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2 JOHN ERIK FORNZESS
1. INTRODUCTION

These lectures will give an introduction to several complex variables. We
will generally follow the classical book by Hormander, An Introduction to
complex analysis in several variables. The notes will add some more
details to the text of Hormander, especially after the introductory material.
We generally follow the numbering of results as in Hormanders book, but
results in Hormander might be broken up into smaller steps, for example,
Lemma 4.1.3 in Hormanders book is broken up into 4.1.3, to 4.1.3; in these
notes.

We follow Chapter 1.1, 1.2 and 1.6
and then Chapter 2.1, 2.2, 2.5 and 2.6.

Afterwards we move to Chapter 4.1, 4.2. We deviate a little by consid-
ering LP spaces for general p for a while, before restricting to L? spaces.
We prove the existence of solutions to 0 on pseudoconvex domains in C” in
Ll20 . and give the solution of the Levi problem. At the end we go through
the recent proof by Bo-Yong Chen of the Ohsawa-Takegoshi Theorem. This
requires first that we discuss a version of Hormanders solution of the 0 equa-
tion in L? as in Theorem 1.1.4 in the 1965 Acta paper of Hormander.

Some additional material that is not needed for the presentation are in
the Appendices. For example, the solution of 9 in a polydics of section 2.3
is in an appendix, since it is not needed in the proof of the L? theorem
of Hormander. There are also some remarks on LP spaces there, such as
Ohsawa-Takegoshi in LP and the strong openness conjecture in LP.

The author thanks the Beijing International Center for Mathematical Re-
search, BICMR, for its hospitality during the Spring Semester of 2014.

The course can also be downloaded from

http://www.bicmr.org/news/2014,/0221/1386.html
1.7may2014.pdf

Preliminaries for the course is some knowledge of one complex variable
and some functional analysis.

2. HORMANDER, SECTION 1.1-1.2

Chapter I: Analytic functions of one complex variable.
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1.1 Preliminaries:

Here holomorphic (=analytic) functions are introduced. These are C!
functions on domains in C which satisfy the Cauchy-Riemann equation

ou
~_9
0z
The set of all such functions is denoted by A(€2).
Here
ou (0w ou
0z 2\ 0x Z@y
i _ (0w, ou
0z 2\ 0z y
Generally,

ou ou ou ou
du = %d:v + 8—ydy = adz + %dz.

For analytic functions, du = %dz, i.e. du and dz are paralell. For analytic
functions we write % =
Examples of analytic functions are all polynomials P(z) = 3, a;2" and

the exponential function e* = e*(cosy + isiny). We have that products,
compositions and inverses of analytic functions are analytic.

1.2 Cauchy’s integral formula and its applications.

Let w be a bounded open set in C with boundary consisting of finitely
many C! Jordan curves. For ease of reference, we list the results using
the same numbering as in Hormander. The proofs can be read easily in
Hormanders book.

Cauchy integral formula for general functions:

Theorem 1.2.1 Let u € C!(w). Then for ¢ € Q,

U(C):Q;lm'(?iw:(j)cdz+//wzg—:(d2/\dz>

Theorem 1.2.2 If ;4 is a measure with compact support in C, the integral

u(C) :/iu_(zc)

defines an analytic C* function outside the closed support of p. In any
PE)NIZ 1 some ¢ € C*(w),k > 1, we have that

21

open set w where duy =
u € C*(w) and % = ¢.
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Corollary 1.2.3 Every u € A(Q2) is in C*. Also v’ € A(Q) if u € A(Q).

Theorem 1.2.4 For every compact set K C € and every open neighbor-
hood w C Q of K there are constants Cj,j = 0,1,... such that

(1.2.4) sup [ul)(2)] < Cjlull 1

zeK
for all u € A(Q), where ul) = %
Exercises
Recall that a function f(z) = u(x,y) + iv(z,y) is analytic if f € C! and
9 =0
Jz — 7

1) Show that the equation % = 0 is equivalent to the classical Cauchy
Riemann equations

ou  Ov
dr 0y
ou ov
8y Oz

2) Show that the function defined by f(z) = e~ for z # 0 and f(0) = 0
satisfies the Cauchy Riemann equations at every point. Is f € C'?

3) Show that

ary _ of
az)—az

ofry _ of
(5) - &
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3. HORMANDER, 1.2,1.6

Corollary 1.2.5 If u,, € A(Q?) and u,, — uw when n — oo, uniformly on
compact subsets of €2, it follows that u € A().

Proof. Pick a point ¢ € © and choose a disc A(w,r) C Q with ¢ € A(w, 7).
For each n, we have by theorem 1.2.1. that

1 Un(z)
up(C) = 5=
( ) |z—w|=r = C

271
Using the uniform convergence we then get w is continuous and

1 u(z)
u(¢) = 5 /Z_w|r fgdz.

From this formula we see that u is C! and analytic on A(w, 7).

dz.

O

Corollary 1.2.6 If u,, € A(Q2) and the sequence |uy| is uniformly bounded
on every compact subset of (2, there is a subsequence u,; converging uni-
formly on every compact subset of €2 to a limit u € A(Q).

Corollary 1.2.7 The sum of a power series > o~ a,2" is analytic in the
interior of the circle of convergence.

Theorem 1.2.8 If u is analytic in Q = {z;|z| < r}, we have

u(z) = Z u™(0)2" /n!
0

with uniform convergence on every compact subset of 2.

Uniqueness of analytic continuation:

Corollary 1.2.9 If u € A(Q) and there is some point z € Q where
u®)(0) = 0 for all k > 0, it follows that u = 0 in Q if © is connected.

Corollary 1.2.10 If u is analytic in the disc Q = {z;|z| < r} and if u is
not identically 0, one can write u in one and only onoe way in the form
u(z) = 2"v(z2)
where n > 0 is an integer and v € A(R2), v(0) # 0 (which means that 1/v is
also analytic in a neighborhood of 0.

Theorem 1.2.11 If u is analytic in {z; |z — 20| < r} = Q and if |u(z)| <
|u(20)| when z € €2, then u is constant in €.

Maximum Principle:

Corollary 1.2.12 Let 2 be bounded and let u € C(f2) be analytic in Q.
Then the maximum of |u| in € is attained on the boundary.
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1.6 Subharmonic Functions.

Definition: A C? function is said to be harmonic if Ah = 4 88; (;% = (0. This

is equivalent to the equation % + % = 0. If h = Re(f), f analytic, then h
is harmonic:

o*h 9L
0202  020%
1 0%f 1 0°f

20:0% | 20207
1o (or\, 10 (97
20z \ 0z 20z \ 0z

10 (of
- (%)

=0

Conversely, suppose that v is C?> and harmonic on a disc D. Then for
each Jordan curve v € D bounding a domain U, we get by Stokes the-

orem that ﬁ/(—uydaz + uzdy) = fU Uze + Uyy = 0. Hence the function

v(q) = Zqo —uydx + uydy defines a function v on D. This function satis-

fies v, = —u, and v, = u, so u + v is analytic. So on a disc, we see that h
is harmonic if and only if h is the real part of an analytic function.

Definition 1.6.1 A function u defined in an open set 2 C C with values
in [—o0, 00 > is called subharmonic if
a) w is upper semicontinuous, that is {z € Q;u(z) < ¢} is open for every real
number c.
b) For every compact K C € and every continuous function h on K which
is harmonic in the interior of K and such that u < h on 0K, we have u < h
on K.

Note: The function © = —oo is called subharmonic in this text.
Note: A function is u upper semicontinuous if and only if there exists a
sequence of continuous functions u; such that u; ~\, u.
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4. HORMANDER 1.6

Note: Harmonic functions are subharmonic: Let w be harmonic on €2
and let K be a compact subset of €2. Let h be a continuous function on K
which is harmonic on the interior of K. Also suppose that v < h on 0K.
Suppose there exists a point p € the interior K such that u(p) > h(p). Then
if € > 0 is small enough we have that the function v = u — h + ¢|z|? satisfies
v(p) > supyr v. We can choose p to be a point where v takes on a maximum
value. Note however that v;, + vy, = 4e > 0. This contradicts that p is a
max point.

Theorem 1.6.2 If u is subharmonic and 0 < ¢ € R, it follows that cu
is subharmonic. If u,,a € A, is a family of subharmonic functions, then
U = sup,, Uy is subharmonic if © < co and u is upper semicontinuous, which
is always the case if A is finite. If ui,uo,... is a decreasing sequence of
subharmonic functions, then u = lim;_,, u; is subharmonic.

Theorem 1.6.3 Let u be defined with values in [—00, 00 > and assume
that w is upper semicontinuous. Then each of the following conditions are
necessary and sufficient for u to be subharmonic:

(i) If D is a closed disc in ©Q and f is an analytic polynomial such that
u < Re(f) on 9D, then it follows that u < Re(f) on D.
(ii) If Q5 = {z € Q;d(2,9Q°) > §}, we have

2m
(1.6.1) u(z)27r/d,u(7“) < /0 /u(z+rei9)d9du(r),z € Qs

for every positive finite measure du on the interval [0, d].

(iii) For every ¢ > 0 and every z € {25 there exists some positive finite mea-
sure dp with support in [0, 0] such that du has some mass outside the origin
and (1.6.1) is valid.

As pointed out by one the students in class, statement (ii) is not the right
one. The correct statement should be

(ii) Let z € Q and assume that {z + 7¢?;0 € [0,27],0 < r < s} C Q.
Then (1.6.1) holds where p is supported on [0, s].

Corollary 1.6.4 If uq, uo are subharmonic, then u; + uo is subharmonic

Proof. We use (1.6.1). O

Corollary 1.6.5 A function u defined in an open set {2 C C is subhar-
monic if every point in 2 has a neighborhood on which « is subharmonic.

We use property (iii) of Theorem 1.6.3.
Corollary 1.6.6 If f € A(Q), then log|f| is subharmonic.

Proof. Use property (i) in Theorem 1.6.3. So suppose that log|f| < Re(g)
on the boundary of a disc, where g is a holomorphic polynomial. Then
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Ifl < eRels) = |e9| on the boundary of the disc. Hence |fe 9| < 1 on the
boundary of the disc. Hence also on the inside. Therefore log|f| < Re(g)
on the whole disc. O

Theorem 1.6.7 Let ¢ be a convex increasing function on R and set
¢(—00) = limy—, oo ¢(x). Then ¢(u) is subharmonic if u is subharmonic.

Definition A function ¢(z) is convex if for every a < b, and every t €<
0,1 >, ¢(ta+ (1 —1)b) < tf(a)+ (1 —t)f(b), i.e. the graph lies under the
chord.

Observation: An immediate consequence is that out side (a,b) the graph
lies above the straight line continuing the chord.

Lemma 1.6.7a Suppose that ¢(z) is convex and suppose that xg € R.
Then there exists a constant k£ € R so that ¢(z) > ¢(x¢) + k(z — o) for all
x. Also ¢ is continuous.

Proof of the Lemma. Take any sequence a,, < zg < b, where both con-
verge to xg. Let k be any limit for the slopes of the chords from a,, to b,.

To prove continuity, suppose that z,, \, zg. Fix a < x¢9 < b. Considering
the chord from a to z, shows that liminf ¢(x,) > ¢(x¢). Considering the
chord from xg to b shows that the limsup ¢(z,,) < ¢(xo). A similar argument
applies for x, " xg.

Proof of theorem 1.6.7:

Let o € R and let k be as in Lemma 1.6.7a. Let x = u(z + re?). Then

$(u(z +re)) = p(wo) + k(u(z +re’) — o).

Hence
1 2 ) 1 2m )
— P(u(z +re?))do > () + k(/ u(z + re)df — o).
2 0 2 0
We want to show that
1 2w ;
5r | elulz+re?)dd > ou(=)).
T Jo
If 5 027r u(z + re?)df = —oo, this is clear. So assume the integral is finite.
Let zg = 5= 027r u(z + re®)df. Then
1 2m ) 1 2 )
o |, d(u(z + re))ds > ¢(27T/0 u(z + re'?)dp).

Since 2 f027r u(z+re?)df > u(z) and since ¢ is increasing, ¢ (5= 027T u(z+

re?)dh) > ¢(u(z)).

Hence
1 27

o [ @lulz +re))do > ¢u(z)).
™ Jo
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It follows from Theorem 1.6.3 (iii) that ¢(u) is subharmonic.

Corollary 1.6.7b If u is subharmonic, then e* is subharmonic. If f is
analytic, |f| is subharmonic.

The first part follows from Theorem 1.6.7 since e” is a convex increasing
function. Since log |f| is subharmonic by Corollary 1.6.6, it follows that
|f| = elsl/1 also is subharmonic.

Corollary 1.6.8 Let uj,uz be nonnegative and assume that logu; is
subharmonic in Q. Then log(u; + u2) is subharmonic.

Theorem 1.6.9 Let u be subharmonic in the open set ) and not iden-
tically —oo in any connected component of €2. Then w is integrable on all
compact subsets of 0 (we write u € L}, (), which implies that u > —occ
almost everywhere.

Proof. Suppose that u(z) > —oo. Pick a closed disc D centered at z con-
tained in Q. If we let y = rdr we get from (1.6.1) that u(z)A < [, udA.
Note that u is bounded above on D. Hence it follows that u is in L' on
D. It follows that © > —oo a.e. on D. Hence we can repeat the argument
for points z near the boundary of D. It follows that the set U of points
z €  where u is integrable in some neighborhood, is open and closed. By
hypotheses U is nonempty. Hence U = (. ([

Exercises
1) Show that the function supy...; €log|z| fails to be subharmonic.

2) Suppose that u is a C? subharmonic function on C. Let f : Q — C
be an analytic function defined on an open set €2 in C. Show that wo f is
subharmonic on 2.

3) Let u a subharmonic function in {|z| < 2}. Suppose that u(z) = 0 for
all z,1 < |z| < 2. Show that u = 0.

5. HORMANDER 1.6, 2.1

Theorem 1.6.10 If w is subharmonic in {2 and not —oo identically in any
component of {2, then we have that

(1.6.3) /uAvd)\ >0

for all v € C3(2) with v > 0. Here A denotes Lebesgue measure.
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Proof. Let 0 < r < d(supp(v),2€). Then by 1.6.1 we have for every z €
supp(v) that

2
2mru(z) < / u(z + re')de.
0
Since v > 0, we get for every z € supp(v) that
2 )
2ru(z)v(z) < / u(z + re?)u(z)do.
0

We integrate with respect to A.

//(27ru(z)v(z))d)\

IN

/ / ( /0 (et e ®)0(2)dB) N
_ /0 " / / u(z + re®)o(2)d\)do
_ /0 " / / w(2)v(z — re®)d\)do
_ //u(z)(/ozﬂ o(z — rei®)df)dA

We can also rewrite the left side:

/ / @ru(z)v(2)d\ = / / u(2)( /O T (2)dB)A

Hence we see that
2 )
//u(z)(/ (v(z —re®) —v(z))dh)dA > 0.
0
We Taylor expand the intergrand v(z — re®) — v(2).

2

. 1
v(z —re?) —w(z) = —vy(2)rcosf —vy(z)rsind + o Vaal cos” @

1
+ ivyyrz sin? 6 + vgyr? cos O sin 6§ + o(r?)

We hence get an expression
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// / (2)r cos )df)dA  — // / (2)r sin 0)df)dA
n / / / =0y cos? 0)d6)dA
+ / / / Sty sint 0)d0)dx
+ / / u(z)( / VUgyr? cos sin 0)dO)dA
/ / / r2))d0)dA

Hence after carrying out the inner integrals we see that

>

1
// vmm’ +2vyy7rr + o(r?))d\ > 0.

If we divide by ’TTTQ and let r — 0, we see that

//U(Z)Av(z) >0

Corollary 1.6.10a If u is a C? subharmonic function, then Au > 0.

Proof. Let v > 0 be a compactly supported C? function in the domain
of u. By (1.6.3), we have that [uAwv > 0. Integrating by parts twice, we see
that ['vAwu > 0. Since this is valid for all compactly supported nonnegative
C? functions v, it follows that Au > 0.

Theorem 1.6.11 Let u € L}, () and assume that (1.6.3) holds. Then
there is one and only one subharmonic function U in §2 which is equal to u
almost everywhere. If ¢ is an integrable non-negative function of |z| with
compact support and [ ¢ = 1, we have for every z € Q

(1.6.4) U(z) = %ii% u(z — 02")p(2)dN(Z).

We will divide the proof into lemmas.

Lemma 1.6.11a Assume u € L} (). Let ¢ = 1(|z|) be a nonnegative
C° function with compact support in the unit disc and [+ = 1. Then the

function

z

us(2) i= [l = 30N = 5 [uw)o* 5 axw)
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is C*° in Q5. If V. CC Q, we have that [lus|r1v;) < |lullz1y. Moreover
us — u € L' on compact subsets.

Proof. The last equality is obtained by the change of variable, w = z — 62’
The fact that u € C* follows from differentiation under the integral sign in
the last integral.

The inequality in the L' norm follows by integration with respect to z
first.
To show the last statement, write u = u; + us where u; is continuous and
ug has small L' norm. The convergence for (u1)s is obvious. And the L!
norm of (ug)s is as small as we wish. O

Lemma 1.6.11b Suppose U is subharmonic. Then (1.6.4) holds when
we set u = U in the integral on the right side. In particular it follows that if
two subharmonic functions are equal almost everywhere, they are identical.

Proof. 1t follows by (1.6.1) that for small §,

U(z) < /U(z —82")p(2")dN(Z).

By upper semicontinuity of U it follows that the upper limit of the right
side when § — 0 is at < U(z). Hence (1.6.4) holds with u = U. O

Lemma 1.6.11c Assume that v € C%(Q) and that Au > 0. Then u is
subharmonic. Moreover us \, u.

