Jordan curves. For ease of reference, we list the results using
the same numbering as in Hormander. The proofs can be read easily in
Hormanders book.

Cauchy integral formula for general functions:

Theorem 1.2.1 Let u ∈ C1(ω). Then for ζ ∈ Ω,

u(ζ) =
1

2πi

(∮
∂ω

u(z)

z − ζ
dz +

∫ ∫
ω

∂u
∂z

z − ζ
dz ∧ dz

)
Theorem 1.2.2 If µ is a measure with compact support in C, the integral

u(ζ) =

∫
dµ(z)

z − ζ

defines an analytic C∞ function outside the closed support of µ. In any

open set ω where dµ = ϕ(z)dz∧dz
2πi for some ϕ ∈ Ck(ω), k ≥ 1, we have that

u ∈ Ck(ω) and ∂u
∂z = ϕ.
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Corollary 1.2.3 Every u ∈ A(Ω) is in C∞. Also u′ ∈ A(Ω) if u ∈ A(Ω).

Theorem 1.2.4 For every compact set K ⊂ Ω and every open neighbor-
hood ω ⊂ Ω of K there are constants Cj , j = 0, 1, . . . such that

(1.2.4) sup
z∈K

|u(j)(z)| ≤ Cj∥u∥L1(ω)

for all u ∈ A(Ω), where u(j) = ∂ju
∂zj

.

Exercises
Recall that a function f(z) = u(x, y) + iv(x, y) is analytic if f ∈ C1 and
∂f
∂z = 0.

1) Show that the equation ∂f
∂z = 0 is equivalent to the classical Cauchy

Riemann equations

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x

2) Show that the function defined by f(z) = e−(z−4) for z ̸= 0 and f(0) = 0
satisfies the Cauchy Riemann equations at every point. Is f ∈ C1?

3) Show that (
∂f

∂z

)
=

∂f

∂z

and(
∂f

∂z

)
=

∂f

∂z
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3. Hormander, 1.2,1.6

Corollary 1.2.5 If un ∈ A(Ω) and un → u when n → ∞, uniformly on
compact subsets of Ω, it follows that u ∈ A(Ω).

Proof. Pick a point ζ ∈ Ω and choose a disc ∆(w, r) ⊂ Ω with ζ ∈ ∆(w, r).
For each n, we have by theorem 1.2.1. that

un(ζ) =
1

2πi

∫
|z−w|=r

un(z)

z − ζ
dz.

Using the uniform convergence we then get u is continuous and

u(ζ) =
1

2πi

∫
|z−w|=r

u(z)

z − ζ
dz.

From this formula we see that u is C1 and analytic on ∆(w, r).

□

Corollary 1.2.6 If un ∈ A(Ω) and the sequence |un| is uniformly bounded
on every compact subset of Ω, there is a subsequence unj converging uni-
formly on every compact subset of Ω to a limit u ∈ A(Ω).

Corollary 1.2.7 The sum of a power series
∑∞

0 anz
n is analytic in the

interior of the circle of convergence.

Theorem 1.2.8 If u is analytic in Ω = {z; |z| < r}, we have

u(z) =

∞∑
0

u(n)(0)zn/n!

with uniform convergence on every compact subset of Ω.

Uniqueness of analytic continuation:

Corollary 1.2.9 If u ∈ A(Ω) and there is some point z ∈ Ω where

u(k)(0) = 0 for all k ≥ 0, it follows that u = 0 in Ω if Ω is connected.

Corollary 1.2.10 If u is analytic in the disc Ω = {z; |z| < r} and if u is
not identically 0, one can write u in one and only onoe way in the form

u(z) = znv(z)

where n ≥ 0 is an integer and v ∈ A(Ω), v(0) ̸= 0 (which means that 1/v is
also analytic in a neighborhood of 0.

Theorem 1.2.11 If u is analytic in {z; |z − z0| < r} = Ω and if |u(z)| ≤
|u(z0)| when z ∈ Ω, then u is constant in Ω.

Maximum Principle:

Corollary 1.2.12 Let Ω be bounded and let u ∈ C(Ω) be analytic in Ω.
Then the maximum of |u| in Ω is attained on the boundary.



6 JOHN ERIK FORNÆSS

1.6 Subharmonic Functions.

Definition: A C2 function is said to be harmonic if ∆h = 4 ∂2h
∂z∂z = 0. This

is equivalent to the equation ∂2h
∂x2

+ ∂2h
∂x2

= 0. If h = Re(f), f analytic, then h
is harmonic:

∂2h

∂z∂z
=

∂2(f+f2 )

∂z∂z

=
1

2

∂2f

∂z∂z
+

1

2

∂2f

∂z∂z

=
1

2

∂

∂z

(
∂f

∂z

)
+

1

2

∂

∂z

(
∂f

∂z

)
=

1

2

∂

∂z

(
∂f

∂z

)
= 0

Conversely, suppose that u is C2 and harmonic on a disc D. Then for
each Jordan curve γ ∈ D bounding a domain U, we get by Stokes the-
orem that

∮
γ(−uydx + uxdy) =

∫
U uxx + uyy = 0. Hence the function

v(q) =
∫ q
z0
−uydx + uxdy defines a function v on D. This function satis-

fies vx = −uy and vy = ux so u+ iv is analytic. So on a disc, we see that h
is harmonic if and only if h is the real part of an analytic function.

Definition 1.6.1 A function u defined in an open set Ω ⊂ C with values
in [−∞,∞ > is called subharmonic if
a) u is upper semicontinuous, that is {z ∈ Ω;u(z) < c} is open for every real
number c.
b) For every compact K ⊂ Ω and every continuous function h on K which
is harmonic in the interior of K and such that u ≤ h on ∂K, we have u ≤ h
on K.

Note: The function u ≡ −∞ is called subharmonic in this text.
Note: A function is u upper semicontinuous if and only if there exists a
sequence of continuous functions uj such that uj ↘ u.
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4. Hormander 1.6

Note: Harmonic functions are subharmonic: Let u be harmonic on Ω
and let K be a compact subset of Ω. Let h be a continuous function on K
which is harmonic on the interior of K. Also suppose that u ≤ h on ∂K.
Suppose there exists a point p ∈ the interior K such that u(p) > h(p). Then
if ϵ > 0 is small enough we have that the function v = u− h+ ϵ|z|2 satisfies
v(p) > sup∂K v. We can choose p to be a point where v takes on a maximum
value. Note however that vxx + vyy = 4ϵ > 0. This contradicts that p is a
max point.

Theorem 1.6.2 If u is subharmonic and 0 < c ∈ R, it follows that cu
is subharmonic. If uα, α ∈ A, is a family of subharmonic functions, then
u = supα uα is subharmonic if u <∞ and u is upper semicontinuous, which
is always the case if A is finite. If u1, u2, . . . is a decreasing sequence of
subharmonic functions, then u = limj→∞ uj is subharmonic.

Theorem 1.6.3 Let u be defined with values in [−∞,∞ > and assume
that u is upper semicontinuous. Then each of the following conditions are
necessary and sufficient for u to be subharmonic:
(i) If D is a closed disc in Ω and f is an analytic polynomial such that
u ≤ Re(f) on ∂D, then it follows that u ≤ Re(f) on D.
(ii) If Ωδ = {z ∈ Ω; d(z,Ωc) > δ}, we have

(1.6.1) u(z)2π

∫
dµ(r) ≤

∫ 2π

0

∫
u(z + reiθ)dθdµ(r), z ∈ Ωδ

for every positive finite measure dµ on the interval [0, δ].
(iii) For every δ > 0 and every z ∈ Ωδ there exists some positive finite mea-
sure dµ with support in [0, δ] such that dµ has some mass outside the origin
and (1.6.1) is valid.

As pointed out by one the students in class, statement (ii) is not the right
one. The correct statement should be

(ii) Let z ∈ Ω and assume that {z + reiθ; θ ∈ [0, 2π], 0 ≤ r ≤ s} ⊂ Ω.
Then (1.6.1) holds where µ is supported on [0, s].

Corollary 1.6.4 If u1, u2 are subharmonic, then u1 + u2 is subharmonic

Proof. We use (1.6.1). □

Corollary 1.6.5 A function u defined in an open set Ω ⊂ C is subhar-
monic if every point in Ω has a neighborhood on which u is subharmonic.

We use property (iii) of Theorem 1.6.3.

Corollary 1.6.6 If f ∈ A(Ω), then log |f | is subharmonic.

Proof. Use property (i) in Theorem 1.6.3. So suppose that log |f | ≤ Re(g)
on the boundary of a disc, where g is a holomorphic polynomial. Then
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|f | ≤ eRe(g) = |eg| on the boundary of the disc. Hence |fe−g| ≤ 1 on the
boundary of the disc. Hence also on the inside. Therefore log |f | ≤ Re(g)
on the whole disc. □

Theorem 1.6.7 Let ϕ be a convex increasing function on R and set
ϕ(−∞) = limx→−∞ ϕ(x). Then ϕ(u) is subharmonic if u is subharmonic.

Definition A function ϕ(x) is convex if for every a < b, and every t ∈<
0, 1 >, ϕ(ta + (1 − t)b) ≤ tf(a) + (1 − t)f(b), i.e. the graph lies under the
chord.

Observation: An immediate consequence is that out side (a, b) the graph
lies above the straight line continuing the chord.

Lemma 1.6.7a Suppose that ϕ(x) is convex and suppose that x0 ∈ R.
Then there exists a constant k ∈ R so that ϕ(x) ≥ ϕ(x0) + k(x− x0) for all
x. Also ϕ is continuous.

Proof of the Lemma. Take any sequence an < x0 < bn where both con-
verge to x0. Let k be any limit for the slopes of the chords from an to bn.

To prove continuity, suppose that xn ↘ x0. Fix a < x0 < b. Considering
the chord from a to xn shows that lim inf ϕ(xn) ≥ ϕ(x0). Considering the
chord from x0 to b shows that the lim supϕ(xn) ≤ ϕ(x0). A similar argument
applies for xn ↗ x0.

Proof of theorem 1.6.7:
Let x0 ∈ R and let k be as in Lemma 1.6.7a. Let x = u(z + reiθ). Then

ϕ(u(z + reiθ)) ≥ ϕ(x0) + k(u(z + reiθ)− x0).

Hence

1

2π

∫ 2π

0
ϕ(u(z + reiθ))dθ ≥ ϕ(x0) + k(

1

2π

∫ 2π

0
u(z + reiθ)dθ − x0).

We want to show that

1

2π

∫ 2π

0
ϕ(u(z + reiθ))dθ ≥ ϕ(u(z)).

If 1
2π

∫ 2π
0 u(z + reiθ)dθ = −∞, this is clear. So assume the integral is finite.

Let x0 =
1
2π

∫ 2π
0 u(z + reiθ)dθ. Then

1

2π

∫ 2π

0
ϕ(u(z + reiθ))dθ ≥ ϕ(

1

2π

∫ 2π

0
u(z + reiθ)dθ).

Since 1
2π

∫ 2π
0 u(z+reiθ)dθ ≥ u(z) and since ϕ is increasing, ϕ( 1

2π

∫ 2π
0 u(z+

reiθ)dθ) ≥ ϕ(u(z)).

Hence
1

2π

∫ 2π

0
ϕ(u(z + reiθ))dθ ≥ ϕ(u(z)).
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It follows from Theorem 1.6.3 (iii) that ϕ(u) is subharmonic.

Corollary 1.6.7b If u is subharmonic, then eu is subharmonic. If f is
analytic, |f | is subharmonic.

The first part follows from Theorem 1.6.7 since ex is a convex increasing
function. Since log |f | is subharmonic by Corollary 1.6.6, it follows that

|f | = elog |f | also is subharmonic.

Corollary 1.6.8 Let u1, u2 be nonnegative and assume that log uj is
subharmonic in Ω. Then log(u1 + u2) is subharmonic.

Theorem 1.6.9 Let u be subharmonic in the open set Ω and not iden-
tically −∞ in any connected component of Ω. Then u is integrable on all
compact subsets of Ω (we write u ∈ L1

loc(Ω)), which implies that u > −∞
almost everywhere.

Proof. Suppose that u(z) > −∞. Pick a closed disc D centered at z con-
tained in Ω. If we let µ = rdr we get from (1.6.1) that u(z)A ≤

∫
D udA.

Note that u is bounded above on D. Hence it follows that u is in L1 on
D. It follows that u > −∞ a.e. on D. Hence we can repeat the argument
for points z near the boundary of D. It follows that the set U of points
z ∈ Ω where u is integrable in some neighborhood, is open and closed. By
hypotheses U is nonempty. Hence U = Ω. □

Exercises

1) Show that the function sup0<ϵ<1 ϵ log |z| fails to be subharmonic.

2) Suppose that u is a C2 subharmonic function on C. Let f : Ω → C
be an analytic function defined on an open set Ω in C. Show that u ◦ f is
subharmonic on Ω.

3) Let u a subharmonic function in {|z| < 2}. Suppose that u(z) = 0 for
all z, 1 < |z| < 2. Show that u ≡ 0.

5. Hormander 1.6, 2.1

Theorem 1.6.10 If u is subharmonic in Ω and not −∞ identically in any
component of Ω, then we have that

(1.6.3)

∫
u∆vdλ ≥ 0

for all v ∈ C2
0(Ω) with v ≥ 0. Here λ denotes Lebesgue measure.
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Proof. Let 0 < r < d(supp(v),Ωc). Then by 1.6.1 we have for every z ∈
supp(v) that

2πu(z) ≤
∫ 2π

0
u(z + reiθ)dθ.

Since v ≥ 0, we get for every z ∈ supp(v) that

2πu(z)v(z) ≤
∫ 2π

0
u(z + reiθ)v(z)dθ.

We integrate with respect to λ.

∫ ∫
(2πu(z)v(z))dλ ≤

∫ ∫
(

∫ 2π

0
u(z + reiθ)v(z)dθ)dλ

=

∫ 2π

0
(

∫ ∫
u(z + reiθ)v(z)dλ)dθ

=

∫ 2π

0
(

∫ ∫
u(z)v(z − reiθ)dλ)dθ

=

∫ ∫
u(z)(

∫ 2π

0
v(z − reiθ)dθ)dλ

We can also rewrite the left side:

∫ ∫
(2πu(z)v(z))dλ =

∫ ∫
u(z)(

∫ 2π

0
v(z)dθ)dλ

Hence we see that

∫ ∫
u(z)(

∫ 2π

0
(v(z − reiθ)− v(z))dθ)dλ ≥ 0.

We Taylor expand the intergrand v(z − reiθ)− v(z).

v(z − reiθ)− v(z) = −vx(z)r cos θ − vy(z)r sin θ +
1

2
vxxr

2 cos2 θ

+
1

2
vyyr

2 sin2 θ + vxyr
2 cos θ sin θ + o(r2)

We hence get an expression
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−
∫ ∫

u(z)(

∫ 2π

0
vx(z)r cos θ)dθ)dλ −

∫ ∫
u(z)(

∫ 2π

0
vy(z)r sin θ)dθ)dλ

+

∫ ∫
u(z)(

∫ 2π

0

1

2
vxxr

2 cos2 θ)dθ)dλ

+

∫ ∫
u(z)(

∫ 2π

0

1

2
vyyr

2 sin2 θ)dθ)dλ

+

∫ ∫
u(z)(

∫ 2π

0
vxyr

2 cos θ sin θ)dθ)dλ

+

∫ ∫
u(z)(

∫ 2π

0
o(r2))dθ)dλ

≥ 0.

Hence after carrying out the inner integrals we see that∫ ∫
u(z)(

1

2
vxxπr

2 +
1

2
vyyπr

2 + o(r2))dλ ≥ 0.

If we divide by πr2

2 and let r → 0, we see that∫ ∫
u(z)∆v(z) ≥ 0.

□

Corollary 1.6.10a If u is a C2 subharmonic function, then ∆u ≥ 0.

Proof. Let v ≥ 0 be a compactly supported C2 function in the domain
of u. By (1.6.3), we have that

∫
u∆v ≥ 0. Integrating by parts twice, we see

that
∫
v∆u ≥ 0. Since this is valid for all compactly supported nonnegative

C2 functions v, it follows that ∆u ≥ 0.

Theorem 1.6.11 Let u ∈ L1
loc(Ω) and assume that (1.6.3) holds. Then

there is one and only one subharmonic function U in Ω which is equal to u
almost everywhere. If ϕ is an integrable non-negative function of |z| with
compact support and

∫
ϕ = 1, we have for every z ∈ Ω

(1.6.4) U(z) = lim
δ→0

∫
u(z − δz′)ϕ(z′)dλ(z′).

We will divide the proof into lemmas.

Lemma 1.6.11a Assume u ∈ L1
loc(Ω). Let ψ = ψ(|z|) be a nonnegative

C∞ function with compact support in the unit disc and
∫
ψ = 1. Then the

function

uδ(z) :=

∫
u(z − δz′)ψ(z′)dλ(z′) =

1

δ2

∫
u(w)ϕ(

z − w

δ
)dλ(w)
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is C∞ in Ωδ. If V ⊂⊂ Ω, we have that ∥uδ∥L1(Vδ) ≤ ∥u∥L1(V ). Moreover

uδ → u ∈ L1 on compact subsets.

Proof. The last equality is obtained by the change of variable, w = z − δz′.
The fact that u ∈ C∞ follows from differentiation under the integral sign in
the last integral.

The inequality in the L1 norm follows by integration with respect to z
first.
To show the last statement, write u = u1 + u2 where u1 is continuous and
u2 has small L1 norm. The convergence for (u1)δ is obvious. And the L1

norm of (u2)δ is as small as we wish. □

Lemma 1.6.11b Suppose U is subharmonic. Then (1.6.4) holds when
we set u = U in the integral on the right side. In particular it follows that if
two subharmonic functions are equal almost everywhere, they are identical.

Proof. It follows by (1.6.1) that for small δ,

U(z) ≤
∫
U(z − δz′)ϕ(z′)dλ(z′).

By upper semicontinuity of U it follows that the upper limit of the right
side when δ → 0 is at ≤ U(z). Hence (1.6.4) holds with u = U. □

Lemma 1.6.11c Assume that u ∈ C2(Ω) and that ∆u ≥ 0. Then u is
subharmonic. Moreover uδ ↘ u.

Proof. Fix z0 ∈ Ωδ. Let uz0(w) =
∫ 2π
0 u(z0 + eiθw)dθ for |w| < δ. Then uz0

is C2 and ∆uz0 ≥ 0. Moreover uz0 only depends on |w|. We calculate the
Laplacian of uz0 at points w = x+ iy, x ≥ 0, y = 0.We can write uz0(x, y) =

uz0(
√
x2 + y2, 0) = g(

√
x2 + y2).We get that g′′(x)+g′(x)/x ≥ 0 for x > 0,

so xg′′(x) + g′(x) ≥ 0, x ≥ 0. It follows that xg′(x) increases. The value
at x = 0 is 0, so g′(x) ≥ 0. So g(x) is increasing. By Theorem 1.6.3, it
follows that u is subharmonic, and we also get that uδ decreases to uδ when
δ → 0. □

Lemma 1.6.11d Assume u ∈ L1
loc satisfies (1.6.3). Let ψ = ψ(|z|) be a

nonnegative C∞ function with compact support in the unit disc and
∫
ψ = 1.

Then the function

uδ(z) :=

∫
u(z − δz′)ψ(z′)dλ(z′)

is C∞ and subharmonic in Ωδ. Moreover uδ → u ∈ L1 on compact subsets.

Proof. Suppose that u ∈ L1
loc and that

∫
u(z)∆v(z) ≥ 0 for all functions

that are C2 with compact support and with v ≥ 0. Then it follows that
also uδ has this property. Then, by Lemma 1.6.11c it follows that uδ is
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subharmonic. Also by Lemma 1.6.11a we have convergence in L1 norm to
u. □

Lemma 1.6.11e Let u and ψ be as in Lemma 1.6.11d. Then if δ, ϵ > 0,

Let ϵ↘ 0 :

(uδ)ϵ ↘ uδ

Let δ ↘ 0 :

(uϵ)δ ↘ uϵ

(uδ)ϵ = (uϵ)δ

Let ϵ↘ 0 :

uϵ ↘ V

for some subharmonic function V.

Proof. We first show that (uδ)ϵ ↘ uδ. By Lemma 1.6.11d we have that uδ is
C∞ and subharmonic. Hence by Corollary 1.6.10.a it follows that ∆uδ ≥ 0.
Hence it follows by Lemma 1.6.11c that (uδ)ϵ ↘ uδ.
The second limit holds for the same reason.

To prove the following equality, we see that

(uδ)ϵ(z) =

∫
uδ(z − ϵz′)ψ(z′)dλ(z′)

=

∫
(

∫
u(z − ϵz′ − δz′′)ψ(z′′)dλ(z′′))ψ(z′)dλ(z′)

= (uϵ)δ(z)

We show that uϵ1(z) ≥ uϵ2(z) if ϵ1 > ϵ2. We have shown that for each
δ > 0, (uδ)ϵ1(z) ≥ (uδ)ϵ2(z), hence (uϵ1)δ(z) ≥ (uϵ2)δ(z). Hence by Lemma
1.6.11c, uϵ1(z) ≥ uϵ2(z).

Finally, by Theorem 1.6.2, the limit of uϵ is subharmonic.

□

To finish the proof of Theorem 1.6.11, it suffices to note that by Lemma
1.6.11d the function V obtained is equal to u a.e. Also by Lemma 1.6.11b,
we have that (1.6.4) holds for V and so also for u.

Now we turn to Chapter 2, Elementary properties of functions of several
complex variables.

2.1 Preliminaries.
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We introduce coordinates in Cn. Write z = (z1, z2, · · · zn) where each
zj = xj + iyj . Let u be a C1 function. We introduce differential operators as
in one variable.

∂u

∂zj
=

1

2

∂u

∂xj
− 1

2

∂u

∂yj
∂u

∂zj
=

1

2

∂u

∂xj
+

1

2

∂u

∂yj

Then we get

du =
n∑
j=1

∂u

∂zj
dzj +

n∑
j=1

∂u

∂zj
dzj .

We write for short the first sum on the right as ∂u and the last sum as
∂u We say that ∂u is a form of type (0, 1) and ∂u a form of type (0, 1).

Definition 2.1.1 A function u ∈ C1(Ω) is said to be analytic or holo-
morphic if du is of type (1, 0). Equivalently, ∂u = 0 and also equivalently,
the function satisfies the Cauchy-Riemann equations in each variable sepa-
rately which is again equivalent to saying that u is analytic in each variable
separately. The set is analytic functions on Ω is called A(Ω).

If I = (i1, . . . , ip) is a multiindex of integers between 1 and n we write
dzI = dzi1 ∧ · · · ∧ dzip , and we write |I| = p.

