The Sine and Cosine Rules

Definition

The sine and cosine rules can be used on any triangle. In the diagram below, the sides are labelled lower case $a$, $b$ and $c$ and the corresponding angles opposite the sides are labelled upper case $A$, $B$ and $C$.

|center

|center

The sine rule is \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\] This is used when given two angles and one side, or two sides and a non-included angle.

The cosine rule is \[a^2 = b^2 + c^2 - 2bc\cos A\text{.}\] This is used when given all three sides, or two sides and the angle in-between.

Worked Examples

In the examples below, $a$, $b$ and $c$ refer to lengths of sides and $A$, $B$ and $C$ refer to the corresponding opposite angles.

Example 1

Given $a=3$, $b=4$, $A=40^{\circ}$, find $B$.

Solution

Use the sine rule $\dfrac{a}{\sin A} = \dfrac{b}{\sin B}$ to find $B$.

Substitute the given values of $a$, $A$ and $b$. \[\frac{3}{\sin 40^{\circ} } = \frac{4}{\sin B}\] Multiply both sides by $\sin B$ and $\sin 40^{\circ}$. \begin{align} 3\sin B &= 4 \sin 40^{\circ}\\\\ \sin B &= \frac{4 \sin 40^{\circ} }{3}\\ B &= \sin^{-1} \left(\frac{4 \sin 40^{\circ} }{3}\right)\\ B &= 58.99^{\circ} \text{ (to 2 d.p.)} \end{align}

Example 2

Given $b=6$, $B=77^{\circ}$ and $C=34^{\circ}$, find $c$. Also find $a$ and $A$.

Solution

First, use $\dfrac{b}{\sin B} = \dfrac{c}{\sin C}$ to find $c$.

\begin{align} \frac{6}{\sin 77^{\circ} } &= \frac{c}{\sin 34^{\circ} }\\\\ \frac{6 \sin 34^{\circ} }{\sin 77^{\circ} } &= c\\ c &= 3.44 \text{ (to 3 sig.fig.)} \end{align}

To find $A$, use the fact that the angles in a triangle add up to $180^{\circ}$, i.e. $A+B+C = 180$.

\begin{align} 180 &= A +77 + 34\\ A &= 180 - 77- 34\\ A &= 69^{\circ} \end{align}

Now, use this value for $A$ in the sine rule to find $a$.

\begin{align} \frac{a}{\sin 69^{\circ} } &= \frac{6}{\sin 77^{\circ} }\\\\ a &= \frac{6 \sin 69^{\circ} }{\sin 77^{\circ} }\\\\ a &= 5.75 \text{ (to 3 sig.fig.)} \end{align}

Example 3

Given $b=2$, $c=5$ and $A=39^{\circ}$, find $a$.

Solution

Use $a^2 = b^2 + c^2 -2bc\cos A$.

\begin{align} a^2 &= 2^2 + 5^2 - (2\times2\times5)\cos 39^{\circ}\\ a^2 &= 29 - 20\cos 39^{\circ}\\ a^2 &= 13.457 \text{ (to 3 d.p.)}\\ a &= 3.67 \text{ (to 3 sig.fig.)} \end{align}

Example 4

Given $a=7$, $b=6$ and $c=9$. Find the angle between $a$ and $b$.

Solution

The angle between $a$ and $b$ is labelled $C$ in the diagram above, so use $c^2 = a^2 + b^2 - 2ab\cos C$.

\begin{align} 9^2 &= 7^2 + 6^2 - (2\times7\times6)\cos C\\ 81 &= 49+36 - 84\cos C\\ 84\cos C &= 4\\ \cos C &= \frac{4}{84} = \frac{1}{21}\\\\ C &= \cos^{-1}\left(\frac{1}{21}\right)\\ C &= 87.3^{\circ} \text{ (to 3 sig.fig.)} \end{align}

Workbook

This workbook produced by HELM is a good revision aid, containing key points for revision and many worked examples.

Applications of trigonometry to triangles contains examples on the sine and cosine rule.

External Resources

Whiteboard maths

More Support

You can get one-to-one support from Maths-Aid.