Proof. Fix zy € Qs. Let uy, (w) = fo% u(zo + €w)dd for |w| < 6. Then u,
is C% and Au,, > 0. Moreover u,, only depends on |w|. We calculate the
Laplacian of u,, at points w = x+iy,z > 0,y = 0. We can write u,,(x,y) =
Uz (V22 +y2,0) = g(v/2? + y?). We get that ¢’ (z) +¢'(x)/z > 0 for x > 0,
so xg"(z) + ¢'(z) > 0,2 > 0. It follows that x¢'(z) increases. The value
at x = 0 s 0, so ¢’(x) > 0. So g(x) is increasing. By Theorem 1.6.3, it
follows that « is subharmonic, and we also get that us decreases to us when
0 —0. O

Lemma 1.6.11d Assume u € L} . satisfies (1.6.3). Let ¢ = 1(|z|) be a
nonnegative C* function with compact support in the unit disc and [ ¢ = 1.
Then the function

ug(2) = / w(z — 02 Y(2')aA()
is C* and subharmonic in Q5. Moreover us — u € L' on compact subsets.

Proof. Suppose that u € Li . and that [u(z)Av(z) > 0 for all functions
that are C? with compact support and with v > 0. Then it follows that
also ug has this property. Then, by Lemma 1.6.11c it follows that us is
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subharmonic. Also by Lemma 1.6.11a we have convergence in L' norm to
U. U

Lemma 1.6.11e Let u and % be as in Lemma 1.6.11d. Then if d, € > 0,

Let e \(O:
(us)e N us
Let 6 \(O:

(Ue>6 \1 Ue
(U(S € = (Ue)6
Let e \(O:

Ue AV 1%

for some subharmonic function V.

Proof. We first show that (us)e \, us. By Lemma 1.6.11d we have that wu; is
C*° and subharmonic. Hence by Corollary 1.6.10.a it follows that Aug > 0.
Hence it follows by Lemma 1.6.11c that (ug)e N\, us.

The second limit holds for the same reason.

To prove the following equality, we see that
(w)(2) = [ uslz = e )ol)aN)
= [ ([t = e = 5N AN
(ue)s(2)

We show that ue, (2) > ue,(z) if € > e2. We have shown that for each
d >0, (ug)e (2) > (us)ey(2), hence (ue, )s(2) > (ue,)s(z). Hence by Lemma
1.6.11c, ue, (2) > e, (2).
Finally, by Theorem 1.6.2, the limit of u is subharmonic.
[l

To finish the proof of Theorem 1.6.11, it suffices to note that by Lemma
1.6.11d the function V obtained is equal to u a.e. Also by Lemma 1.6.11b,
we have that (1.6.4) holds for V' and so also for w.

Now we turn to Chapter 2, Elementary properties of functions of several
complex variables.

2.1 Preliminaries.
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We introduce coordinates in C". Write z = (z1, 22, - 2,) where each
zj = xj+1iy;. Let u be a C! function. We introduce differential operators as

in one variable.

Then we get

ou
oz
ou
z;

n
du =
=1

1 0u 10u
C20z; 20y
~ 10u 10u
= S0 T20y,

—az
8zj

Jj=1

_ We write for short the first sum on the right as du and the last sum as
Ou We say that du is a form of type (0,1) and Ju a form of type (0, 1).

Definition 2.1.1 A function v € C}(f) is said to be analytic or holo-

morphic if du is of type (1,0). Equivalently, du = 0 and also equivalently,
the function satisfies the Cauchy-Riemann equations in each variable sepa-
rately which is again equivalent to saying that u is analytic in each variable
separately. The set is analytic functions on €2 is called A(2).

If I = (iy,..

.,1p) is a multiindex of integers between 1 and n we write

dz! = dz, N ANdz,, and we write |I| = p.

If J = (j1,...7q) is a multiindex of integers between 1 and n we write
dz’ = dz;, A--- N\ dz;,, and we write |J| = g.
The following expression is called a (p, q) form f = Z|I|:p 1J|=q frodzt A

dz’. It is OK to think of this as an expression without meaning.
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6. HORMANDER 2.1, 2.2, 2.5

Let f = EI’J fr.ydz! Adz? be a (p, q) form. We use the usual convention
that of two differentials, say dz; and dz; are switched, the form changes sign.

We define the exterior differential df as the form df = ZLJ de,szI/\dEJ.
If we write 0f = 3 ; Ofr yNdzI Ndz? and Of = ZLJgfLJ/\dzI/\dEJ then
df = Of+0f. This writes df as a sum of a (p+1, ¢) form and a (p, g+1) form.

We write 0 = d2f = 02 f + (00 +00) f +52f and these have type (p+2,q),
(p+1,q+1) and (p,q+2) respectively so all three terms must vanish.

82 =0,00+080=0,0 =0.

_ This implies that if f is a (p,q+1) form and we want to solve the equation
Ou = f then is is necessary that df = 0.

2.2 Applications of Cauchy’s integral theorem in a polydisc.

Let w = (wy,...,wy,) be a point in C"™ and let r = (r1,...,7,) be positive
numbers. We define the polydisc D with center w and polyradius r to be
the set D = D™(w,r) = {z € C"|z; —w;| < rj,j = 1,...,n}. The set
0Dg = {|z; —wj| = rj,j = 1,...,n} is called the distinguished boundary
of D.

Theorem 2.2.1 Let D be an open polydisc and let u be in C*(D). If u
is an analytic function of z; € D'(wj, ;) whenever the other variables are
constant, |zx — wg| < rg, then

AR uw(Cr,y .o, Ga)dCr . dCp
(2.2.1) u(z) = <2m-) /80D (C1—21) - (G — 2n)

for all z € D. Hence u is C*° in D.
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Proof. We use Cauchys integal formula inductively, i.e. Theorem 1.2.1. We
get then

u(z) _ L u(zlw"azn—l;Cn)an
27 [Cn—wn |=Tn Cn — Zn
1 u(z yeosZn—2,Cn— 7Cn)an—
1 (% fKn—l*wn—lI:Tn—l : Cn_21—2n1_1 : )an

2mi [Cn—wn|=Tn Cn — 2n

_ < 1 )2 / (21, ey 22, Gnety o) dGn1dGn
2m ¢ —wj|=rj,j=n—1,n (Gt = 2n-1)(Cn — 2n)

_ <1>3/ u(21, - - -5 2n=3, (n—2, Cn—1, Cn) dCn—2dCn—1dCn
27y [¢j—wj|=rj,j=n—2,n—1,n (CTL—2 - ZH—Q) T (Cn - Z'ﬂ)

_ <1>”/ w(Cr,. .y Ca)dGr - dGa
211 ) Jawp (G —21) -+ (Gr— 2n)

The last statement follows by differentiation under the integral sign.

Corollary 2.2.2 If u € A(Q), then v € C*°(Q) and all derivatives of u
are also analytic.

We use the following multiindex notation: We write o = (v, ..., o) for
nonnegative integers ;. We call a a multiorder. Set a! := aq!---ay,!. We
ol d Yan /5% _ (0 9 \an
define 9% = (871)041 e (E)a L0 = (Tzl)al e (Wn)a .

Theorem 2.2.3 If K is a compact subset of Q and K C w CC €, then
there exist contants C, for all multiorders « so that if u € A(2) then

(2.2.3) s?(p 10%u| < Callull 1)

Proof. Assume first that K = D" (w,r),w = D™(w,r’) and Q = D™(w,r")
for multiradii r = (s,...,s),r = (s',...,8), 7" = (s",...,8"),s < s < §".
Let C; denote the constants in the one variable version of this theorem,
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Theorem 1.2.4. Let z € K. We get

0 0
“ < ... An-1 sy <An—156n n
U < G [ G () e e GG
S Can / ’Can—l
[Cn—wn |<s’
0 0
* ( )al e ( )an_2u(zlv s 2n—2; Cn—la Cn)‘
/|cn_1—wn_1|<sf 0z Ozp—2

£ dN(Gr1)]dN ()

IN

ite / u(O)lAA(C).

To complete the proof we cover the compact set in the Theorem by finitely
many such polydiscs.
O

Corollary 2.2.4 If uj, € A(2) and uj, — w uniformly on compact subsets,
then u € A(Q).

Proof. This follows from the Cauchy integral formula:

(1Y uR(Cry ey Cn)dG - dG,
ug(z) = (27rz'> /%D (G —21) - (Cn — 2n)

We take limits on both sides. Then it follows that u is analytic on D. [

Corollary 2.2.5 If u; € A(2) and is a uniformly bounded sequence on
any compact subset of €2, then there is a subsequence uy, which converges
uniformly on compact subsets to a limit u € A(1).

Proof. By Theorem 2.2.3 the first derivatives of the uj are uniformly bounded
on compact subsets. Hence, by Ascoli, there is a subsequence uy; which con-
verges uniformly on compact subsets to a limit u. By the previous corollary,

u € A(Q). O

Let aq(z) be holomorphic functions in Q. We say that ) a, converges
normally if ) supy |a(z)| converges for each compact subset of 2. In this
case the sum ) an(%z) is a holomorphic function on €.

Theorem 2.2.6 Suppose that u is analytic in a polydisc D(0,r),r =
(ri,...,7p). Then
9*u(0) o
u(z) = Z — Z

for every z € D and the convergence is normal.
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Proof. We use the formula for the sum of a geometric series for ( € 9yD and

z€eD.
1

ZOC
(G —21) (G — 2n) _ZQ:CQCA"'Cn‘

The series converges normally in D. If u € C'(D) then we get from 2.2.1
that

We also obtain by differentiation of (2.2.1) that

(2.2.3) 8%u(0) = <1>na!/ ) e,

2mi ceaoD C¥CLe+Cn

Hence the theorem follows if u € C*(D). To prove it in general, prove it for
any strictly smaller polydisc.

(]

We obtain also from (2.2.3) the following

Theorem 2.2.7 (Cauchy’s inequalities) If u is analytic on the polydisc
D(0,7) and if |u] < M, then

|0%u(0)] < Malr™.

For the proof apply (2.2.3) to any smaller polydisc.
2.5. Domains of holomorphy

If Q ¢ C and p € 99, then the function Tip cannot be extended an-
alytically from 2 across p. We express this fact by calling 2 a domain of
holomorphy.

In C",n > 1 it might be sometimes possible to extend holomorphic func-
tions past the boundary. For example, let Q = C"\ D(0,7),r = (s,...,s).
Then all holomorphic functions on §2 extend to holomorphic functions on all
of C™. To see this, use the Cauchy integral formula in the last variable:

921, s Zn—1,%n) = %m‘flﬁhé’W' Here we use any number

S > s. It is clear that if some |z;| > s for j > n, the function g = f. Also
the integral defines an analytic function in C™. We see then that this defines
an anlytic extension to all of C". For this reason we will not call this domain
a domain of holomorphy. The precise definition of domain of holomorphy
is a little complicated. The reason is seen from the example f = /2 which
is well defined in the complement of the set {x 4 i0,x > 0}. This function
can locally be extended across the boundary at any x + iy, x > 0. But these
local extensions dont agree with the function as defined on the other side of
the real axis. We now give the precise definition of domain of holomorphy.
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Definition 2.5.1 An open set in C" is called a domain of holomorphy if
there are no open sets €11 and 29 in C™ with the following properties:
(a) @#Ql C QN Q.
(b) Qg is connected and not contained in .
(c) For every u € A(Q) there is a function ug € A(€Q2) such that u = ugy in
Q.

Definition 2.5.2 If K is a compact subset of 2, we define the A(Q2) hull
Kq of K by

(25.1) Ko={z€Qf(2)] < sup f] if f € A(@)}.
Exercises
1) Let Q be an open set in C. For K compact in € show that Kq is com-
pact and that the distance of K to the boundary of 2 is the same as the

distance of K to the boundary.

2) Let K C Q C C be a compact subset. Let U be a connected compo-
nent of C\ K. Show that U C Kq if and only if U is a bounded set and U C Q.

3) Show that a polydisc in C™ is a domain of holomorphy.
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7. HORMANDER 2.5, 2.6

Lemma 2.5.3 Let f € A(Q2). Let K be a compact subset of . Let dg
denote the sup of the numbers r so that A™(z, (r,--- ,r)) C Q for all z € K.

Then, if w € Kq then the power series of f around w converges normally in
An(w, (Ta e ,7"))-

Proof. Fix any 0 < r < d. Then f is uniformly bounded by some constant
M on all polydiscs A™(z, (r,...,r)) when z € K. It follows from Theorem
2.2.7 that for any z € K and any multiindex «, |0%f(2)| < Ma!r~®. Then
these inequalties must also hold at every point w € Ko.

But then this implies that the power series expansion of f around w
converges normally in A(w, (r,...,r)). O

Theorem 2.5.4 Let € be a domain of holomorphy. Let K be a compact
subset. Then if d(L) denotes the sup of all radii r so that B(z,r) C Q for
all z € L,, then d(K) = d(K).

Proof. If we instead measure boundary distance using polydiscs of multi-
radius (r,...,r) then the result holds by Lemma 2.5.3. By scaling in each
variable, we see that if D is any polydisc such that z4+ D C Q for all z € K,
then also w + D € Q for all w € K.

Next we can choose any orthonormal basis for C" and define polydiscs in
these coordinates. Then we see that the result also holds for such polydiscs.
Next let B(r) be a ball such that z+ B(r) C Q for all z € K, then since the
ball is a union of polydiscs included rotated polydiscs, we see that w+B(r) C
Q for all w € K. O

Theorem 2.5.5 If 2 is an open set in C", then the following conditions
are equivalent:
(i) © is a domain of holomorphy.
(ii) If K is a compact subset of Q, then K is a compact subset of  and
d(K) = d(K).
(iii) If K is a compact subset of 2, then K is also a compact subset of €.
(iv) There exists a function f € A(Q) such that it is not possible to find
0y and Q9 satisfying (a) and (b) in Definition 2.5.1 and f € A(£2s) so that
J=f2in .

Proof. Notice that if K C D for some polydisc, then K is also contained in
D. Suppose that (i) holds and that K is a compact subset of Q2. Then by
Theorem 2.5.4, K is a closed set in C™. Since K is also bounded, it follows
that K is a compact subset of 2. Moreover, it follows from Theorem 2.5.4
that d(K) = d(K). Hence (i) implies (ii). It is clear that (i) implies (iii)
and that (iv) implies (i).

Hence it only remains to show that (iii) implies (iv).
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Let D be a polydisc. For each ¢ € €, let D¢ = ¢ + rD denote the largest
polydisc contained in 2. Let M be a countable dense subset of €.

We need a lemma:

Lemma 2.5.5a Suppose that 2 satisfies (iii). Then there exists a holo-
morphic function f on {2 such that for each ¢ € M, there is no holomorphic
function g defined on some neighborhood U of D¢ such that f = g on D.

Proof of Lemma 2.5.5a:
Let (,, be a list of the points in M such that each point in M is listed
infinitely many times. Let K; C --- C K, C --- be compact subsets of
Q) such that each compact set in (2 is contained in some K. Since K jis a
compact subset of {2, there exists a point z; € D, \Kj. Hence there is a
function f; € A(€2) so that fj(z;) =1 and supg, |fj| < 277. We can choose
fj so that f; is not identically 1 in any connected component of §2.

Let

f=152,(1 = ;).

Since the sum Y 27/ is convergent, this infinite product converges to
an analytic function which does not vanish identically on any connected
component of €. All derivatives of f up to order j vanish at z;. Hence there
can be no analytic function g defined on any neighborhood U of any ECj
agreeing with f on Dc;.

This finishes the proof of Lemma 2.5.5a. We next continue with the proof
that (iii) implies (iv). Let Q1,2 be any two open sets satisfying (a) and (b)
in Definition 2.5.1. We assume that there is a holomorphic function fo on
Q9 such that fo = f on ;. We will show that this leads to a contradiction.

We can find a curve v(t) € Q2,0 <t < 1 so that y(0) € ©Q; and (1) €
9, 7([0,1) C Q. By analytic continuation, f = f, on an open set containing
v([0,1)). We then get a contradiction to the conclusion of Lemma 2.5.5a by
chosing a point (; in this neighborhood very close to 9§ since €23 will contain
a polydisc centered at y(1).

O

2.6 Pseudoconvexity and plurisubharmonicity.

Definition 2.6.1 A function defined in an open set 2 C C" with values
in [—o00, 00) is called plurisubharmonic if
(a) w is upper semicontinuous.
(b) For arbitrary z and w in C", the function 7 — u(z+7w) is subharmonic
in the part of C where it is defined.

Theorem 2.6.2 A function u € C%(Q) is plurisubharmonic if and only if

(2.6.1) En 9211,() >0,z QuweC"
j : jik ] k=Y, 9



22 JOHN ERIK FORNZAESS

Proof. By Corollary 1.6.10a and Lemma 1.6.11c, a C? function defined on
an open set in C is subharmonic if and only if Au > 0. We calculate:

ou(z + Tw) zn: ou

= ka
or k=1 Ay,
0*u(z + Tw) " & 9%u w
i S/ ——w; Wy,
87-8? =1 k=1 aCjaCk
The Theorem follows. O

Theorem 2.6.3 Let 0 < ¢ € C5°(C") be equal to 0 when |z| > 1. Let ¢
depend only on |z],...,|2,|, and assume that [ ¢d\ = 1 where dX is the
Lebesgue measure. If u is plurisubharmonic in €2, it follows that

wel(z) = / u(z — cQ)B(O)dA(C)

is plurisubharmonic, that u. € C* in Q, and that ue \, u. ( We assume
that u is not identically —oco on any connected component of €2.)

Proof. That u \, when € N\, 0 was proved in Lemma 1.6.11e in the case
n = 1. To show this when n > 1, choose first ¢ = (e1,...,€,) and define

ue (2) = /U(Zl — €101, 7, 2n — €nGn)O(C)dA(C)

The one variable result implies that this expression decreases when we de-
crease only one of the ¢;. Hence repeating this process n times show that
ua > ug2 if €' > €2. From Theorem 1.6.3 it follows that

wl() = [ ulz= €N
= [l =Gz )OI NG
> [uer = e et = Gt 2)O(CANG) - AN G
> [un - = e 2)OOANG) - dN(G2)

v -

u(z)

By upper semicontinuity of w it follows that limsup,_,yu. < u. Hence
ue \¢ ¥ when € N\, 0. To show that u. is plurisubharmonic, we fix a complex
line 7 — z + 7w and show that wu.(z + 7w) is subharmonic as a function
of 7. By theorem 1.6.3 it suffices to find for each 7y such that z + yw € Q
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2

arbitrarily small 7 > 0 so that uc(z + Tow) < 5= [5" ue(z + (10 + re)w)do.