If J = (j1, . . . jq) is a multiindex of integers between 1 and n we write
dzJ = dzi1 ∧ · · · ∧ dziq , and we write |J | = q.

The following expression is called a (p, q) form f =
∑

|I|=p,|J |=q fI,Jdz
I ∧

dzJ . It is OK to think of this as an expression without meaning.
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6. Hormander 2.1, 2.2, 2.5

Let f =
∑

I,J fI,Jdz
I ∧ dzJ be a (p, q) form. We use the usual convention

that of two differentials, say dzi and dzj are switched, the form changes sign.

We define the exterior differential df as the form df =
∑

I,J dfI,Jdz
I∧dzJ .

If we write ∂f =
∑

I,J ∂fI,J ∧dzI∧dzJ and ∂f =
∑

I,J ∂fI,J ∧dzI∧dzJ then

df = ∂f+∂f . This writes df as a sum of a (p+1, q) form and a (p, q+1) form.

We write 0 = d2f = ∂2f+(∂∂+∂∂)f+∂
2
f and these have type (p+2,q),

(p+1,q+1) and (p,q+2) respectively so all three terms must vanish.

∂2 = 0, ∂∂ + ∂∂ = 0, ∂
2
= 0.

This implies that if f is a (p,q+1) form and we want to solve the equation
∂u = f then is is necessary that ∂f = 0.

2.2 Applications of Cauchy’s integral theorem in a polydisc.

Let w = (w1, . . . , wn) be a point in Cn and let r = (r1, . . . , rn) be positive
numbers. We define the polydisc D with center w and polyradius r to be
the set D = Dn(w, r) = {z ∈ Cn; |zj − wj | < rj , j = 1, . . . , n}. The set
∂D0 := {|zj − wj | = rj , j = 1, . . . , n} is called the distinguished boundary
of D.

Theorem 2.2.1 Let D be an open polydisc and let u be in C1(D). If u
is an analytic function of zj ∈ D1(wj , rj) whenever the other variables are
constant, |zk − wk| ≤ rk, then

(2.2.1) u(z) =

(
1

2πi

)n ∫
∂0D

u(ζ1, . . . , ζn)dζ1 . . . dζn
(ζ1 − z1) · · · (ζn − zn)

for all z ∈ D. Hence u is C∞ in D.
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Proof. We use Cauchys integal formula inductively, i.e. Theorem 1.2.1. We
get then

u(z) =
1

2πi

∫
|ζn−wn|=rn

u(z1, . . . , zn−1, ζn)dζn
ζn − zn

=
1

2πi

∫
|ζn−wn|=rn

( 1
2πi

∫
|ζn−1−wn−1|=rn−1

u(z1,...,zn−2,ζn−1,ζn)dζn−1

ζn−1−zn−1
)dζn

ζn − zn

=

(
1

2πi

)2 ∫
|ζj−wj |=rj ,j=n−1,n

u(z1, . . . , zn−2, ζn−1, ζn)dζn−1dζn
(ζn−1 − zn−1)(ζn − zn)

=

(
1

2πi

)3 ∫
|ζj−wj |=rj ,j=n−2,n−1,n

u(z1, . . . , zn−3, ζn−2, ζn−1, ζn)dζn−2dζn−1dζn
(ζn−2 − zn−2) · · · (ζn − zn)

= · · ·

=

(
1

2πi

)n ∫
∂0D

u(ζ1, . . . , ζn)dζ1 . . . dζn
(ζ1 − z1) · · · (ζn − zn)

The last statement follows by differentiation under the integral sign.

□

Corollary 2.2.2 If u ∈ A(Ω), then u ∈ C∞(Ω) and all derivatives of u
are also analytic.

We use the following multiindex notation: We write α = (α1, . . . , αn) for
nonnegative integers αj . We call α a multiorder. Set α! := α1! · · ·αn!. We

define ∂α = ( ∂
∂z1

)α1 · · · ( ∂
∂zn

)αn , ∂
α
= ( ∂

∂z1
)α1 · · · ( ∂

∂zn
)αn .

Theorem 2.2.3 If K is a compact subset of Ω and K ⊂ ω ⊂⊂ Ω, then
there exist contants Cα for all multiorders α so that if u ∈ A(Ω) then

(2.2.3) sup
K

|∂αu| ≤ Cα∥u∥L1(ω).

Proof. Assume first that K = D
n
(w, r), ω = Dn(w, r′) and Ω = Dn(w, r′′)

for multiradii r = (s, . . . , s), r′ = (s′, . . . , s′), r′′ = (s′′, . . . , s′′), s < s′ < s′′.
Let Cj denote the constants in the one variable version of this theorem,
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Theorem 1.2.4. Let z ∈ K. We get

|∂αu(z)| ≤ Cαn

∫
|ζn−wn|<s′

|( ∂

∂z1
)α1 · · · ( ∂

∂zn−1
)αn−1u(z1, . . . , zn−1, ζn|)dλ(ζn)

≤ Cαn

∫
|ζn−wn|<s′

|Cαn−1

∗
∫
|ζn−1−wn−1|<s′

(
∂

∂z1
)α1 · · · ( ∂

∂zn−2
)αn−2u(z1, . . . , zn−2, ζn−1, ζn)|

∗ dλ(ζn−1)|dλ(ζn)
· · ·

≤ ΠCαj

∫
ω
|u(ζ)|dλ(ζ).

To complete the proof we cover the compact set in the Theorem by finitely
many such polydiscs.

□

Corollary 2.2.4 If uk ∈ A(Ω) and uk → u uniformly on compact subsets,
then u ∈ A(Ω).

Proof. This follows from the Cauchy integral formula:

uk(z) =

(
1

2πi

)n ∫
∂0D

uk(ζ1, . . . , ζn)dζ1 . . . dζn
(ζ1 − z1) · · · (ζn − zn)

We take limits on both sides. Then it follows that u is analytic on D. □

Corollary 2.2.5 If uk ∈ A(Ω) and is a uniformly bounded sequence on
any compact subset of Ω, then there is a subsequence ukj which converges
uniformly on compact subsets to a limit u ∈ A(Ω).

Proof. By Theorem 2.2.3 the first derivatives of the uk are uniformly bounded
on compact subsets. Hence, by Ascoli, there is a subsequence ukj which con-
verges uniformly on compact subsets to a limit u. By the previous corollary,
u ∈ A(Ω). □

Let aα(z) be holomorphic functions in Ω. We say that
∑

α aα converges
normally if

∑
α supK |α(z)| converges for each compact subset of Ω. In this

case the sum
∑

α aα(z) is a holomorphic function on Ω.

Theorem 2.2.6 Suppose that u is analytic in a polydisc D(0, r), r =
(r1, . . . , rn). Then

u(z) =
∑
α

∂αu(0)

α!
zα

for every z ∈ D and the convergence is normal.
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Proof. We use the formula for the sum of a geometric series for ζ ∈ ∂0D and
z ∈ D.

1

(ζ1 − z1) · · · (ζn − zn)
=
∑
α

zα

ζαζ1 · · · ζn
.

The series converges normally in D. If u ∈ C1(D) then we get from 2.2.1
that

u(z) =

(
1

2πi

)n∑
α

(∫
ζ∈∂0D

u(ζ)

ζαζ1 · · · ζn
dζ1 · · · dζn

)
zα.

We also obtain by differentiation of (2.2.1) that

(2.2.3) ∂αu(0) =

(
1

2πi

)n
α!

∫
ζ∈∂0D

u(ζ)

ζαζ1 · · · ζn
dζ1 · · · dζn

Hence the theorem follows if u ∈ C1(D). To prove it in general, prove it for
any strictly smaller polydisc.

□

We obtain also from (2.2.3) the following

Theorem 2.2.7 (Cauchy’s inequalities) If u is analytic on the polydisc
D(0, r) and if |u| ≤M , then

|∂αu(0)| ≤Mα!r−α.

For the proof apply (2.2.3) to any smaller polydisc.

2.5. Domains of holomorphy

If Ω ⊂ C and p ∈ ∂Ω, then the function 1
z−p cannot be extended an-

alytically from Ω across p. We express this fact by calling Ω a domain of
holomorphy.

In Cn, n > 1 it might be sometimes possible to extend holomorphic func-
tions past the boundary. For example, let Ω = Cn \D(0, r), r = (s, . . . , s).
Then all holomorphic functions on Ω extend to holomorphic functions on all
of Cn. To see this, use the Cauchy integral formula in the last variable:

g(z1, · · · , zn−1, zn) = 1
2πi

∫
|ζ|=S

f(z1,...,zn−1,ζ)dζ
ζ−zn . Here we use any number

S > s. It is clear that if some |zj | > s for j > n, the function g = f . Also
the integral defines an analytic function in Cn. We see then that this defines
an anlytic extension to all of Cn. For this reason we will not call this domain
a domain of holomorphy. The precise definition of domain of holomorphy
is a little complicated. The reason is seen from the example f =

√
z which

is well defined in the complement of the set {x + i0, x ≥ 0}. This function
can locally be extended across the boundary at any x+ iy, x > 0. But these
local extensions dont agree with the function as defined on the other side of
the real axis. We now give the precise definition of domain of holomorphy.
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Definition 2.5.1 An open set in Cn is called a domain of holomorphy if
there are no open sets Ω1 and Ω2 in Cn with the following properties:
(a) ∅ ̸= Ω1 ⊂ Ω2 ∩ Ω.
(b) Ω2 is connected and not contained in Ω.
(c) For every u ∈ A(Ω) there is a function u2 ∈ A(Ω2) such that u = u2 in
Ω1.

Definition 2.5.2 If K is a compact subset of Ω, we define the A(Ω) hull

K̂Ω of K by

(2.5.1) K̂Ω = {z ∈ Ω; |f(z)| ≤ sup
K

|f | if f ∈ A(Ω)}.

Exercises

1) Let Ω be an open set in C. For K compact in Ω show that K̂Ω is com-

pact and that the distance of K̂Ω to the boundary of Ω is the same as the
distance of K to the boundary.

2) Let K ⊂ Ω ⊂ C be a compact subset. Let U be a connected compo-

nent of C\K. Show that U ⊂ K̂Ω if and only if U is a bounded set and U ⊂ Ω.

3) Show that a polydisc in Cn is a domain of holomorphy.
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7. Hormander 2.5, 2.6

Lemma 2.5.3 Let f ∈ A(Ω). Let K be a compact subset of Ω. Let dK
denote the sup of the numbers r so that ∆n(z, (r, · · · , r)) ⊂ Ω for all z ∈ K.

Then, if w ∈ K̂Ω then the power series of f around w converges normally in
∆n(w, (r, · · · , r)).

Proof. Fix any 0 < r < d. Then f is uniformly bounded by some constant
M on all polydiscs ∆n(z, (r, . . . , r)) when z ∈ K. It follows from Theorem
2.2.7 that for any z ∈ K and any multiindex α, |∂αf(z)| ≤ Mα!r−α. Then

these inequalties must also hold at every point w ∈ K̂Ω.

But then this implies that the power series expansion of f around w
converges normally in ∆(w, (r, . . . , r)). □

Theorem 2.5.4 Let Ω be a domain of holomorphy. Let K be a compact
subset. Then if d(L) denotes the sup of all radii r so that B(z, r) ⊂ Ω for

all z ∈ L,, then d(K) = d(K̂).

Proof. If we instead measure boundary distance using polydiscs of multi-
radius (r, . . . , r) then the result holds by Lemma 2.5.3. By scaling in each
variable, we see that if D is any polydisc such that z+D ⊂ Ω for all z ∈ K,
then also w +D ⊂ Ω for all w ∈ K̂.

Next we can choose any orthonormal basis for Cn and define polydiscs in
these coordinates. Then we see that the result also holds for such polydiscs.
Next let B(r) be a ball such that z+B(r) ⊂ Ω for all z ∈ K, then since the
ball is a union of polydiscs included rotated polydiscs, we see that w+B(r) ⊂
Ω for all w ∈ K̂. □

Theorem 2.5.5 If Ω is an open set in Cn, then the following conditions
are equivalent:
(i) Ω is a domain of holomorphy.

(ii) If K is a compact subset of Ω, then K̂ is a compact subset of Ω and

d(K̂) = d(K).

(iii) If K is a compact subset of Ω, then K̂ is also a compact subset of Ω.
(iv) There exists a function f ∈ A(Ω) such that it is not possible to find
Ω1 and Ω2 satisfying (a) and (b) in Definition 2.5.1 and f2 ∈ A(Ω2) so that
f = f2 in Ω1.

Proof. Notice that if K ⊂ D for some polydisc, then K̂ is also contained in
D. Suppose that (i) holds and that K is a compact subset of Ω. Then by

Theorem 2.5.4, K̂ is a closed set in Cn. Since K̂ is also bounded, it follows
that K̂ is a compact subset of Ω. Moreover, it follows from Theorem 2.5.4
that d(K̂) = d(K). Hence (i) implies (ii). It is clear that (ii) implies (iii)
and that (iv) implies (i).

Hence it only remains to show that (iii) implies (iv).
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Let D be a polydisc. For each ζ ∈ Ω, let Dζ = ζ + rD denote the largest
polydisc contained in Ω. Let M be a countable dense subset of Ω.

We need a lemma:

Lemma 2.5.5a Suppose that Ω satisfies (iii). Then there exists a holo-
morphic function f on Ω such that for each ζ ∈M , there is no holomorphic
function g defined on some neighborhood U of Dζ such that f = g on Dζ .

Proof of Lemma 2.5.5a:
Let ζn be a list of the points in M such that each point in M is listed
infinitely many times. Let K1 ⊂ · · · ⊂ Kn ⊂ · · · be compact subsets of
Ω such that each compact set in Ω is contained in some Kn. Since K̂j is a

compact subset of Ω, there exists a point zj ∈ Dζj \ K̂j . Hence there is a

function fj ∈ A(Ω) so that fj(zj) = 1 and supKj |fj | < 2−j . We can choose
fj so that fj is not identically 1 in any connected component of Ω.

Let

f = Π∞
j=1(1− fj)

j .

Since the sum
∑
j2−j is convergent, this infinite product converges to

an analytic function which does not vanish identically on any connected
component of Ω. All derivatives of f up to order j vanish at zj . Hence there

can be no analytic function g defined on any neighborhood U of any Dζj
agreeing with f on Dζj .

This finishes the proof of Lemma 2.5.5a. We next continue with the proof
that (iii) implies (iv). Let Ω1,Ω2 be any two open sets satisfying (a) and (b)
in Definition 2.5.1. We assume that there is a holomorphic function f2 on
Ω2 such that f2 = f on Ω1. We will show that this leads to a contradiction.

We can find a curve γ(t) ∈ Ω2, 0 ≤ t ≤ 1 so that γ(0) ∈ Ω1 and γ(1) ∈
∂Ω, γ([0, 1) ⊂ Ω. By analytic continuation, f = f2 on an open set containing
γ([0, 1)). We then get a contradiction to the conclusion of Lemma 2.5.5a by
chosing a point ζj in this neighborhood very close to ∂Ω since Ω2 will contain
a polydisc centered at γ(1).

□

2.6 Pseudoconvexity and plurisubharmonicity.

Definition 2.6.1 A function defined in an open set Ω ⊂ Cn with values
in [−∞,∞) is called plurisubharmonic if
(a) u is upper semicontinuous.
(b) For arbitrary z and w in Cn, the function τ → u(z+τw) is subharmonic
in the part of C where it is defined.

Theorem 2.6.2 A function u ∈ C2(Ω) is plurisubharmonic if and only if

(2.6.1)
n∑

j,k=1

∂2u(z)

∂zjzk
wjwk ≥ 0, z ∈ Ω, w ∈ Cn.
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Proof. By Corollary 1.6.10a and Lemma 1.6.11c, a C2 function defined on
an open set in C is subharmonic if and only if ∆u ≥ 0. We calculate:

∂u(z + τw)

∂τ
=

n∑
k=1

∂u

∂ζk
wk

∂2u(z + τw)

∂τ∂τ
=

n∑
j=1

n∑
k=1

∂2u

∂ζj∂ζk
wjwk.

The Theorem follows. □

Theorem 2.6.3 Let 0 ≤ ϕ ∈ C∞
0 (Cn) be equal to 0 when |z| > 1. Let ϕ

depend only on |z1|, . . . , |zn|, and assume that
∫
ϕdλ = 1 where dλ is the

Lebesgue measure. If u is plurisubharmonic in Ω, it follows that

uϵ(z) =

∫
u(z − ϵζ)ϕ(ζ)dλ(ζ)

is plurisubharmonic, that uϵ ∈ C∞ in Ωϵ, and that uϵ ↘ u. ( We assume
that u is not identically −∞ on any connected component of Ω.)

Proof. That uϵ ↘ when ϵ ↘ 0 was proved in Lemma 1.6.11e in the case
n = 1. To show this when n > 1, choose first ϵ′ = (ϵ1, . . . , ϵn) and define

uϵ′(z) =

∫
u(z1 − ϵ1ζ1, · · · , zn − ϵnζn)ϕ(ζ)dλ(ζ)

The one variable result implies that this expression decreases when we de-
crease only one of the ϵi. Hence repeating this process n times show that
uϵ1 ≥ uϵ2 if ϵ1 ≥ ϵ2. From Theorem 1.6.3 it follows that

uϵ(z) =

∫
u(z − ϵζ)ϕ(ζ)dλ(ζ)

=

∫
u(z1 − ϵζ1, · · · , zn − ϵζn)ϕ(ζ)dλ(ζ1) . . . dλ(ζn)

≥
∫
u(z1 − ϵζ1, · · · , zn−1 − ϵζn−1, zn)ϕ(ζ)dλ(ζ1) . . . dλ(ζn−1)

≥
∫
uz1 − ϵζ1, · · · , zn−1 − ϵζn−2, zn−1, zn))ϕ(ζ)dλ(ζ1) . . . dλ(ζn−2)

. . .

≥ u(z)

By upper semicontinuity of u it follows that lim supϵ→0 uϵ ≤ u. Hence
uϵ ↘ u when ϵ↘ 0. To show that uϵ is plurisubharmonic, we fix a complex
line τ → z + τw and show that uϵ(z + τw) is subharmonic as a function
of τ. By theorem 1.6.3 it suffices to find for each τ0 such that z + τ0w ∈ Ω
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arbitrarily small r > 0 so that uϵ(z + τ0w) ≤ 1
2π

∫ 2π
0 uϵ(z + (τ0 + reiθ)w)dθ.

We calculate:

1

2π

∫ 2π

0
uϵ(z + (τ0 + reiθ)w)dθ

=
1

2π

∫ 2π

0
(

∫ ∫
u(z + (τ0 + reiθ)w − ϵζ)ϕ(ζ)dλ(ζ))dθ

=

∫ ∫
ϕ(ζ)(

1

2π

∫ 2π

0
u(z + (τ0 + reiθ)w − ϵζ))dθdλ(ζ))

≥
∫ ∫

ϕ(ζ)u(z + τ0w − ϵζ)dλ(ζ))

= uϵ(z + τ0w)

□

Definition 2.6.6 If K is a compact subset of Ω ⊂ Cn, we define the P (Ω)
hull K̂P

Ω of K by

K̂P
Ω = {z ∈ Ω;u(z) ≤ sup

K
u ∀ u ∈ P (Ω)}.

Since |f | ∈ P (Ω) for all f ∈ A(Ω) we have that K̂P
Ω ⊂ K̂Ω.

Theorem 2.6.5Any of the following two conditions imply that− log d(z,Ωc)
is plurisubharmonic and continuous:
(a) Ω is a domain of holomorphy.

(b) K̂P
Ω ⊂⊂ Ω whenever K is a compact subset of Ω.
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8. Hormander 2.6, 4.1-Banach spaces

Proof. In the case (a) we will use Theorem 2.5.5 which implies that K̂Ω is a
compact subset of Ω whenever K is a compact subset of Ω.

Pick a unit vector ξ. We define a distance in the ξ direction: For z ∈ Ω,
we set dξ(z) := sup{t; z + τξ ∈ Ω,∀ τ ∈ C, |τ | < t}. We show that − log(dξ)
is plurisubharmonic. Assume not. Then there is a complex line L and a disc
D ⊂ L so that dξ has value at the center strictly larger than the average value
on the boundary. We can assume that L is the z1 axis and D is the unit disc.
We can choose a holomorphic polynomial P (z) with h = ℜ(P (z)) so that
h > − log dξ on the boundary of the disc and h(0) < − log dξ(0). Consider
the complex discs Dt = Dt(ζ) for t ∈ C, |t| ≤ 1 and for ζ ∈ C, |ζ| ≤ 1,

Dt(ζ) = (ζ, 0, . . . , 0) + tξe−P (ζ). If ζ is on the boundary of the unit disc, we

have that − log dξ(ζ) < h(ζ) and hence |te−P (ζ)| = |t|e−h(ζ) < elog dξ(ζ) =
dξ(ζ). It follows that boundaries of the discs Dt are all in Ω. We will let K

be the compact union of all these boundaries. Then K̂Ω
P ⊂⊂ Ω or K̂Ω is

compact in Ω. For t = 0 the interior of the disc is in Ω. For those t for which
the whole disc is in Ω, we have then that the distance from the disc to the
boundary of Ω has a uniform lower bound. Hence no such disc gets too close
to the boundary. So it follows that also for all t, |t| ≤ 1 the disc Dt is in Ω.

Let ζ = 0, |t| ≤ 1. Then Dt(0) = tξe−P (0) ∈ Ω. Hence |e−P (0)| < dξ(0), so
− log dξ(0) < h(0), a contradiction.
To finish the proof note that − log d is the sup of all − log dξ and that this
is continuous. □

Theorem 2.6.7 If Ω is a proper open subset of Cn, the following condi-
tions are equivalent:
(i) − log d(z,Ωc) is plurisubharmonic in Ω.
(ii) There exists a continuous plurisubharmonic function u in Ω such that

Ωc = {z ∈ Ω;u(z)} ⊂⊂ Ω

for every c ∈ R.
(iii) K̂P

Ω ⊂⊂ Ω for all compact sets K ⊂ Ω.

Proof. To prove that (i) implies (ii), we define u(z) = ∥z∥2 − log d(z,Ωc).
Then if zn is a sequence in Ω converging to ∂Ω, (including ∞ if Ω is un-
bounded,) then u(zn) → ∞.
(ii) obviously implies (iii).
That (iii) implies (i) follows from Theorem 2.6.5.

□

Definition 2.6.8 The domain Ω is called pseudoconvex if Ω = Cn or if
the equivalent conditions in Theorem 2.6.7 are fulfilled.
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We have shown that domains of holomorphy are pseudoconvex. The Levi
problem asks if pseudoconvex domains are domains of holomorphy. This is
solved in Chapter IV and is major result in this course.

