

Determining the depth of Jupiter's dynamo region

Yue-Kin Tsang

School of Mathematics, University of Leeds

Chris Jones (*Leeds*)

Let's start on Earth...

- **core-mantle boundary (CMB):** *sharp boundary* between the non-conducting mantle and the **conducting outer core**
- location of CMB r_{dyn} : the depth at which dynamo action starts
- one way to deduce r_{dyn} from observation on the surface: **spectrum of magnetic energy**

Gauss coefficients g_{lm} and h_{lm}

- Outside the dynamo region, $r > r_{\text{dyn}}$:

$$\boxed{\mathbf{j} = \mathbf{0}}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} = \mathbf{0} \implies \mathbf{B} = -\nabla \Psi$$

$$\nabla \cdot \mathbf{B} = 0 \implies \nabla^2 \Psi = 0$$

a = radius of Earth

- Consider only internal sources,

$$\Psi(r, \theta, \phi) = a \sum_{l=1}^{\infty} \sum_{m=0}^l \left(\frac{a}{r}\right)^{l+1} \hat{P}_{lm}(\cos \theta) (\mathbf{g}_{lm} \cos m\phi + \mathbf{h}_{lm} \sin m\phi)$$

\hat{P}_{lm} : Schmidt's semi-normalised associated Legendre polynomials

- g_{lm} and h_{lm} can be determined from magnetic field measured on the planetary surface ($r \approx a$)

The Lowes spectrum

- Average magnetic energy over a spherical surface of radius r

$$E_B(r) = \frac{1}{2\mu_0} \frac{1}{4\pi} \oint |\mathbf{B}(r, \theta, \phi)|^2 \sin \theta \, d\theta \, d\phi$$

- Inside the source-free region $r_{\text{dyn}} < r < a$,

$$2\mu_0 E_B(r) = \sum_{l=1}^{\infty} \left[\left(\frac{a}{r} \right)^{2l+4} (l+1) \sum_{m=0}^l (g_{lm}^2 + h_{lm}^2) \right]$$

- **Lowes spectrum** (magnetic energy as a function of l):

$$\begin{aligned} R_l(r) &= \left(\frac{a}{r} \right)^{2l+4} (l+1) \sum_{m=0}^l (g_{lm}^2 + h_{lm}^2) \\ &= \left(\frac{a}{r} \right)^{2l+4} R_l(a) \quad (\text{downward continuation}) \end{aligned}$$

Estimate location of CMB using the Lowes spectrum

- downward continuation through the $j = 0$ region from a to r_{dyn} :

$$\ln R_l(a) = 2 \ln \left(\frac{r_{\text{dyn}}}{a} \right) l + 4 \ln \left(\frac{r_{\text{dyn}}}{a} \right) + \ln R_l(r_{\text{dyn}})$$

- white source hypothesis:** turbulence in the core leads to an *even distribution of magnetic energy* across different scales l ,

$R_l(r_{\text{dyn}})$ is independent of l

- $r_{\text{dyn}} \approx 0.55a \approx 3486$ km agrees very well with results from seismic waves observations

Interior structure of Jupiter

(NASA JPL)

- low temperature and pressure near surface
⇒ gaseous molecular H/He
- extremely high temperature and pressure inside
⇒ liquid metallic H
- core?
- **conductivity $\sigma(r)$ varies smoothly** with radius r

At what depth does dynamo action start?

Lowes spectrum from the Juno mission

- Juno's spacecraft reached Jupiter on 4th July, 2016
- currently in a 53-day orbit, measuring Jupiter's magnetic field (and other data)
- latest results give $R_l(r_J)$ up to $l = 10$ suggesting $r_{\text{dyn}} \approx 0.85 r_J$ ($r_J = \text{Jupiter's radius}$)

Lowes spectrum from the Juno mission

- Juno's spacecraft reached Jupiter on 4th July, 2016
- currently in a 53-day orbit, measuring Jupiter's magnetic field (and other data)
- latest results give $R_l(r_J)$ up to $l = 10$ suggesting $r_{\text{dyn}} \approx 0.85 r_J$ (r_J = Jupiter's radius)

Questions: given the conductivity profile $\sigma(r)$ is smoothly varying,

- estimation of r_{dyn} using Lowes spectrum the right approach?
- white source hypothesis valid?
- concept of "dynamo radius" r_{dyn} well-defined?

A numerical model of Jupiter

- spherical shell of radius ratio $r_{\text{in}}/r_{\text{out}} = 0.0963$ (small core)
- rotating fluid with electrical conductivity $\sigma(r)$ forced by buoyancy
- convection driven by secular cooling of the planet
- anelastic: linearise about a hydrostatic adiabatic basic state $(\bar{\rho}, \bar{T}, \bar{p}, \dots)$
- dimensionless numbers: Ra, Pm, Ek, Pr

$$\nabla \cdot (\bar{\rho} \mathbf{u}) = 0$$

$$\frac{Ek}{Pm} \left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right] + 2\hat{\mathbf{z}} \times \mathbf{u} = -\nabla \Pi' + \frac{1}{\bar{\rho}} (\nabla \times \mathbf{B}) \times \mathbf{B} - \left(\frac{EkRaPm}{Pr} \right) \mathcal{S} \frac{d\bar{T}}{dr} \hat{\mathbf{r}} + Ek \frac{\mathbf{F}_\nu}{\bar{\rho}}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (\eta \nabla \times \mathbf{B})$$

$$\bar{\rho} \bar{T} \left(\frac{\partial S}{\partial t} + \mathbf{u} \cdot \nabla S \right) + \frac{Pm}{Pr} \nabla \cdot \mathcal{F}_Q = \frac{Pr}{RaPm} \left(Q_\nu + \frac{1}{Ek} Q_J \right) + \frac{Pm}{Pr} \mathcal{H}_S$$