We calculate:
27

o ue(z + (1o + ¢ )w)dh

= i u ulz T Teia’u)—ﬁ

= oo [ Jutet e = coaranonas
27

- / / 5O 5 /0 u(z + (7o + rei®)w — €¢))dIAN(C))

> / / (O)ulz + row — c)dA(C))

= (z + Tow)
(]
Definition 2.6.6 If K is a compact subset of 2 C C", we define the P(£2)
hull KE of K by
KL ={zeu(z) < s%pu Vue P()}.

Since |f| € P(Q) for all f € A(Q2) we have that Kg c K.

Theorem 2.6.5 Any of the following two conditions imply that — log d(z, 2°)
is plurisubharmonic and continuous:
(a) © is a domain of holomorphy.
(b) K cC Q whenever K is a compact subset of Q.
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Proof. In the case (a) we will use Theorem 2.5.5 which implies that Kq is a
compact subset of 2 whenever K is a compact subset of ().

Pick a unit vector £&. We define a distance in the & direction: For z € €,
we set d¢(z) :=sup{t;z+ 7 € O,V 1 € C,|7| < t}. We show that —log(d¢)
is plurisubharmonic. Assume not. Then there is a complex line L and a disc
D C Lso that d¢ has value at the center strictly larger than the average value
on the boundary. We can assume that L is the z; axis and D is the unit disc.
We can choose a holomorphic polynomial P(z) with h = R(P(z)) so that
h > —logd¢ on the boundary of the disc and h(0) < —logd¢(0). Consider
the complex discs Dy = Dy(¢) for t € C,|t| < 1 and for ¢ € C,[(] < 1,
Di(¢) = (¢,0,...,0) 4+ tée= PO If ¢ is on the boundary of the unit disc, we
have that —logdg(¢) < R(¢) and hence [te (O] = |t|e™MO) < elosde(C) =
de(C). It follows that boundaries of the discs Dy are all in . We will let K
be the compact union of all these boundaries. Then Kg cc Qor Kq is
compact in 2. For ¢ = 0 the interior of the disc is in 2. For those t for which
the whole disc is in €2, we have then that the distance from the disc to the
boundary of €2 has a uniform lower bound. Hence no such disc gets too close
to the boundary. So it follows that also for all ¢, |t| < 1 the disc Dy is in Q.
Let ¢ = 0,[t| < 1. Then D;(0) = t&e=F© € Q. Hence [e O] < d¢(0), so
—logd¢(0) < h(0), a contradiction.

To finish the proof note that —logd is the sup of all —logd, and that this
is continuous. U

Theorem 2.6.7 If 2 is a proper open subset of C", the following condi-
tions are equivalent:
(i) —logd(z,€°) is plurisubharmonic in .
(ii) There exists a continuous plurisubharmonic function u in Q such that

Q.={z€Qu(2)} cCc

for every c € R.
(iii) K& cC Q for all compact sets K C Q.

Proof. To prove that (i) implies (ii), we define u(z) = ||z[|*> — logd(z, Q°).
Then if z, is a sequence in Q converging to 012, (including oo if €2 is un-
bounded,) then u(z,) — co.
(ii) obviously implies (iii).
That (iii) implies (i) follows from Theorem 2.6.5.

([

Definition 2.6.8 The domain 2 is called pseudoconvex if 2 = C™ or if
the equivalent conditions in Theorem 2.6.7 are fulfilled.
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We have shown that domains of holomorphy are pseudoconvex. The Levi
problem asks if pseudoconvex domains are domains of holomorphy. This is
solved in Chapter IV and is major result in this course.

Theorem 2.6.11 Let €2 be a pseudoconvex open set in C™, let K be a
compact subset of €2, and w an open neighborhood of Kg . Then there exists
a function v € C*°(Q) such that
(a) w is strictly plurisubharmonic, that is the hermitian form in (2.6.1) is
strictly positive definite for every z € €, i.e. > ¢(z)||w]?, ¢ > 0.

(b) u<0in K, but >0 in Q\ w.
(c) {z € Qu(z) <c} cCc Qforall ceR.

Lemma 2.6.11a There exists a continuous plurisubharmonic function
v(z) satisfying (b) and (c).

We prove first the Lemma. By theorem 2.6.7 (ii) there exists a continuous
plurisubharmonic function ug on 2 satisfying (c). We can assume that ug <
0 on K by subtracting a constant if necessary. Set K’ = {z € Q;ug(z) < 2}
and let L ={z € Q\ w;ug <0}. If L is empty, we choose v = ug. Then (b)
is also satisfied. So we assume that L is nonempty. By continuity of ug, the
sets K’ and L C K’ are compact. Hence K' UL C € for all small enough 0.

Let p € L. Then p € w® and hence p ¢ Kg . Therefore there exists a
plurisubharmonic function w, on © such that w,(p) > 0 and w, < 0 on
K. Using (wp)e as in Theorem 2.6.3, we get for small enough € a smooth
plurisubharmonic function in €, so that (wp). < 0 on K and (wp)e > 0
on some open neighborhood U, of p. By compactness we can cover L by
finitely many such neighborhoods, U, ».. Let w = sup{(wp, )e; on Qax; ¢, }-
Then w is continuous and plurisubharmonic, w > 0 on L and w < 0 on K. In
particular we can assume that w is plurisubharmonic in a neighborhood of
K'. Let C denote the maximum value of w on K’. Since L C K’, C' > 0. Note
then that if 1 < up(z) < 2, then w < C' < Cuyg, hence Cug = max{w, Cup}
on the set 1 < up < 2. Hence the function v(z) = max{w, Cup} on {ug < 2}
and v(z) = Cup when uy > 1 is well defined on all of £ and is locally
plurisubharmonic, hence plurisubharmonic (see Corollary 1.6.5). We then
have a continuous plurisubharmonic function on  which satisfies (b) and
(c). This finishes the proof of Lemma 2.6.11.a

We now prove the Theorem.

Proof. Let v be as in Lemma 2.6.11a. For any ¢ € R, let Q. := {z €
Q;v(z) < c}. We use the notation of Theorem 2.6.3. Set

v;(2) = /Q v(Q)p((z = Q) /ej)e; "dA(C) + €512, 5 = 0,1,
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We choose ¢€; small enough that vg,v1 < 0 on K and v; < v+ 1 in
;. We also have that v; € C*(C") and we can arrange that v is strictly
plurisubharmonic and > v in some neighborhood of ;.

Let x denote a C* convex increasing function on R such that x(t) = 0,t <
0and X'(¢t) >0,t >0.Let j >1:0nQ;\Qj_1,v;+1—j>v+1—75>
(j —1) + 1 —j = 0, where the first inequality holds on Q; and the second
inequality holds in the complement of ;_;. Hence x(v; + 1 — j) is strictly
plurisubharmonic in a neighborhood of Q;\Q,_1. Let u,, = vo+>_1" a;x(vj+
1—7). Then uyg is strongly plurisubharmonic on a neighborhood of . Since
X(v1 + 1 —1) is plurisubharmonic on ; and strongly plurisubharmonic on
a neighborhood of Q; \ Qg, the function u; will be strictly plurisubharmonic
in a neighborhood of ; if we choose a; large enough. We also choose
a1 large enough so that u; > v on €. Similarly, we can next choose as
large enough that us is strongly plurisubharmonic in a neighborhood of .
Inductively we see that u,, can be chosen strongly plurisubharmonic in a
neighborhood of €2,,, and also larger than v there. Notice that uy < 0 on K.
Alsovi+1—1<0on K, so u; = vy < 0on K. Finally also observe that for
j>2,0+1-j<v+14+1-7<(j—2)+2—7=0o0n Q5. Therefore all
Uy = v9 < 0 on K. Moreover on any €2, if m > j+2, up, = uj, so the infinite
sum is locally finite, so the limit exists and is strongly plurisubharmonic on
Q.

O
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We next move on to Chapter 4 in Hormander: L? estimates and existence
theorems for the 9 operator.

We start with some functional analysis. Let G, Ga denote two complex
Banach spaces with norms || - ||1, || - ||2 respectively. Let E denote a complex
subspace of G1, not necessarily closed. We will consider linear maps T :
E — G5. Let G3 = G1 x G2 denote the product space with Banach norm
|(z,9)]|3 = ||=]|? + ||yl|3- We say that T is closed if the graph of T, G =
{(z,Tz);x € E} is a closed subspace of Gjs.

Example 4.0.1 G; = Gy = L?(0,1) and Tz = 2’. Here the derivative
is in the sense of distributions. So Tz(¢) = — [z¢’. Here E consists of
those L? functions x for which Tz is an L? function. Then T is a closed
operator: If (x,,Tz,) converge to (x,y) then for any test function ¢ we
have [Tz,¢ = — [x,¢ so taking limit one gets [y¢ = — [x¢’. Therefore
y equals z’ in the sense of distributions.

Let G} denote the dual Banach space of G;. So an element y € G} is a
continuous linear function (also called functional) from G; to C,z — y(x).
Moreover there is a constant Cy so that |y(z)| < Cy||z|/;. The smallest such
constant Cy is denoted by ||yl;.

An important theorem is the Hahn-Banach Theorem.

Theorem 4.0.2, Hahn-Banach Let L. C G be a linear subspace of a
Banach space. Suppose that ¢ : L — C be a linear function with bounded
norm, i.e. |¢(z)| < C|lz|. Then ¢ extends to a linear function ¢ : G — C
such that ¢(z) = ¢(x) for all z € L and |¢(z)| < C|z| for all z € G. In
particular the extension belongs to G.

9. HORMANDER 4.1-BANACH SPACES

We will next add the hypothesis that the operator T is densely defined, i.e.
the subspace E is dense. We will define the adjoint operator T : Dy« — G
where Dy« C G, is a linear subspace. We say that y belongs to Dy~ if there
exists a constant C so that |y(T'z)| < C|jz||; for all z € E. Hence y — y(T'x)
extends to a continuous linear functional z on E = G such that l2]le; < C.
We set T*(y) = =.

If (y1,y2) € G} x GY then this defines a continuous linear functional on
G1 % G2 by (y1,92) (21, 22) = y1(21) — ya(22).

Let GJT- C G x GY, denote those (y1,y2) for which (y1,y2)(z1,22) = 0 for
all (z1,x2) € Gp. Clearly G% is a closed subspace of G x G5.

Lemma 4.0.3 G% = Grp~.
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Proof. Suppose first that (yi,y2) € Gz. Then if # € Dr we have that
y1(2)—y(Tx) = 0. This implies that |ys(T)] = |1 (2)] < 1 ||} Hence o
satisfies the requirement to be in Dr«. Moreover y; satisfies the equirement
to equal T*(y2). Hence (y1,y2) € Gr=.

Suppose next that (yi,y2) € Gp+. Hence y; = T*(y2). This implies that
for any « € Dy, we have that y;(z) = ya(T'x). Hence (y1,y2) € G7. O

Corollary 4.0.4 The graph of T* is closed.

If G is a complex Banach space, we define G” to be the dual of G'.
There is a natural isometric embedding ¢ of G into G”: For x € G, define
6(2)(y) = y(z) for y € G} Then ¢(z) € G{. Also (x| < [Jol| and by
the Hahn Banach theorem you have equality: Given z # 0, choose a linear
function g on Cz by g(x) = ||z|| and extend to G by Hahn-Banach. Call the
extension y. Then y € G" and ||y|| = 1. Now ¢(x)(y) = y(x) = |lz|| = [[=]/[|y]
so [[¢(x)]] > ||x||. Hence ||¢(z)| = ||z|. We say that G” = G if this map is
surjective. The Banach space is called reflexive in this case. In this case, we
also have that G’ = G". Note that if G1, G2 are Banach spaces, then the
dual of G1 x G2 equals G} x GY. Namely, if ¢ is a continuous linear function
on Gy x Ga, then ¢(x1,x2) = ¢(x1,0) + ¢(0,22) = y1(x1) + ya(x2).

Lemma 4.0.5 Let G be a reflexive Banach space, i.e. ¢(G) = G”, and
let H be a closed subspace of G. Then (H+)* = ¢(H).

Proof. Since ¢ is an isometry and H is closed, ¢(H) is also closed. This
follows because Banach spaces are complete. Suppose that x € H and
y € H+. Then y(x) = 0 and hence ¢(z)(y) = y(z) = 0. Hence ¢(x) € H++.
Hence ¢(H) C H*. Suppose next that z € G”\ ¢(H). Hence there exists an
n € G" so that n(z) # 0 while n vanishes on ¢(H). By reflexivity, we have
that there exists a y € G’ so that z(y) = n(z) # 0 while w(y) = n(w) =0
for all w € ¢(H). Hence if x € H and w = ¢(z) € ¢(H), then y(z) =
(é(z))(y) = w(y) = 0. So, y € H*. Since z(y) # 0, it follows that z cannot
be in H++, so H+ C ¢(H). O

Corollary 4.0.6 If G1,G4 are reflexive and T : G; — G9 is a densely
defined closed linear operator, then T%* =T.

Proof. Set G = ¢(G;). Then

Gres = (Gre)* = GF- = {(61(w), 62(T)); (2, T) € G}
We write this imprecisely as G« = G, or T** =T. U
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Lemma 4.0.7 Assume that G1,Go are reflexive Banach spaces. Then
the operator T™ is densely defined.

Proof. Suppose that there exists a yg € G5\ D+. Then there exists a 29 € GY
so that zy(yo) # 0 while zy(y) = 0 for all y € Dp«. So zp # 0. Hence for the
point (0,z9) € G} x GY we have that 0(T*y) — zo(y) = 0 for all y € Dp-.
It follows that (0,z9) € GF. = G#+. We write (0, 29) = (¢1(0), ¢2(x)) for
some (0,z) € G x Ga. Then (0,z) € Gr. But T(0) = 0 and x cannot be
zero since ¢o(x) = 29 # 0, a contradiction. O

We recall the uniform boundedness principle (Banach-Steinhaus theo-
rem).

Theorem 4.0.8 Let F denote a family of continuous linear functionals
on a Banach space B. Suppose that for every = € B there exists a constant
¢ so that |F(z)| < ¢z||z||p for all F' € F. Then there exists a constant C
so that ||F|| < C for all F € F.

The proof uses Baire category. For any number A the set of x where
¢z < A is closed. (Closedness follows from continuity of the functionals.)
Hence for some A the set has interior.

Notation: Let y € G' and let H C G be a linear subspace. We denote by
|y e llc the norm of the linear functional y restricted to H. So [y g llcr is
the smallest ¢ so that |y(z)| < ¢||z]|| for all x € H.

We next give a more general version of Theorem 4.1.1 in Hormander.

Theorem 4.1.1° Let G1, G5 be reflexive Banach spaces and let T : G —
G2 be a densely defined closed linear operator. Let F' C G2 be a closed
subspace containing the range of T, Rp. Then F = Ry if and only if there
exists a constant C' > 0 such that

(4.1.1)" lyrle, < ClIT"ylle ¥y € Dr-.

If any of the two equivalent conditions are satisfied, then there exists for
every z € F' an ¢ € Dy with Tz = z and ||z|q, < C|Tz|q, = C|/#|q, for
the same constant C.

Proof. Suppose that R = F. We will apply the Banach-Steinhaus theorem
to a family of linear functionals on the Banach space F. Namely, let G denote
the family of y € Dy« for which ||[T*y[|g; < 1. Define for each such y a linear
function L, € F on F given by L,(z) = y(z). This is a continuous linear
functional defined on F. For a given x € F, pick some z € Dr for which
x = Tz. Then we have that for any L, € F, that

1 Ly(2)] = ly(2)| = ly(T2)| = (T () ()| < [IT*W)lle lzller < Nzl

Hence the family F is bounded uniformly on any given x € F. Hence by the
Banach-Steinhaus Theorem, there is a constant C' so that [[(Ly)rlq, < C
for any y € Drp~ with [[T"y[lg; < 1. Then it follows that [|(Ly)plla, <
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CllT*yllgy V'y € Dr+. Since (Ly)|p = y(z),x € F we get that |ypllq, <
ClT*y|lg, for all y € Dr».

We next suppose that (4.1.1)" is satisfied. Fix a z € F. If y € Dp«,w =
T*(y) € Ryp~, set ¢p(w) = y(z). Note that if w = T*(y1) = T™(y2), then
T*(y1 — y2) = 0. Hence by (4.1.1)", (y1 — y2)(2) = 0, s0 y1(2) = ya(z) and
therefore ¢(w) is well defined. Also, by (4.1.1)’,

[p(w)] = [y(2)|
1yl izl
1Tyl Il
Cllwliey Izl

<
<

hence ¢ is a bounded linear functional with norm at most C|z||g,. This
is then a bounded linear function on the Range of 7% in G} with norm
< C|#]|G,- We extend ¢ to all of G} using the Hahn-Banach theorem. Then
6 € G with norm [[¢llay < C|lzlc,.

Recall the definition of * as it applies in this situation. We say that ¢ € GY
belongs to D(7-)- C GY if there exists a constant ¢ so that [¢(T*y)| < c[y||a,
for all y € Dp-. Since |p(T™y)| = |y(2)| < [[2]lc.lyllc, and our z is fixed,
it follows that ¢ € Dy« C GY. By reflexivity there is an z € G; with
norm < C||z|| such that u(z) = ¢(u) for all u € G}. Moreover x € Dp. So
whenever y € D+,

y(z) = o(T"y) = (T"(y))(x) = y(Tx).