Theorem 2.6.11 Let Ω be a pseudoconvex open set in Cn, let K be a
compact subset of Ω, and ω an open neighborhood of K̂P

Ω . Then there exists
a function u ∈ C∞(Ω) such that
(a) u is strictly plurisubharmonic, that is the hermitian form in (2.6.1) is
strictly positive definite for every z ∈ Ω, i.e. ≥ c(z)∥w∥2, c > 0.
(b) u < 0 in K, but u > 0 in Ω \ ω.
(c) {z ∈ Ω;u(z) < c} ⊂⊂ Ω for all c ∈ R.

Lemma 2.6.11a There exists a continuous plurisubharmonic function
v(z) satisfying (b) and (c).

We prove first the Lemma. By theorem 2.6.7 (ii) there exists a continuous
plurisubharmonic function u0 on Ω satisfying (c). We can assume that u0 <
0 on K by subtracting a constant if necessary. Set K ′ = {z ∈ Ω;u0(z) ≤ 2}
and let L = {z ∈ Ω \ ω;u0 ≤ 0}. If L is empty, we choose v = u0. Then (b)
is also satisfied. So we assume that L is nonempty. By continuity of u0, the
sets K ′ and L ⊂ K ′ are compact. Hence K ′∪L ⊂ Ωδ for all small enough δ.

Let p ∈ L. Then p ∈ ωc and hence p /∈ K̂P
Ω . Therefore there exists a

plurisubharmonic function wp on Ω such that wp(p) > 0 and wp < 0 on
K. Using (wp)ϵ as in Theorem 2.6.3, we get for small enough ϵ a smooth
plurisubharmonic function in Ωϵ so that (wp)ϵ < 0 on K and (wp)ϵ > 0
on some open neighborhood Uϵ,p of p. By compactness we can cover L by
finitely many such neighborhoods, Uϵj ,pj . Let w = sup{(wpi)ϵi on Ωmaxj ϵj}.
Then w is continuous and plurisubharmonic, w > 0 on L and w < 0 on K. In
particular we can assume that w is plurisubharmonic in a neighborhood of
K ′. Let C denote the maximum value of w onK ′. Since L ⊂ K ′, C > 0. Note
then that if 1 < u0(z) < 2, then w ≤ C < Cu0, hence Cu0 = max{w,Cu0}
on the set 1 < u0 < 2. Hence the function v(z) = max{w,Cu0} on {u0 < 2}
and v(z) = Cu0 when u0 > 1 is well defined on all of Ω and is locally
plurisubharmonic, hence plurisubharmonic (see Corollary 1.6.5). We then
have a continuous plurisubharmonic function on Ω which satisfies (b) and
(c). This finishes the proof of Lemma 2.6.11.a

We now prove the Theorem.

Proof. Let v be as in Lemma 2.6.11a. For any c ∈ R, let Ωc := {z ∈
Ω; v(z) < c}. We use the notation of Theorem 2.6.3. Set

vj(z) =

∫
Ωj+1

v(ζ)ϕ((z − ζ)/ϵj)ϵ
−2n
j dλ(ζ) + ϵj |z|2, j = 0, 1, . . . .
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We choose ϵj small enough that v0, v1 < 0 on K and vj < v + 1 in
Ωj . We also have that vj ∈ C∞(Cn) and we can arrange that v is strictly

plurisubharmonic and > v in some neighborhood of Ωj .

Let χ denote a C∞ convex increasing function on R such that χ(t) = 0, t ≤
0 and χ′(t) > 0, t > 0. Let j ≥ 1 : On Ωj \ Ωj−1, vj + 1 − j > v + 1 − j ≥
(j − 1) + 1 − j = 0, where the first inequality holds on Ωj and the second
inequality holds in the complement of Ωj−1. Hence χ(vj + 1− j) is strictly

plurisubharmonic in a neighborhood of Ωj\Ωj−1. Let um = v0+
∑m

1 ajχ(vj+

1−j). Then u0 is strongly plurisubharmonic on a neighborhood of Ω0. Since
χ(v1 + 1− 1) is plurisubharmonic on Ω1 and strongly plurisubharmonic on
a neighborhood of Ω1 \Ω0, the function u1 will be strictly plurisubharmonic
in a neighborhood of Ω1 if we choose a1 large enough. We also choose
a1 large enough so that u1 > v on Ω1. Similarly, we can next choose a2
large enough that u2 is strongly plurisubharmonic in a neighborhood of Ω2.
Inductively we see that um can be chosen strongly plurisubharmonic in a
neighborhood of Ωm and also larger than v there. Notice that u0 < 0 on K.
Also v1+1− 1 < 0 on K, so u1 = v0 < 0 on K. Finally also observe that for
j ≥ 2, vj +1− j < v+1+1− j < (j − 2)+ 2− j = 0 on Ωj−2. Therefore all
um = v0 < 0 onK. Moreover on any Ωj , ifm > j+2, um = uj , so the infinite
sum is locally finite, so the limit exists and is strongly plurisubharmonic on
Ω.

□
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We next move on to Chapter 4 in Hormander: L2 estimates and existence
theorems for the ∂ operator.

We start with some functional analysis. Let G1, G2 denote two complex
Banach spaces with norms ∥ · ∥1, ∥ · ∥2 respectively. Let E denote a complex
subspace of G1, not necessarily closed. We will consider linear maps T :
E → G2. Let G3 = G1 × G2 denote the product space with Banach norm
∥(x, y)∥23 = ∥x∥21 + ∥y∥22. We say that T is closed if the graph of T , GT =
{(x, Tx);x ∈ E} is a closed subspace of G3.

Example 4.0.1 G1 = G2 = L2(0, 1) and Tx = x′. Here the derivative
is in the sense of distributions. So Tx(ϕ) = −

∫
xϕ′. Here E consists of

those L2 functions x for which Tx is an L2 function. Then T is a closed
operator: If (xn, Txn) converge to (x, y) then for any test function ϕ we
have

∫
Txnϕ = −

∫
xnϕ

′ so taking limit one gets
∫
yϕ = −

∫
xϕ′. Therefore

y equals x′ in the sense of distributions.

Let G′
i denote the dual Banach space of Gi. So an element y ∈ G′

i is a
continuous linear function (also called functional) from Gi to C, x → y(x).
Moreover there is a constant Cy so that |y(x)| ≤ Cy∥x∥i. The smallest such
constant Cy is denoted by ∥y∥i.

An important theorem is the Hahn-Banach Theorem.

Theorem 4.0.2, Hahn-Banach Let L ⊂ G be a linear subspace of a
Banach space. Suppose that ϕ : L → C be a linear function with bounded
norm, i.e. |ϕ(x)| ≤ C∥x∥. Then ϕ extends to a linear function ϕ̃ : G → C
such that ϕ̃(x) = ϕ(x) for all x ∈ L and |ϕ̃(x)| ≤ C∥x∥ for all x ∈ G. In
particular the extension belongs to G′.

9. Hormander 4.1-Banach spaces

We will next add the hypothesis that the operator T is densely defined, i.e.
the subspace E is dense. We will define the adjoint operator T ∗ : DT ∗ → G′

1

where DT ∗ ⊂ G′
2 is a linear subspace. We say that y belongs to DT ∗ if there

exists a constant C so that |y(Tx)| ≤ C∥x∥1 for all x ∈ E. Hence y → y(Tx)
extends to a continuous linear functional z on E = G1 such that ∥z∥G′

1
≤ C.

We set T ∗(y) = z.

If (y1, y2) ∈ G′
1 × G′

2 then this defines a continuous linear functional on
G1 ×G2 by (y1, y2)(x1, x2) = y1(x1)− y2(x2).

Let G⊥
T ⊂ G′

1 ×G′
2 denote those (y1, y2) for which (y1, y2)(x1, x2) = 0 for

all (x1, x2) ∈ GT . Clearly G
⊥
T is a closed subspace of G′

1 ×G′
2.

Lemma 4.0.3 G⊥
T = GT ∗ .
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Proof. Suppose first that (y1, y2) ∈ G⊥
T . Then if x ∈ DT we have that

y1(x)−y2(Tx) = 0. This implies that |y2(Tx)| = |y1(x)| ≤ ∥y1∥∥x∥. Hence y2
satisfies the requirement to be in DT ∗ . Moreover y1 satisfies the equirement
to equal T ∗(y2). Hence (y1, y2) ∈ GT ∗ .

Suppose next that (y1, y2) ∈ GT ∗ . Hence y1 = T ∗(y2). This implies that
for any x ∈ DT , we have that y1(x) = y2(Tx). Hence (y1, y2) ∈ G⊥

T . □

Corollary 4.0.4 The graph of T ∗ is closed.

If G is a complex Banach space, we define G′′ to be the dual of G′.
There is a natural isometric embedding ϕ of G into G′′: For x ∈ G, define
ϕ(x)(y) = y(x) for y ∈ G′

1. Then ϕ(x) ∈ G′′
1. Also ∥ϕ(x)∥ ≤ ∥x∥ and by

the Hahn Banach theorem you have equality: Given x ̸= 0, choose a linear
function ỹ on Cx by ỹ(x) = ∥x∥ and extend to G by Hahn-Banach. Call the
extension y. Then y ∈ G′ and ∥y∥ = 1. Now ϕ(x)(y) = y(x) = ∥x∥ = ∥x∥∥y∥
so ∥ϕ(x)∥ ≥ ∥x∥. Hence ∥ϕ(x)∥ = ∥x∥. We say that G′′ = G if this map is
surjective. The Banach space is called reflexive in this case. In this case, we
also have that G′ = G′′′. Note that if G1, G2 are Banach spaces, then the
dual of G1×G2 equals G′

1×G′
2. Namely, if ϕ is a continuous linear function

on G1 ×G2, then ϕ(x1, x2) = ϕ(x1, 0) + ϕ(0, x2) = y1(x1) + y2(x2).

Lemma 4.0.5 Let G be a reflexive Banach space, i.e. ϕ(G) = G′′, and
let H be a closed subspace of G. Then (H⊥)⊥ = ϕ(H).

Proof. Since ϕ is an isometry and H is closed, ϕ(H) is also closed. This
follows because Banach spaces are complete. Suppose that x ∈ H and
y ∈ H⊥. Then y(x) = 0 and hence ϕ(x)(y) = y(x) = 0. Hence ϕ(x) ∈ H⊥⊥.
Hence ϕ(H) ⊂ H⊥⊥. Suppose next that z ∈ G′′\ϕ(H). Hence there exists an
η ∈ G′′′ so that η(z) ̸= 0 while η vanishes on ϕ(H). By reflexivity, we have
that there exists a y ∈ G′ so that z(y) = η(z) ̸= 0 while w(y) = η(w) = 0
for all w ∈ ϕ(H). Hence if x ∈ H and w = ϕ(x) ∈ ϕ(H), then y(x) =
(ϕ(x))(y) = w(y) = 0. So, y ∈ H⊥. Since z(y) ̸= 0, it follows that z cannot
be in H⊥⊥, so H⊥⊥ ⊂ ϕ(H). □

Corollary 4.0.6 If G1, G2 are reflexive and T : G1 → G2 is a densely
defined closed linear operator, then T ∗∗ = T.

Proof. Set G′′
j = ϕj(Gj). Then

GT ∗∗ = (GT ∗)⊥ = G⊥⊥
T = {(ϕ1(x), ϕ2(Tx)); (x, Tx) ∈ GT }.

We write this imprecisely as GT ∗∗ = GT , or T
∗∗ = T. □
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Lemma 4.0.7 Assume that G1, G2 are reflexive Banach spaces. Then
the operator T ∗ is densely defined.

Proof. Suppose that there exists a y0 ∈ G′
2\DT ∗ . Then there exists a z0 ∈ G′′

2

so that z0(y0) ̸= 0 while z0(y) = 0 for all y ∈ DT ∗ . So z0 ̸= 0. Hence for the
point (0, z0) ∈ G′′

1 × G′′
2 we have that 0(T ∗y) − z0(y) = 0 for all y ∈ DT ∗ .

It follows that (0, z0) ∈ G⊥
T ∗ = G⊥⊥

T . We write (0, z0) = (ϕ1(0), ϕ2(x)) for
some (0, x) ∈ G1 × G2. Then (0, x) ∈ GT . But T (0) = 0 and x cannot be
zero since ϕ2(x) = z0 ̸= 0, a contradiction. □

We recall the uniform boundedness principle (Banach-Steinhaus theo-
rem).

Theorem 4.0.8 Let F denote a family of continuous linear functionals
on a Banach space B. Suppose that for every x ∈ B there exists a constant
cx so that |F (x)| ≤ cx∥x∥B for all F ∈ F . Then there exists a constant C
so that ∥F∥ ≤ C for all F ∈ F .

The proof uses Baire category. For any number A the set of x where
cx ≤ A is closed. (Closedness follows from continuity of the functionals.)
Hence for some A the set has interior.

Notation: Let y ∈ G′ and let H ⊂ G be a linear subspace. We denote by
∥y|H∥G′ the norm of the linear functional y restricted to H. So ∥y|H∥G′ is
the smallest c so that |y(x)| ≤ c∥x∥ for all x ∈ H.

We next give a more general version of Theorem 4.1.1 in Hormander.

Theorem 4.1.1’ Let G1, G2 be reflexive Banach spaces and let T : G1 →
G2 be a densely defined closed linear operator. Let F ⊂ G2 be a closed
subspace containing the range of T,RT . Then F = RT if and only if there
exists a constant C > 0 such that

(4.1.1)′ ∥y|F ∥G′
2
≤ C∥T ∗y∥G′

1
∀ y ∈ DT ∗ .

If any of the two equivalent conditions are satisfied, then there exists for
every z ∈ F an x ∈ DT with Tx = z and ∥x∥G1 ≤ C∥Tx∥G2 = C∥z∥G2 for
the same constant C.

Proof. Suppose that RT = F. We will apply the Banach-Steinhaus theorem
to a family of linear functionals on the Banach space F. Namely, let G denote
the family of y ∈ DT ∗ for which ∥T ∗y∥G′

1
≤ 1. Define for each such y a linear

function Ly ∈ F on F given by Ly(x) = y(x). This is a continuous linear
functional defined on F. For a given x ∈ F , pick some z ∈ DT for which
x = Tz. Then we have that for any Ly ∈ F , that

|Ly(x)| = |y(x)| = |y(Tz)| = |(T ∗(y))(z)| ≤ ∥T ∗(y)∥G′
1
∥z∥G1 ≤ ∥z∥G1 .

Hence the family F is bounded uniformly on any given x ∈ F. Hence by the
Banach-Steinhaus Theorem, there is a constant C so that ∥(Ly)|F ∥G′

2
≤ C

for any y ∈ DT ∗ with ∥T ∗y∥G′
1
≤ 1. Then it follows that ∥(Ly)|F ∥G′

2
≤
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C∥T ∗y∥G′
1
∀ y ∈ DT ∗ . Since (Ly)|F = y(x), x ∈ F we get that ∥y|F ∥G′

2
≤

C∥T ∗y∥G′
1
for all y ∈ DT ∗ .

We next suppose that (4.1.1)’ is satisfied. Fix a z ∈ F. If y ∈ DT ∗ , w =
T ∗(y) ∈ RT ∗ , set ϕ(w) = y(z). Note that if w = T ∗(y1) = T ∗(y2), then
T ∗(y1 − y2) = 0. Hence by (4.1.1)’, (y1 − y2)(z) = 0, so y1(z) = y2(z) and
therefore ϕ(w) is well defined. Also, by (4.1.1)’,

|ϕ(w)| = |y(z)|
≤ ∥y|F ∥G′

2
∥∥z∥G2

≤ C∥T ∗y∥G′
1
∥z∥G2

= C∥w∥G′
1
∥z∥G2 ,

hence ϕ is a bounded linear functional with norm at most C∥z∥G2 . This
is then a bounded linear function on the Range of T ∗ in G′

1 with norm
≤ C∥z∥G2 . We extend ϕ to all of G′

1 using the Hahn-Banach theorem. Then
ϕ ∈ G′′

1 with norm ∥ϕ∥G′′
1
≤ C∥z∥G2 .

Recall the definition of ∗ as it applies in this situation. We say that ϕ ∈ G′′
1

belongs to D(T ∗)∗ ⊂ G′′
1 if there exists a constant c so that |ϕ(T ∗y)| ≤ c∥y∥G′

2

for all y ∈ DT ∗ . Since |ϕ(T ∗y)| = |y(z)| ≤ ∥z∥G2∥y∥G′
2
and our z is fixed,

it follows that ϕ ∈ DT ∗∗ ⊂ G′′
1. By reflexivity there is an x ∈ G1 with

norm ≤ C∥z∥ such that u(x) = ϕ(u) for all u ∈ G′
1. Moreover x ∈ DT . So

whenever y ∈ DT ∗ ,

y(z) = ϕ(T ∗y) = (T ∗(y))(x) = y(Tx).

So we have shown that for any fixed z ∈ F, there is an x ∈ DT , ∥x∥G2 ≤
C∥z∥G1 so that y(z) = y(Tx) for all y ∈ DT ∗ . Since DT ∗ is dense in G′

2, it
follows that y(z−Tx) = 0 for all y ∈ G′

2. By the Hahn-Banach theorem this
implies that z − Tx = 0. □

Let NT denote the nullspace of T. Clearly NT is contained in DT and NT

is a closed subspace.

Next we study the case of three reflexive Banach spaces, G1, G2, G3. Also
we consider closed, densely defined linear operators, T : G1 → G2 and
S : G2 → G3 satisfying the condition that T (G1) ⊂ NS . Hence S ◦ T is
defined on DT and S ◦ T ≡ 0. We call this for short an S, T system.

Definition 4.1.1a An S, T system satisfies the Basic Estimate if there
exists a constant C so that for every y ∈ DT ∗ and every u ∈ DS we have
that

(4.1.5)′ |y(u)| ≤ C(∥T ∗(y)∥G′
1
∥u∥G2 + ∥y∥G′

2
∥S(u)∥G3).

Theorem 4.1.1b If we have an S, T system satisfying the basic estimate,
then T (G1) = NS .
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Proof. The space F = NS satisifes the condition of Theorem 4.1.1’, namely,
F is a closed subspace of G2 and it contains RT .We apply the Basic estimate
to y ∈ DT ∗ and u ∈ F. Then |y(u)| ≤ C∥T ∗(y)∥G′

1
∥u∥G2 since S(u) = 0.

This is the estimate (4.1.1)’ in Lemma 4.1.1’. The theorem follows. □

10. Hormander 4.1-Lp spaces

We introduce some Banach spaces. Let Ω be an open subset of Cn. Let
1 < r, s <∞, 1r +

1
s = 1. If ϕ is a continuous real function on Ω, we define

Lr(Ω, ϕ) = {f : Ω → C,
∫
Ω
|f |re−ϕdλ =: ∥f∥rLr(Ω,ϕ) <∞}.

Here dλ is Lebesgue measure and f is assumed to be measurable and locally
in Lr, f ∈ Lrloc(Ω). We define similarly Ls(Ω, ϕ). We know that the dual of
Lr(Ω, ϕ) is Ls(Ω, ϕ) and vice versa. In particular these spaces are reflexive.
We have for f ∈ Lr(Ω, ϕ) and g ∈ Ls(Ω, ϕ) that g(f) =

∫
Ω fge

−ϕ. We write

g(f) =< f, g >ϕ and get < f, g >ϕ= < g, f >ϕ. Also we have |g(f)| ≤
∥f∥Lr(Ω,ϕ)∥g∥Ls(Ω,ϕ).

We can do the same for (p, q) forms.

Let Lr(p,q)(Ω, ϕ) denote the space of forms of type (p, q) with coefficients

in Lr(Ω, ϕ).

f =

′∑
|I|=p

′∑
|J |=q

fI,Jdz
I ∧ dzJ .

where
∑′ refers to summing over strictly increasing multiindices. We set

|f |r =
∑′

I,J |fI,J |r and ∥f∥rϕ =
∫
|f |re−ϕ. Then the dual of Lr(p,q)(Ω, ϕ)

is Ls(p,q)(Ω, ϕ) and we have < f, g >ϕ=
∫ ∑′

I,J

∫
fI,JgIJe

−ϕ. Set f · g =∑
I,J fI,JgI,J for the pointwise product.

Similarly we define Lr(p,q)(Ω)loc. Let D(Ω) denote the space of C∞ func-

tions on Ω with compact support in Ω. Similarly we define D(p,q)(Ω). We
observe that D(p,q)(Ω) is dense in Lr(p,q)(Ω, ϕ).

Let 1 < r′, s′ < ∞ with 1
r′ +

1
s′ = 1. Let ϕ1, ϕ2 be continuous functions

on Ω. Consider the operator ∂. This gives rise to a linear densely defined
closed operator

T : Lr(p,q)(Ω, ϕ1) → Lr
′

(p,q+1)(Ω, ϕ2).

An element u ∈ Lr(p,q)(Ω, ϕ1) is in DT if ∂u, defined in the sense of distri-

butions belongs to Lr
′

(p,q+1)(Ω, ϕ2) and then we set Tu = ∂u. The operator

is densely defined since it is defined on D(p,q)(Ω). The closedness is as in
Example 2.1. Our goal is to show that the range of T consists of all those f
for which ∂f = 0 for some choices of ϕj and r, r

′.
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Consider the case of 3 Banach spaces,

G1 = Lr1(p,q)(Ω, ϕ1),

G2 = Lr2(p,q+1)(Ω, ϕ2),

G3 = Lr3(p,q+2)(Ω, ϕ3)

with ∂ operators T : G1 → G2 and S : G2 → G3. This is then an (S, T )
system and our goal is to prove the Basic Estimate under suitable conditions.

We will assume that 1 < r3 ≤ r2 ≤ r1 <∞.

Lemma 4.1.3a Let ην be a sequence of C∞ functions with compact sup-
port in Ω. Suppose that 0 ≤ ην ≤ 1 and that on any given compact subset
of Ω we have ην = 1 for all large ν. Suppose that

(4.1.6)′ e−ϕ3
n∑
k=1

|∂ην/∂zk|r3 ≤ e−r3ϕ2/r2 .

If r3 < r2 we add the extra condition that Ω has a finite volume. Then
for every f ∈ DS the sequence ηνf → f in G2. Moreover ηνf ∈ DS and
S(ηνf) → S(f) in G3.

Proof. The sequence |ηνf | ≤ |f | and ηνf converges pointwise to f , so∫
|ηνf − f |r2e−ϕ2dλ→ 0 by the Lebesgue dominated convergence theorem.

