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Abstract

In this note, we show that the satisfiability of equations and inequations with
recognisable constraints is decidable in groups that are virtually direct products of
finitely many hyperbolic groups.
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1 Introduction

For any group G and set of variables Y, an equation with coefficients g1, . . . , gm+1 from
the group G is a formal expression g1Y

ε1
1 g2Y

ε2
2 . . . Y εm

m gm+1 = 1G, where εj = ±1 for all
1 ≤ j ≤ m, and Yj ∈ Y. Such an equation is called satisfiable if there exist values for the
Yj ’s in G with which the above identity in G is satisfied; each such set of values for the
Yj is a solution. Analogously, an inequation has the form g1Y

ε1
1 g2Y

ε2
2 . . . Y εm

m gm+1 6= 1G.
A finite set of equations and inequations with coefficients in G is a system of equations
and inequations over G, and is satisfiable if there are assignments to the Yj such that
all of the equations and inequations in the system are satisfied. For a group G, we say
that systems of equations and inequations over G are decidable over G if there is an
algorithm to determine whether any given such system is satisfiable. This question is
widely known as the Diophantine Problem for G.

This article investigates equations in groups that are virtually direct products, and
hence addresses the natural question of whether the decidability of equations extends
from a group G to a group that contains G as a subgroup of finite index. While the
decidability of equations in free groups was established in the 1980s by Makanin [18],
it was only shown in 2010 that the same holds for virtually free groups: Dahmani and
Guirardel [6] reduced the Diophantine Problem in virtually free groups to the same
question relating to systems of twisted equations and inequations in free groups, and
using difficult topological arguments they proved such systems to be decidable; a different
approach to the Diophantine Problem in virtually free groups can be found in [17].

Here, in Theorem 3.1, we settle the Diophantine Problem in any group that is virtually
a direct product of a finitely generated abelian group and non-elementary hyperbolic
groups (equivalently, virtually a direct product of hyperbolic groups). We do this not by
extending the result from the finite index direct product, but by embedding the whole
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group into a direct product of permutational wreath products where the above questions
can be answered positively (Lemma 3.5).

In fact, we prove Theorem 3.1 for an extended form of the Diophantine Problem, which
asks if it can be decided whether a given system of equations and inequations has so-
lutions in which some of the variables are constrained to lie in specified recognisable
subsets of the group. (We define recognisable subsets in the next section.)

Our results show that the Diophantine Problem with recognisable constraints can be
answered positively for, amongst others, dihedral (i.e. 2-generator) Artin groups, and
groups that are virtually certain types of right-angled Artin groups. We note that, since
any dihedral Artin group can alternatively be decomposed as a central extension of Z by
a virtually free group, decidability of its systems of equations (but not the more general
problem with recognisable constraints) could also be derived from [16].
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2 Background and notation

Let G be a group with finite inverse closed generating set S, and let π : S∗ → G be
the natural homomorphism to G from the free monoid S∗ generated by S. When w is
a word over S, we write |w| to denote the length of w as a word and |π(w)|G to denote
the length of the shortest word over S that represents π(w).

Definition 2.1.

(1) A subset L of G is said to be recognisable if the full preimage π−1(L) is a regular
subset of S∗.

(2) A subset L of G is said to be rational if L is the image π(L′) of a regular subset
L′ of S∗.

(3) A regular subset L′ of S∗ is quasi-isometrically embedded (q.i. embedded) in G
if there exist λ ≥ 1 and µ ≥ 0 such that, for any w ∈ L′, |π(w)|G ≥ 1

λ |w| − µ.
(4) A rational subset L of G is quasi-isometrically embeddable (q.i. embeddable) in

G if there exists a quasi-isometrically embedded regular subset L′ of S∗ such that
π(L′) = L.

It follows immediately from the definition that recognisable subsets of G are rational.