So we have shown that for any fixed z € F, there is an « € Dr,||z|q, <
Cllz||la, so that y(z) = y(Tz) for all y € Dp«. Since Dy~ is dense in G, it
follows that y(z —Tz) = 0 for all y € GY. By the Hahn-Banach theorem this
implies that z — Tz = 0. (I

Let Nt denote the nullspace of T. Clearly Np is contained in Dy and N
is a closed subspace.

Next we study the case of three reflexive Banach spaces, G1, G2, G3. Also
we consider closed, densely defined linear operators, T' : G; — G2 and
S : Gy — Gy satisfying the condition that T(G1) C Ng. Hence S o T is
defined on Dy and S oT = 0. We call this for short an S, T system.

Definition 4.1.1a An S, T system satisfies the Basic Estimate if there
exists a constant C' so that for every y € Dy« and every u € Dg we have
that

(415)" ()] < CUIT* Wl llulle, + 1ylley 1S (@lles)-

Theorem 4.1.1b If we have an S, T" system satisfying the basic estimate,
then T(Gl) = Ns.
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Proof. The space F' = Ng satisifes the condition of Theorem 4.1.1°, namely,
Fis a closed subspace of G5 and it contains Rp. We apply the Basic estimate
to y € Dr+ and u € F. Then [y(u)| < C|T*(y)| ¢, llull, since S(u) = 0.
This is the estimate (4.1.1)" in Lemma 4.1.1°. The theorem follows. O

10. HORMANDER 4.1-LP SPACES

We introduce some Banach spaces. Let (2 be an open subset of C". Let
1<r s < oo, % + % = 1. If ¢ is a continuous real function on €2, we define

L'(Q.6)={f: Q> C, /Q FIe2dN = |l 0 < 00}

Here d\ is Lebesgue measure and f is assumed to be measurable and locally
in L", f € L, .(Q). We define similarly L°(€2, ¢). We know that the dual of
L™ (2, ¢) is L*(2, ¢) and vice versa. In particular these spaces are reflexive.
We have for f € L™(Q,¢) and g € L*(Q, ¢) that g(f) = [, fge ?. We write
g(f) =< f,g >4 and get < f,g >4= <g,f >4 Also we have [g(f)] <
1l zr@.0) 191 s (2,0)-

We can do the same for (p, q) forms.

Let Ly, q)(Q, ¢) denote the space of forms of type (p,q) with coefficients

in L"(, ¢).

! !
f= Z Z f[,JdZI Adz.

H|=p|Jl=q

! . . . . .. .
where )" refers to summing over strictly increasing multiindices. We set

[fI7 = 30 fral” and [[f[5 = [1fI"e”®. Then the dual of L, (Q,¢)

is pr,q)(Qv‘b) and we have < f,g >4= IZ{[7Jff]7J§IJ€_¢. Set f-g =
ZLJ f1,g; 5 for the pointwise product.

Similarly we define sz q)(Q)loc. Let D(€2) denote the space of C* func-

tions on 2 with compact support in . Similarly we define D, 4y(£2). We
observe that D, () is dense in Li, q)(Q, b).

Let 1 < 1',s' < oo with & + & = 1. Let ¢1,¢2 be continuous functions

on €. Consider the operator 9. This gives rise to a linear densely defined
closed operator

T: L(Pv‘]) (Q’ d)l) — sz,q—l—l) (Q7 ¢2)
An element v € L7 (£, ¢1) is in Dp if Ou, defined in the sense of distri-

(,9)

butions belongs to Lq(; q+1)(Q, ¢2) and then we set Tu = Ju. The operator

is densely defined since it is defined on Dy, ;)(€2). The closedness is as in
Example 2.1. Our goal is to show that the range of T' consists of all those f

for which df = 0 for some choices of ¢j and 7,7’
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Consider the case of 3 Banach spaces,

Gl = La,l),q) (Qa ¢1)7

Gy = L?;,q_,_l)(QaQSZ),
Gy = L0 (23)

with @ operators T : G; — Gg and S : Go — Gs. This is then an (S,T)
system and our goal is to prove the Basic Estimate under suitable conditions.

We will assume that 1 < rg <ry <r; < oo.

Lemma 4.1.3, Let 1, be a sequence of C*° functions with compact sup-
port in 2. Suppose that 0 < 7, < 1 and that on any given compact subset
of 2 we have 1, = 1 for all large v. Suppose that

n
(4.1.6) e |0, /07|™ < e T3/,
k=1
If r3 < r9 we add the extra condition that € has a finite volume. Then

for every f € Dg the sequence n,f — f in G5. Moreover 1, f € Dg and
S(mwf) = S(f) in Gs.

Proof. The sequence |n,f| < |f| and n,f converges pointwise to f, so
[l f = f e~?2d\ — 0 by the Lebesgue dominated convergence theorem.

We have that S(n,f) = n,S(f) + On, A f in the sense of distributions
and S(f) € L"(¢3) so to show that n,f € Dg we need to show that
On, A f € L™(¢3). We have the pointwise estimate that |9n, A f|e™? <
|f|"3e""392/72 We show that the right side is an L' function on Q. If so,
On, N f € L™(¢3) and the Lebesgue dominated convergence theorem im-
plies that the integral converges to 0. If ry = r3 the function is in L' by the
hypothesis that f € G5. Suppose that ro > r3. We then get if ;—3 + % =1,

r3/T2
[ et (/ <\f|7"3e7"3¢2/7”2>7”2/”> / ([ an
[9] Q Q
r3/ra
_ (/ Iflme“”) ([
Q Q

< o0

Then the lemma follows since 7, S(f) — S(f) in Gs. O

Lemma 4.1.3; Let 7, be a sequence of C* functions with compact sup-
port in €2. Suppose that 0 < 7, < 1 and that on any given compact subset
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of 2 we have 1, = 1 for all large v. Suppose that

n
(4.1.6)" 7> |, /07| < e 24/,
k=1
If ro < r1 we add the extra condition that € has a finite volume. Then

for every f € DJ. the sequence n, f — f in GY. Moreover 1, f € Dy« and
T*(,f) — T*(f) in G,

Proof. Suppose that f € Dr«. By the Lebesgue dominated convergence
theorem, 7, f — f in G5. We show that nf € Dp« if n is smooth with
compact support. Let w € Dp. Then Tu € Gy and

M) (Tu) = <Tu,nf >4,
= <nTu, f >4,
<T(nu) = Au, f >4,
<T(nqu), f >4, — <O Au, f >4,
<nu,T*f >4, — <O Au, f >4,
= <unT f >4 — <IMAu, f >4,

So

o 1/r2
) Tw)| < InT" fllgyllulle, + [ flle, </\377AU\T26¢2>

_ 1/r2
17 flas s + oy ([ 19 ulee)

<
1/r2
* M ryr —
< |T fHG/lHUHGl + ||f||G,2 /’u|r2( F|r2)€ ¢2
FRRaC
1/r2
§|WVW%WWh+GMﬂ%</wWaﬂMM>

where (), = 1 forn =17,

If 1 = r9 we see that

|(nf)(Tw)]

IN

1/r1
I flay e + ol ey ( [ )

(17" Flles, + Callfllay ) llull,
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So then nf € Dr«. Next, consider the case r; > ro.

1/ra
nH)Tw)| < T fllgy lulle + Collfles ( / u|’"2er2¢l/“)

= T flle; llulle,

—r r r1/T2 r2/m ’
+ CanHGg ((/ (|U|7’2e 201/ 1) > |Q|1/t>

1/r
< 1T Fllgy lullas + Cyllfll, |92 ( / ru|”e—¢1)

= (I Fllay + Cull Pl 902 lul,

1/T2

This shows that nf € Dp+ also in the case when r; > 7. It remains to
show that T*(n, f) — T f. It suffices to show that T*(n,f) — n,T*f — 0.
Let w € Dp. Then

(T f) =T flu = <u,T (nf) —mT"f >4,
<Tu,mf >¢, — <u, 0T f >4,
= <nTdu,f >py, — < u,n,T*f >4
< T(nyu) — 0, Au, f >pp — < u,mTf >4,
<mu, T*f >4, — <Oy Au, | >4, — <u,n,Tf >4,
= — <O, Au,f >4,

Hence

(@ 0f) =0T F)ul < [ 17180 A ale .
So in particular we have for any v € D), , that

!/(T*(nuf) — T f) - ue™?| S/’f\@m\lﬂ!e—@-

This implies the pointwise a.e. estimate

(T* (o f) = T fle= ' < | fl|Omy|e 2.
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So
(T* (o f) =T F)| < | fl|On[e? %2
|(T*(77uf) _nyT*f)|sle—¢1 < ‘f|s1 ’577y|81€sl(¢1_¢2)6_¢1
S1
Oty (f1—¢2) ,—¢
= 51 s1(P1—p2 1
= |fl (Zk:‘ﬁzko e e
P s1/T2
s D s1(61—¢2) ,— 1
< 1 n 2 e 1 e
< |/l ( 215z )
< ‘f‘m <nefr2¢1/r1e¢2)81/7"2 esl(¢>1—¢2)67¢1

_ ‘f‘51n51/1”2e¢1(—51/T1+S1—1)€¢2(81/T2—51)
‘f|51n51/7‘2e¢1(—51(1—1/81)+81—1)e¢2(81(1—1/52)—81)

\f|slnsl/r26_sl¢2/s2

Since the functions |(T™(n, f) —n,T™ f)| converge pointwise to zero, it suf-
fices by the dominated convergence theorem to show that | f|51n1/m2¢=5162/52
is an L' function. If s; = sy this follows since f € Lf;7q+1)((2, @2). If 81 < 59
it follows also because

so/s1\ S /s
/|f\51€_81¢2/52 < </ (’f|516_51¢2/82> 2/ 1> v ]Q|1/t”
00

<

Next we will study smoothing.

We will use Minkowski’s integral inequality. See Stein, Elias (1970). Sin-
gular integrals and differentiability properties of functions. Princeton Uni-
versity Press.

Theorem 4.1.4y Let F(z,y) > 0 be a measurable function on the product
of two measure spaces S1, Sy with positive measures du;(z), dua(y) respec-
tively. Let 1 < r < co. Then

</51 (/52 F(:t:,y)dm(y))rdm(x))l/r < /52 (/Sl FT(x,y)dul(at)>1/T dusa(y)

The following is the smoothing theorem.
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Lemma 4.1.4, Let y be a smooth function with compact support in RY,
with [ x(z)dz =1 and set x.(z) = }Nx(f) Let 1 <7 < oo.If g€ L"(RY)
then the convolution g * x. satisfies

(g*xe)(z) = /RN 9(Y)xe(z — y)dy
= /g(:v —Y)xe(y)dy
— [ gla - xwiy

and is a C* function such that ||g* xe — g||z- — 0 when € — 0. The support
of g * x¢ has no points at distance > € from the support of g if the support
of x lies in the unit ball.

Proof. The equalities for g* x(x) are obvious. The first integral shows that
g*Xe is C* since ¢ is in Lllo . and since we can differentiate under the integral
sign. We apply Minkowski’s integral inequality to the second integral.

(f1o+ xer’"d:c)l/r - (1] st -wxtraurac) "
(/ (st y)er(y”dy)rdx)l/r

[ (16 -vinionras)” a
= [ kewllgle

= Clgllpr,C = / N

IN

IN

This shows that ¢ * x. € L" and that
llg * Xellr < Cllgllzr.

Next pick a § > 0 and choose a continuous function h with compact
support so that ||g — hl|z- < 6. We then get

< lg*xe — bk Xellor + [[h* xe — hllr + [[h = gllLr
< g —h) * xellzr + |h*xe — hllzr +0
< (C+1)d+ ||h*xe—hlLr

llg * xe — gl
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We have that
(h s xe — 1) (a) = / (h(z — ey) — h(z))x(y)dy.

Since h is continuous with compact support and x has compact support,
it follows that h % x. — h is supported in a ball ||z|| < R for ¢ < 1 and
converges uniformly to 0 when ¢ — 0. It follows that g x xyc — ¢g in L".

The last assertion follows from the last of the integrals in the expression
for g * xe. ]

Exercises

1) We know that the following holds for functions. Show that it also holds
for (p,q) forms.

| < fi9>¢ | <|flrlgls-

2) Let T be the operator 8 : L () — L2 .1 (€2). Show that T is a closed
and densely defined operator.

3) Consider 3 Banach spaces,
G = L, (Q60),
G2 = L?;q-i—l( 7¢2)7
Gs = L3 . (63)

with 0 operators T : G1 — G and S : Go — G3. where the ¢; are continuous
functions and 1 < r; < co. Show that the range ot 7T is in the domain of S.
Show that SoT = 0.

11. HORMANDER 4.1-L”, L? SPACES

Lemma 4.1.4;, Let f1,...,fyv € L, (R N). Also suppose that the distri-

bution Z;V 1 gicj € L} . Then
N
S b zaff x
= Oz < O

Proof. Both sides are C* functions. To show that they are equal, we show
that for any ¢ € Cg° that

f *Xe af
/Z éx] ¢($)dﬂc:/ ]2:6902 % xe(2)0(2)dz.
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N o, N oot
/ Zaff £ Xe(2)p(z)dr = / / Zaxj (@ = y)xe(y)dy | d(z)dz

N
= [ g e v
j=1 "/
N
=1 !

O

Lemma 4.1.3; Let f € Dg have compact support in 2. Then f*y. — f
in Gy, f*xe € Dg and S(f * x¢) = Sf in Gs.

Proof. By the smoothing theorem, fx*x. — f in L™ and since f has compact
support, f*x. — fin | - |lg,. Since f * X is smooth with compact support,
f *xe € Dg. Furthermore, S f is a form such that each coefficient can be
written as an expression » . ; a = where each f; is a finite linear combination

of 19f of
of the coefficients of f. [Recall that ér;-J = 5 a;i]J + 4 d; 2] Hence, by
Lemma 4.1.4p, (Sf)*xe = S(f*Xxe). By the smoothing theorem (Sf) %y, —
Sfin Lj3 . Since f has compact support, ¢3 is bounded so (Sf) * xc = Sf

in G3. Therefore S(f * x.) — Sf in G3.

O

Next we prove a similar lemma for 7. We first do some preparations. In
this lemma ¢, ¢9 are continuous functions on Q.

Lemma 4.1.3; Let f = Zm pZ|J| g+1 f1, gdz! Ndz? € L(pq+1)( )
and suppose that f € Dp«. Let T*(f) = ZLKgI,KdZ Y = le ( 61).
Then

e P2f;
(41.9) gric = (1P len Y (easzK)
J

j=1
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¢2ijK) E le

0z; loc*

In particular, the distribution Z?:l

Proof. Let v = 211|=p me:q ur gdz! N dz¥ € D, ,(). So in particular,
u € Dp. Then (T*f)(u) = f(Tu). Here

/ /

Tu = —dz; Ndz" Ndz
>y
l|=p|K|=q

/

= -1y Zau”{d Adz; A dZE.

[l=p|K|=q

If I is a permutation of I and J; is a permutation of J we write fr, j, =

e?} ' fr,7 where € is the signature of the permutation. So, for example, the

signature is —1 if only two indices are interchanged. In particular a term
f1jxk =01if j € K. We get

0
= /ZUI,KQI,Ke(bl = [(Tu) = /(—1)p Z ;;K frixe .
TK j

LK,j

Hence for all smooth functions ¢ with compact support, we have for each
I, K that

/Wemw — (_1)10/;]?[7].]{6@5232_

Hence

/911{6 o1 = /ZfIJKe 281/)-'
Therefore

grie = (=1 IZ mfl’”{ € Ljge

Corollary 4.1.3. If ¢35 € C*°(Q2), then

Do 11— Of1,K
grK = (—1)Pe $1— 87 1K+ (— 1) Lod1—¢2 Z 87]
J J K
where the distribution f S s in L)Y D Ly2 .
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Proof. The distribution ) M €L}

loc*

Let ¢ be a test function.

O frxe ) 4,99
/ ZJ: T _ZJ:/ fme ™,
_ ~A(e™?9) , 89252
= - % /fL]KaZj - % /fI,JK = ¢

af]JK —¢2 )
Ejj 7 ¢) - mee 8% (9)

o 01 o 99
= (XS @ €¢;f1,ﬂ<82j (9)

J

The expression on the left is in lec and the second expression on the

right is in L;? . Hence the first expression on the right is in L;} .

Lemma 4.1.3; Suppose that f = ZII|:p,|J|=q+1 fLszI/\dEJ € Dpgs1,02 €
C. Then f € Dp~.

Proof. Let g = E,I,K gLKdZI/\dEJ where g7 x = (_1)p71e¢1 EI,K,] b2 Jaie ¢2)
To show that f € Dp«, we prove that for any u € Dy, f(Tu) = g(u). We

write u = Z‘/”:p mezq uI,KdzI AdzE € Gy, and

!/

Tu = ( Z Z 8u[Kd /\dz]/\dz

[=p|K|=q
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Then
f(Tu) = <Tu, f>¢,2

- 0

- / Y Y T e

J jK=J
G a3 DI
JK=J
- D IZZ/ fI]Ke Are ™) UI,K
I jK

_ plzz/ en Y ffgjm) —
; J

= <u,g>

= g(u)

O

Lemma 4.1.3, Suppose that ¢2 € C*. Let f € D7« have compact sup-
port. Then f#*x. — fin G5. Moreover, f*xe € Dy« and T*(f*x.) — T*f
in G}.