We have that S(ηνf) = ηνS(f) + ∂ην ∧ f in the sense of distributions
and S(f) ∈ Lr3(ϕ3) so to show that ηνf ∈ DS we need to show that
∂ην ∧ f ∈ Lr3(ϕ3). We have the pointwise estimate that |∂ην ∧ f |r3e−ϕ3 ≤
|f |r3e−r3ϕ2/r2 . We show that the right side is an L1 function on Ω. If so,
∂ην ∧ f ∈ Lr3(ϕ3) and the Lebesgue dominated convergence theorem im-
plies that the integral converges to 0. If r2 = r3 the function is in L1 by the
hypothesis that f ∈ G2. Suppose that r2 > r3. We then get if r3r2 + 1

t = 1,∫
Ω
|f |r3e−r3ϕ2/r2 =

(∫
Ω
(|f |r3e−r3ϕ2/r2)r2/r3

)r3/r2
(

∫
Ω
dλ)1/t

=

(∫
Ω
|f |r2e−ϕ2

)r3/r2
(

∫
Ω
dλ)1/t

< ∞

Then the lemma follows since ηνS(f) → S(f) in G3. □

Lemma 4.1.3b Let ην be a sequence of C∞ functions with compact sup-
port in Ω. Suppose that 0 ≤ ην ≤ 1 and that on any given compact subset
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of Ω we have ην = 1 for all large ν. Suppose that

(4.1.6)′′ e−ϕ2
n∑
k=1

|∂ην/∂zk|r2 ≤ e−r2ϕ1/r1 .

If r2 < r1 we add the extra condition that Ω has a finite volume. Then
for every f ∈ D∗

T the sequence ηνf → f in G′
2. Moreover ηνf ∈ DT ∗ and

T ∗(ηνf) → T ∗(f) in G′
1.

Proof. Suppose that f ∈ DT ∗ . By the Lebesgue dominated convergence
theorem, ηνf → f in G′

2. We show that ηf ∈ DT ∗ if η is smooth with
compact support. Let u ∈ DT . Then Tu ∈ G2 and

(ηf)(Tu) = < Tu, ηf >ϕ2
= < ηTu, f >ϕ2

= < T (ηu)− ∂η ∧ u, f >ϕ2
= < T (ηu), f >ϕ2 − < ∂η ∧ u, f >ϕ2
= < ηu, T ∗f >ϕ1 − < ∂η ∧ u, f >ϕ2
= < u, ηT ∗f >ϕ1 − < ∂η ∧ u, f >ϕ2

So

|(ηf)(Tu)| ≤ ∥ηT ∗f∥G′
1
∥u∥G1 + ∥f∥G′

2

(∫
|∂η ∧ u|r2e−ϕ2

)1/r2

≤ ∥T ∗f∥G′
1
∥u∥G1 + ∥f∥G′

2

(∫
|∂η ∧ u|r2e−ϕ2

)1/r2

≤ ∥T ∗f∥G′
1
∥u∥G1 + ∥f∥G′

2

∫ |u|r2(
∑
j

∂η

∂zj
|r2)e−ϕ2

1/r2

≤ ∥T ∗f∥G′
1
∥u∥G1 + Cη∥f∥G′

2

(∫
|u|r2e−r2ϕ1/r1

)1/r2

where Cη = 1 for η = ην

If r1 = r2 we see that

|(ηf)(Tu)| ≤ ∥T ∗f∥G′
1
∥u∥G1 + Cη∥f∥G′

2

(∫
|u|r1e−ϕ1

)1/r1

=
(
∥T ∗f∥G′

1
+ Cη∥f∥G′

2

)
∥u∥G1



34 JOHN ERIK FORNÆSS

So then ηf ∈ DT ∗ . Next, consider the case r1 > r2.

|(ηf)(Tu)| ≤ ∥T ∗f∥G′
1
∥u∥G1 + Cη∥f∥G′

2

(∫
|u|r2e−r2ϕ1/r1

)1/r2

= ∥T ∗f∥G′
1
∥u∥G1

+ Cη∥f∥G′
2

((∫ (
|u|r2e−r2ϕ1/r1

)r1/r2)r2/r1
|Ω|1/t′

)1/r2

≤ ∥T ∗f∥G′
1
∥u∥G1 + Cη∥f∥G′

2
|Ω|1/(r2t′)

(∫
|u|r1e−ϕ1

)1/r1

=
(
∥T ∗f∥G′

1
+ Cη∥f∥G′

2
|Ω|1/(r2t′)

)
∥u∥G1

This shows that ηf ∈ DT ∗ also in the case when r1 > r2. It remains to
show that T ∗(ηνf) → T ∗f. It suffices to show that T ∗(ηνf) − ηνT

∗f → 0.
Let u ∈ DT . Then

(T ∗(ηνf)− ηνT
∗f)u = < u, T ∗(ηνf)− ηνT

∗f >ϕ1
= < Tu, ηνf >ϕ2 − < u, ηνT

∗f >ϕ1
= < ηνTu, f >ϕ2 − < u, ηνT

∗f >ϕ1

= < T (ηνu)− ∂ην ∧ u, f >ϕ2 − < u, ηνT
∗f >ϕ1

= < ηνu, T
∗f >ϕ1 − < ∂ην ∧ u, f >ϕ2 − < u, ηνT

∗f >ϕ1

= − < ∂ην ∧ u, f >ϕ2

Hence

|(T ∗(ηνf)− ηνT
∗f)u| ≤

∫
|f ||∂ην ∧ u|e−ϕ2 .

So in particular we have for any u ∈ Dp,q that

|
∫

(T ∗(ηνf)− ηνT
∗f) · ue−ϕ1 | ≤

∫
|f ||∂ην ||u|e−ϕ2 .

This implies the pointwise a.e. estimate

|(T ∗(ηνf)− ηνT
∗f)e−ϕ1 | ≤ |f ||∂ην |e−ϕ2 .
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So

|(T ∗(ηνf)− ηνT
∗f)| ≤ |f ||∂ην |eϕ1−ϕ2

|(T ∗(ηνf)− ηνT
∗f)|s1e−ϕ1 ≤ |f |s1 |∂ην |s1es1(ϕ1−ϕ2)e−ϕ1

= |f |s1
(∑

k

|∂ην
∂zk

|

)s1
es1(ϕ1−ϕ2)e−ϕ1

≤ |f |s1
(
n
∑
k

|∂ην
∂zk

|r2
)s1/r2

es1(ϕ1−ϕ2)e−ϕ1

≤ |f |s1
(
ne−r2ϕ1/r1eϕ2

)s1/r2
es1(ϕ1−ϕ2)e−ϕ1

= |f |s1ns1/r2eϕ1(−s1/r1+s1−1)eϕ2(s1/r2−s1)

= |f |s1ns1/r2eϕ1(−s1(1−1/s1)+s1−1)eϕ2(s1(1−1/s2)−s1)

= |f |s1ns1/r2e−s1ϕ2/s2

Since the functions |(T ∗(ηνf)−ηνT ∗f)| converge pointwise to zero, it suf-

fices by the dominated convergence theorem to show that |f |s1ns1/r2e−s1ϕ2/s2
is an L1 function. If s1 = s2 this follows since f ∈ Ls2(p,q+1)(Ω, ϕ2). If s1 < s2
it follows also because

∫
|f |s1e−s1ϕ2/s2 ≤

(∫ (
|f |s1e−s1ϕ2/s2

)s2/s1)s1/s2
|Ω|1/t′′

< ∞

□

Next we will study smoothing.

We will use Minkowski’s integral inequality. See Stein, Elias (1970). Sin-
gular integrals and differentiability properties of functions. Princeton Uni-
versity Press.

Theorem 4.1.40 Let F (x, y) ≥ 0 be a measurable function on the product
of two measure spaces S1, S2 with positive measures dµ1(x), dµ2(y) respec-
tively. Let 1 ≤ r <∞. Then(∫

S1

(∫
S2

F (x, y)dµ2(y)

)r
dµ1(x)

)1/r

≤
∫
S2

(∫
S1

F r(x, y)dµ1(x)

)1/r

dµ2(y)

The following is the smoothing theorem.



36 JOHN ERIK FORNÆSS

Lemma 4.1.4a Let χ be a smooth function with compact support in RN ,
with

∫
χ(x)dx = 1 and set χϵ(x) =

1
ϵN
χ(xϵ ). Let 1 ≤ r < ∞. If g ∈ Lr(RN )

then the convolution g ∗ χϵ satisfies

(g ∗ χϵ)(x) :=

∫
RN

g(y)χϵ(x− y)dy

=

∫
g(x− y)χϵ(y)dy

=

∫
g(x− ϵy)χ(y)dy

and is a C∞ function such that ∥g ∗χϵ− g∥Lr → 0 when ϵ→ 0. The support
of g ∗ χϵ has no points at distance > ϵ from the support of g if the support
of χ lies in the unit ball.

Proof. The equalities for g ∗χϵ(x) are obvious. The first integral shows that
g∗χϵ is C∞ since g is in L1

loc and since we can differentiate under the integral
sign. We apply Minkowski’s integral inequality to the second integral.

(∫
|g ∗ χϵ|rdx

)1/r

=

(∫
|
∫
g(x− y)χϵ(y)dy|rdx

)1/r

≤
(∫ (∫

|g(x− y)||χϵ(y)|dy
)r

dx

)1/r

≤
∫ (∫

[|g(x− y)||χϵ(y)|]r dx
)1/r

dy

=

∫
|χϵ(y)|∥g∥Lr

= C∥g∥Lr , C :=

∫
|χ|

This shows that g ∗ χϵ ∈ Lr and that

∥g ∗ χϵ∥Lr ≤ C∥g∥Lr .

Next pick a δ > 0 and choose a continuous function h with compact
support so that ∥g − h∥Lr < δ. We then get

∥g ∗ χϵ − g∥Lr ≤ ∥g ∗ χϵ − h ∗ χϵ∥Lr + ∥h ∗ χϵ − h∥Lr + ∥h− g∥Lr
≤ ∥(g − h) ∗ χϵ∥Lr + ∥h ∗ χϵ − h∥Lr + δ

≤ (C + 1)δ + ∥h ∗ χϵ − h∥Lr
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We have that

(h ∗ χϵ − h)(x) =

∫
(h(x− ϵy)− h(x))χ(y)dy.

Since h is continuous with compact support and χ has compact support,
it follows that h ∗ χϵ − h is supported in a ball ∥x∥ ≤ R for ϵ < 1 and
converges uniformly to 0 when ϵ→ 0. It follows that g ∗ χϵ → g in Lr.

The last assertion follows from the last of the integrals in the expression
for g ∗ χϵ. □

Exercises

1) We know that the following holds for functions. Show that it also holds
for (p,q) forms.

| < f, g >ϕ | ≤ |f |r|g|s.

2) Let T be the operator ∂ : L2
p,q(Ω) → L2

p,q+1(Ω). Show that T is a closed
and densely defined operator.

3) Consider 3 Banach spaces,

G1 = Lr1(p,q)(Ω, ϕ1),

G2 = Lr2(p,q+1)(Ω, ϕ2),

G3 = Lr3(p,q+2)(Ω, ϕ3)

with ∂ operators T : G1 → G2 and S : G2 → G3. where the ϕi are continuous
functions and 1 < ri <∞. Show that the range ot T is in the domain of S.
Show that S ◦ T = 0.

11. Hormander 4.1-Lp, L2 spaces

Lemma 4.1.4b Let f1, . . . , fN ∈ L1
loc(RN ). Also suppose that the distri-

bution
∑N

j=1
∂fj
∂xj

∈ L1
loc. Then

N∑
j=1

∂(fj ∗ χϵ)
∂xj

=

 N∑
j=1

∂fj
∂xj

 ∗ χϵ.

Proof. Both sides are C∞ functions. To show that they are equal, we show
that for any ϕ ∈ C∞

0 that∫ N∑
j=1

∂(fj ∗ χϵ)
∂xj

(x)ϕ(x)dx =

∫  N∑
j=1

∂fj
∂xj

 ∗ χϵ(x)ϕ(x)dx.
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∫  N∑
j=1

∂fj
∂xj

 ∗ χϵ(x)ϕ(x)dx =

∫ ∫  N∑
j=1

∂fj
∂xj

 (x− y)χϵ(y)dy

ϕ(x)dx

=

∫
χϵ(y)

∫  N∑
j=1

∂fj
∂xj

 (x− y)ϕ(x)dx

 dy

= −
∫
χϵ(y)

∫ N∑
j=1

fj(x− y)
∂ϕ

∂xj
(x)dx

 dy

= −
∫ ∫ N∑

j=1

∂ϕ

∂xj
(x)fj(x− y)χϵ(y)dy

 dx

= −
∫ N∑

j=1

∂ϕ

∂xj
(x)(fj ∗ χϵ)(x)dx

=

∫ N∑
j=1

∂(fj ∗ χϵ)
∂xj

(x)ϕ(x)dx

□

Lemma 4.1.3c Let f ∈ DS have compact support in Ω. Then f ∗χϵ → f
in G2, f ∗ χϵ ∈ DS and S(f ∗ χϵ) → Sf in G3.

Proof. By the smoothing theorem, f ∗χϵ → f in Lr2 and since f has compact
support, f ∗χϵ → f in ∥ · ∥G2 . Since f ∗χϵ is smooth with compact support,
f ∗ χϵ ∈ DS . Furthermore, Sf is a form such that each coefficient can be

written as an expression
∑

j
∂fj
∂xj

where each fj is a finite linear combination

of the coefficients of f. [Recall that
∂fI,J
∂zj

= 1
2
∂fI,J
∂xj

+ i
2
∂fI,J
∂yj

.] Hence, by

Lemma 4.1.4b, (Sf)∗χϵ = S(f ∗χϵ). By the smoothing theorem (Sf)∗χϵ →
Sf in Lr3loc. Since f has compact support, ϕ3 is bounded so (Sf) ∗ χϵ → Sf
in G3. Therefore S(f ∗ χϵ) → Sf in G3.

□

Next we prove a similar lemma for T ∗. We first do some preparations. In
this lemma ϕ1, ϕ2 are continuous functions on Ω.

Lemma 4.1.3d Let f =
∑′

|I|=p
∑′

|J |=q+1 fI,Jdz
I ∧ dzJ ∈ Ls2(p,q+1)(Ω, ϕ2)

and suppose that f ∈ DT ∗ . Let T ∗(f) =
∑′

I,K gI,Kdz
I ∧dzK ∈ Ls1(p,q)(Ω, ϕ1).

Then

(4.1.9) gI,K = (−1)p−1eϕ1
n∑
j=1

∂(e−ϕ2fI,jK)

∂zj
.
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In particular, the distribution
∑n

j=1
∂(e−ϕ2fI,jK)

∂zj
∈ Ls1loc.

Proof. Let u =
∑′

|I|=p
∑′

|K|=q uI,Kdz
I ∧ dzK ∈ Dp,q(Ω). So in particular,

u ∈ DT . Then (T ∗f)(u) = f(Tu). Here

Tu =

′∑
|I|=p

′∑
|K|=q

∂uI,K
∂zj

dzj ∧ dzI ∧ dzK

= (−1)p
′∑

|I|=p

′∑
|K|=q

∂uI,K
∂zj

dzI ∧ dzj ∧ dzK .

If I1 is a permutation of I and J1 is a permutation of J we write fI1,J1 =

ϵI1,J1I,J fI,J where ϵ is the signature of the permutation. So, for example, the
signature is −1 if only two indices are interchanged. In particular a term
fI,jK = 0 if j ∈ K. We get

(T ∗f)(u) =

∫ ∑
I,K

uI,KgI,Ke
−ϕ1 = f(Tu) =

∫
(−1)p

∑
I,K,j

∂uI,K
∂zj

fI,jKe
−ϕ2 .

Hence for all smooth functions ψ with compact support, we have for each
I,K that ∫

gI,Ke
−ϕ1ψ = (−1)p

∫ ∑
j

fI,jKe
−ϕ2 ∂ψ

∂zj
.

Hence

∫
gI,Ke

−ϕ1ψ = (−1)p
∫ ∑

j

fI,jKe
−ϕ2 ∂ψ

∂zj
.

Therefore

gI,Ke
−ϕ1 = (−1)p−1

n∑
j=1

∂(e−ϕ2fI,jK)

∂zj
∈ Ls1loc.

□

Corollary 4.1.3e If ϕ2 ∈ C∞(Ω), then

gI,K = (−1)peϕ1−ϕ2
∑
j

∂ϕ2
∂zj

fI,jK + (−1)p−1eϕ1−ϕ2
∑
j

∂fI,jK
∂zj

where the distribution
∑

j
∂fI,jK
∂zj

is in Ls1loc ⊃ Ls2loc.
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Proof. The distribution
∑

j
∂(fI,jKe

−ϕ2 )
∂zj

∈ Ls1loc. Let ϕ be a test function.

∫ ∑
j

∂(fI,jKe
−ϕ2)

∂zj

ϕ = −
∑
j

∫
fI,jKe

−ϕ2 ∂ϕ

∂zj

= −
∑
j

∫
fI,jK

∂(e−ϕ2ϕ)

∂zj
−
∑
j

∫
fI,jKe

−ϕ2 ∂ϕ2
∂zj

ϕ

=

∑
j

∂fI,jK
∂zj

 (e−ϕ2ϕ)−

∑
j

fI,jKe
−ϕ2 ∂ϕ2

∂zj

 (ϕ)

=

e−ϕ2∑
j

∂fI,jK
∂zj

 (ϕ)−

e−ϕ2∑
j

fI,jK
∂ϕ2
∂zj

 (ϕ)

The expression on the left is in Ls1loc and the second expression on the
right is in Ls2loc. Hence the first expression on the right is in Ls1loc.

□

Lemma 4.1.3f Suppose that f =
∑′

|I|=p,|J |=q+1 fI,Jdz
I∧dzJ ∈ Dp,q+1, ϕ2 ∈

C∞. Then f ∈ DT ∗ .

Proof. Let g =
∑′

I,K gI,Kdz
I∧dzJ where gI,K = (−1)p−1eϕ1

∑
I,K,j

∂(fI,jKe
−ϕ2 )

∂zj
.

To show that f ∈ DT ∗ , we prove that for any u ∈ DT , f(Tu) = g(u). We
write u =

∑′
|I|=p

∑′
|K|=q uI,Kdz

I ∧ dzK ∈ G1, and

Tu = (−1)p
′∑

|I|=p

′∑
|K|=q

∂uI,K
∂zj

dzI ∧ dzj ∧ dzK .
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Then

f(Tu) = < Tu, f >ϕ2

=

∫
(−1)p

′∑
I

′∑
J

∑
jK=J

ϵjKJ f I,J
∂uI,K
∂zj

e−ϕ2

= (−1)p−1
′∑
I

′∑
J

∫ ∑
jK=J

ϵjKJ
∂(fI,Je−ϕ2)

∂zj
uI,K

= (−1)p−1
′∑
I

∑
jK

∫
∂(fI,jKe−ϕ2)

∂zj
uI,K

= (−1)p−1
′∑
I

′∑
K

∫ eϕ1∑
j

∂(fI,jKe−ϕ2)

∂zj

uI,Ke
−ϕ1

= < u, g >

= g(u)

□

Lemma 4.1.3g Suppose that ϕ2 ∈ C∞. Let f ∈ DT ∗ have compact sup-
port. Then f ∗χϵ → f in G′

2. Moreover, f ∗χϵ ∈ DT ∗ and T ∗(f ∗χϵ) → T ∗f
in G′

1.

Proof. Since f ∗ χϵ ∈ Dp,q+1 for small ϵ, we have by Lemma 4.1.3f that
f ∗ χϵ ∈ DT ∗ . Also by the smoothing theorem, f ∗ χϵ → f in G′

2. By
Corollary 4.1.3e we can write T ∗(f ∗ χϵ) =

∑′
I,K gI,Kdz

I ∧ dzK where

gI,K = (−1)peϕ1−ϕ2
∑
j

∂ϕ2
∂zj

fI,jK ∗ χϵ + (−1)p−1eϕ1−ϕ2
∑
j

∂(fI,jK ∗ χϵ)
∂zj

.

The first term on the right converges to (−1)peϕ1−ϕ2
∑

j
∂ϕ2
∂zj

fI,jK in Ls2 by

the smoothing Theorem. Hence it also converges in Ls1 . The second part

can be written, using Lemma 4.1.4b, as (−1)p−1eϕ1−ϕ2
(∑

j
∂fI,jK
∂zj

)
∗χϵ and

converges to

(−1)p−1eϕ1−ϕ2
∑
j

∂fI,jK
∂zj

in Ls1 . □

Theorem 4.1.3h Suppose that ϕ1, ϕ3 are continuous and ϕ2 is C∞. Sup-
pose that {ην}, 0 ≤ ην ≤ 1 is a sequence of compactly supported C∞ func-
tions such that on any compact subset of Ω all ην = 1 except finitely
many, as in (4.1.6)’ and (4.1.6)”. Suppose also that if r1 ̸= r3 then Ω
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has bounded volume. Suppose that f ∈ DT ∗ and g ∈ DS . Then there exist
sequences {fn}, {gn} ⊂ D(p,q+1) so that fn ∈ DT ∗ , gn ∈ DS , fn → f in G′

2,
T ∗fn → T ∗f in G′

1, gn → g in G2 and Sgn → S in G3.

Proof. Let δ > 0. Using Lemma 4.1.3a for S and Lemma 4.1.3b for T
∗, we

can let ν0 be large enough that

∥ην0f − f∥, ∥T ∗(ην0f)− T ∗f∥, ∥ην0g − g∥, ∥S(ην0g)− Sg∥ < δ/2

and ην0f ∈ DT ∗ , ην0g ∈ DS . Then for ϵ > 0 small enough, f̂ = (ην0f) ∗ χϵ
and ĝ = (ην0g) ∗ χϵ are in DT ∗ and DS respectively and

∥f̂ − f∥, ∥T ∗f̂ − T ∗f∥, ∥ĝ − g∥, ∥Sĝ − Sg∥ < δ.

□

Corollary 4.1.3i The S, T system in Theorem 4.1.3h satisfies the Basic
Estimate if there is a constant C so that for every y, u ∈ D(p,q+1) thought
of as elements of G′

2, G2 respectively, we have that

|y(u)| ≤ C
(
∥T ∗(y)∥G′

1
∥u∥G2 + ∥y∥G′

2
∥S(u)∥G3

)
.

We now discuss the case when all ri, si = 2. This is the Hilbert space case.
Recall first a few facts about complex Hilbert spaces, H. We have an inner
product < x, y > for x, y ∈ H. The inner product satisfies

< ax, by >= ab < x, y > .