Boundary conditions: no-slip at r_{in} and stress-free at r_{out} , $S(r_{\text{in}}) = 1$ and $S(r_{\text{out}}) = 0$, electrically insulating outside $r_{\text{in}} < r < r_{\text{out}}$. (Jones 2014)

A numerical model of Jupiter

- spherical shell of radius ratio $r_{\text{in}}/r_{\text{out}} = 0.0963$ (small core)
- rotating fluid with electrical conductivity $\sigma(r)$ forced by buoyancy
- convection driven by secular cooling of the planet
- anelastic: linearise about a hydrostatic adiabatic basic state $(\bar{\rho}, \bar{T}, \bar{p}, \dots)$
- dimensionless numbers: Ra, Pm, Ek, Pr
- a Jupiter basic state:

C.A. Jones / Icarus 241 (2014) 148–159

$$Ra = 2 \times 10^7, \quad Ek = 1.5 \times 10^{-5}, \quad Pm = 10, \quad Pr = 0.1$$

radial magnetic field, $B_r(r, \theta, \phi)$

$r = r_{\text{out}}$
dipolar

$r = 0.75r_{\text{out}}$
small scales

Where does the current start flowing?

- average **current** over a spherical surface of radius r

$$\mu_0 \mathbf{j} = \nabla \times \mathbf{B}$$

$$j_{\text{rms}}^2(r, t) \equiv \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi |\mathbf{j}|^2 \sin \theta d\theta d\phi$$

- j_{rms} drops quickly but smoothly in the transition region, not clear how to define a characteristic “dynamo radius”

Magnetic power spectrum, $F_l(r)$

- average magnetic energy over a spherical surface:

$$E_B(r) = \frac{1}{2\mu_0} \frac{1}{4\pi} \oint |\mathbf{B}(r, \theta, \phi)|^2 \sin \theta \, d\theta \, d\phi$$

- Lowes spectrum: recall that if $\mathbf{j} = \mathbf{0}$, we solve $\nabla^2 \Psi = 0$, then

$$2\mu_0 E_B(r) = \sum_{l=1}^{\infty} \left[\left(\frac{a}{r} \right)^{2l+4} (l+1) \sum_{m=0}^l (g_{lm}^2 + h_{lm}^2) \right] = \sum_{l=1}^{\infty} \mathbf{R}_l(r)$$

- generally, for the numerical model, $\mathbf{B} \sim \sum_{lm} b_{lm}(r) Y_{lm}(\theta, \phi)$,

$$2\mu_0 E_B(r) = \frac{1}{4\pi} \oint |\mathbf{B}(r, \theta, \phi)|^2 \sin \theta \, d\theta \, d\phi = \sum_{l=1}^{\infty} \mathbf{F}_l(r)$$

$$\mathbf{j}(r, \theta, \phi) = \mathbf{0} \text{ exactly} \implies R_l(r) = F_l(r)$$

Magnetic power spectrum at different depth r

- near the surface ($r_{\text{out}} > r > 0.9r_J$)
 - $F_l(r) \approx R_l(r)$
 - slope of $F_l(r)$ decreases with r
- interior and away from the core ($0.9r_J > r > 0.5r_J$)
 - $F_l(r)$ different from $R_l(r)$
 - $F_l(r)$ is shallow and maintains roughly the same shape

Spectral slope of $F_l(r)$

- $F_l(r)$ indicates a clear transition in dynamics: $|\text{slope}|$ minimum at

$$r_{\text{dyn}} = 0.889 r_J$$

- $F_l(r)$ in the interior is not flat but dependence on l is weak:
$$|\text{slope}| \sim 0.02$$
- downward continuation from spectrum at the surface $F_l(r_{\text{out}})$ predicts:

$$r_{\text{dyn}} = 0.885 r_J$$

Summary of results from numerical model

In our numerical model of Jupiter, we find that:

- the magnetic power spectrum provides a **characteristic radius** of the dynamo action
- in the interior and away from the core, **white source hypothesis** is approximately valid
- the dynamo radius can be predicted using the **magnetic spectrum at the surface**

However, ...

Comparison with Juno data

The dynamo radius in the numerical model is too shallow compared to the prediction using the Juno data. The discrepancy suggests:

- the metallic hydrogen layer could be deeper than predicted by theoretical calculation
- the existence of a stably stratified layer above the dynamo region
- our numerical model has more small-scale forcing than Jupiter does