Proof. Since f * xe € Dp 441 for small €, we have by Lemma 4.1.3; that
f % xe € Dp«. Also by the smoothing theorem, f x x. — f in G,. B
Corollary 4.1.3, we can write T*(f x x.) = Z'IK gLKdzI A dz5 where

=(— - 6(;5 — - O(frjK * Xe)
1—P2 1 _¢1—¢2 »J
9I,K ( 1)p€¢ . fI JK * Xe (=1)P"e ¢ % T

The first term on the right converges to (—1)Pe?1~%2 > %ﬁjj},ﬂ( in L% by
the smoothing Theorem. Hence it also converges in L®'. The second part

can be written, using Lemma 4.1.4, as (—1)P~le?1 92 (Z] %) * Ye and
converges to
(—1plern 3 Ofrix
r 0z
in L%, U

Theorem 4.1.3;, Suppose that ¢1, ¢3 are continuous and ¢4 is C*°. Sup-
pose that {n,},0 <, <1 is a sequence of compactly supported C* func-
tions such that on any compact subset of Q0 all 5, = 1 except finitely
many, as in (4.1.6)" and (4.1.6)”. Suppose also that if ry # r3 then
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has bounded volume. Suppose that f € Dy« and g € Dg. Then there exist
sequences {fn}, {gn} C Dy q41) s0 that f, € Dr«, g, € Ds, fo — f in GY,
T*fn = T*f in G|, gn — g in G and Sg, — S in Gs.

Proof. Let § > 0. Using Lemma 4.1.3, for S and Lemma 4.1.3; for T*, we
can let vy be large enough that

I10.f = FI T (o f) = T fI 1009 — 911, 1S (e 9) — Sgll < 6/2

and 1y, f € Dr+,m,,9 € Dg. Then for ¢ > 0 small enough, f= (Mo f) * Xe
and § = (My,9) * Xe are in Dy« and Dg respectively and

If = FILNTf =T fIl. g — gll, |Sg — Sgl| < &.

(]

Corollary 4.1.3; The S, T system in Theorem 4.1.3;, satisfies the Basic
Estimate if there is a constant C' so that for every y,u € D, 441y thought
of as elements of G, Go respectively, we have that

ly(u)| <C (IIT*(y)IIG;IIUHG2 + ||yHG’2||S(u)”G3) :

We now discuss the case when all r;, s; = 2. This is the Hilbert space case.
Recall first a few facts about complex Hilbert spaces, H. We have an inner
product < z,y > for x,y € H. The inner product satisfies

<ax,by >=ab< xz,y>.

The norm is ||z||?> =< x,2 > . There is a natural identification between H
and the dual H'. If x € H, then \(z) defined by A(z)(y) =< y,x > defines a
continuous linear functional on H. The map A : H — H’ is norm preserving
and antilinear: A(cx) = €A(z). Conversely, if g € H',g # 0, let x € Ny,

|z|| = 1. Set ¢ = g(z). We show that g = A(cx). Any y € H can be written
uniquely as y = ax + 2,z € Ny. We get

gly) = glax+2)
ag(z) + g(z)

= ac

c<axr—+z,x >
= <y,cx >
= Aex)(y)

Aex)

Q
|

In this case we can write the basic estimate as follows:
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Theorem 4.1.3; Suppose that r = s = 2. Assume the conditions of
Theorem 4.1.3y. If for every f € G with A\(f) € Dp- and f € Dg we have
that

@) A< e fI 4+ 1S £
for a fixed constant C, independent of f, then we have that for all y €
D7+, u € Dg that

2) |y < T ylllull + [[Sullllyl)-
We also have (2) = (1).

We note that Ny« = R#. Namely, if y € Dp«, T*(y) = 0 and = € Dr, we
have (T*(y))(z) = y(Tx) = 0. Conversely, if y € Rf, then y(Tz) = 0 for all
x € Dp, soy € Np«. Note that we identify RJT- C H', the dual space with the
orthogonal complement of Ry C H, i.e. the vectors in H perpendicular to
the vectors in Ry. If y € Ny« and € Ry then y(z) = 0. On the other hand,
if y is in the subspace in H’ identified with R and z is in the subspace of
H identified with N7+, we also have y(z) = 0.

Proof. Assume (1). It suffices to prove (2) for all y,u € Dy 441. We write
y = y1+y2 where A" (y1) € Ry and yo € Np-. Similarly, we write u = w1 +uz
where u; € Ry and A(ug) € Np«. Then yo(ui) = 0 and y1(ug) = 0. Note
that y; € Dy« since both y and yo are. Similarly, us € Dg.

It follows that

ly1(u1) + y2(u1) + y1(u2) + y2(uz)|

lyllur] + |y |uz|

CUT*yull + 1Syr DMl + g2l T" well + [|Suzll)
= ClITyullluall + ly2ll | Suell

CIT y|l[[ur]l + g2l Sull

CIT ylllull + lyll[| Sul

ly(u)l

VANVAN

IN

The reverse implication follows by applying (2) to the case y = u € Dy, ,.
O

12. HORMANDER 4.2

We are trying to prove the basic estimate

AP < CAT A+ 1S FID-
We need formulas for ||Sf]], || f]|.
Definition 4.2.1, Let ¢ € C*>°(2) be a real valued function. If w € C*°(2)

o pOwe™?) _ 9 )
we let §;(w) := 6¢872j) - TZ _ MTZ'
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Lemma 4.2.1; Let wy, ws be C*° functions with compact support in (2.

Then < w1, 8z2 >pi= fw1<aw2> ¢d)\ f 5kw1 w26 d)d/\ < 6kw1,w2 >¢,

Proof.
R / 9w g
/wlaZke dN = w1 82ke dA
_ _/8(“’16 ") s
8zk
Owy __

O
We next prove a commutation relation between d; and =
Lemma 4.2.1, Let @ be a smooth function. Then
(PO, P
0z 0z}, N afkazj'
Proof.
0¢ 0¢
0j(Yz,) — (0j0)z, = Vzpzy — wfkaizj — (2, — ¢87j)2k
¢2k,zj - wzkd)zj - wzj',gk + 1/’@ ¢Zj + T/sz]-,zk
= quzj',?k
(]

Lemma 4.2.1; Let f,g be C* functions with compact support in €.

Then
— d;
/5jf5k93_¢ = /(lejﬂ)
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Proof.

/ 5 fSege® = / 509, fo?

)

_ _/9W6¢

0z,

The following lemma is immediate from Lemma 4.2.1;:

Lemma 4.2.1, Let f, g be C* functions with compact support. Then

Of B9 o _ / (Of yemo
0z, a?je B 5J(8§k Jge

Corollary 4.2.1; Let f,g be C* functions with compact support. Then

_— of g _ _ 0% _
. 6 _ 6 _ $
/5”05’“96 0%, 0%; fgazjazke

Proof. We combine Lemmas 4.2.1._:

— _ df 0g _ /8(5'f)_ / of _ _

. ¢ _ I A B J ¢ (2 ¢

/6’f5'“g6 071, 0%, oz, 9¢ T 53(62k)96
’o

faZjazkge

Let f be in D) 441. We calculate T'f.
Lemma 4.2.1,. If f =573, f1 ;d2! Adz’, then
=5 Of1.s ;- _
of =313 PR #jjdzj Adz' A dz’ and
3 of1, Of1,jx Of1,
|3f’2 = ZIIJ Zj | aéjJ ‘2 - ZIIK Zj,k alziK aIEI;K

Proof. The formula for Of is clear. We prove the second formula. We deal
first with the case ¢ + 1 = n which is degenerate. In this case 0f = 0 for
type reasons. In the second term on the right side of the formula, we sum
over all K which are multiindices of length ¢ so each K misses one index, j.

Recall that f7 ;jx = 0if j € K. Hence in the last term you only sum over the
Ofr,iK ‘2
82]‘

case j = k. So this term becomes — 3 | where j is the missing
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index in K. There is only one J in this case and f7 jx = eL}K f1,7. Since the

term is squared, we can write the last sum as — Y’ 1722 ]8f L7 |2 which is
the same as the first term except for sign.

We continue by assuming that g+1 < n. For M an increasing multiindex,
|[M|=q+2<mnandje M, write M7 to be the increasing multiindex with
j removed from M. We can then write

/

af = Z >y f“‘”’d i Ad2 A dzM

|=p|M|=q+2jeM

/

_ Z 3 Z f’M’ M 4T A dzM

[I|=p |M|=q+2jeM

Hence we obtain that
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— a J 76
|8f‘2 _ Z Z Z fIM M ];IZJZZG%Z

\1\—10 |M|=q+2 jLleM

-3y zﬁf”“

[I|=p |M|=q+2jeM

/ / aF
+ Z Z Z 8fI,MJ'afI,M£€jMJ'6M
0Z; 624 M Femt
17 \:p |M|=q+2 j,te M j#¢ J
/

- 3y
\I\—lel q+1j¢J
Ofrix (K Of1iK At jai M
+ Z Z DL am, Cigm, K i
[I|=p|K|=q jl¢ K ,j#L
!

- 33 s

\1\—p|J| q+1j¢J

Ofrux ik Of1,K ML GMI M
+ Z Z Z 0z, iMi 0% €K €M Copme
\I\:lelijfeéK,j# J
/

0
_ Z Z Z’ fIJ
\I\ =p|Jl=a+1j¢J
0 0 . .
PP g“;;K g

\1\=p|K|=qj (K j#L

!/

- 33 >

\1\ =p|J|=q+1 j¢J

Ofrix Of1 K
NS 0, o

. . )4
[=p|K|=q j L K,j#L
For any fixed I,
/! !/

o, Ofr;
Z Z’ag[J‘Q - Z | 3;].K|2

|J|=q+15e 7 |K|=q.j¢ K J

We add the left side to the first sum and the right side to the other sum.
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Hence

!/

e = Y Y S
\Il =p|J|=¢+1 Jj
Afrux Ofrjx
- Z Z D

|I|=p|K|=q j.t¢ K

Since frex = 0if £ € K, we can drop the condition that ¢ ¢ K and the
same for j ¢ K. Hence

!/

A D Y i
\II =p|J|=q+1 Jj
Ofrix Ofr ik
Sy R

[I|=p|K|=g 3.£

O

We will next be more specific about our L? spaces. First pick some smooth
function ¥ as in Theorem 4.1.3; for the r = s = 2 case. We use weights
e~ % using smooth functions ¢ and ¢ as follows:

P1=0 =2, 2 =9 —1),¢3 = ¢.

With these weights Theorem 4.1.3 applies to show that smooth compactly
supported forms are dense in the graph norms of S and T™.

Let f € D q441)- Recall from Lemma 4.1.34 that if

/ /
f:Z Z f[’{]dz[/\d?]

[1|=p|J|=q+1
then

/ /
T = > Y grrds’ ndEF

[Il=p |K|=q

where
n
e %2 f; .

gr.xi — (_1)p716¢1z (6 fI,]K)

0z;
j=1 J
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Lemma 4.2.1,

/
T = (=17 0D 6 frrds A dER

LK j
t P 1ZZfI,gK—dz A dzE
ILK j
Proof.
TS = Z Z eVgr i )dzt A dzE
[I|=p |K|=q
n
OSle %2 f; .
gk = (—lpleven Y AT LK)

=1 82]'
3 n a(efdwwf] i)
_ —1)P 1 v+¢1 »J
( ) ¢ ]2 sz

_ = 3(€_¢f1 iK)
_ p—1_v+¢1 P »J
= (—=1)P"e g e 3

j=1 %
_1\p—1_v+o g WLV
+ ( 1) e IZe fL]Ke 82‘]'
7=1
—¢
_ 1P~ 12 s0(e fLJK 1P 12!}0]]}{7

J

Y )+ 1P fronge
j=1 =1
T = D Y (=P 6i(fryx)det A dER

lI|=p|K|=q J=1
! ! ¢

+ D D (U 1me<*dz ndz"
l|=p |K|=q j=1

We prove the large constant, small constant lemma:

Lemma 4.2.1;. If a,b are complex numbers and ¢ > 0, then

1
2|ab| < clal® + E\b\z.
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Moreover,

1
la + 0> < (1+¢)|al® + (1+ E)\b\?

Proof. The first inequality follows from

1
cla* + ~[b* = 2Jal[b] = (Vela| = V/1/c[b])*

> 0

The second inequality follows then from

la+b> = l|a|* +ab+ab+ b
< af® + 2[al[b| + [b]?
1

< (1+c)\a|2+(1+E)\b\2

We introduce the notation 2 =1+4¢,2" =1+ %, ¢ > 0. Then statements
involving 2/, 2" below are valid for any choice of c.

Lemma 4.2.1;.

! n
80 frir0nfrar < 22017 f12 + 2" f[*|0w.
1K jk=1
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Proof.

/

n / n n
Z Z difrikdefirx = Z Z5jfl,jK (Z 5kf1,kK>
K =1

1K j k=1 j=1

!/
= (=170 6 frirde’ A dEEP

LK j

/
_ o _

— Y 1}:}: . I K2

= ’6 Tf—(—l)p fI’jKazde Ndz ’

LK j

! aw
o P —1 . 2
= > leYgrx — (1) § ff,gkfazj\
LK J

/ /
oY
2y el 27D 1> ijKfl2
I.K I.K Zj

J

IN

IN

/
. oy
2/62¢|T f‘2+2//ZZ‘fI,jK‘2’£‘2
J

LK j

/
. 0y
_ 2/62¢‘T f‘Q + 2//2 Z ‘f],ij%‘Q
LK j¢K !
/

\ oy
= 2 T2+ 2" Z Z’f},jﬂ\z\7|2

I|=p.|J|=q+1 j€J 0z;
|I|=p,|J|=q+1j€

/
oY
ol 2| )2 " 21 9% 2
= 22 YU

1,0 jeJ J

/
2/€2w|T*f‘2 + 2 Z |fI,J|2‘aQ,Z)|2
I,J

IN

Lemma 4.2.1.

/

— Ofrjk Ofrkr, _
(0 frixonfrie — 87?;87@ e ?

n
1K jk=1

IN

YT 2™ + |SfPe™ + 2" |f*|0] e
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Proof.

/ n
I 0 Ofr ki
S Gifrixdnfrax — 811k 011, R

V4 Zq
1K j k=1 Oz, 0%

IN

(2T + 2" |f P09 *)e

I ) ol SR P

1,J j
= 20T 2 4+ 2" | f? |0y 2e ¢ + |Sf|Pe?
= 2|T*f|Pe™ + 2| f 2|02~ + |Sf|2e 3

Theorem 4.2.1;. Let €2 be a pseudoconvex domain in C*. Let 0 <15, <1
be a sequence of C*° functions with compact support such that for any given
compact subset of € only finitely many are not identically 1. Let v be a
C® function with ;" | |5 ‘977" ]2 <e?inQforallv=1,2,.... Let ¢ € C>®(Q)
and set ¢1 = ¢ — 21, (;52 =¢— Y, p3 = ¢p. Let T denoteithe 0 operator
from L ( ,¢1) to L a1 (€, ¢2) and let S denote the O operator from
L(p7q+1( , 02) toL Jr2( ,¢03). Here 0 < p < n,0 < g < n—1. Let
f S D(p,q+1) Then

= 2"|oyPIf1* | e < 2T FIR+IIS I

/ Z Z frjx frrx kK

[|=p,| K|=q j;k=1

Proof. Integrating both sides of Lemma 4.2.1;, we get

_Z Z / i f1Kk0kfT e — af[’]Kafle) -9

0z, 0%,
LK jk=1 k J

o / T f 21 + / 152

+ 2 [IPoupe

IN
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We next apply Corollary 4.2.1; to each integral on the left side, setting
f = frjk,9 = frrx in the corollary. Then we get

/ Z Z frirx frex kK5

|I|=p,| K|=q j,k=1

e ? < 2T I+ IS5

+ 2" [louPispe

13. HORMANDER 4.2 0 IN LIQOC, LEVI PROBLEM

Corollary 4.2.1,,. Assume the conditions of Theorem 4.2.1,. Suppose
in addition the condition that

n 2
885 w;wy, > 2(|0p] + ¥ Z lw|?,w e C™.
J,.k= z 1

Then we have that for every f € Dy« N Dg that
1F15, < IT*FU5, + ISFIZ,-
We let ¢ : 2 — R denote the largest function such that

n
0%¢
c(2)|w? < ———W;Wy,
Pyt azﬁzk

for all z € Q and all w € C* Then, in particular, ¢ > 2(|0y|? + e¥) and
¢(z) is continuous.

Proof.
(;5 / n
Z Z frigfrex s > ey N frikl
0207z, ;
|I|=p,| K|=q j,k=1 LK j=1
/
= > ) |frxl
LK j¢K
/
= c > >l
L|J]=q+1
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Hence we get for any f € D, ;1) that
1913, = [lrpe

= [eippe

c —
= /(2 — [0 f|Pe™?
= % Z Z fLJKf[kK ¢ ¢_2/(|5¢2)f\26_¢
|T|=p,|K|=q j,k=1
1
< SCIT I+ IS5
< TP+ 1S FIP

The corollary follows now for all f € Dy« N Dg by density of D, 1) in the
graph norm. ([

Theorem 4.2.1,,. Assume the conditions in Theorem 4.2.1¢ and Corol-
lary 4.2.1,,. Then 1f fe L(p qul)( ,¢2) and Jf = 0, then there exists a

g€ L2 ( ,¢1) such that dg = f and
1gllsr < N1£lls2-

Proof. By Theorem 4.1.3;, we have, since || f||?> < || T*f||> + ||Sf||* for all
f € Dr« N Dg that for any y € D7+ and any u € Dg we get:

() < ITylllull + 1Sulll[yll
Now Ng C Dg so if y € Dy~ and u € Ng then

()| < Tyl lwll-

Hence we have the norm of y as a linear functional on Ng that |yl <
|T*y|| for all y € Dp«. We set F' = Ng. This is a closed subspace containing
Rp. It follows then from Theorem 4.1.1; and Theorem 4.1.1° with constant
C =1 that Ry = Ng and that for every u € Ng there is a v € D with
Tv =wu and |v]] < |lu]l. O

Lemma 4.2.1,. Let {aj,b;};—23,. be given strictly positive constants.
Then there is a smooth, positive increasing, convex function fA(z) or z > 0
such that A (z) > aj on [j,7 +1],7 > 2 and A(xz) > b; on [j,j +1],5 > 2.