The norm is ∥x∥2 =< x, x > . There is a natural identification between H
and the dual H ′. If x ∈ H, then λ(x) defined by λ(x)(y) =< y, x > defines a
continuous linear functional on H. The map λ : H → H ′ is norm preserving
and antilinear: λ(cx) = cλ(x). Conversely, if g ∈ H ′, g ̸= 0, let x ∈ Ng,

∥x∥ = 1. Set c = g(x). We show that g = λ(cx). Any y ∈ H can be written
uniquely as y = ax+ z, z ∈ Ng. We get

g(y) = g(ax+ z)

= ag(x) + g(z)

= ac

= c < ax+ z, x >

= < y, cx >

= λ(cx)(y)

⇒
g = λ(cx)

In this case we can write the basic estimate as follows:
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Theorem 4.1.3j Suppose that r = s = 2. Assume the conditions of
Theorem 4.1.3h. If for every f ∈ G2 with λ(f) ∈ DT ∗ and f ∈ DS we have
that

(1) ∥f∥ ≤ C(∥T ∗f∥+ ∥Sf∥)
for a fixed constant C, independent of f , then we have that for all y ∈
DT ∗ , u ∈ DS that

(2) |y(u)| ≤ C(∥T ∗y∥∥u∥+ ∥Su∥∥y∥).
We also have (2) ⇒ (1).

We note that NT ∗ = R⊥
T . Namely, if y ∈ DT ∗ , T ∗(y) = 0 and x ∈ DT , we

have (T ∗(y))(x) = y(Tx) = 0. Conversely, if y ∈ R⊥
T , then y(Tx) = 0 for all

x ∈ DT , so y ∈ NT ∗ . Note that we identify R⊥
T ⊂ H ′, the dual space with the

orthogonal complement of RT ⊂ H, i.e. the vectors in H perpendicular to
the vectors in RT . If y ∈ NT ∗ and x ∈ RT then y(x) = 0. On the other hand,
if y is in the subspace in H ′ identified with RT and x is in the subspace of
H identified with NT ∗ , we also have y(x) = 0.

Proof. Assume (1). It suffices to prove (2) for all y, u ∈ Dp,q+1. We write

y = y1+y2 where λ
−1(y1) ∈ RT and y2 ∈ NT ∗ . Similarly, we write u = u1+u2

where u1 ∈ RT and λ(u2) ∈ NT ∗ . Then y2(u1) = 0 and y1(u2) = 0. Note
that y1 ∈ DT ∗ since both y and y2 are. Similarly, u2 ∈ DS .

It follows that

|y(u)| = |y1(u1) + y2(u1) + y1(u2) + y2(u2)|
≤ |y1||u1|+ |y2||u2|
≤ C(∥T ∗y1∥+ ∥Sy1∥)∥u1∥+ ∥y2∥(∥T ∗u2∥+ ∥Su2∥)
= C∥T ∗y1∥∥u1∥+ ∥y2∥∥Su2∥
= C∥T ∗y∥∥u1∥+ ∥y2∥∥Su∥
≤ C∥T ∗y∥∥u∥+ ∥y∥∥Su∥

The reverse implication follows by applying (2) to the case y = u ∈ Dp,q.

□

12. Hormander 4.2

We are trying to prove the basic estimate

∥f∥ ≤ C(∥T ∗f∥+ ∥Sf∥).
We need formulas for ∥Sf∥, ∥T ∗f∥.

Definition 4.2.1a Let ϕ ∈ C∞(Ω) be a real valued function. If w ∈ C∞(Ω)

we let δj(w) := eϕ ∂(we
−ϕ)

∂zj
= ∂w

∂zj
− w ∂ϕ

∂zj
.
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Lemma 4.2.1b Let w1, w2 be C∞ functions with compact support in Ω.

Then< w1,
∂w2
∂zk

>ϕ:=
∫
w1

(
∂w2
∂zk

)
e−ϕdλ =

∫
(−δkw1)w2e

−ϕdλ =:< −δkw1, w2 >ϕ
.

Proof. ∫
w1
∂w2

∂zk
e−ϕdλ =

∫
w1
∂w2

∂zk
e−ϕdλ

= −
∫
∂(w1e

−ϕ)

∂zk
w2dλ

= −
∫
∂w1

∂zk
w2e

−ϕdλ+

∫
w1

∂ϕ

∂zk
w2e

−ϕdλ

= −
∫
δkw1w2e

−ϕdλ

□

We next prove a commutation relation between δj and
∂
∂zk

.

Lemma 4.2.1c Let ψ be a smooth function. Then

δj(
∂ψ

∂zk
)− ∂

∂zk
(δj(ψ)) = ψ

∂2ϕ

∂zk∂zj
.

Proof.

δj(ψzk)− (δjψ)zk = ψzk,zj − ψzk
∂ϕ

∂zj
− (ψzj − ψ

∂ϕ

∂zj
)zk

= ψzk,zj − ψzkϕzj − ψzj ,zk + ψzkϕzj + ψϕzj ,zk
= ψϕzj ,zk

□

Lemma 4.2.1d Let f, g be C∞ functions with compact support in Ω.
Then ∫

δjfδkge
−ϕ = −

∫
∂(δjf)

∂zk
ge−ϕ



SCV 45

Proof. ∫
δjfδkge

−ϕ =

∫
δkgδjfe−ϕ

= −
∫
g

(
∂(δjf)

∂zk

)
e−ϕ

= −
∫
g
∂(δjf)

∂zk
e−ϕ

□

The following lemma is immediate from Lemma 4.2.1b:

Lemma 4.2.1e Let f, g be C∞ functions with compact support. Then∫
∂f

∂zk

∂g

∂zj
e−ϕ = −

∫
δj(

∂f

∂zk
)ge−ϕ

Corollary 4.2.1f Let f, g be C∞ functions with compact support. Then∫
δjfδkge

−ϕ −
∫

∂f

∂zk

∂g

∂zj
e−ϕ =

∫
fg

∂2ϕ

∂zj∂zk
e−ϕ

Proof. We combine Lemmas 4.2.1c−e:∫
δjfδkge

−ϕ −
∫

∂f

∂zk

∂g

∂zj
e−ϕ = −

∫
∂(δjf)

∂zk
ge−ϕ +

∫
δj(

∂f

∂zk
)ge−ϕ

=

∫
f

∂2ϕ

∂zj∂zk
ge−ϕ

□

Let f be in Dp,q+1. We calculate Tf .

Lemma 4.2.1g. If f =
∑′

I

∑′
J fI,Jdz

I ∧ dzJ , then
∂f =

∑′
I

∑′
J

∑n
j=1

∂fI,J
∂zj

dzj ∧ dzI ∧ dzJ and

|∂f |2 =
∑′

I,J

∑
j |
∂fI,J
∂zj

|2 −
∑′

I,K

∑
j,k

∂fI,jK
∂zk

∂fI,kK
∂zj

Proof. The formula for ∂f is clear. We prove the second formula. We deal
first with the case q + 1 = n which is degenerate. In this case ∂f = 0 for
type reasons. In the second term on the right side of the formula, we sum
over all K which are multiindices of length q so each K misses one index, j.
Recall that fI,jK = 0 if j ∈ K. Hence in the last term you only sum over the

case j = k. So this term becomes −
∑′

I,K |∂fI,jK∂zj
|2 where j is the missing
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index in K. There is only one J in this case and fI,jK = ϵjKJ fI,J . Since the

term is squared, we can write the last sum as −
∑′

I,J

∑
j |
∂fI,J
∂zj

|2 which is

the same as the first term except for sign.

We continue by assuming that q+1 < n. ForM an increasing multiindex,
|M | = q + 2 ≤ n and j ∈M, write M j to be the increasing multiindex with
j removed from M. We can then write

∂f =
′∑

|I|=p

′∑
|M |=q+2

∑
j∈M

∂fI,Mj

∂zj
dzj ∧ dzI ∧ dzM

j

= (−1)p
′∑

|I|=p

′∑
|M |=q+2

∑
j∈M

∂fI,Mj

∂zj
ϵjM

j

M dzI ∧ dzM

Hence we obtain that
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|∂f |2 =
′∑

|I|=p

′∑
|M |=q+2

∑
j,ℓ∈M

∂fI,Mj

∂zj
ϵjM

j

M

∂fI,Mℓ

∂zℓ
ϵMℓMℓ

=

′∑
|I|=p

′∑
|M |=q+2

∑
j∈M

|
∂fI,Mj

∂zj
|2

+

′∑
|I|=p

′∑
|M |=q+2

∑
j,ℓ∈M,j ̸=ℓ

∂fI,Mj

∂zj

∂fI,Mℓ

∂zℓ
ϵjM

j

M ϵMℓMℓ

=

′∑
|I|=p

′∑
|J |=q+1

∑
j /∈J

|
∂fI,J
∂zj

|2

+

′∑
|I|=p

′∑
|K|=q

∑
j,ℓ/∈K,j ̸=ℓ

∂fI,lK
∂zj

ϵlKMj

∂fI,jK
∂zℓ

ϵM
ℓ

jK ϵ
jMj

M ϵMℓMℓ

=

′∑
|I|=p

′∑
|J |=q+1

∑
j /∈J

|
∂fI,J
∂zj

|2

+
′∑

|I|=p

′∑
|K|=q

∑
j,ℓ/∈K,j ̸=ℓ

∂fI,lK
∂zj

ϵjlK
jMj

∂fI,jK
∂zℓ

ϵℓM
ℓ

ℓjK ϵ
jMj

M ϵMℓMℓ

=
′∑

|I|=p

′∑
|J |=q+1

∑
j /∈J

|
∂fI,J
∂zj

|2

+

′∑
|I|=p

′∑
|K|=q

∑
j,ℓ/∈K,j ̸=ℓ

∂fI,lK
∂zj

∂fI,jK
∂zℓ

ϵjℓKℓjK

=

′∑
|I|=p

′∑
|J |=q+1

∑
j /∈J

|
∂fI,J
∂zj

|2

−
′∑

|I|=p

′∑
|K|=q

∑
j,ℓ/∈K,j ̸=ℓ

∂fI,lK
∂zj

∂fI,jK
∂zℓ

For any fixed I,

′∑
|J |=q+1

∑
j∈J

|
∂fI,J
∂zj

|2 =

′∑
|K|=q,j /∈K

|
∂fI,jK
∂zj

|2

We add the left side to the first sum and the right side to the other sum.



48 JOHN ERIK FORNÆSS

Hence

|∂f |2 =

′∑
|I|=p

′∑
|J |=q+1

∑
j

|
∂fI,J
∂zj

|2

−
′∑

|I|=p

′∑
|K|=q

∑
j,ℓ/∈K

∂fI,ℓK
∂zj

∂fI,jK
∂zℓ

Since fI,ℓK = 0 if ℓ ∈ K, we can drop the condition that ℓ /∈ K and the
same for j /∈ K. Hence

|∂f |2 =

′∑
|I|=p

′∑
|J |=q+1

∑
j

|
∂fI,J
∂zj

|2

−
′∑

|I|=p

′∑
|K|=q

∑
j,ℓ

∂fI,lK
∂zj

∂fI,jK
∂zℓ

□

We will next be more specific about our L2 spaces. First pick some smooth
function ψ as in Theorem 4.1.3h for the r = s = 2 case. We use weights
e−ϕj using smooth functions ϕ and ψ as follows:

ϕ1 = ϕ− 2ψ, ϕ2 = ϕ− ψ, ϕ3 = ϕ.

With these weights Theorem 4.1.3h applies to show that smooth compactly
supported forms are dense in the graph norms of S and T ∗.

Let f ∈ D(p,q+1). Recall from Lemma 4.1.3d that if

f =

′∑
|I|=p

′∑
|J |=q+1

fI,Jdz
I ∧ dzJ

then

T ∗f =
′∑

|I|=p

′∑
|K|=q

gI,Kdz
I ∧ dzK

where

gI,K = (−1)p−1eϕ1
n∑
j=1

∂(e−ϕ2fI,jK)

∂zj
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Lemma 4.2.1h

eψT ∗f = (−1)p−1
′∑

I,K

∑
j

δjfI,jKdz
I ∧ dzK

+ (−1)p−1
′∑

I,K

∑
j

fI,jK
∂ψ

∂zj
dzI ∧ dzK

Proof.

eψT ∗f =

′∑
|I|=p

′∑
|K|=q

(eψgI,K)dzI ∧ dzK

eψgI,K = (−1)p−1eψeϕ1
n∑
j=1

∂(e−ϕ2fI,jK)

∂zj

= (−1)p−1eψ+ϕ1
n∑
j=1

∂(e−ϕ+ψfI,jK)

∂zj

= (−1)p−1eψ+ϕ1
n∑
j=1

eψ
∂(e−ϕfI,jK)

∂zj

+ (−1)p−1eψ+ϕ1
n∑
j=1

e−ϕfI,jKe
ψ ∂ψ

∂zj

= (−1)p−1
n∑
j=1

eϕ
∂(e−ϕfI,jK)

∂zj
+ (−1)p−1

n∑
j=1

fI,jK
∂ψ

∂zj

= (−1)p−1
n∑
j=1

δj(fI,jK) + (−1)p−1
n∑
j=1

fI,jK
∂ψ

∂zj

eψT ∗f =
′∑

|I|=p

′∑
|K|=q

(−1)p−1
n∑
j=1

δj(fI,jK)dzI ∧ dzK

+

′∑
|I|=p

′∑
|K|=q

(−1)p−1
n∑
j=1

fI,jK
∂ψ

∂zj
dzI ∧ dzK

□

We prove the large constant, small constant lemma:

Lemma 4.2.1i. If a, b are complex numbers and c > 0, then

2|ab| ≤ c|a|2 + 1

c
|b|2.
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Moreover,

|a+ b|2 ≤ (1 + c)|a|2 + (1 +
1

c
)|b|2.

Proof. The first inequality follows from

c|a|2 + 1

c
|b|2 − 2|a||b| = (

√
c|a| −

√
1/c|b|)2

≥ 0

The second inequality follows then from

|a+ b|2 = |a|2 + ab+ ab+ |b|2

≤ |a|2 + 2|a||b|+ |b|2

≤ (1 + c)|a|2 + (1 +
1

c
)|b|2

□

We introduce the notation 2′ = 1+ c, 2′′ = 1 + 1
c , c > 0. Then statements

involving 2′, 2′′ below are valid for any choice of c.

Lemma 4.2.1j .

′∑
I,K

n∑
j,k=1

δjfI,jKδkfI,kK ≤ 2′e2ψ|T ∗f |2 + 2′′|f |2|∂ψ|2.
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Proof.

′∑
I,K

n∑
j,k=1

δjfI,jKδkfI,kK =
′∑

I,K

 n∑
j=1

δjfI,jK

( n∑
k=1

δkfI,kK

)

= |(−1)p−1
′∑

I,K

∑
j

δjfI,jKdz
I ∧ dzK |2

= |eψT ∗f − (−1)p−1
′∑

I,K

∑
j

fI,jK
∂ψ

∂zj
dzI ∧ dzK |2

=

′∑
I,K

|eψgI,K − (−1)p−1
∑
j

fI,jK
∂ψ

∂zj
|2

≤ 2′
′∑

I,K

|eψgI,K |2 + 2′′
′∑

I,K

|
∑
j

fI,jK
∂ψ

∂zj
|2

≤ 2′e2ψ|T ∗f |2 + 2′′
′∑

I,K

∑
j

|fI,jK |2| ∂ψ
∂zj

|2

= 2′e2ψ|T ∗f |2 + 2′′
′∑

I,K

∑
j /∈K

|fI,jK |2| ∂ψ
∂zj

|2

= 2′e2ψ|T ∗f |2 + 2′′
′∑

|I|=p,|J |=q+1

∑
j∈J

|fI,jJj |2|
∂ψ

∂zj
|2

= 2′e2ψ|T ∗f |2 + 2′′
′∑
I,J

∑
j∈J

|fI,J |2|
∂ψ

∂zj
|2

≤ 2′e2ψ|T ∗f |2 + 2′′
′∑
I,J

|fI,J |2|∂ψ|2

□

Lemma 4.2.1k.

′∑
I,K

n∑
j,k=1

(δjfI,jKδkfI,kK −
∂fI,jK
∂zk

∂fI,kK
∂zj

)e−ϕ

≤ 2′|T ∗f |2e−ϕ1 + |Sf |2e−ϕ3 + 2′′|f |2|∂ψ|2e−ϕ
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Proof.

′∑
I,K

n∑
j,k=1

(δjfI,jKδkfI,kK −
∂fI,jK
∂zk

∂fI,kK
∂zj

)e−ϕ

≤ (2′e2ψ|T ∗f |2 + 2′′|f |2|∂ψ|2)e−ϕ

+

|∂f |2 −
′∑
I,J

∑
j

|
∂fI,J
∂zj

|2
 e−ϕ

= 2′e2ψ−ϕ|T ∗f |2 + 2′′|f |2|∂ψ|2e−ϕ + |Sf |2e−ϕ

= 2′|T ∗f |2e−ϕ1 + 2′′|f |2|∂ψ|2e−ϕ + |Sf |2e−ϕ3

□

Theorem 4.2.1ℓ. Let Ω be a pseudoconvex domain in Cn. Let 0 ≤ ην ≤ 1
be a sequence of C∞ functions with compact support such that for any given
compact subset of Ω only finitely many are not identically 1. Let ψ be a
C∞ function with

∑n
k=1 |

∂ην
∂zk

|2 ≤ eψ in Ω for all ν = 1, 2, . . . . Let ϕ ∈ C∞(Ω)

and set ϕ1 = ϕ − 2ψ, ϕ2 = ϕ − ψ, ϕ3 = ϕ. Let T denote the ∂ operator
from L2

(p,q)(Ω, ϕ1) to L2
(p,q+1)(Ω, ϕ2) and let S denote the ∂ operator from

L2
(p,q+1)(Ω, ϕ2) to L2

(p,q+2)(Ω, ϕ3). Here 0 ≤ p ≤ n, 0 ≤ q ≤ n − 1. Let

f ∈ D(p,q+1). Then

∫  ′∑
|I|=p,|K|=q

n∑
j,k=1

fI,jKfI,kK
∂ϕ2

∂zj∂zk
− 2′′|∂ψ|2|f |2

 e−ϕ ≤ 2′∥T ∗f∥21+∥Sf∥23.

Proof. Integrating both sides of Lemma 4.2.1k, we get

=

′∑
I,K

n∑
j,k=1

∫
(δjfI,jKδkfI,kK −

∂fI,jK
∂zk

∂fI,kK
∂zj

)e−ϕ

≤ 2′
∫

|T ∗f |2e−ϕ1 +
∫

|Sf |2e−ϕ3

+ 2′′
∫

|f |2|∂ψ|2e−ϕ
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We next apply Corollary 4.2.1f to each integral on the left side, setting
f = fI,jK , g = fI,kK in the corollary. Then we get∫ ′∑

|I|=p,|K|=q

n∑
j,k=1

fI,jKfI,kK
∂ϕ2

∂zj∂zk
e−ϕ ≤ 2′∥T ∗f∥21 + ∥Sf∥23

+ 2′′
∫

|∂ψ|2|f |2e−ϕ

□

13. Hormander 4.2 ∂ in L2
loc, Levi problem

Corollary 4.2.1m. Assume the conditions of Theorem 4.2.1ℓ. Suppose
in addition the condition that

n∑
j,k=1

∂2ϕ

∂zj∂zk
wjwk ≥ 2(|∂ψ|2 + eψ)

n∑
1

|w|2, w ∈ Cn.

Then we have that for every f ∈ DT ∗ ∩DS that

∥f∥2ϕ2 ≤ ∥T ∗f∥2ϕ1 + ∥Sf∥2ϕ3 .

We let c : Ω → R denote the largest function such that

c(z)|w|2 ≤
n∑

j,k=1

∂2ϕ

∂zj∂zk
wjwk

for all z ∈ Ω and all w ∈ Cn. Then, in particular, c ≥ 2(|∂ψ|2 + eψ) and
c(z) is continuous.

Proof.

′∑
|I|=p,|K|=q

n∑
j,k=1

fI,jKfI,kK
∂ϕ2

∂zj∂zk
≥

′∑
I,K

c

n∑
j=1

|fI,jK |2

= c

′∑
I,K

∑
j /∈K

|fI,jK |2

= c
′∑

I,|J |=q+1

∑
|fI,J |2

= c|f |2
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Hence we get for any f ∈ D(p,q+1) that

∥f∥2ϕ2 =

∫
|f |2e−ϕ2

=

∫
eψ|f |2e−ϕ

≤
∫

(
c

2
− |∂ψ|2)|f |2e−ϕ

≤ 1

2

 ′∑
|I|=p,|K|=q

n∑
j,k=1

fI,jKfI,kK
∂ϕ2

∂zj∂zk
e−ϕ − 2

∫
(|∂ψ|2)|f |2e−ϕ


≤ 1

2
(2∥T ∗f∥2 + ∥Sf∥2)

≤ ∥T ∗f∥2 + ∥Sf∥2

The corollary follows now for all f ∈ DT ∗ ∩DS by density of D(p,q+1) in the
graph norm. □

Theorem 4.2.1n. Assume the conditions in Theorem 4.2.1ℓ and Corol-
lary 4.2.1m. Then if f ∈ L2

(p,q+1)(Ω, ϕ2) and ∂f = 0, then there exists a

g ∈ L2
(p,q)(Ω, ϕ1) such that ∂g = f and

∥g∥ϕ1 ≤ ∥f∥ϕ2 .

Proof. By Theorem 4.1.3j , we have, since ∥f∥2 ≤ ∥T ∗f∥2 + ∥Sf∥2 for all
f ∈ DT ∗ ∩DS that for any y ∈ DT ∗ and any u ∈ DS we get:

|y(u)| ≤ ∥T ∗y∥∥u∥+ ∥Su∥∥y∥.

Now NS ⊂ DS so if y ∈ DT ∗ and u ∈ NS then

|y(u)| ≤ ∥T ∗y∥∥u∥.

Hence we have the norm of y as a linear functional on NS that ∥y|NS∥ ≤
∥T ∗y∥ for all y ∈ DT ∗ . We set F = NS . This is a closed subspace containing
RT . It follows then from Theorem 4.1.1b and Theorem 4.1.1’ with constant
C = 1 that RT = NS and that for every u ∈ NS there is a v ∈ DT with
Tv = u and ∥v∥ ≤ ∥u∥. □

Lemma 4.2.1o. Let {aj , bj}j=2,3,... be given strictly positive constants.
Then there is a smooth, positive increasing, convex function fλ(x) or x ≥ 0
such that λ′(x) > aj on [j, j + 1], j ≥ 2 and λ(x) > bj on [j, j + 1], j ≥ 2.