By [20, Proposition 6.3] a subset of G is recognisable if and only if it is a union of cosets
of a subgroup of finite index in G, and hence a union of cosets of a normal subgroup of
finite index (the core of a finite index subgroup will be both normal in G and of finite
index in G); it follows that recognisability of a subset of G is independent of the choice
of generating set for G. Rational subsets of G can be alternatively characterised as those
sets that can be built out of finite subsets of G using finite union A ∪B, product A ·B,
and semigroup generation A∗; it follows from this that rationality of a subset of G is
also independent of the choice of generating set.
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By [1, Theorems 3.1, 3.2], a subgroup H of G is rational if and only if it is finitely
generated, and recognisable if and only if it has finite index; the first of these results is
attributed to Anisimov and Seifert.

We will be interested in the decidability of systems of equations and inequations in
which some of the variables are restricted to lying in specified recognisable subsets of
the group; this is the Diophantine Problem with recognisable constraints. This problem
was considered for free groups and graph products in [8], [10] and [11].

Furthermore, if there exists an efficient algorithm that produces the solutions together
with some concise and useful description of the solution set, we say that the system
is soluble over G, or alternatively, that we can solve the Diophantine Search Problem
in G. We observe that this second definition is intrinsically imprecise; in particular,
for countable groups G with soluble word problem, we can in principle enumerate the
solutions by the naive method of testing all m-tuples of elements of G.

The Diophantine Search Problem was solved in free groups by the work of Makanin
and Razborov [19], and descriptions of the solutions are possible via Makanin-Razborov
diagrams, or as EDT0L formal languages [3]. Then [7] shows the solubility of equations
with rational constraints in virtually free groups, and [4] the solubility of equations with
q.i. embeddable rational constraints in hyperbolic groups. Further, we observe that
the set of solutions of a single equation or inequation over the free abelian group Zn
generated by X = {xi : 1 ≤ i ≤ n} can be expressed as a deterministic context-free
language over the alphabet X ∪X−1. So the solution set of a system of equations and
inequations over Zn is the intersection of finitely many such languages.

Our main result will rely on the following two statements about decidability of equations.

Proposition 2.2. (i) Let G be a hyperbolic group. Then systems of equations and
inequations with quasi-isometrically embeddable rational constraints are decidable in G.

(ii) Let G be a virtually abelian group. Then systems of equations and inequations with
recognisable constraints are decidable in G.

Proof. (i) This is proved in [6, Theorem 1].

(ii) We can adapt the proof of the same result, but without constraints, proved in [5,
Lemma 5.4]. That proof reduces the problem in G to the same problem in a free abelian
subgroup H of G. Given that any recognisable subset of G can be written as a union of
cosets of a finite index subgroup M , we see that we can reduce our problem to the same
problem in the free abelian subgroup H ∩M .

We note that systems of equations and inequations over the free abelian group Zn are
decidable and soluble using standard techniques from integer linear algebra, such as the
Hermite Normal Form for matrices.

Dihedral Artin groups. A dihedral Artin group DAm, m ≥ 2, is defined by the
presentation

DAm = 〈a, b | aba · · · = bab · · · 〉,

where the single (braid) relation relates the two distinct alternating products of length
m of the two generators a, b. When m is even, if we let y1 := a, y2 := ab, we see that

DAm
∼= 〈y1, y2 | y1ym/22 = y

m/2
2 y1〉,
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and hence we can describe DAm as a central extension of the infinite cyclic group 〈ym/22 〉
by Z ∗Cm/2. The latter group has Fm/2 as a subgroup of index m/2, and so in this case
DAm is virtually the direct product Z× Fm/2.

When m is odd, let y1 := ab · · · a, an alternating product of length m, and y2 := ab.
Then

DAm
∼= 〈y1, y2 | y21 = ym2 〉,

and so we can describe DAm as a central extension of the infinite cyclic group 〈ym2 〉 by
C2 ∗ Cm; the free product has Fm−1 as a subgroup of index 2m. In this case, DAm is
virtually Z× Fm−1.