Proof. To find such a >\ pick a sufﬁciently large leOOth function o(z) >>
1,z > 0 and define v(z) = [ o(t)dt, AN(z) = [; v( O
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Lemma 4.2.1,. Suppose that 2 C C" is pseudoconvex and assume that

1 is as in Theorem 4.2.1,. Also suppose that f € L%p,q—i—l),loc(Q)' Then there

exists a smooth strongly plurisubharmonic function ¢ on € so that

> P 2
= 02,07y, k= 2(|0Y|" +e );1 |wy|

and f € L%p7q+1) (Q7 (;52)7 ¢2 = d’ - w

Proof. Using Theorem 2.6.11, we can find a smooth strongly plurisubhar-
monic function p on Q such that {p < ¢} CC Q for any ¢ € R. We can
assume that minp = 2 by adding a constant. Choose a smooth function

m(z) >0 on Q such that 1" _, %wi@k > m|wl|?.

For j =2,3,..., let Lj = {z € Q;j < p(2) < j+ 1}. Then each L; is
compact and = UL;. Define

Since Lj is compact, f € L%p,q—i—l)(Lj)' Pick b; > 0 so that ij ’f‘Qew—bj <

%,j > 2. Let A be as in the Lemma 4.2.1,. We define ¢ = Ao p on (2. Then
on Lj,

n 2 n 2
Z o¢ wwe > N(p(2)) Op W W,

2 G 22 050
= Y z": affapzkwlw
ik=1
o PSS
> 2O o

= 2(|0¢]” + e¥)wl?
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Also

/f|2€w—¢ - Z/ |f|2e¢—/\(p)
Q =L
< fPe? b
>/ ]

1
21

AN
(W

2

A
8

O

Corollary 4.2.1,. If f € L qu) 10e(§2), © pseudoconvex in C", and

Of =0, then there exists a g € L(p 9, 1oe(£2) so that 9g = f in Q.

Proof. let f € L2 q+1) 1oc(§2) and suppose 0f = 0. We pick ¢ as in Lemma
4.2.1,. Then f € L(p 4+1)(Q, 62) and Of = 0. Using Theorem 4.2.1,,, we find
g€ L% (92, ¢1) with dg = f. This g € L(p 2, 1oe(§2). O

Lemma 4.2.1,: Suppose that f € L?(Q) and that f = 0. Then there is
a holomorphic function u on €2 so that u = f a.e.

Proof. Suppose that f € L?(B(0,6)), the ball of radius ¢ in C" centered
at 0. Assume that 0f = 0 in the sense of distributions. We apply the
smoothing theorem. Then if 0 < € < g, f * xe is C*> in B(0,6/2) and
1f * xe = fllz2(B0,5/2) — 0 when € — 0. By Lemma 4.1.4;, Af *xe) =
(Of) * xe = 0% xe = 0. Hence each f * x. is holomorphic. We can choose

€5 ¢ 0 so that || f*Xe; ., — f*Xe;[I22(B(0,5/2) < 2% Let u; := f * x.;. We get

lujr1 = ujllrsos/2) < Cllujer = wjll2s.s/2) < 55

By Theorem 2.2.3 we then get pointwise estimates |u;j11(2) — u;j(z)| < g—]
on B(0,9/4). Hence u; converges uniformly to a function v on B(0,46/4). By
Corollary 2.2.5, u is holomorphic. But necessarily u = f a.e.

O

We prove an extension Lemma. We use the notation z = (21,...,2,) =
(2/, z) for points in C".

Theorem 4.2.8,. Let 2 C C" be pseudoconvex, n > 1. Let Q' := {2/ €
Cn~ L (2,0) € Q}. If f is a holomorphic function in ', then there exists a
holomorphic function F' in € so that F(2/,0) = f(2') for all 2’ € Q.
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Proof. Let 2z’ € Q. Then there exists an €, > 0 so that B((z,0),€e,/) C Q.
Set w := U, eqrB((2',0),€,). Then w is an open set in C™, Q' % (0) C w C
and for every (2, z,) € w, 2/ € Q. Define G on w by G(2/, z,) = f(Z'). Then
G is holomorphic. The sets ' x (0) and dw N are disjoint relatively closed
sets in €. Hence there exists a function x € C*>°(€2) such that x = 1 in an
open set containing €' * (0) and y = 0 in an open set containing dw N Q. We
define H on §Q by letting H(z) = xG on w and H(z) = 0 on Q \ w. Then
H € C>®(2). Let 0 = OH. Then o = 0 in an open neighborhood of Q' * (0).
Define 7 on €, by setting 7 = 0 on % (0) and 7 = /2, on the complement.
Then 7 = 0 in a neighborhood of €’ % (0). Hence d7 = 0 in a neighborhood

of Q' x (0). Also in the complement of Q x (0), we have 7 = é—: =0. So
Ot = 0 on . Since 7 is smooth, 7 € L(0 1, 10c(§2). So by Corollary 4.2.1,,

there exists h € L7, (Q) so that Oh = 7. By Lemma 4.2.1,, we can let h be
a C> holomorphic function in a neighborhood of €' x (0).
Let F = H —z,h. Then F is holomorphic in a neighborhood of €% (0) and
F(2',0) = f(') if 2/ € Q. Moreover F € L? (Q) and OF = 0H — 2,0h =
o —zp,7 = 0. Hence by Lemma 4.2.1, again, there is a holomorphic function
F on Qso that F = F a.e. But then, F = F on a neighborhood of Q' x (0).
So f(2) = F(2',0). O

We can now solve the Levi problem:

Theorem 4.2.8,. A pseudoconvex domain in C" is a domain of holo-
morphy.

Proof. We prove the theorem by induction in the dimension. The theorem is
true in dimension 1 because all domains are domains of holomorphy. Next,
assume that the theorem is true for domains in C"~!, n > 2. We prove the
theorem in C" by contradiction. So assume that there is a domain 2 € C"
which is pseudoconvex, but €2 is not a domain of holomorphy.

Then, by definition 2.5.1 there are two open sets ; and €5 in C™ with
the following properties:
(a) @7&91 C QN Q.
(b) €9 is connected and Qg \ Q # 0.
(c) For every u € A(Q) there is a function ug € A(22) such that u = ug in Q4.

Pick a point p € 1 and a point ¢ € Q9 \ . Since (25 is connected, there
is a curve ¥(t),0 <t <1, 7(0) = p and (1) = gq. Let ty be the smallest ¢ so
that y(t) € Q2\Q. Then v([0,t9 >) C Q2N We replace g by v(¢o). Then we
can arrange that v(0) =p € Q, 7([0,1 >) C Q2N Q and y(1) =g € Q2 \ Q.

Pick € > 0 so that B(q,e) C Q. Pick 0 < ¢; < 1 so that y(¢t1) € B(q,€/4).
Then there exists a 0 < p < €/4 so that B(v(t1), p) C Q2N and there exists
a q € OB(y(t1),p) \ Q. We let Q) = B(v(t1),p), Q5 = B(y(t1),€/2) C Qa.
Then
(@) 0#Q, CcQNQ.
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(b’) Q0 is connected and Q2 \  # 0.

We show also

(¢’) For every u’ € A(RQ), there is a function u) € A() such that v’ = u
in Q.

To show (¢’), let v’ € A(Q2). Then by (c) there is a function uy € A(2)
so that u/ = uy in Q4. Let

V ={z€ Q3N Q such that v’ = uy in a neighborhood of z.}

Then ©; C V. Also v([0,1 >) C Q2 N . Hence by the identity theorem
we must have that y([0,1 >) C V. So in particular, there is a small ball
centered at 7(t1) on which v/ = wuy. Since ] is a ball centered at ~(t1)
and Q) C Q2N Q, it follows that v = wug in Q). Finally, we let u), be the
restriction of ug to Q5. Since ) C Qf, it still follows that «' = uf in Q.
This proves (¢’). The proof so far proves actually a small useful result in
order to characterize domains of holomorphy. We write this as a lemma:

Lemma 4.2.8.. A domain 2 C C" is a domain of holomorphy if and only
if there do not exist two concentric open balls B; C Bj such the following
three properties hold:

(a”) 0 #£ B; C QN Bo.

(b”) B2\ Q # 0.

(¢”) For every u € A(2) there exists a holomorphic function us on By such
that u = ug on Bj.

We continue with the proof of the Theorem. We summarize: Starting
with the hypothesis that the pseudoconvex domain ) is not a domain of
holomorphy, we have found two concentric balls satisfying the properties
(a”),(b”) and (c¢”). There is no loss of generality to assume that Bj is the
unit ball centered at the origin in C™ and that B is the larger concentric
ball B(0,r) for some r > 1. Also we can assume that the point (1,0,0,...,0)
is in the boundary of Q. Next we let ', Bf, B} be the corresponding open
sets of 2/ € C"~! for which (z/,0) is in the domains. Note that the sets
B, B satisfy condition (a”), (b”) in the characterization of domains of
holomorphy for the domain €'. We will show that (¢”) is also satisfied. Let
v(2") € A(). Since € is pseudoconvex, we can apply the extension lemma
to find a holomorphic function V' € A(f2) such that v(z") = V(2/,0) for all
2" € ). Hence there exists a holomorphic function V5 on By so that Vo =V
on Bj. Let vg be the holomorphic function on B} given by ve(2") = Va(Z/,0).
Then if 2’ € B}, we have that (2/,0) € B;. Hence v2(2") = v(%’). This proves
(¢”) for the domains B, B, . By the inductive hypothesis, the domain €’
is not a domain of holomorphy and therefore also cannot be pseudoconvex.
However, it follows from Theorem 2.6.7 that ' is pseudoconvex because €2
is pseudoconvex. We have reached a contradiction.

O
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14. HORMANDER, ACTA PAPER

We will now start with the preparations for proving the Ohsawa-Takegoshi
extension theorem. This is a more precise version of the extension theorem,
Theorem 4.2.8, which was the key ingredient in the solution of the Levi
problem. The proof is based on a version of Hormander’s theorem which
was already in his paper: L? estimates and existence theorems for the 9
operator, Acta Math, 113, 89-152 (1965). This paper is also the basis for
his book.

We first investigate Hermitian matrices. Let A = {aij}ﬁjzl be an n by n
matrix of complex numbers where a;; denotes the term on row i and column
j. We say that A is Hermitian if a;; = @j;. This is equivalent to the statement

that A= A" where T is the transpose.

Lemma 14.1. An n by n matriz A is Hermitian if and only if there is an
orthonormal basis b; of eigenvectors and the corresponding eigenvalues \;
are all real numbers. In this case, A is selfadjoint in the sense that for any

pair of vectors x,y we have that < x, Ay >=< Ax,y > . We then write
A=A" and < x, Ay >=< A*x,y > .

Proof. We think of z as column vectors or n by 1 matrices. So < z,y >=
DTy = 7' x as matrix product. If A is Hermitian, then
<Az,y> = 7 Az
= @TZTQJ
- Ay
= <z Ay >

Suppose that A is Hermitian and b;, b; are eigenvectors with eigenvalues
iy Aj. Then

Ai <bj,bj > = < Ab;,bj >
= < b, Abj >
= < by Abj >
= A\ <b;,bj >

If we apply this first to the case ¢ = j we see that all A\; are real
numbers. Next if we apply this to the case when b; and b; belong to
different eigenspaces, so A\; # Aj, we see that b; and b; are perpendicu-
lar vectors. Hence the eigenspaces, E; are perpendicular. Suppose next
that b is perpendicular to all the eigenspaces. Then for any eigenvector,
< Ab,b; >=< b, Ab; >= )\; < b,b; >= 0. Hence A maps the orthogonal
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complement B to all the eigenspaces to itself. But then A = 0 since oth-
erwise B would contain a nonzero eigenvector. If we finally replace the b;s
in the same eigenspace with an orthonormal basis for that eigenspace, we
obtain an orthonormal basis of eigenvectors.

Suppose next that C™ has an orthonormal basis b; of eigenvectors of A
with real eigenvalues ;. We then get:

< bi,Abj > = < bi,)\jbj >
= )\j < bi,bj >

and

<bi,Ab;> = ZTbiji
= (AT,
— b, Ab,
= XN <b,b; >

It follows that
< bi,Abj >=< bi,ZTbj >
for all b;,b;. It follows that Ab; = ZTbj for all b; but then we must have
—T
that A= A".

The last part follows from the observation that < x, Ay >=< ZTw,y >
for any n by n matrix. In other words A* = A" is valid for all n by n
matrices.

O

Next suppose that A is Hermitian and A is positive semidefinite, in the
sense that all A; > 0. Then we define the matrix VA to be the matrix B
with the same eigenspaces as A and with corresponding eigenvalues \/E
Obviously, BB = A.

The previous lemma then immediately gives:

Corollary 14.2. If A is a positive semidefinite Hermitian matrix, then the
matriz /A is also a positive semidefinite Hermitian matriz.

Lemma 14.3. Let Q be an open set in RY and let A(z) be a continuously
varying positive semidefinite Hermitian n by n matriz. Then the map r —
VA(z) is also continuous.

Proof. Suppose that z, — x and A(z,) has an orthonormal basis {07 }7_;

with eigenvalues A7. By taking a subsequence we can assume that b7 — b;
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and A7 — A;. Then b; must be an orthonormal basis of eigenvectors for A
with eigenvalues A;. But then also /AT — /A; so VA(x) is continuous.
O

Let H denote the Hilbert space L%o 1)(9, «) for a continuous real function

~v(x) on an open set 2 C C". Let A(x) be a continuously varying family
of positive semidefinite Hermitian matrices. We identify a (0,1) form f =
>_; fjdz; with the column vector f = (f1, f2,. .., )T

Let f € H. Then Af(x) is in L%O,l),loc' If Af € H, then we say that
f € Da.

Lemma 14.4. The operator f — Af is densely defined and has closed graph
I'={(f,Af); f € Da}.

Proof. All f € H with continuous coefficients with compact support are in
D 4. Hence, A is densely defined. Suppose that (f,¢g) is in the closure of the
graph. Then there exist (fy,g,) € I so that f,, — f and g, — g. Then, on
any compact subset, f, — f and Af, = g, — ¢ in L?. Hence Af = g on
any compact subset. Hence Af = g on €. Therefore Af € H, so f € Dy
and (f, Af) e T. O

We recall the situation in Theorem 4.2.1,.: We write down the conclusion
in the case of (0,1) forms f =}, f;dz;.

—~ .5 0% 5 - .
JOX 5T — 2 BuPlrPre® < 21T £1R + 513
e 02z,
valid for all f € D(q 1).
We let Ay () = A(x) be the matrix valued function on € given by

A(w) = {22} = 2"[Fy 1.

e make the assumption that A(x) = {a;i; 1s positive semidefinite.
*)  We make th ption that A jk} is positi idefini

Zajkfj?k = ijzajk?k
ik J k
= > fi(Af);
J

= < f,Af>

- =T =T . " . .
Now, A=A = A so Ais also Hermitian. In fact if b; are the eigenvec-
tors of A, then b; are eigenvectors of A and the eigenvalues are the same.
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Hence A is positive semidefinite. We can write A = B?, where B = VA

and B is positive semidefinite. Set C' = Be~%/2. Then C(z) is still positive
semidefinite. We then get that

Zaj,kfj?k€_¢ = <fAf>e?

Jk
= <f B*f>e?
= < Bf Bf>e 27V
= |Cffe?

Hence we have for the operator C' that

[1cspee <21 i + 1513
valid for all f € D(g 1).
We next prove:

Lemma 14.5. Suppose that f € Dy« N Dg. Then f € D¢ for the L? space
with weight ¢o and

ICFI5, < 20T FI5, + ISFIZ,-

Proof. Let f € Dy« N Dg. Then there exist {f,} C Dg,1)(£2) such that f,
converges to f,T* f, Sy in the graph norm. Hence { f,,} is a Cauchy sequence
and by the estimate, we see that also {C'f,} is a Cauchy sequence. Hence
Cfn — g for some g in Li,z. On compact subsets of ) we must have that

g=Cf. Hence Cf € LiQ so f € Do and we have the estimate
ICFIZ, < 20T fI13, + IS5,

Next we come to Theorem 1.1.4 in Hormanders 1965 Acta paper.

Theorem 14.6. Assume the conditions on ¢, in Theorem 4.2.1y. Also
assume that Ay is positive semidefinite. Suppose that g € Rc, g = Ch.
Assume also that g € Ng. Then there exists a uw € Dr so that Tu = g and

lully < V2| A2

Proof. Let g € Ng be as in the theorem. Define the functional o by
o(T*f) =< f,g >2 for any f € Dp«. We want to show that

(e%) | < fog >2 | < V2|IR||T fl1.

In this case o extends by Hahn-Banach to a linear functional 7 defined on
L%()’O)(Q,qbl) such that 7(T*f) = o(T*(f)) for all f € Dy« and ||7(2)| <

|V2/||h||2]| 2|l for all z. Since 7(T*f) =< f,g >2 for all f € Dp«, it follows
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that 7 in Dp«« and T**(7) = g. By reflexivity, there is then a u such that
Tu = g. Moreover, |lull1 = 7|1 < V2||hl|2.

To prove (**), observe first that if f | Ngthen f L Rpso f € Ny« C Dp-
and T*f = 0. But then < f,g >2= 0 so (**) holds. It suffices therefore to
consider f € Dy« N Ng C Dy« N Dg. By Lemma 13.5, we then also have that
f € Dc. By Lemma 13.5 we see that

ICFI5 < 2T I

since S f = 0. Hence

‘<gaf>2| = |<Ch7f>2‘
= | <hCf >

[All2[|C fll2

V| hla]|T* £114

Suppose that H is a positive definite Hermitian n by n matrix, i.e. all
eigenvalues are strictly positive. Let f = (f1,..., fn) be a vector. We define
If1% = >k a* f; f1. where {a*} is the inverse matrix of H.

Theorem 14.7. Assume the conditions on ¢,v in Theorem 4.2.1, and

Ay is positive definite. Assume that g € L%O 1)(Q,q§2),59 = 0 and that
J ew\g\?% zpe*@ < 0o. Then there ezists a w € Dr so that Ou = g and

Jull, <2 [ elgla, e

Proof. Let B = /Ay, C = Be~%/2. We show that g € Rc, g = Ch for
|h]|go < 00. In fact, let h = e¥2B~1g = e¥/2(e¥/2C)~1g = C~1g. Then
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|2 = /e¢ <Blg,Blg>e
= /e‘/’ < g,B*Zg > e %2
= /e¢ < g,Z_lg > e 92
= [ <TG e
- (oYt
ik

— [l e

< ©o0.