Proof. To find such a λ, pick a sufficiently large smooth function σ(x) >>
1, x ≥ 0 and define ν(x) =

∫ x
0 σ(t)dt, λ(x) =

∫ x
0 ν(t)dt. □
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Lemma 4.2.1p. Suppose that Ω ⊂ Cn is pseudoconvex and assume that
ψ is as in Theorem 4.2.1ℓ. Also suppose that f ∈ L2

(p,q+1),loc(Ω). Then there

exists a smooth strongly plurisubharmonic function ϕ on Ω so that

n∑
i,k=1

∂2ϕ

∂zi∂zk
wiwk ≥ 2(|∂ψ|2 + eψ)

n∑
ℓ=1

|wℓ|2

and f ∈ L2
(p,q+1)(Ω, ϕ2), ϕ2 = ϕ− ψ.

Proof. Using Theorem 2.6.11, we can find a smooth strongly plurisubhar-
monic function ρ on Ω such that {ρ < c} ⊂⊂ Ω for any c ∈ R. We can
assume that min ρ = 2 by adding a constant. Choose a smooth function

m(z) > 0 on Ω such that
∑n

i,k=1
∂2ρ

∂zi∂zk
wiwk ≥ m∥w∥2.

For j = 2, 3, . . . , let Lj = {z ∈ Ω; j ≤ ρ(z) ≤ j + 1}. Then each Lj is
compact and Ω = ∪Lj . Define

aj = sup
Lj

2(|∂ψ|2 + eψ)

m(z)
, j ≥ 2.

Since Lj is compact, f ∈ L2
(p,q+1)(Lj). Pick bj > 0 so that

∫
Lj

|f |2eψ−bj <
1
2j
, j ≥ 2. Let λ be as in the Lemma 4.2.1o. We define ϕ = λ ◦ ρ on Ω. Then

on Lj ,

n∑
i,k=1

∂2ϕ

∂zi∂zk
wiwk ≥ λ′(ρ(z))

n∑
i,k=1

∂2ρ

∂zi∂zk
wiwk

≥ aj

n∑
i,k=1

∂2ρ

∂zi∂zk
wiwk

0 sup
Lj

2(|∂ψ|2 + eψ)

m(z)

n∑
i,k=1

∂2ρ

∂zi∂zk
wiwk

≥ 2(|∂ψ|2 + eψ)

m(z)
m(z)|w|2

= 2(|∂ψ|2 + eψ)|w|2
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Also ∫
Ω
|f |2eψ−ϕ =

∞∑
j=2

∫
Lj

|f |2eψ−λ(ρ)

≤
∞∑
j=2

∫
Lj

|f |2eψ−bj

<
∞∑
j=2

1

2j

< ∞

□

Corollary 4.2.1q. If f ∈ L2
(p,q+1),loc(Ω), Ω pseudoconvex in Cn, and

∂f = 0, then there exists a g ∈ L2
(p,q),loc(Ω) so that ∂g = f in Ω.

Proof. let f ∈ L2
(p,q+1),loc(Ω) and suppose ∂f = 0. We pick ϕ as in Lemma

4.2.1p. Then f ∈ L2
(p,q+1)(Ω, ϕ2) and ∂f = 0. Using Theorem 4.2.1n, we find

g ∈ L2
(p,q)(Ω, ϕ1) with ∂g = f. This g ∈ L2

(p,q),loc(Ω). □

Lemma 4.2.1r: Suppose that f ∈ L2(Ω) and that ∂f = 0. Then there is
a holomorphic function u on Ω so that u = f a.e.

Proof. Suppose that f ∈ L2(B(0, δ)), the ball of radius δ in Cn centered
at 0. Assume that ∂f = 0 in the sense of distributions. We apply the
smoothing theorem. Then if 0 < ϵ < δ

2 , f ∗ χϵ is C∞ in B(0, δ/2) and

∥f ∗ χϵ − f∥L2(B(0,δ/2) → 0 when ϵ → 0. By Lemma 4.1.4b, ∂(f ∗ χϵ) =

(∂f) ∗ χϵ = 0 ∗ χϵ = 0. Hence each f ∗ χϵ is holomorphic. We can choose
ϵj ↘ 0 so that ∥f ∗χϵj+1 − f ∗χϵj∥L2(B(0,δ/2) <

1
2j
. Let uj := f ∗χϵj . We get

∥uj+1 − uj∥L1(B(0,δ/2) ≤ C∥uj+1 − uj∥L2(B(0,δ/2) ≤
C

2j
.

By Theorem 2.2.3 we then get pointwise estimates |uj+1(z) − uj(z)| ≤ C′

2j

on B(0, δ/4). Hence uj converges uniformly to a function u on B(0, δ/4). By
Corollary 2.2.5, u is holomorphic. But necessarily u = f a.e.

□

We prove an extension Lemma. We use the notation z = (z1, . . . , zn) =
(z′, zn) for points in Cn.

Theorem 4.2.8a. Let Ω ⊂ Cn be pseudoconvex, n > 1. Let Ω′ := {z′ ∈
Cn−1; (z′, 0) ∈ Ω}. If f is a holomorphic function in Ω′, then there exists a
holomorphic function F in Ω so that F (z′, 0) = f(z′) for all z′ ∈ Ω.
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Proof. Let z′ ∈ Ω. Then there exists an ϵz′ > 0 so that B((z′, 0), ϵz′) ⊂ Ω.
Set ω := ∪z′∈Ω′B((z′, 0), ϵz′). Then ω is an open set in Cn, Ω′ ∗ (0) ⊂ ω ⊂ Ω
and for every (z′, zn) ∈ ω, z′ ∈ Ω′. Define G on ω by G(z′, zn) = f(z′). Then
G is holomorphic. The sets Ω′ ∗ (0) and ∂ω ∩Ω are disjoint relatively closed
sets in Ω. Hence there exists a function χ ∈ C∞(Ω) such that χ = 1 in an
open set containing Ω′ ∗ (0) and χ = 0 in an open set containing ∂ω∩Ω. We
define H on Ω by letting H(z) = χG on ω and H(z) = 0 on Ω \ ω. Then
H ∈ C∞(Ω). Let σ = ∂H. Then σ ≡ 0 in an open neighborhood of Ω′ ∗ (0).
Define τ on Ω, by setting τ = 0 on Ω′∗(0) and τ = σ/zn on the complement.
Then τ = 0 in a neighborhood of Ω′ ∗ (0). Hence ∂τ = 0 in a neighborhood

of Ω′ ∗ (0). Also in the complement of Ω′ ∗ (0), we have ∂τ = ∂σ
zn

= 0. So

∂τ = 0 on Ω. Since τ is smooth, τ ∈ L2
(0,1),loc(Ω). So by Corollary 4.2.1q,

there exists h ∈ L2
loc(Ω) so that ∂h = τ. By Lemma 4.2.1r, we can let h be

a C∞ holomorphic function in a neighborhood of Ω′ ∗ (0).
Let F = H−znh. Then F is holomorphic in a neighborhood of Ω′∗(0) and

F (z′, 0) = f(z′) if z′ ∈ Ω. Moreover F ∈ L2
loc(Ω) and ∂F = ∂H − zn∂h =

σ− znτ = 0. Hence by Lemma 4.2.1r again, there is a holomorphic function
F̂ on Ω so that F̂ = F a.e. But then, F̂ ≡ F on a neighborhood of Ω′ ∗ (0).
So f(z′) = F̂ (z′, 0). □

We can now solve the Levi problem:

Theorem 4.2.8b. A pseudoconvex domain in Cn is a domain of holo-
morphy.

Proof. We prove the theorem by induction in the dimension. The theorem is
true in dimension 1 because all domains are domains of holomorphy. Next,
assume that the theorem is true for domains in Cn−1, n ≥ 2. We prove the
theorem in Cn by contradiction. So assume that there is a domain Ω ∈ Cn
which is pseudoconvex, but Ω is not a domain of holomorphy.

Then, by definition 2.5.1 there are two open sets Ω1 and Ω2 in Cn with
the following properties:
(a) ∅ ̸= Ω1 ⊂ Ω2 ∩ Ω.
(b) Ω2 is connected and Ω2 \ Ω ̸= ∅.
(c) For every u ∈ A(Ω) there is a function u2 ∈ A(Ω2) such that u = u2 in Ω1.

Pick a point p ∈ Ω1 and a point q ∈ Ω2 \ Ω. Since Ω2 is connected, there
is a curve γ(t), 0 ≤ t ≤ 1, γ(0) = p and γ(1) = q. Let t0 be the smallest t so
that γ(t) ∈ Ω2\Ω. Then γ([0, t0 >) ⊂ Ω2∩Ω.We replace q by γ(t0). Then we
can arrange that γ(0) = p ∈ Ω1, γ([0, 1 >) ⊂ Ω2 ∩Ω and γ(1) = q ∈ Ω2 \Ω.

Pick ϵ > 0 so that B(q, ϵ) ⊂ Ω2. Pick 0 < t1 < 1 so that γ(t1) ∈ B(q, ϵ/4).
Then there exists a 0 < ρ ≤ ϵ/4 so that B(γ(t1), ρ) ⊂ Ω2∩Ω and there exists
a q′ ∈ ∂B(γ(t1), ρ) \ Ω. We let Ω′

1 = B(γ(t1), ρ),Ω
′
2 = B(γ(t1), ϵ/2) ⊂ Ω2.

Then
(a’) ∅ ̸= Ω′

1 ⊂ Ω′
2 ∩ Ω.
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(b’) Ω′
2 is connected and Ω′

2 \ Ω ̸= ∅.
We show also
(c’) For every u′ ∈ A(Ω), there is a function u′2 ∈ A(Ω′

2) such that u′ = u′2
in Ω′

1.

To show (c’), let u′ ∈ A(Ω). Then by (c) there is a function u2 ∈ A(Ω2)
so that u′ = u2 in Ω1. Let

V = {z ∈ Ω2 ∩ Ω such that u′ = u2 in a neighborhood of z.}

Then Ω1 ⊂ V . Also γ([0, 1 >) ⊂ Ω2 ∩ Ω. Hence by the identity theorem
we must have that γ([0, 1 >) ⊂ V. So in particular, there is a small ball
centered at γ(t1) on which u′ = u2. Since Ω′

1 is a ball centered at γ(t1)
and Ω′

1 ⊂ Ω2 ∩ Ω, it follows that u′ = u2 in Ω′
1. Finally, we let u′2 be the

restriction of u2 to Ω′
2. Since Ω′

1 ⊂ Ω′
2, it still follows that u′ = u′2 in Ω′

1.
This proves (c′). The proof so far proves actually a small useful result in
order to characterize domains of holomorphy. We write this as a lemma:

Lemma 4.2.8c. A domain Ω ⊂ Cn is a domain of holomorphy if and only
if there do not exist two concentric open balls B1 ⊂ B2 such the following
three properties hold:
(a”) ∅ ̸= B1 ⊂ Ω ∩B2.
(b”) B2 \ Ω ̸= ∅.
(c”) For every u ∈ A(Ω) there exists a holomorphic function u2 on B2 such
that u = u2 on B1.

We continue with the proof of the Theorem. We summarize: Starting
with the hypothesis that the pseudoconvex domain Ω is not a domain of
holomorphy, we have found two concentric balls satisfying the properties
(a”),(b”) and (c”). There is no loss of generality to assume that B1 is the
unit ball centered at the origin in Cn and that B2 is the larger concentric
ball B(0, r) for some r > 1. Also we can assume that the point (1, 0, 0, . . . , 0)
is in the boundary of Ω. Next we let Ω′, B′

1, B
′
2 be the corresponding open

sets of z′ ∈ Cn−1 for which (z′, 0) is in the domains. Note that the sets
B′

1, B
′
2 satisfy condition (a”), (b”) in the characterization of domains of

holomorphy for the domain Ω′. We will show that (c”) is also satisfied. Let
v(z′) ∈ A(Ω′). Since Ω is pseudoconvex, we can apply the extension lemma
to find a holomorphic function V ∈ A(Ω) such that v(z′) = V (z′, 0) for all
z′ ∈ Ω′. Hence there exists a holomorphic function V2 on B2 so that V2 = V
on B1. Let v2 be the holomorphic function on B′

2 given by v2(z
′) = V2(z

′, 0).
Then if z′ ∈ B′

1, we have that (z
′, 0) ∈ B1. Hence v2(z

′) = v(z′). This proves
(c”) for the domains B′

1, B
′
2,Ω

′. By the inductive hypothesis, the domain Ω′

is not a domain of holomorphy and therefore also cannot be pseudoconvex.
However, it follows from Theorem 2.6.7 that Ω′ is pseudoconvex because Ω
is pseudoconvex. We have reached a contradiction.

□



SCV 59

14. Hormander, Acta paper

We will now start with the preparations for proving the Ohsawa-Takegoshi
extension theorem. This is a more precise version of the extension theorem,
Theorem 4.2.8a which was the key ingredient in the solution of the Levi
problem. The proof is based on a version of Hormander’s theorem which
was already in his paper: L2 estimates and existence theorems for the ∂
operator, Acta Math, 113, 89–152 (1965). This paper is also the basis for
his book.

We first investigate Hermitian matrices. Let A = {aij}ni,j=1 be an n by n
matrix of complex numbers where aij denotes the term on row i and column
j. We say that A is Hermitian if aij = aji. This is equivalent to the statement

that A = A
T
where T is the transpose.

Lemma 14.1. An n by n matrix A is Hermitian if and only if there is an
orthonormal basis bj of eigenvectors and the corresponding eigenvalues λj
are all real numbers. In this case, A is selfadjoint in the sense that for any
pair of vectors x, y we have that < x,Ay >=< Ax, y > . We then write
A = A∗ and < x,Ay >=< A∗x, y > .

Proof. We think of x as column vectors or n by 1 matrices. So < x, y >=∑
i xiyi = yTx as matrix product. If A is Hermitian, then

< Ax, y > = yTAx

= yTA
T
x

= Ay
T
x

= < x,Ay >

Suppose that A is Hermitian and bi, bj are eigenvectors with eigenvalues
λi, λj . Then

λi < bi, bj > = < Abi, bj >

= < bi, Abj >

= < bi, λjbj >

= λj < bi, bj >

If we apply this first to the case i = j we see that all λj are real
numbers. Next if we apply this to the case when bi and bj belong to
different eigenspaces, so λi ̸= λj , we see that bi and bj are perpendicu-
lar vectors. Hence the eigenspaces, Ej are perpendicular. Suppose next
that b is perpendicular to all the eigenspaces. Then for any eigenvector,
< Ab, bj >=< b,Abj >= λj < b, bj >= 0. Hence A maps the orthogonal
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complement B to all the eigenspaces to itself. But then A = 0 since oth-
erwise B would contain a nonzero eigenvector. If we finally replace the b′js
in the same eigenspace with an orthonormal basis for that eigenspace, we
obtain an orthonormal basis of eigenvectors.

Suppose next that Cn has an orthonormal basis bj of eigenvectors of A
with real eigenvalues λj . We then get:

< bi, Abj > = < bi, λjbj >

= λj < bi, bj >

and

< bi, A
T
bj > = A

T
bj
T

bi

= (AT bj)
T bi

= b
T
j Abi

= λi < bi, bj >

It follows that

< bi, Abj >=< bi, A
T
bj >

for all bi, bj . It follows that Abj = A
T
bj for all bj but then we must have

that A = A
T
.

The last part follows from the observation that < x,Ay >=< A
T
x, y >

for any n by n matrix. In other words A∗ = A
T

is valid for all n by n
matrices.

□

Next suppose that A is Hermitian and A is positive semidefinite, in the
sense that all λj ≥ 0. Then we define the matrix

√
A to be the matrix B

with the same eigenspaces as A and with corresponding eigenvalues
√
λj .

Obviously, BB = A.

The previous lemma then immediately gives:

Corollary 14.2. If A is a positive semidefinite Hermitian matrix, then the
matrix

√
A is also a positive semidefinite Hermitian matrix.

Lemma 14.3. Let Ω be an open set in RN and let A(x) be a continuously
varying positive semidefinite Hermitian n by n matrix. Then the map x →√
A(x) is also continuous.

Proof. Suppose that xn → x and A(xn) has an orthonormal basis {bnj }nj=1

with eigenvalues λnj . By taking a subsequence we can assume that bnj → bj
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and λnj → λj . Then bj must be an orthonormal basis of eigenvectors for A

with eigenvalues λj . But then also
√
λnj →

√
λj so

√
A(x) is continuous.

□

Let H denote the Hilbert space L2
(0,1)(Ω, γ) for a continuous real function

γ(x) on an open set Ω ⊂ Cn. Let A(x) be a continuously varying family
of positive semidefinite Hermitian matrices. We identify a (0, 1) form f =∑

j fjdzj with the column vector f = (f1, f2, . . . , fn)
T .

Let f ∈ H. Then Af(x) is in L2
(0,1),loc. If Af ∈ H, then we say that

f ∈ DA.

Lemma 14.4. The operator f → Af is densely defined and has closed graph
Γ = {(f,Af); f ∈ DA}.

Proof. All f ∈ H with continuous coefficients with compact support are in
DA. Hence, A is densely defined. Suppose that (f, g) is in the closure of the
graph. Then there exist (fn, gn) ∈ Γ so that fn → f and gn → g. Then, on
any compact subset, fn → f and Afn = gn → g in L2. Hence Af = g on
any compact subset. Hence Af = g on Ω. Therefore Af ∈ H, so f ∈ DA

and (f,Af) ∈ Γ. □

We recall the situation in Theorem 4.2.1ℓ.: We write down the conclusion
in the case of (0, 1) forms f =

∑
j fjdzj .∫

(

n∑
j,k=1

fjfk
∂2ϕ

∂zjzk
− 2′′|∂ψ|2|f |2)e−ϕ ≤ 2′∥T ∗f∥21 + ∥Sf∥23

valid for all f ∈ D(0,1).

We let Aϕ,ψ(x) = A(x) be the matrix valued function on Ω given by

A(x) = { ∂2ϕ
∂zjzk

} − 2′′|∂ψ|2I.

(*) We make the assumption that A(x) = {ajk} is positive semidefinite.

∑
jk

ajkfjfk =
∑
j

fj
∑
k

ajkfk

=
∑
j

fj(Af)j

= < f,Af >

Now, A = A
T
= A

T
so A is also Hermitian. In fact if bj are the eigenvec-

tors of A, then bj are eigenvectors of A and the eigenvalues are the same.
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Hence A is positive semidefinite. We can write A = B2, where B =
√
A

and B is positive semidefinite. Set C = Be−ψ/2. Then C(x) is still positive
semidefinite. We then get that

∑
jk

aj,kfjfke
−ϕ = < f,Af > e−ϕ

= < f,B2f > e−ϕ

= < Bf,Bf > e−ϕ2−ψ

= |Cf |2e−ϕ2

Hence we have for the operator C that∫
|Cf |2e−ϕ2 ≤ 2′∥T ∗f∥21 + ∥Sf∥23

valid for all f ∈ D(0,1).

We next prove:

Lemma 14.5. Suppose that f ∈ DT ∗ ∩DS. Then f ∈ DC for the L2 space
with weight ϕ2 and

∥Cf∥2ϕ2 ≤ 2′∥T ∗f∥2ϕ1 + ∥Sf∥2ϕ3 .

Proof. Let f ∈ DT ∗ ∩ DS . Then there exist {fn} ⊂ D(0,1)(Ω) such that fn
converges to f, T ∗f, Sf in the graph norm. Hence {fn} is a Cauchy sequence
and by the estimate, we see that also {Cfn} is a Cauchy sequence. Hence
Cfn → g for some g in L2

ϕ2
. On compact subsets of Ω we must have that

g = Cf . Hence Cf ∈ L2
ϕ2

so f ∈ DC and we have the estimate

∥Cf∥2ϕ2 ≤ 2′∥T ∗f∥2ϕ1 + ∥Sf∥2ϕ3 .
□

Next we come to Theorem 1.1.4 in Hormanders 1965 Acta paper.

Theorem 14.6. Assume the conditions on ϕ, ψ in Theorem 4.2.1ℓ. Also
assume that Aϕ,ψ is positive semidefinite. Suppose that g ∈ RC , g = Ch.
Assume also that g ∈ NS . Then there exists a u ∈ DT so that Tu = g and
∥u∥1 ≤

√
2′∥h∥2.

Proof. Let g ∈ NS be as in the theorem. Define the functional σ by
σ(T ∗f) =< f, g >2 for any f ∈ DT ∗ . We want to show that

(∗∗) | < f, g >2 | ≤
√
2′∥h∥2∥T ∗f∥1.

In this case σ extends by Hahn-Banach to a linear functional τ defined on
L2
(0,0)(Ω, ϕ1) such that τ(T ∗f) = σ(T ∗(f)) for all f ∈ DT ∗ and ∥τ(z)∥ ≤

|
√
2′∥h∥2∥z∥1 for all z. Since τ(T ∗f) =< f, g >2 for all f ∈ DT ∗ , it follows
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that τ in DT ∗∗ and T ∗∗(τ) = g. By reflexivity, there is then a u such that

Tu = g. Moreover, ∥u∥1 = ∥τ∥1 ≤
√
2′∥h∥2.

To prove (**), observe first that if f ⊥ NS then f ⊥ RT so f ∈ NT ∗ ⊂ DT ∗

and T ∗f = 0. But then < f, g >2= 0 so (**) holds. It suffices therefore to
consider f ∈ DT ∗ ∩NS ⊂ DT ∗ ∩DS . By Lemma 13.5, we then also have that
f ∈ DC . By Lemma 13.5 we see that

∥Cf∥22 ≤ 2′∥T ∗f∥21

since Sf = 0. Hence

| < g, f >2 | = | < Ch, f >2 |
= | < h,Cf >2 |
≤ ∥h∥2∥Cf∥2
≤

√
2′∥h∥2∥T ∗f∥1

□

Suppose that H is a positive definite Hermitian n by n matrix, i.e. all
eigenvalues are strictly positive. Let f = (f1, . . . , fn) be a vector. We define
|f |2H =

∑
jk a

jkfjfk where {ajk} is the inverse matrix of H.

Theorem 14.7. Assume the conditions on ϕ, ψ in Theorem 4.2.1ℓ and
Aϕ,ψ is positive definite. Assume that g ∈ L2

(0,1)(Ω, ϕ2), ∂g = 0 and that∫
eψ|g|2Aϕ,ψe

−ϕ2 <∞. Then there exists a u ∈ DT so that ∂u = g and

∥u∥2ϕ1 ≤ 2′
∫
eψ|g|2Aϕ,ψe

−ϕ2 .