Since g = Ch, we see that h € D¢ and ¢ = Ch € Rg. Therefore, by
Theorem 13.6, there exists u € Dy so that Tu = g and HuHil < 2||h|j3 =

2 [ e¥lglhe2,

O

We next eliminate the function 1 and replace 2’ = 1 + ¢ by it’s limiting
value 1 as ¢ — 0. We note that this will be possible even though 2" — co.

Theorem 14.8. Let € be a pseudoconvexr domain in C". Suppose that ¢ €
C%(Q) is strictly plurisubharmonic with Hessian matriz A. Then if f =
2?21 fidzj is O closed and [, |f]4e™? < oo then there exists a function u,

s0 that Ou = f and
Jupee < [1rBe.

15. HORMANDER ACTA CONT., CHEN’S PROOF OF OHSAWA-TAKEGOSHI

Fix a smooth strictly plurisubharmonic function p so that {p < ¢} is
compact in  for real number c. Set K; = {p < j},j > 2. We prove first:

Lemma 15.1. There exists for each j > 2 a solution u; for the equation
Ou = f in Q such that

1 1
1-2) / et < (14 /Q e,

Proof. Choose the sequence 7, so that all n, = 1 on Kj;1. The function
1) satisfies the inequalities >, _, |gg: |2 < e¥. We will choose such a v so

that ¢» > 0in Q and 1 = 0 on Kj1. Let X be a smooth convex increasing
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function ¥(t) which vanishes when ¢ < j.We will make ¥ sufficiently convex
for the following to hold:

Let A be a smooth real function with A =1 on K;41 and A = 0 outside
Kji2. Choose § > 0 small enough so that d]|z[|* < % on K. Then if € is

small enough and ¢ = A - (¢ % xc) + 8| z[|> + X o p then

(1) > ¢+2¢ > ¢,
(2) Az, > Aso-

(3) € C®().
This implies that \fﬁqw < |f|3570 =\f1%4

We apply Theorem 13.7 using the functions dand iy and 2/ = 1+ % Note
that

[ty e < [ elppe oy
Q ’ Q

< / eV fRe(3-20)
Q

< AUV5¢

Hence we can and find u; € L?(9, gz~51) so that 5uj = f in Q and

g 1 _
/ g [2e=1 < (14 1) / e,
Q J Q

On K; we have that ¢; = ¢ — ) = ¢ = ¢ * X, + 9||z||>. Hence for small
enough € we have that |¢p1 — ¢| < % on K. Therefore

/\uj\Qe‘Z;l > / |uj]26(¢"2’1)*¢
Q K;

J

e—l/j/ g 26
K.

J

=2 [ e

J J

v

Y

Next we prove the Theorem.

Proof. Since guj = f = Ouy, on Q) for all j, k, it follows that all the functions
u; — uy, are holomorphic on €. Also they are uniformly bounded in L? norm
on compact subsets and therefore in L' norm as well. Hence by Corollary
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1.2.6 ther7e is a subsequence converging uniformly on compact sets to some
w. Then Ou = f and

/ uf?e® < / g4,
(9] Q

Our next topic is the Ohsawa-Takegoshi theorem. We follow the proof by
Bo-Yong Chen.
arXiv: 1105.2430v1 [math.CV] 12 May 2011.

We start with some preliminary formulas valid in C.

Let 0 < r < e /2. Also suppose the 0 < s < 1 is small enough that
r? + 52 < e71. Define ps(z) := log(|z|> + s?) for z € C,|z| < r. Then
2logs < ps < —1,801 < —ps < 2log%. Set ns 1= —ps + log(—ps).

Lemma 15.2. 1 < —p; < 15 < —2p;.

Proof. This follows from the inequality 0 < logz <  — 1 < z, valid for
x> 1. ]
Hence 1 < ng < 410g%.

Let ¢s := —logns. Then — log(4 log%) < s < 0. We have the following
formulas: We skip the index s.



Lemma 15.3.
1) pz =
(2) pz =
(3) N =
(4) Nz =
(5) 1/}22 =
(7) sz 2
(8) lp:f* =
9) Yz >
Proof. (1) clear
(2) clear
(3) clear
(4) clear
(5) clear
(6): We use (5)
1/]22 =
>
apply (3)

SCV

z

|22 + 52
82
(|2]2 + s2)2
—(1+(=p) "p:
_ |p=|?
—(1+ (=p) Npsz — ;2
Tz |77Z|2
n n
N
A+ a5+ o+
1 1 )
<772 T 1)2> e
s
n(|z* + s2)?
(1+(=p)™ 1%
|
n
|pz|2

2L f 122 < 82
n

| 2

N 2 i U
A+ (o + o+

np n
‘92‘2 ‘77z‘2
np? 7>

In.|? .|

L+ (=p)=1)2np® o

67
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(7): We use (5):

_1\ Pzz ‘pz‘2 \Uz\Z
oz = 1+ (—p) )=+ o 4+ 5
” A+ ) noonpr P
> (1+(-p)HE
n
. =
n
we use (2)
a n(lz|* + s%)?
(8):
V2 = (—logn):
_ _N=
n
we use (3)
_ =4+ (=p) e
n
’¢ |2 _ (1 + (_p)fl)lezIZ
z - ?’]2
(9): We use (7):
$%1.z > ER7
. 12|252
- n(lz[* + s%)?
we use (1)
_ 82’p2’2
n

0

We pick a smooth decreasing function x(¢),t € R such that x(t) = 1 if
t<iandx(t)=0ift>1.
Let C := 2f1/2<|w|2<1 I (w2 (Jw]? + 1)2dA\(w).
2

P P 2 82 2
Lemma 15.4. 2f32/2<|z|2<52 |X’(|S—|2)|2 : %dk(z) =C.

Proof. We use the substitution z = sw. The result follows from the definition
of C. U
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Lemma 15.5. )

=

Y

R

Proof. We use Lemma 14.3:
n? (=p)*
(=p+1)? (=p+1)?
1+ n z —2p
42z 1+ (—pt1)2

Let x = —p, then = > 1.

2

L 2
@2 T
2 )
2
22 + 422 + 22
1
6
O
Let €2 be a bounded pseudoconvex domain in C". Suppose that
sup |z, | < e/,
z€Q)
Suppose there is a smooth function o on C" such that Q = {z = (z1,...,2,) =

(7', 2n);0(2) < 0}. Let ' = {2/;(2,0) € Q}. Assume that d.(c) # 0 when
o(2',0) = 0. Let f(z’) be a holomorphic function in an open set V > €. For
all € > 0 small enough, the function G(2', z,) = x(|2n|?/€2) f(2') is smooth on
the subset of 2 where x > 0. We extend G smoothly to €2 by setting G equal
to zero when |z,| > €. In fact G extends smoothly to a neighborhood of €.
Let v := 0G. Also let ¢ be a smooth strongly plurisubharmonic function in
an open set containing Q. Let 0 < 6 < €. Set ¢ := ¢+log(|z,|*+6%) = d+ps.
By Lemma 14.4(2), ps is subharmonic. Let A denote the Hermitian matrix

{ang;k} Then [, lv|3e=? < oo. By Theorem 14.1 there exists a function
J

u € L*(Q, ¢') so that Ju = v. Let Ny denote the nullspace of 9 in L?(£2, ¢').
We can subtract functions in N7 and still have solutions to the equation.
Choosing the solution w which is perpendicular to Ny will minimize the
norm of the solution.

Lemma 14.4 (5) shows that ¥ = 1), is subharmonic. Moreover v is smooth
and bounded. We have that [ whe™? = 0 for all holomorphic functions h
in L2(, ¢).

Hence [(ue?)he™(#"+%) = 0 for all holomorphic functions h in L?(Q, ¢').
Since v is bounded, it follows that this is same set of holomorphic functions
as those in L?(Q, ¢’ + ). Hence ue¥ € L*(Q, ¢’ + 1) and is perpendicular
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to the nullspace of 0 in éz(Q,gb’ + ). Since 1 is smooth, it follows also
that d(ue?) = ve¥ + ue¥on is in L%(Q, ¢' + ). This shows that ue? is in
the domain of T using the weight e~ (®'+%). By smoothness of ¢’ and strong

plurisubharmonicity we also know that | |5(ue7/’)|124(¢/+w 0>e—(¢'+7/}) < 0.

It follows from Theorem 14.1 that

/]uew|2e_¢/_w < /|l/ew+uew8¢|j24< e Y,

@' +1,0)

16. CHEN’S PROOF OF OHSAWA-TAKEGOSHI, CONT.

Hence

2,~'+Y 7,712 —¢'+1p
/|u! e < /|V+an,4<¢,+w70)€ .
Using the small constant, large constant lemma, we get for any r > 0 :

/Q ‘u|26_¢/+¢ : /suPp(zl) i ug¢|i(¢’+w,0)e_¢l+w
(1+47r) /Supp(l/) |U51,Z)|124(¢,+w‘0>6_¢/+¢
! /Q\Supp(V) !u51/1|?4(¢,+w70>6_¢/+¢
(1+ 7{)/9 |V"2“<¢'+w,0)€_¢,+w

+ /Q|uaw|a‘<¢'+w,0>e_¢/+w

WA —¢' 41
+ r/ (U0 [a 4100
supp(v)

IN

IN

We estimate the three integrals. The form v is a multiple of dz,. Also
the function f only depends on z’. By Lemma 14.3 (7), if ¢ = (0, «), then

gl < lgf22L2bEE0 Hence
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IN

2 2\2
/uie‘q”w /|y|2ne(’2n|2—"_6)e_(¢+10g(|zn2+52))—logn€
Q €

2lml? (nl* +€%)? 1 2

< JUt P i)

< 9 / |X/’2(|Zn|2+62)2 |2 /m2 -
- %S‘ZnPSfQ 66 ‘Z ’2+(52

The reason for the factor 2 is to take into account the error term in
&, zn) = #(Z',0) + O(z,) and also that we need values of f in a small
neighborhood of Q. So this is valid when € is small enough. Hence, using
Lemma 14.4 we get

(e [ W00 <200 [ [P

We next estimate the second integral.
|2 —¢'+y 219412 —¢'+¢
PG AL

We have that Ay p0 > Ayo. Here Ay has only one nonzero entry,
at place (n,n) where the entry is 1, z, . By Lemma 14.3 (6), we have

app > (%—i—#) In.|2. Moreover by 14.3 (8), we have [1,|? =
2
%V)ZP By 14.3 (3) we have that ;212 =(1+(—p)~H2
Hence
_ Y 14+ (— —1)2 1 Y
[rdvpeere < [l ¥+

1 1 2
(5 + et o

1 ,
o L aEEg e

Finally, we do the third integral, over Supp(v).
We use 14.3 (8): |0y]? < %\5p|2

and 14.3 (9): 99y > E%P, when |z,|? < €2.

— o 4 — n Y
o N e T e
supp(v) |0p|

_ / ‘u‘24 —¢'+y
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We combine the above calculations:

/ fu?
Q

Hence we get

/ fu?
Q

/ fuf2e —¢'+¢<
Hence

/ ’u|26—¢>’+¢
Q

From Lemma 14.5

/ 1 !
e~ Y < (1+7“)/ ,V&eww
Q

[ it
Q
+ r/ udy |4 e+
supp(v)
< 2(1+r_1)C/ | f|2e?
Q/

+ /,upleqﬁ’w
Q 1"‘%
(I+(=p)"1)

4 ,
+ r/\u]Qe_(b'“/’
Q n

/ 1 /
e~V _ / |“|2—?7€_¢ +ib

/ |u|24 —¢'+9

< 2(1+r1)c/ | f|2e?
Q/

! —4""> < 2(1—1—7'_1)0/ F2e=?
Q/

Lt ey 0

_n_
B i LA 47‘) <21+ HC [ |fPe?
Q/

Y meyye 7

we get

, P —|
/’u26—¢+1/1 6 r §2(1+7“_1)C/ ‘f‘2€_¢
Q n 04

Choose 0 < ry < 24 to minimize

and set O/ = 5

1

1
6

1+%
5—47”0
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Then

1 /
/ “luffem? TV <20'C [ |f]?e?
Qn 9%

Since ¢ = —logn, we get

1 /
/2]u|2e¢> §2C/C/ |f|2e?.
Qn Q

Recall that 7 = —p + log(—p) < —2p = —2log(|z|? + €2), so

1 2 —¢/ / 2 —¢
< .
/Q (10g(\zn|2 _‘_62))2|U‘ (& S 8C'C o |f| e

Using that ¢’ = ¢ + log(|z,|? + §2), we obtain

1
/n (2n]? + 6%) (log(|2a|* + €%))

Hence we have found functions u = wus, solving the problem 5u(5,6 =
v = v, om {} satisfying the above estimate. In particular, the family wus,
are uniformly in LlQOc and hence also in LlloC for € fixed. Applying Corollary

H.2.2.5 for fixed € to the family us . — fx(|zn|?/€?) we can find a subsequence
Us; e —> Ue such that du. = v, and

1 2 —¢ ! / 2 —
uc|“e”? < 8C'C e ?.
/Q|zn\2<1og<rznr2+62>>2' Fe<80C | Il

Notice that this forces ue(2’,0) = 0 since the function fzec-\z|<a #d)\ =

2‘U|2€7¢ < 8C”C/ |f]2e?.
Q/

oo for all a > 0.

Hence, the function fx(|z,|?/€?) — uc is a holomorphic function on §2
which extends f. Since the functions are uniformly in L120 . there is a limit
holomorphic function F for a subsequence €; ™\, 0 which is in LZQOC in © and
which extends f. If we fix any compact subset K C 2 which does not inter-
sect the hyperplane z, = 0, we have for small enough € that fx(|z,|?/e?) = 0

on K. Hence we must have that

1
F2e—¢<80’c/ 209,
/K\zmoguzn\?)?' Fe <80C | Il

But then also

1
F2e-¢<8c’o/ 2070,
/Q|zn\2<log<|zn|2>2’ Fer<8co | Il

In conclusion, we have shown:
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Lemma 16.1. Let © be a bounded pseudoconver domain in C". Suppose
that sup,cq |2n| < e7Y/2. Suppose there is a smooth function o on C™ such
that Q@ = {z = (21,...,2n) = (¢, 2n);0(2) < 0}. Let @ = {Z/;(/,0) €
Q}. Assume that d, (o) # 0 when o(z',0) = 0. Also let ¢ be a smooth
strongly plurisubharmonic function in an open set containing Q. Let f(2')

be a holomorphic function in an open set V D Q. Then there ezists a
holomorphic function F : Q — C such F(2',0) = f(2') for all 2/ € Q. Also

2
/ P -6 < 80’0/ If|2e~.
Q Q

|2n|*(log |20 |*)?

We now prove the Ohsawa-Takegoshi Theorem. This version of the Ohsawa-
Takegoshi Theorem was first proved by Demailly in ICTP lecture notes, vol
6, 1-148, Trieste, 2000).

Theorem 16.2. Let Q be a pseudoconvex domain in C". Suppose that
SUP,eq |2n] < e7V2. Let Q' = {2/;(2,0) € Q}. Also let ¢ be a plurisub-
harmonic function on Q. Let f(2') be a holomorphic function on Q. Then
there exists a holomorphic function F : Q — C such F(2',0) = f(2') for all
2 e Q. Also

|F(2)” —¢ ' / 2 —¢
< 8C"'C .
/Q EaPlog [zaP2¢ | <8CC | 1P

Proof. Let f(Z') be a holomorphic function on €'. We proved in Theorem
4.2.8, that there exists an extension F' which is holomorphic on 2. We only
need to show that in case the integral on the right is finite, we can find
F satisfying the inequality. By Theorem H.2.6.11, there exists a smooth
plurisubharmonic function 1 on €2 so that all sublevel sets ) < ¢ are com-
pact. By Sards Lemma, the gradient of ¢/ is nonzero on almost all level
sets. The same applies to the restriction ¢ (2’,0) to €. Hence, if we let
O ={¢Y <}, ={(¢,0) € Q} then there is a function o as in Lemma
15.1. We can do this construction for arbitrarily large c. Let ¢ be a sequence
of smooth strongly plurisubharmonic functions defined on neighborhoods of
Q1 such that ¢y, \, ¢ pointwise.

For each k there exists by Lemma 15.1 a holomorphic extension of f to
Fy. on €4 such that

2
Q Q/

 12n[?(log |2n[?)?
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Next note that e~ % 7 e~?. Hence we get for m > k that

[P < [ e
m =
N of |2n |2 (log (| 2n|?)?
/ |Fm|2 ef(bm
o ‘Zn’2(10g(|zn‘2)2
< 8C'C [ |f|Pe 0
Q/
<

8C'C / |f[2e—¢
Q/

Hence we see that the family {F},} is locally uniformly bounded in L2,
hence there is a subsequence which converges uniformly to a holomorphic
function F, on €21. This function is an extension of f. Moreover,

‘FC,Z — ok !/ 2 —
e < 8C'C e~
/Ql EaPlog(mPRe  <80C J M

for every k. Hence

/ Ll e? < SC’C/ |fI2e 2.
o) |Zn|2(10g(yzn|2)2 B Q

Next we can take a limit F’ of a subsequence F,, c; — oco. Then F extends

f and
/ Lk e ? < SC’C/ | f|?e?.
q |zn|*(log(|2n|?)? B 0%

17. APPENDIX 1,  ON POLYDISCS

2.3 The inhomogeneous Cauchy-Riemann equations in a polydisc.

We let [ = ZII\=p,IJ\:q fr.ydz! Adz’ be a (p,q) form. Note that if p > n
or ¢ > n the form must be zero because some dz; or dz; must be repeated
and when we switch them the form changes sign. We will use the notation
f= Z/I g f1, gdz" A dz7 if all the multiindeces are in increasing order, so
if I = (i1,...,1p) then 4; < dg--- < 4, and similar for J. In this case the
coeflicients are unique.

We say that Z'[J dz! A dz’ is a C* form if all coefficients are in C>().

Theorem 2.3.3 Let D be a polydisc and let f € C&j’qH)(D). Assume
that 9f = 0. Suppose D’ CC D is a concentric smaller polydisc. Then there

exists u € C77 (D') such that Ju = f.
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Lemma 2.3.3a Let D’ cC D” CC D be concentric polydiscs with
polyradii »/,7”,r in C". Let 1 < k < n. Suppose that g € C*>(D) and
suppose that % =0 for all j > k. Then there exists a C*° function G on D

such that 3762 =gon D" and 37% =0on D for all j > k.
Proof. Let ¢(z) € C§°(A(0, 7)) which is 1 on AY(0,7}). We define

1 _ o
G(Z) _ M/¢(7)9(21, y Rk—1,T, Rk+1, 7Z7L)d7_/\d?
T

T — Zk

Seto =z, — 71

1 — . _ — o
= / w(zk U)g(zla s Zk—15 %k O, Zk+1, 7Zn)do_ AdF
211 —0

From the last expression we see that G € C>°(D). Moreover we see that
9¢ — () on D for all j > k. Finally,

5%
PYe 1 9(1/)(Zk—0)9(zlwuzg;k:l7Zk—07zk+17~-~7zn)) P
B o Ndo
0z, 271 —o
1 O(1)g(215: 052k 15Ts 2kt 15:0052n))
= — v dr A d7
2 T — 2%
= using Theorem 1.2.1
¥(2k)9(2).
Since v = 1 on D', we are done. O
Let ¢ <k <n.

Lemma 2.3.3;, Let D be a polydisc and let f € CE);QH)(D). Assume that

df = 0. Assume furthermore that f contains no term with dzj,1,...,dz,.
Suppose D' CcC D is a concentric smaller polydisc. Then there exists
u € C® (D') such that du = f.

(p,9)
Notice that if £ = ¢, then all terms in f must be zero because only
dz1,...,dz, can appear and you need p + 1 differentials. Hence Lemma

2.3.34 is true. We next show that if ¢ < k — 1 < n, then Lemma 2.3.3;_;
implies Lemma 2.3.3y.

Let the assumptions be as in Lemma 2.3.3;. We can then write
f=dzing+h

where g is a (p, ) form with no terms with dzyy1,...,dz, and hisa (p,q+1)
form without any of the dzgy1,...,dzy.



SCV 7

We can write g = Z’I ;91.7d2" A dz7 where I,.J do not contain any of
the indices k, - - - ,n. The only terms in 0f containing both I, .J, dZy, dz; for

some j > k, come from aagé’_" . Hence, since 0f = 0, it follows that ag;‘_, =0
J J
for all j > k. Hence by Lemma 2.3.3a there exist G ; € C*°(D) such that

%5LL = g on D" and dgg =0onDforall j > k. Let G =Y Gy ydz' Adz” .

Then G = dZ; A g+ hy on some D", D' cC D" cC D, where h; does not
contain any of the differentials dzy, ..., dz,. The form f — 0G = h — h; is
O— closed and contains none of dzg,...,d%,. Hence, by the inductive hy-
pothesis, there is a C*> form v on D such that 0v = f —9 = G. Hence v + G
solves the problem d(v + G) = f.

Finally, to prove Theorem 2.3.3, we observe that this is equivalent to
Lemma 2.3.3,,.

Corollary 2.3.3b Let D be a polydisc and let f € Cg’;qﬂ)(D). Assume

that df = 0. Then there exists u € CE’;q)(D) such that Ou = f.

Proof. Let D,, denote an increasing sequence of concentric polydiscs such
that D; CC Djy1 and D = UDj. Let us first consider the case ¢ = 0.
We will make an inductive construction. Suppose we have a form v; =

S I,00r0d2" € C(O;’q)(D) such that dvj; = f on D;. Use Theorem 2.3.3 to

find a v, =31, 0g7,0,j+1d2" € C(O;iq)(D) such that 51);“ = fon Dj;q.
Then all the coefficients of the (p,0) form v; 41 — v; are holomorphic func-
tions on D;. Hence they have a normally convergent power series in D; Now
we can approximate each vy j — 1)’[707 i1 closer than 2% by holomorphic poly-
nomials Py ; on D;_1. We now define a new solution to Ou = f on Dji4
by setting vj41 = ZI(U/I,O,j+1) + Prp,;)dz", This sequence of solutions will
converge normally to a solution on D.

Next, let us consider the case ¢ > 0. Again we make an inductive construc-
tion. So assume we have a solution v; defined on D and such that dv; = f
on Dj. Next, let vi,; be smooth (p,q) form on D such that dv} ; = f
on Dji1. Then the form U3-+1 — v; is a smooth (p,q) form on D such that
8(v}+1 —v;) =0on D;. Since q> 0, theorem 2.3.3 applies to find a smooth
(p,q — 1) form w; on D so that dw; = v}, ; —v; on Dj_1. Define v;1 on D
by vj11 = v}, — Ow;. Then still dv;q = gv;-Jrl = fon Djyq and vj41 = v;
on D;_;. Hence we get a solution on D by letting v = lim v;.

(]
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18. APPENDIX 2, SOLUTION OF T*f =wv

This is the analogue of Lemma 4.1.1 in Hormander for T* instead of 7.
It was not needed in our presentation.

Lemma 4.1.2 Let GG1, G5 be reflexive Banach spaces and let T : G — G2
be a densely defined closed linear operator. Let F' C G5 be a closed subspace
containing the range of T, Rr. Assume that there exists a constant C' > 0
such that

) Nyrlla, < ClT ylle, Vy € Dr-.
Then for every v € G which is in N% there is an f € Dp« such that
T*(f) = v and
1fllay, < Cllvllgy

We prove first two lemmas.

Lemma 4.1.2, Let G1, G5 be two reflexive Banach spaces, T : G1 — G2
a closed, densely defined linear operator. Then

Nr = {x € G1 such that T*(y)(xz) = 0 Vy € Dp«}.
Also Ry« = N%.

Proof. Suppose that x € Ny and y € Dp«. Then (T%y)(x) = y(T'z) =
y(0) = 0. Hence Ny C {z € G; such that T*(y)(z) = 0 Vy € Dp«}. Also
Ry« = N%. Suppose that x € G, T*y(x) = 0 Yy € Dp«. Then for the
isometric ¢ = ¢(x) € G we have ¢(z)(y)(T*y) = 0 for all y € Dp-. Hence
(¢,0) € G#.. This implies that (¢,0) € G+ so (z,0) € Gr. Therefore
Tx =0 so x € Nr. This proves the first part of the lemma.

Suppose next that x € Ny and z € Rp+, z = T*(y). Then z(z) = y(Tx) =
y(0) = 0. Hence z € Ni. Hence Ry« C Ni. Since N7 is closed, we see that
Rp+ C Ni. Suppose finally that there exists some z € NJ“P which is not
in Rp«. Then, by the Hahn-Banach theorem there exists a ¢ € GY so that
¢(T*(y)) = 0 for all y € D+ but ¢(2) # 0. Hence (¢,0) € G#.. Hence
there exists € G; so that (z,0) € Gp. Hence Tx = 0 so x € Np and
z(z) = ¢(2) # 0. This is a contradiction since z € N3 . O

Lemma 4.1.2; Assume the hypothesis of Lemma 4.1.2. Then T* has
closed range.

Proof. Pick a y € Dp+. Then |y(x)| < C||T*(y)||||z|| V = € F. By the Hahn-
Banach theorem we can extend yp to g on G2 with the same norm. Hence
19lle;, < CIT*(y)lly- Also, § —y vanishes on F. Therefore §j —y € D+ and
T*(g —y) = 0. Since y € Dy~ it follows that § € Dp« and T*(g) = T*(y).
Next, let {y,} be a sequence in D7« such that {T™(y,) converges to some
z € GY. We can assume that ||[T*(yn41 — ¥n)|| < 5. Set vy = y1 and
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Uptl = Yntl — Yn for n > 1. So y, = ug + - -+ 4+ uy, for n > 2. Replace u,
by #, as above, and define ¢, = @1 + --- + Uy,. Then it follows that the
sequence T*(y,) — z and hence also g, is a Cauchy sequence converging
to some y € GY. Since the graph of T* is closed, we see that y € Dy« and
z = T*(y). Hence the range of T™ is closed. O

Next we prove Lemma 4.1.2.:

Proof. Suppose that v € G} and that v € N%. Then by Lemma 1, v € Ry~
and by Lemma 2, we have that v = T*(f) for some f € Dp«. By our
hypothesis, it follows that ||fir{g,< C|lv[lc;. Again we use Hahn-Banach

and replace f by f on (i3 with the same norm on Gy as the norm of f
restricted to F. Again as above, f € Dp« and T*(f) = T*(f) = v. Also,
1flley, < Cllvllar - O

19. APPENDIX 3, OHSAWA-TAKEGOSHI IN LP

Ohsawa-Takegoshi in LP spaces.

We present an elegant proof for the validity of Ohsawa-Takegoshi for LP
spaces, 0 < p < 2. This proof is due to Berndtsson-Paun: Bergman kernels
and subadjunction. arXiv: 1002.4145v1 [math.AG] 22Feb 2010

Theorem 19.1. Let Q) be a pseudoconver domain in C™. Suppose that
SUP,eq |2n| < e7V2 Let Q' = {2/;(/,0) € Q}. Also let ¢ be a plurisub-
harmonic function on Q. Let f(2') be a holomorphic function on Q. Then
there exists a holomorphic function F : Q — C such F(Z',0) = f(2') for all

2 e ). Also F( )’2
F(z
—¢ 2 —¢
e ? < C / e ?.
| roalee * S0 [,V

Theorem 19.2. Let ) be a pseudoconver domain in C". Suppose that
SUP,eq |2n] < e7V2 Let Q' = {2;(,0) € Q). Also let ¢ be a plurisub-
harmonic function on Q. Let f(Z') be a holomorphic function on Q. Let
0 < p < 2. Then there exists a holomorphic function F' : Q — C such
F(2,0) = f(2) for all 2 € Q. Also

FOP [ 1o
< Pe=?,
/Q|zn\2<1og|zn|2>2€ <o, fPe

The constant Cj is the same as for L?. We introduce the notation o =
-
e
|zn[?(log [2n]?)2

Proof. We can exhaust {2 by smoothly bounded strongly pseudoconvex do-
mains. It suffices to prove the estimate for those if the function f extends
to a neighborhood of the closure and there exists some extension defined in
a neighborhood of the closure. It also suffices to assume that ¢ is smooth
on €.
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We can assume that [, |f|[Pe”® = 1. Pick some holomorphic extension
Fy and let [, [Fi[Po =: A < oc.

We then apply the Ohsawa-Takegoshi theorem to ¢1 = ¢+ (1 — §)log |Fy 2.
We then get an extension F5 such that

|[Fa(2)[? —¢ 2 —¢
/ 2(] 2 26 ! < CO ‘f| e
a |2n|*(log |zn|?) 8%
|F2(2) [P0 2 1 -
i N B - -
/Q e(1=%)log|F1[? = Co o |f] e(l—g)loglFl\ze

RGP / F
o |Fir * Jo |Fi2P
If2
o / A
o |fI27P

= Co/ |f|Pe™?
Q/
Co

IN

Q Q
|F2’p0.p/2 _p _p
- /(|F|() (Gl
1

1

( M T/z)p/Q
o \ |F|t-2P
* (/ (’F1|(17g)p01*%)@)1*§
Q
= (/ ‘FQPJ )p/z
Q F1’2_P

( /Q |Fi|Po))t =2

(Coy/?AY%
= A(Co/A)""”

*

IN
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We can repeat the construction and find a sequence of holomorphic func-
tions F,, on ) which extend f and which satisfy

/ |F,|Po < A, where A, = A,_1(Co/An_1)P/%.
Q

We see that if A, > C, then A,,1 < A,. If all A, > C, then A,, — C.
O

Break Down of Ohsawa-Takegoshi for p > 2.

We show here that for extensions from L? to LP,0 < p,q < oo, the only
case possible is 0 < p =g < 2.

First we consider unweighted extension on pseudoconvex domains con-
tained in the unit ball.

Example 19.3. For small 6 > 0, let Q = {|z] < J,|w| < 1}. We extend the
function f = 1 on the z axis. The LY norm is about 6'/%. The extension
F =1 which is optimal, has L? norm about §'/?. For O-T to hold we need
P=q

We give another example of an unweighted extension of a domain in the
unit ball which will show that p < 2.

Extensions of 2".

Pick a;, n + 1 distinct complex numbers. Consider the subdomain of the
unit ball in C? given by |II(z — ajw)| < 8. We investigate extension of 2"
from the intersection with the z axis from L¢ to LP. The L? norm of 2" is

about
§1/(n+1)
(/ ‘Z|nq)1/q — (/ TNQ+1)1/‘J
|| <61/ (et ) 0

_ ( (51/(n+1))nq+2 )1/q

nqg + 2
= ¢, 6nt0a

ng+2

The extension to at least one of the lines must be at least on the order of
2", This gives the LP estimate at least §2/7.
Lemma 19.4. For O-T to hold from L% to LP we need
2 > nq + 2
p (n+1)g
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For this to hold for arbitrarily large n, we must have % >1,ie. p<2

These two examples show that for unweighted O-T to hold on pseudo-
convex domains in the unit ball, then we need 0 < p < 2,p < ¢ < 00. We
observe that in this case L? C LP, so the theorem holds already as proved
in the previous section. There is nothing new.

Finally, let us assume we allow as is usual, the domains to be arbitarily
large in the z direction:
Take a domain which is a ball of radius R in the z1, ..., z,_1 direction and a
disc of fixed small radius in the z,, direction. Extend the function 1. Then
the LP norm is about R(2"=2)/p,

Hence O-T requires that

R(2n=2)/p R(2n=2)/q

IN

1 1
—logR < -logR
p q

for all R. In particular, for large R this shows that ¢ < p. So only the case
p=4q,0<p<2 can work even for unweighted spaces.

Finally, we recall that the restrictions obtained work in weighted spaces
as well. (Use [|f|Pe™P? instead of [ |f|Pe~® to avoid scaling problems as
one sees from using a family of weights, ¢, = ¢ +¢,c € R.)

20. APPENDIX 4, THE STRONG OPENNESS CONJECTURE IN LP.

We give an example where L? results extend to all L?,0 < p < co. Let
¢; < 0 be a sequence of plurisubharmonic functions defined in a neighbor-
hood of the origin in C". Suppose that ¢; < ¢;11 and let ¢ = lim ¢;. Let
0 < p < o0. The strong openness conjecture in LP says that if f is a holo-
morphic function in a neighborhood U of 0 and [, |f[Pe™® < oo, then there
exists a j and a neighborhood V' C U of 0 so that [, |flPe=% < oo. This
conjecture has been proved for p = 2 by Qi’an Guan and Xiangyu Zhou,
Strong openness conjecture arXiv:1311.3781v1 [math.CV] 15 Nov 2013.

We see here how the result for p = 2 immediately proves the conjecture
for all p.

Theorem 20.1. The strong openness conjecture holds in LP for p < 2.

Proof. Let {qﬁj};’il be a sequence of plurisubharmonic functions converging
to a negative function ¢ on a neighborhood of 0 in C", ¢; , ¢. Suppose
that fU |fIPe=® < oo on some neighborhood U of the origin, where f is a
holomorphic function. Let v; = ¢; + (2 — p)log|f|,v = ¢ + (2 — p) log| f].
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The v; are plurisubharmonic functions and v; * v. Moreover,

/U|f|2@—’v - /U |f|2e—¢—(2—P) log|f| — / |f|2|f|p_2€_¢ < 0o,

Hence by the strong openness conjecture for p = 2, it follows that for some
large enough j, and some smaller neighborhood V' of the origin,

/mpedy:/ |f’2e(2p)log|f|¢j:/ |f|?e™% < oo
v 1% v

Corollary 20.2. The strong openness conjecture holds in LP for all 0 <
p < oQ.

O

Proof. Choose p and let m be a positive integer so that p/m < 2. Suppose
Ju IfIPe™® < oo. Then [, |fmP/me=? < oo. But since p/m < 2 it follows
that for large j that [|f™|P/™e™% < oo, ie. [|f[Pe % < cc. O

We can also vary p and ¢ at the same time.

Theorem 20.3. Let 0 < p < oo and suppose that ¢ < 0 in a neighborhood
U of 0 in C". Suppose that p; / p and ¢; / ¢ is a sequence of plurisub-
harmonic functions on U. If f is a holomorphic function on U such that
fU |fIPe=? < oo, then there exists j and a smaller neighborhood V of 0 so

that
/ |f|PPe % < oo.
v

Proof. We can assume that | f| < 1. Consider the weights v; = (p—p;) log | f|+
¢j. Then v; /' ¢ except for possibly the zero set of f. Hence by the strong
openness conjecture for LP, fv \f|pe_(p_pj)log|f|_¢j < oo for large j. Hence
fv |f|Pie=% < oo.

O

We have a similar result for decreasing sequence in p;.

Theorem 20.4. Let 0 < p < oo and suppose that ¢ < 0 in a neighborhood
U of 0 in C". Suppose that p; \  p and ¢; / ¢ is a sequence of plurisub-
harmonic functions on U. If f is a holomorphic function on U such that
fU |f|[Pe™P? < oo, then there exists j and a smaller neighborhood V of 0 so
that

/ |f|PiePi% < co.
v

Proof. We can assume that |f| < 1. We have that p;j¢; " p¢. Suppose that
fU |f|Pe™P? < oco. Hence by the strong openness conjecture in LP, we see
there is a j and a V so that [, | f[Pe 1%/ < co. Since |f|P7 < |f[P, the result
follows. O
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