Proof. Let B =
√
Aϕ,ψ, C = Be−ψ/2. We show that g ∈ RC , g = Ch for

∥h∥ϕ2 <∞. In fact, let h = eψ/2B−1g = eψ/2(eψ/2C)−1g = C−1g. Then
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∥h∥22 =

∫
eψ < B−1g,B−1g > e−ϕ2

=

∫
eψ < g,B−2g > e−ϕ2

=

∫
eψ < g,A

−1
g > e−ϕ2

=

∫
eψ < g, (A−1g) > e−ϕ2

=

∫
eψ
∑
jk

ajkgjgke
−ϕ2

=

∫
eψ|g|2Aϕ,ψe

−ϕ2

< ∞.

Since g = Ch, we see that h ∈ DC and g = Ch ∈ RC . Therefore, by
Theorem 13.6, there exists u ∈ DT so that Tu = g and ∥u∥2ϕ1 ≤ 2′∥h∥22 =

2′
∫
eψ|g|2Ae−ϕ2 .

□

We next eliminate the function ψ and replace 2′ = 1 + c by it’s limiting
value 1 as c→ 0. We note that this will be possible even though 2′′ → ∞.

Theorem 14.8. Let Ω be a pseudoconvex domain in Cn. Suppose that ϕ ∈
C2(Ω) is strictly plurisubharmonic with Hessian matrix A. Then if f =∑n

j=1 fjdzj is ∂ closed and
∫
Ω |f |2Ae−ϕ < ∞ then there exists a function u,

so that ∂u = f and ∫
|u|2e−ϕ ≤

∫
|f |2Ae−ϕ.

15. Hormander Acta cont., Chen’s proof of Ohsawa-Takegoshi

Fix a smooth strictly plurisubharmonic function ρ so that {ρ ≤ c} is
compact in Ω for real number c. Set Kj = {ρ ≤ j}, j ≥ 2. We prove first:

Lemma 15.1. There exists for each j ≥ 2 a solution uj for the equation

∂u = f in Ω such that

(1− 1

j
)

∫
Kj

|uj |2e−ϕ ≤ (1 +
1

j
)

∫
Ω
|f |2Ae−ϕ.

Proof. Choose the sequence ην so that all ην = 1 on Kj+1. The function

ψ satisfies the inequalities
∑n

k=1 |
∂ην
∂zk

|2 ≤ eψ. We will choose such a ψ so

that ψ ≥ 0 in Ω and ψ = 0 on Kj+1. Let Σ be a smooth convex increasing
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function Σ(t) which vanishes when t ≤ j.We will make Σ sufficiently convex
for the following to hold:

Let Λ be a smooth real function with Λ = 1 on Kj+1 and Λ = 0 outside
Kj+2. Choose δ > 0 small enough so that δ∥z∥2 < 1

2j on Kj . Then if ϵ is

small enough and ϕ̃ = Λ · (ϕ ∗ χϵ) + δ∥z∥2 +Σ ◦ ρ then

(1) ϕ̃ ≥ ϕ+ 2ψ ≥ ϕ,
(2) Aϕ̃,ψ ≥ Aϕ,0.

(3) ϕ̃ ∈ C∞(Ω).

This implies that |f |2Aϕ̃,ψ ≤ |f |2ϕ,0 = |f |2A
We apply Theorem 13.7 using the functions ϕ̃ and ψ and 2′ = 1+ 1

j . Note

that

∫
Ω
eψ|f |2Aϕ̃,ψe

−ϕ̃2 ≤
∫
Ω
eψ|f |2Ae−(ϕ̃−ψ)

≤
∫
Ω
eψ|f |2Ae−(ϕ̃−2ψ)

≤
∫
Ω
|f |2e−ϕ.

Hence we can and find uj ∈ L2(Ω, ϕ̃1) so that ∂uj = f in Ω and∫
Ω
|uj |2e−ϕ̃1 ≤ (1 +

1

j
)

∫
Ω
|f |2Ae−ϕ.

On Kj we have that ϕ̃1 = ϕ̃ − ψ = ϕ̃ = ϕ ∗ χϵ + δ∥z∥2. Hence for small

enough ϵ we have that |ϕ̃1 − ϕ| < 1
j on Kj . Therefore∫

Ω
|uj |2e−ϕ̃1 ≥

∫
Kj

|uj |2e(ϕ−ϕ̃1)−ϕ

≥ e−1/j

∫
Kj

|uj |2e−ϕ

≥ (1− 1

j
)

∫
Kj

|uj |2e−ϕ

□

Next we prove the Theorem.

Proof. Since ∂uj = f = ∂uk on Ω for all j, k, it follows that all the functions
uj −uk are holomorphic on Ω. Also they are uniformly bounded in L2 norm
on compact subsets and therefore in L1 norm as well. Hence by Corollary
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1.2.6 there is a subsequence converging uniformly on compact sets to some
u. Then ∂u = f and

∫
Ω
|u|2e−ϕ ≤

∫
Ω
|g|2Ae−ϕ.

□

Our next topic is the Ohsawa-Takegoshi theorem. We follow the proof by
Bo-Yong Chen.
arXiv: 1105.2430v1 [math.CV] 12 May 2011.

We start with some preliminary formulas valid in C.

Let 0 < r < e−1/2. Also suppose the 0 < s < 1 is small enough that
r2 + s2 < e−1. Define ρs(z) := log(|z|2 + s2) for z ∈ C, |z| < r. Then
2 log s ≤ ρs < −1, so 1 < −ρs ≤ 2 log 1

s . Set ηs := −ρs + log(−ρs).

Lemma 15.2. 1 < −ρs < ηs < −2ρs.

Proof. This follows from the inequality 0 < log x < x − 1 < x, valid for
x > 1. □

Hence 1 < ηs < 4 log 1
s .

Let ψs := − log ηs. Then − log(4 log 1
s ) < ψs < 0. We have the following

formulas: We skip the index s.
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Lemma 15.3.

(1) ρz =
z

|z|2 + s2

(2) ρzz =
s2

(|z|2 + s2)2

(3) ηz = −(1 + (−ρ)−1)ρz

(4) ηzz = −(1 + (−ρ)−1)ρzz −
|ρz|2

ρ2

(5) ψzz = −ηzz
η

+
|ηz|2

η2

= (1 + (−ρ)−1)
ρzz
η

+
|ρz|2

ηρ2
+

|ηz|2

η2

(6) ψzz ≥
(

1

η2
+

1

η(−ρ+ 1)2

)
|ηz|2

(7) ψzz ≥ s2

η(|z|2 + s2)2

(8) |ψz|2 =
(1 + (−ρ)−1)2

η2
|ρz|2

(9) ψzz ≥ |ρz|2

η
if |z|2 ≤ s2

Proof. (1) clear
(2) clear
(3) clear
(4) clear
(5) clear
(6): We use (5):

ψzz = (1 + (−ρ)−1)
ρzz
η

+
|ρz|2

ηρ2
+

|ηz|2

η2

≥ |ρz|2

ηρ2
+

|ηz|2

η2

apply (3)

=
|ηz|2

(1 + (−ρ)−1)2ηρ2
+

|ηz|2

η2
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(7): We use (5):

ψzz = (1 + (−ρ)−1)
ρzz
η

+
|ρz|2

ηρ2
+

|ηz|2

η2

≥ (1 + (−ρ)−1)
ρzz
η

≥ ρzz
η

we use (2)

=
s2

η(|z|2 + s2)2

(8):

ψz = (− log η)z

= −ηz
η

we use (3)

= −−(1 + (−ρ)−1)ρz
η

|ψz|2 =
(1 + (−ρ)−1)2|ρz|2

η2

(9): We use (7):

s2ψzz ≥ |z|2ψzz

≥ |z|2s2

η(|z|2 + s2)2

we use (1)

= s2
|ρz|2

η

□

We pick a smooth decreasing function χ(t), t ∈ R such that χ(t) = 1 if
t ≤ 1

2 and χ(t) = 0 if t ≥ 1.

Let C := 2
∫
1/2<|w|2<1 |χ

′(|w|2)|2(|w|2 + 1)2dλ(w).

Lemma 15.4. 2
∫
s2/2<|z|2<s2 |χ

′( |z|
2

s2
)|2 · (|z|2+s2)2

s6
dλ(z) = C.

Proof. We use the substitution z = sw. The result follows from the definition
of C. □
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Lemma 15.5.
η2

(−ρ+1)2

1 + η
(−ρ+1)2

≥ 1

6

Proof. We use Lemma 14.3:

η2

(−ρ+1)2

1 + η
(−ρ+1)2

≥
(−ρ)2

(−ρ+1)2

1 + −2ρ
(−ρ+1)2

Let x = −ρ, then x > 1.

x2

(x+1)2

1 + 2x
(x+1)2

=
x2

x2 + 4x+ 1

≥ x2

x2 + 4x2 + x2

=
1

6

□

Let Ω be a bounded pseudoconvex domain in Cn. Suppose that

sup
z∈Ω

|zn| < e−1/2.

Suppose there is a smooth function σ on Cn such that Ω = {z = (z1, . . . , zn) =
(z′, zn);σ(z) < 0}. Let Ω′ = {z′; (z′, 0) ∈ Ω}. Assume that dz′(σ) ̸= 0 when

σ(z′, 0) = 0. Let f(z′) be a holomorphic function in an open set V ⊃ Ω
′
. For

all ϵ > 0 small enough, the functionG(z′, zn) = χ(|zn|2/ϵ2)f(z′) is smooth on
the subset of Ω where χ > 0.We extend G smoothly to Ω by setting G equal
to zero when |zn| ≥ ϵ. In fact G extends smoothly to a neighborhood of Ω.
Let ν := ∂G. Also let ϕ be a smooth strongly plurisubharmonic function in
an open set containing Ω. Let 0 < δ < ϵ. Set ϕ′ := ϕ+log(|zn|2+δ2) = ϕ+ρδ.
By Lemma 14.4(2), ρδ is subharmonic. Let A denote the Hermitian matrix

{ ∂2ϕ′

∂zj∂zk
}. Then

∫
Ω |ν|2Ae−ϕ

′
< ∞. By Theorem 14.1 there exists a function

u ∈ L2(Ω, ϕ′) so that ∂u = ν. Let NT denote the nullspace of ∂ in L2(Ω, ϕ′).
We can subtract functions in NT and still have solutions to the equation.
Choosing the solution u which is perpendicular to NT will minimize the
norm of the solution.

Lemma 14.4 (5) shows that ψ = ψϵ is subharmonic. Moreover ψ is smooth

and bounded. We have that
∫
uhe−ϕ

′
= 0 for all holomorphic functions h

in L2(Ω, ϕ′).

Hence
∫
(ueψ)he−(ϕ′+ψ) = 0 for all holomorphic functions h in L2(Ω, ϕ′).

Since ψ is bounded, it follows that this is same set of holomorphic functions
as those in L2(Ω, ϕ′ + ψ). Hence ueψ ∈ L2(Ω, ϕ′ + ψ) and is perpendicular
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to the nullspace of ∂ in L2(Ω, ϕ′ + ψ). Since ψ is smooth, it follows also
that ∂(ueψ) = νeψ + ueψ∂ψ is in L2(Ω, ϕ′ + ψ). This shows that ueψ is in

the domain of T using the weight e−(ϕ′+ψ). By smoothness of ϕ′ and strong
plurisubharmonicity we also know that

∫
|∂(ueψ)|2A(ϕ′+ψ,0)

e−(ϕ′+ψ) <∞.

It follows from Theorem 14.1 that∫
|ueψ|2e−ϕ′−ψ ≤

∫
|νeψ + ueψ∂ψ|2A(ϕ′+ψ,0)

e−ϕ
′−ψ.

16. Chen’s proof of Ohsawa-Takegoshi, cont.

Hence ∫
|u|2e−ϕ′+ψ ≤

∫
|ν + u∂ψ|2A(ϕ′+ψ,0)

e−ϕ
′+ψ.

Using the small constant, large constant lemma, we get for any r > 0 :∫
Ω
|u|2e−ϕ′+ψ ≤

∫
supp(ν)

|ν + u∂ψ|2A(ϕ′+ψ,0)
e−ϕ

′+ψ

+

∫
Ω\supp(ν)

|ν + u∂ψ|2A(ϕ′+ψ,0)
e−ϕ

′+ψ

≤ (1 + r)

∫
supp(ν)

|u∂ψ|2A(ϕ′+ψ,0)
e−ϕ

′+ψ

+ (1 +
1

r
)

∫
supp(ν)

|ν|2A(ϕ′+ψ,0)
e−ϕ

′+ψ

+

∫
Ω\supp(ν)

|u∂ψ|2A(ϕ′+ψ,0)
e−ϕ

′+ψ

≤ (1 +
1

r
)

∫
Ω
|ν|2A(ϕ′+ψ,0)

e−ϕ
′+ψ

+

∫
Ω
|u∂ψ|2A(ϕ′+ψ,0)

e−ϕ
′+ψ

+ r

∫
supp(ν)

|u∂ψ|2A(ϕ′+ψ,0)
e−ϕ

′+ψ

We estimate the three integrals. The form ν is a multiple of dzn. Also
the function f only depends on z′. By Lemma 14.3 (7), if g = (0′, α), then

|g|2A ≤ |g|2 ηϵ(|zn|
2+ϵ2)2

ϵ2
. Hence
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∫
Ω
|ν|2Ae−ϕ

′+ψ ≤
∫
Ω
|ν|2 ηϵ(|zn|

2 + ϵ2)2

ϵ2
e−(ϕ+log(|zn|2+δ2))−log ηϵ

≤
∫

(|χ′(|zn|2/ϵ2)|)2
|zn|2

ϵ4
(|zn|2 + ϵ2)2

ϵ2
1

|zn|2 + δ2
|f(z′)|2e−ϕ

≤ 2

(∫
ϵ2

2
≤|zn|2≤ϵ2

|χ′|2 (|zn|
2 + ϵ2)2

ϵ6
|zn|2

|zn|2 + δ2

)(∫
Ω′

|f |2e−ϕ
)

The reason for the factor 2 is to take into account the error term in
ϕ(z′, zn) = ϕ(z′, 0) + O(zn) and also that we need values of f in a small

neighborhood of Ω
′
. So this is valid when ϵ is small enough. Hence, using

Lemma 14.4 we get

(1 + r−1)

∫
Ω
|ν|2A(ϕ′+ψ,0)

e−ϕ
′+ψ ≤ 2(1 + r−1)C

∫
Ω′

|f |2e−ϕ.

We next estimate the second integral.∫
Ω
|u∂ψ|2A(ϕ′+ψ,0)

e−ϕ
′+ψ =

∫
|u|2|∂ψ|2A(ϕ′+ψ,0)

e−ϕ
′+ψ

We have that Aϕ′+ψ,0 ≥ Aψ,0. Here Aψ,0 has only one nonzero entry,
at place (n, n) where the entry is ψzn,zn . By Lemma 14.3 (6), we have

ann ≥
(

1
η2

+ 1
η(1+(−ρ)−1)2

)
|ηz|2. Moreover by 14.3 (8), we have |ψz|2 =

(1+(−ρ)−1)2

η2
|ρz|2. By 14.3 (3) we have that |ρz |2

|ηz |2 = (1 + (−ρ)−1)−2.

Hence∫
Ω
|u∂ψ|2Ae−ϕ

′+ψ ≤
∫

|u|2 (1 + (−ρ)−1)2

η2
|ρz|2

1(
1
η2

+ 1
η(1+(−ρ)−1)2

)
|ηz|2

e−ϕ
′+ψ

=

∫
Ω
|u|2 1

1 + η
(1+(−ρ)−1)2

e−ϕ
′+ψ

Finally, we do the third integral, over Supp(ν).

We use 14.3 (8): |∂ψ|2 ≤ 4
η2
|∂ρ|2

and 14.3 (9): ∂∂ψ ≥ |∂ρ|2
η , when |zn|2 ≤ ϵ2.

r

∫
supp(ν)

|u∂ψ|2Ae−ϕ
′+ψ ≤ r

∫
Ω
|u|2 4

η2
|∂ρ|2 η

|∂ρ|2
e−ϕ

′+ψ

= r

∫
Ω
|u|2 4

η
e−ϕ

′+ψ
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We combine the above calculations:∫
Ω
|u|2e−ϕ′+ψ ≤ (1 +

1

r
)

∫
Ω
|ν|2Ae−ϕ

′+ψ

+

∫
Ω
|u∂ψ|2Ae−ϕ

′+ψ

+ r

∫
supp(ν)

|u∂ψ|2Ae−ϕ
′+ψ

≤ 2(1 + r−1)C

∫
Ω′

|f |2e−ϕ

+

∫
Ω
|u|2 1

1 + η
(1+(−ρ)−1)2

e−ϕ
′+ψ

+ r

∫
Ω
|u|2 4

η
e−ϕ

′+ψ

Hence we get∫
Ω
|u|2e−ϕ′+ψ −

∫
Ω
|u|2 1

1 + η
(1+(−ρ)−1)2

e−ϕ
′+ψ

− r

∫
Ω
|u|2 4

η
e−ϕ

′+ψ

≤ 2(1 + r−1)C

∫
Ω′

|f |2e−ϕ

∫
Ω
|u|2e−ϕ′+ψ

(
1− 1

1 + η
(1+(−ρ)−1)2

− 4r

η

)
≤ 2(1 + r−1)C

∫
Ω′

|f |2e−ϕ

Hence∫
Ω
|u|2e−ϕ′+ψ

( η
(1+(−ρ)−1)2

1 + η
(1+(−ρ)−1)2

− 4r

η

)
≤ 2(1 + r−1)C

∫
Ω′

|f |2e−ϕ

From Lemma 14.5 we get

∫
Ω
|u|2e−ϕ′+ψ

(
1
6 − 4r

η

)
≤ 2(1 + r−1)C

∫
Ω′

|f |2e−ϕ

Choose 0 < r0 <
1
24 to minimize

1+ 1
r

1
6
−4r

and set C ′ =
1+ 1

r0
1
6
−4r0

.
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Then ∫
Ω

1

η
|u|2e−ϕ′+ψ ≤ 2C ′C

∫
Ω′

|f |2e−ϕ

Since ψ = − log η, we get∫
Ω

1

η2
|u|2e−ϕ′ ≤ 2C ′C

∫
Ω′

|f |2e−ϕ.

Recall that η = −ρ+ log(−ρ) < −2ρ = −2 log(|z|2 + ϵ2), so∫
Ω

1

(log(|zn|2 + ϵ2))2
|u|2e−ϕ′ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

Using that ϕ′ = ϕ+ log(|zn|2 + δ2), we obtain

∫
Ω

1

(|zn|2 + δ2)(log(|zn|2 + ϵ2))2
|u|2e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

Hence we have found functions u = uδ,ϵ solving the problem ∂uδ,ϵ =
ν = νϵ om Ω satisfying the above estimate. In particular, the family uδ,ϵ
are uniformly in L2

loc and hence also in L1
loc for ϵ fixed. Applying Corollary

H.2.2.5 for fixed ϵ to the family uδ,ϵ−fχ(|zn|2/ϵ2) we can find a subsequence

uδj ,ϵ → uϵ such that ∂uϵ = νϵ and∫
Ω

1

|zn|2(log(|zn|2 + ϵ2))2
|uϵ|2e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

Notice that this forces uϵ(z
′, 0) = 0 since the function

∫
z∈C;|z|<a

1
|z|2dλ =

∞ for all a > 0.

Hence, the function fχ(|zn|2/ϵ2) − uϵ is a holomorphic function on Ω
which extends f . Since the functions are uniformly in L2

loc there is a limit
holomorphic function F for a subsequence ϵj ↘ 0 which is in L2

loc in Ω and
which extends f . If we fix any compact subset K ⊂ Ω which does not inter-
sect the hyperplane zn = 0, we have for small enough ϵ that fχ(|zn|2/ϵ2) = 0
on K. Hence we must have that

∫
K

1

|zn|2(log(|zn|2)2
|F |2e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

But then also

∫
Ω

1

|zn|2(log(|zn|2)2
|F |2e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

In conclusion, we have shown:
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Lemma 16.1. Let Ω be a bounded pseudoconvex domain in Cn. Suppose
that supz∈Ω |zn| < e−1/2. Suppose there is a smooth function σ on Cn such
that Ω = {z = (z1, . . . , zn) = (z′, zn);σ(z) < 0}. Let Ω′ = {z′; (z′, 0) ∈
Ω}. Assume that dz′(σ) ̸= 0 when σ(z′, 0) = 0. Also let ϕ be a smooth
strongly plurisubharmonic function in an open set containing Ω. Let f(z′)

be a holomorphic function in an open set V ⊃ Ω
′
. Then there exists a

holomorphic function F : Ω → C such F (z′, 0) = f(z′) for all z′ ∈ Ω′. Also

∫
Ω

|F (z)|2

|zn|2(log |zn|2)2
e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

We now prove the Ohsawa-Takegoshi Theorem. This version of the Ohsawa-
Takegoshi Theorem was first proved by Demailly in ICTP lecture notes, vol
6, 1-148, Trieste, 2000).

Theorem 16.2. Let Ω be a pseudoconvex domain in Cn. Suppose that
supz∈Ω |zn| < e−1/2. Let Ω′ = {z′; (z′, 0) ∈ Ω}. Also let ϕ be a plurisub-
harmonic function on Ω. Let f(z′) be a holomorphic function on Ω′. Then
there exists a holomorphic function F : Ω → C such F (z′, 0) = f(z′) for all
z′ ∈ Ω′. Also

∫
Ω

|F (z)|2

|zn|2(log |zn|2)2
e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

Proof. Let f(z′) be a holomorphic function on Ω′. We proved in Theorem
4.2.8a that there exists an extension F which is holomorphic on Ω. We only
need to show that in case the integral on the right is finite, we can find
F satisfying the inequality. By Theorem H.2.6.11, there exists a smooth
plurisubharmonic function ψ on Ω so that all sublevel sets ψ ≤ c are com-
pact. By Sards Lemma, the gradient of ψ is nonzero on almost all level
sets. The same applies to the restriction ψ(z′, 0) to Ω′. Hence, if we let
Ω1 = {ψ < c},Ω′

1 = {(z′, 0) ∈ Ω1} then there is a function σ as in Lemma
15.1. We can do this construction for arbitrarily large c. Let ϕk be a sequence
of smooth strongly plurisubharmonic functions defined on neighborhoods of
Ω1 such that ϕk ↘ ϕ pointwise.

For each k there exists by Lemma 15.1 a holomorphic extension of f to
Fk on Ω1 such that

∫
Ω1

|Fk(z)|2

|zn|2(log |zn|2)2
e−ϕk ≤ 8C ′C

∫
Ω′

|f |2e−ϕk .
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Next note that e−ϕk ↗ e−ϕ. Hence we get for m ≥ k that∫
Ω1

|Fm|2e−ϕk ≤
∫
Ω1

|Fm|2

|zn|2(log(|zn|2)2
e−ϕk

≤
∫
Ω1

|Fm|2

|zn|2(log(|zn|2)2
e−ϕm

≤ 8C ′C

∫
Ω′

|f |2e−ϕm

≤ 8C ′C

∫
Ω′

|f |2e−ϕ

Hence we see that the family {Fm} is locally uniformly bounded in L2,
hence there is a subsequence which converges uniformly to a holomorphic
function Fc on Ω1. This function is an extension of f . Moreover,∫

Ω1

|Fc|2

|zn|2(log(|zn|2)2
e−ϕk ≤ 8C ′C

∫
Ω′

|f |2e−ϕ

for every k. Hence∫
Ω1

|Fc|2

|zn|2(log(|zn|2)2
e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

Next we can take a limit F of a subsequence Fcj , cj → ∞. Then F extends
f and ∫

Ω

|F |2

|zn|2(log(|zn|2)2
e−ϕ ≤ 8C ′C

∫
Ω′

|f |2e−ϕ.

□

17. Appendix 1, ∂ on polydiscs

2.3 The inhomogeneous Cauchy-Riemann equations in a polydisc.

We let f =
∑

|I|=p,|J |=q fI,Jdz
I ∧ dzJ be a (p, q) form. Note that if p > n

or q > n the form must be zero because some dzi or dzj must be repeated
and when we switch them the form changes sign. We will use the notation
f =

∑′
I,J fI,Jdz

I ∧ dzJ if all the multiindeces are in increasing order, so

if I = (i1, . . . , ip) then i1 < i2 · · · < ip and similar for J . In this case the
coefficients are unique.

We say that
∑′

I,J dz
I ∧ dzJ is a C∞ form if all coefficients are in C∞(Ω).

Theorem 2.3.3 Let D be a polydisc and let f ∈ C∞
(p,q+1)(D). Assume

that ∂f = 0. Suppose D′ ⊂⊂ D is a concentric smaller polydisc. Then there
exists u ∈ C∞

(p,q)(D
′) such that ∂u = f.
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Lemma 2.3.3a Let D′ ⊂⊂ D′′ ⊂⊂ D be concentric polydiscs with
polyradii r′, r′′, r in Cn. Let 1 ≤ k ≤ n. Suppose that g ∈ C∞(D) and

suppose that ∂g
∂zj

= 0 for all j > k. Then there exists a C∞ function G on D

such that ∂G
∂zk

= g on D′′ and ∂G
∂zj

= 0 on D for all j > k.

Proof. Let ψ(zk) ∈ C∞
0 (∆1(0, rk))which is 1 on ∆1(0, r′′k). We define

G(z) =
1

2πi

∫
ψ(τ)g(z1, . . . , zk−1, τ, zk+1, . . . , zn)

τ − zk
dτ ∧ dτ

Set σ = zk − τ

=
1

2πi

∫
ψ(zk − σ)g(z1, . . . , zk−1, zk − σ, zk+1, . . . , zn)

−σ
dσ ∧ dσ

From the last expression we see that G ∈ C∞(D). Moreover we see that
∂G
∂zj

= 0 on D for all j > k. Finally,

∂G

∂zk
=

1

2πi

∫ ∂(ψ(zk−σ)g(z1,...,zk−1,zk−σ,zk+1,...,zn))
∂zk

−σ
dσ ∧ dσ

=
1

2πi

∫ ∂(ψ(τ)g(z1,...,zk−1,τ,zk+1,...,zn))
∂τ

τ − zk
dτ ∧ dτ

= using Theorem 1.2.1

ψ(zk)g(z).

Since ψ = 1 on D′, we are done. □

Let q ≤ k ≤ n.

Lemma 2.3.3k Let D be a polydisc and let f ∈ C∞
(p,q+1)(D). Assume that

∂f = 0. Assume furthermore that f contains no term with dzk+1, . . . , dzn.
Suppose D′ ⊂⊂ D is a concentric smaller polydisc. Then there exists
u ∈ C∞

(p,q)(D
′) such that ∂u = f.

Notice that if k = q, then all terms in f must be zero because only
dz1, . . . , dzp can appear and you need p + 1 differentials. Hence Lemma
2.3.3q is true. We next show that if q ≤ k − 1 < n, then Lemma 2.3.3k−1

implies Lemma 2.3.3k.

Let the assumptions be as in Lemma 2.3.3k. We can then write

f = dzk ∧ g + h

where g is a (p, q) form with no terms with dzk+1, . . . , dzn and h is a (p, q+1)
form without any of the dzk+1, . . . , dzn.
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We can write g =
∑′

I,J gI,Jdz
I ∧ dzJ where I, J do not contain any of

the indices k, · · · , n. The only terms in ∂f containing both I, J, dzk, dzj for

some j > k, come from
∂gI,J
∂zj

. Hence, since ∂f = 0, it follows that
∂gI,J
∂zj

= 0

for all j > k. Hence by Lemma 2.3.3a there exist GI,J ∈ C∞(D) such that
∂GI,J
∂zk

= g on D′′ and
∂GI,J
∂zj

= 0 on D for all j > k. Let G =
∑′GI,Jdz

I∧dzJ .
Then ∂G = dzk ∧ g + h1 on some D′′, D′ ⊂⊂ D′′ ⊂⊂ D, where h1 does not
contain any of the differentials dzk, . . . , dzn. The form f − ∂G = h − h1 is
∂− closed and contains none of dzk, . . . , dzn. Hence, by the inductive hy-
pothesis, there is a C∞ form v on D such that ∂v = f −∂ = G. Hence v+G
solves the problem ∂(v +G) = f.

Finally, to prove Theorem 2.3.3, we observe that this is equivalent to
Lemma 2.3.3n.

Corollary 2.3.3b Let D be a polydisc and let f ∈ C∞
(p,q+1)(D). Assume

that ∂f = 0. Then there exists u ∈ C∞
(p,q)(D) such that ∂u = f.

Proof. Let Dn denote an increasing sequence of concentric polydiscs such
that Dj ⊂⊂ Dj+1 and D = ∪Dj . Let us first consider the case q = 0.
We will make an inductive construction. Suppose we have a form vj =∑
I, 0vI,0,jdz

I ∈ C∞
(p,q)(D) such that ∂vj = f on Dj . Use Theorem 2.3.3 to

find a v′j+1 =
∑
I, 0gI,0,j+1dz

I ∈ C∞
(p,q)(D) such that ∂v′j+1 = f on Dj+1.

Then all the coefficients of the (p, 0) form v′j+1 − vj are holomorphic func-
tions on Dj . Hence they have a normally convergent power series in Dj Now
we can approximate each vI,0,j−v′I,0,j+1 closer than

1
2j

by holomorphic poly-

nomials PI,0,j on Dj−1. We now define a new solution to ∂u = f on Dj+1

by setting vj+1 =
∑

I(v
′
I,0,j+1) + PI,0,j)dz

I , This sequence of solutions will

converge normally to a solution on D.

Next, let us consider the case q > 0. Again we make an inductive construc-
tion. So assume we have a solution vj defined on D and such that ∂vj = f

on Dj . Next, let v′j+1 be smooth (p, q) form on D such that ∂v′j+1 = f

on Dj+1. Then the form v′j+1 − vj is a smooth (p, q) form on D such that

∂(v′j+1− vj) = 0 on Dj . Since q > 0, theorem 2.3.3 applies to find a smooth

(p, q− 1) form wj on D so that ∂wj = v′j+1 − vj on Dj−1. Define vj+1 on D

by vj+1 = v′j+1− ∂wj . Then still ∂vj+1 = ∂v′j+1 = f on Dj+1 and vj+1 = vj
on Dj−1. Hence we get a solution on D by letting v = lim vj .

□



78 JOHN ERIK FORNÆSS

18. Appendix 2, Solution of T ∗f = v

This is the analogue of Lemma 4.1.1 in Hormander for T ∗ instead of T.
It was not needed in our presentation.

Lemma 4.1.2 Let G1, G2 be reflexive Banach spaces and let T : G1 → G2

be a densely defined closed linear operator. Let F ⊂ G2 be a closed subspace
containing the range of T,RT . Assume that there exists a constant C > 0
such that

(∗) ∥y|F ∥G′
2
≤ C∥T ∗y∥G′

1
∀ y ∈ DT ∗ .

Then for every v ∈ G′
1 which is in N⊥

T there is an f ∈ DT ∗ such that
T ∗(f) = v and

∥f∥G′
2
≤ C∥v∥G′

1

We prove first two lemmas.

Lemma 4.1.2a Let G1, G2 be two reflexive Banach spaces, T : G1 → G2

a closed, densely defined linear operator. Then

NT = {x ∈ G1 such that T ∗(y)(x) = 0 ∀y ∈ DT ∗}.
Also RT ∗ = N⊥

T .

Proof. Suppose that x ∈ NT and y ∈ DT ∗ . Then (T ∗y)(x) = y(Tx) =
y(0) = 0. Hence NT ⊂ {x ∈ G1 such that T ∗(y)(x) = 0 ∀y ∈ DT ∗}. Also
RT ∗ = N⊥

T . Suppose that x ∈ G1, T
∗y(x) = 0 ∀y ∈ DT ∗ . Then for the

isometric ϕ = ϕ(x) ∈ G′′
1 we have ϕ(x)(y)(T ∗y) = 0 for all y ∈ DT ∗ . Hence

(ϕ, 0) ∈ G⊥
T ∗ . This implies that (ϕ, 0) ∈ GT ∗∗ so (x, 0) ∈ GT . Therefore

Tx = 0 so x ∈ NT . This proves the first part of the lemma.

Suppose next that x ∈ NT and z ∈ RT ∗ , z = T ∗(y). Then z(x) = y(Tx) =
y(0) = 0. Hence z ∈ N⊥

T . Hence RT ∗ ⊂ N⊥
T . Since N

⊥
T is closed, we see that

RT ∗ ⊂ N⊥
T . Suppose finally that there exists some z ∈ Nperp

T which is not

in RT ∗ . Then, by the Hahn-Banach theorem there exists a ϕ ∈ G′′
1 so that

ϕ(T ∗(y)) = 0 for all y ∈ DT ∗ but ϕ(z) ̸= 0. Hence (ϕ, 0) ∈ G⊥
T ∗ . Hence

there exists x ∈ G1 so that (x, 0) ∈ GT . Hence Tx = 0 so x ∈ NT and
z(x) = ϕ(z) ̸= 0. This is a contradiction since z ∈ N⊥

T . □

Lemma 4.1.2b Assume the hypothesis of Lemma 4.1.2. Then T ∗ has
closed range.

Proof. Pick a y ∈ DT ∗ . Then |y(x)| ≤ C∥T ∗(y)∥∥x∥ ∀ x ∈ F. By the Hahn-
Banach theorem we can extend y|F to ỹ on G2 with the same norm. Hence
∥ỹ∥G′

2
≤ C∥T ∗(y)∥G′

1
. Also, ỹ− y vanishes on F. Therefore ỹ− y ∈ DT ∗ and

T ∗(ỹ − y) = 0. Since y ∈ DT ∗ it follows that ỹ ∈ DT ∗ and T ∗(ỹ) = T ∗(y).
Next, let {yn} be a sequence in DT ∗ such that {T ∗(yn) converges to some
z ∈ G′

1. We can assume that ∥T ∗(yn+1 − yn)∥ < 1
2n . Set u1 = y1 and
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un+1 = yn+1 − yn for n ≥ 1. So yn = u1 + · · · + un for n ≥ 2. Replace un
by ũn as above, and define ỹn = ũ1 + · · · + ũn. Then it follows that the
sequence T ∗(ỹn) → z and hence also ỹn is a Cauchy sequence converging
to some y ∈ G′

2. Since the graph of T ∗ is closed, we see that y ∈ DT ∗ and
z = T ∗(y). Hence the range of T ∗ is closed. □

Next we prove Lemma 4.1.2.:

Proof. Suppose that v ∈ G′
1 and that v ∈ N⊥

T . Then by Lemma 1, v ∈ RT ∗

and by Lemma 2, we have that v = T ∗(f) for some f ∈ DT ∗ . By our
hypothesis, it follows that ∥f|F {G′

2
≤ C∥v∥G′

1
. Again we use Hahn-Banach

and replace f by f̃ on G2 with the same norm on G2 as the norm of f
restricted to F. Again as above, f̃ ∈ DT ∗ and T ∗(f̃) = T ∗(f) = v. Also,

∥f̃∥G′
2
≤ C∥v∥G′

1
. □

19. Appendix 3, Ohsawa-Takegoshi in Lp

Ohsawa-Takegoshi in Lp spaces.

We present an elegant proof for the validity of Ohsawa-Takegoshi for Lp

spaces, 0 < p < 2. This proof is due to Berndtsson-Paun: Bergman kernels
and subadjunction. arXiv: 1002.4145v1 [math.AG] 22Feb 2010

Theorem 19.1. Let Ω be a pseudoconvex domain in Cn. Suppose that
supz∈Ω |zn| < e−1/2. Let Ω′ = {z′; (z′, 0) ∈ Ω}. Also let ϕ be a plurisub-
harmonic function on Ω. Let f(z′) be a holomorphic function on Ω. Then
there exists a holomorphic function F : Ω → C such F (z′, 0) = f(z′) for all
z′ ∈ Ω′. Also ∫

Ω

|F (z)|2

|zn|2(log |zn|2)2
e−ϕ ≤ C0

∫
Ω′

|f |2e−ϕ.

Theorem 19.2. Let Ω be a pseudoconvex domain in Cn. Suppose that
supz∈Ω |zn| < e−1/2. Let Ω′ = {z′; (z′, 0) ∈ Ω}. Also let ϕ be a plurisub-
harmonic function on Ω. Let f(z′) be a holomorphic function on Ω. Let
0 < p ≤ 2. Then there exists a holomorphic function F : Ω → C such
F (z′, 0) = f(z′) for all z′ ∈ Ω′. Also∫

Ω

|F (z)|p

|zn|2(log |zn|2)2
e−ϕ ≤ C0

∫
Ω′

|f |pe−ϕ.

The constant C0 is the same as for L2. We introduce the notation σ =
e−ϕ

|zn|2(log |zn|2)2 .

Proof. We can exhaust Ω by smoothly bounded strongly pseudoconvex do-
mains. It suffices to prove the estimate for those if the function f extends
to a neighborhood of the closure and there exists some extension defined in
a neighborhood of the closure. It also suffices to assume that ϕ is smooth
on Ω.
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We can assume that
∫
Ω′ |f |pe−ϕ = 1. Pick some holomorphic extension

F1 and let
∫
Ω |F1|pσ =: A <∞.

We then apply the Ohsawa-Takegoshi theorem to ϕ1 = ϕ+ (1− p
2) log |F1|2.

We then get an extension F2 such that∫
Ω

|F2(z)|2

|zn|2(log |zn|2)2
e−ϕ1 ≤ C0

∫
Ω′

|f |2e−ϕ1∫
Ω

|F2(z)|2σ
e(1−

p
2
) log |F1|2

≤ C0

∫
Ω′

|f |2 1

e(1−
p
2
) log |F1|2

e−ϕ∫
Ω

|F2(z)|2σ
|F1|2−p

≤ C0

∫
Ω′

|f |2

|F1|2−p
e−ϕ

= C0

∫
Ω′

|f |2

|f |2−p
e−ϕ

= C0

∫
Ω′

|f |pe−ϕ

= C0

∫
Ω
|F2|pσ =

∫
Ω
|F2|pσp/2σ1−

p
2

=

∫
Ω

(
|F2|pσp/2

|F1|(1−
p
2
)p

)(
|F1|(1−

p
2
)pσ1−

p
2

)

≤ (

∫
Ω

(
|F2|pσp/2

|F1|(1−
p
2
)p

) 1
p/2

)p/2

∗ (

∫
Ω

(
|F1|(1−

p
2
)pσ1−

p
2

) 1
1− p

2 )1−
p
2

= (

∫
Ω

(
|F2|2σ
F1|2−p

)
)p/2

∗ (

∫
Ω
|F1|pσ))1−

p
2

≤ (C0)
p/2A1− p

2

= A(C0/A)
p/2
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We can repeat the construction and find a sequence of holomorphic func-
tions Fn on Ω which extend f and which satisfy∫

Ω
|Fn|pσ ≤ An, where An = An−1(C0/An−1)

p/2.

We see that if An > C, then An+1 < An. If all An > C, then An → C.

□

Break Down of Ohsawa-Takegoshi for p > 2.

We show here that for extensions from Lq to Lp,0 < p, q ≤ ∞, the only
case possible is 0 < p = q ≤ 2.

First we consider unweighted extension on pseudoconvex domains con-
tained in the unit ball.

Example 19.3. For small δ > 0, let Ω = {|z| < δ, |w| < 1}. We extend the

function f = 1 on the z axis. The Lq norm is about δ1/q. The extension
F = 1 which is optimal, has Lp norm about δ1/p. For O-T to hold we need
p ≤ q.

We give another example of an unweighted extension of a domain in the
unit ball which will show that p ≤ 2.

Extensions of zn.

Pick aj , n+ 1 distinct complex numbers. Consider the subdomain of the
unit ball in C2 given by |Π(z − ajw)| < δ. We investigate extension of zn

from the intersection with the z axis from Lq to Lp. The Lq norm of zn is
about

(

∫
|z|<δ1/(n+1)

|z|nq)1/q = (

∫ δ1/(n+1)

0
rnq+1)1/q

= (
(δ1/(n+1))nq+2

nq + 2
)1/q

= cnδ
nq+2
(n+1)q

The extension to at least one of the lines must be at least on the order of
zn. This gives the Lp estimate at least δ2/p.

Lemma 19.4. For O-T to hold from Lq to Lp we need

2

p
≥ nq + 2

(n+ 1)q
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For this to hold for arbitrarily large n, we must have 2
p ≥ 1, i.e. p ≤ 2.

These two examples show that for unweighted O-T to hold on pseudo-
convex domains in the unit ball, then we need 0 < p ≤ 2, p ≤ q ≤ ∞. We
observe that in this case Lq ⊂ Lp, so the theorem holds already as proved
in the previous section. There is nothing new.

Finally, let us assume we allow as is usual, the domains to be arbitarily
large in the z direction:
Take a domain which is a ball of radius R in the z1, ..., zn−1 direction and a
disc of fixed small radius in the zn direction. Extend the function 1. Then
the Lp norm is about R(2n−2)/p.

Hence O-T requires that

R(2n−2)/p ≤ R(2n−2)/q

1

p
logR ≤ 1

q
logR

for all R. In particular, for large R this shows that q ≤ p. So only the case
p = q, 0 < p ≤ 2 can work even for unweighted spaces.

Finally, we recall that the restrictions obtained work in weighted spaces
as well. (Use

∫
|f |pe−pϕ instead of

∫
|f |pe−ϕ to avoid scaling problems as

one sees from using a family of weights, ϕc = ϕ+ c, c ∈ R.)

20. Appendix 4, The strong openness conjecture in Lp.

We give an example where L2 results extend to all Lp, 0 < p < ∞. Let
ϕj < 0 be a sequence of plurisubharmonic functions defined in a neighbor-
hood of the origin in Cn. Suppose that ϕj ≤ ϕj+1 and let ϕ = limϕj . Let
0 < p < ∞. The strong openness conjecture in Lp says that if f is a holo-
morphic function in a neighborhood U of 0 and

∫
U |f |pe−ϕ <∞, then there

exists a j and a neighborhood V ⊂ U of 0 so that
∫
V |f |pe−ϕj < ∞. This

conjecture has been proved for p = 2 by Qi’an Guan and Xiangyu Zhou,
Strong openness conjecture arXiv:1311.3781v1 [math.CV] 15 Nov 2013.

We see here how the result for p = 2 immediately proves the conjecture
for all p.

Theorem 20.1. The strong openness conjecture holds in Lp for p < 2.

Proof. Let {ϕj}∞j=1 be a sequence of plurisubharmonic functions converging
to a negative function ϕ on a neighborhood of 0 in Cn, ϕj ↗ ϕ. Suppose

that
∫
U |f |pe−ϕ < ∞ on some neighborhood U of the origin, where f is a

holomorphic function. Let vj = ϕj + (2 − p) log |f |, v = ϕ + (2 − p) log |f |.



SCV 83

The vj are plurisubharmonic functions and vj ↗ v. Moreover,∫
U
|f |2e−v =

∫
U
|f |2e−ϕ−(2−p) log |f | =

∫
|f |2|f |p−2e−ϕ <∞.

Hence by the strong openness conjecture for p = 2, it follows that for some
large enough j, and some smaller neighborhood V of the origin,∫

V
|f |pe−ϕj =

∫
V
|f |2e−(2−p) log |f |−ϕj =

∫
V
|f |2e−vj <∞.

□

Corollary 20.2. The strong openness conjecture holds in Lp for all 0 <
p <∞.

Proof. Choose p and let m be a positive integer so that p/m < 2. Suppose∫
U |f |pe−ϕ < ∞. Then

∫
U |fm|p/me−ϕ < ∞. But since p/m < 2 it follows

that for large j that
∫
|fm|p/me−ϕj <∞, i.e.

∫
|f |pe−ϕj <∞. □

We can also vary p and ϕ at the same time.

Theorem 20.3. Let 0 < p < ∞ and suppose that ϕ < 0 in a neighborhood
U of 0 in Cn. Suppose that pj ↗ p and ϕj ↗ ϕ is a sequence of plurisub-
harmonic functions on U. If f is a holomorphic function on U such that∫
U |f |pe−ϕ < ∞, then there exists j and a smaller neighborhood V of 0 so
that ∫

V
|f |pje−ϕj <∞.

Proof. We can assume that |f | < 1. Consider the weights vj = (p−pj) log |f |+
ϕj . Then vj ↗ ϕ except for possibly the zero set of f. Hence by the strong

openness conjecture for Lp,
∫
V |f |pe−(p−pj) log |f |−ϕj < ∞ for large j. Hence∫

V |f |pje−ϕj <∞.
□

We have a similar result for decreasing sequence in pj .

Theorem 20.4. Let 0 < p < ∞ and suppose that ϕ < 0 in a neighborhood
U of 0 in Cn. Suppose that pj ↘ p and ϕj ↗ ϕ is a sequence of plurisub-
harmonic functions on U. If f is a holomorphic function on U such that∫
U |f |pe−pϕ < ∞, then there exists j and a smaller neighborhood V of 0 so
that ∫

V
|f |pje−pjϕj <∞.

Proof. We can assume that |f | < 1. We have that pjϕj ↗ pϕ. Suppose that∫
U |f |pe−pϕ < ∞. Hence by the strong openness conjecture in Lp, we see

there is a j and a V so that
∫
V |f |pe−pjϕj <∞. Since |f |pj ≤ |f |p, the result

follows. □
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