3 Main results

Theorem 3.1. Let G be a finitely generated group that contains a direct product A ×
H1×· · ·×Hn as a finite index subgroup, where A is virtually abelian and H1, . . . ,Hn are
non-elementary hyperbolic. Then systems of equations and inequations with recognisable
constraints are decidable over G.

We observe that since Zn is a direct product of elementary hyperbolic groups, G can also
be expressed as virtually a direct product of hyperbolic groups. We make no assumption
in this result that A is non-trivial or that n is non-zero.

Concerning solubility, it will be clear from the proof that descriptions of the solution
sets over the factors Hi extend to descriptions in G.

Corollary 3.2. Systems of equations and inequations with recognisable constraints are
decidable in groups that are virtually dihedral Artin groups.

Proof of corollary. As explained in Section 2, every dihedral Artin group is virtually a
direct product of Fm and Z, for m ≥ 2. So the result follows from Theorem 3.1. �

We note that we cannot expect to improve Theorem 3.1 to deal with rational constraints,
as [9, Prop.11], due to Muscholl, shows. That result, concerning general right-angled
Artin groups, implies in particular that systems of equations with rational constraints
over direct products of non-abelian free groups are undecidable. The same holds for
q.i. embeddable rational constraints, as Muscholl’s constraints can be made to consist
of geodesics.

We shall prove Theorem 3.1 at the end of the paper. It will follow from Proposition 2.2
and Theorem 3.3 below, once we have shown, in Proposition 4.4, that the group G of
Theorem 3.1 contains an appropriate normal subgroup K.

For a group G, we define FIN(G) to be the collection of groups each of which is either
(isomorphic to) a subgroup of finite index in G or contains (a group isomorphic to) G as
a subgroup of finite index. We introduce this terminology since we observe that, for G
in various classes of groups that will be considered in this article, the decidability and
solubility of systems of equations and inequations with various constraints holds not just
in G but throughout FIN(G).

Theorem 3.3. Let G be a group and K a finite index normal subgroup, where K = K1×
· · · ×Kn, and {K1, . . . ,Kn} is a union of conjugacy classes of subgroups in G. Suppose
that systems of equations and inequations with recognisable constraints are decidable in
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all groups in FIN(Ki), for each i. Then systems of equations and inequations with
recognisable constraints are decidable in G.

We need to establish some lemmas before proving this result.

Lemma 3.4. Let G = G1×· · ·×Gn be a direct product of groups Gi over which systems
of equations and inequations with recognisable constraints are decidable. Then the same
is true in G.

Proof. Suppose that the system consists of a set E of equations and a set I of inequations.
An equation from E has a solution in G if and only if, in each of the direct factors Gi,
the projection onto Gi has a solution, while an inequation from I has a solution in G if
and only, in at least one of the direct factors Gi, the projection onto Gi has a solution.
Hence the system has a solution in G if and only if we can write I as a (not necessarily
disjoint) union I1 ∪ I2 · · · ∪ In, where for each i the projection of the system E ∪ Ii onto
Gi has a solution in Gi. So decidability in G is inherited from decidability in the direct
factors Gi.

Now suppose that some of the variables are restricted to lie in some specified recognisable
subsets of G. We recall that each such subset is a finite union of cosets of a finite index
normal subgroupMj ofG and by lettingHi := ∩jMj∩Gi, we haveHiCGi, |Gi : Hi| <∞,
and H := H1×· · ·×Hn is contained in all of the subgroups that arise in the constraints.

We first find all solutions of the projection of the system onto the finite quotient G/H of
G. Then, for each such solution, the set of solutions of the original system that project
onto it can be defined in terms of the solutions of a system of equations and inequations
over G that are constrained to lie in H. As in the first paragraph of this proof, we
can reduce the decidability of such a systems to the decidability of a finite collection
of systems of equations and inequations over the component groups Gi for which the
solutions are constrained to lie in Hi, and we can decide each of those by hypothesis.

The following lemma shows how one can embed an extension of a direct product into a
direct product of wreath products, and has the flavour of a Kaloujnine-Krasner result
[15] about embeddings of group extensions into wreath products; however, we do not
specifically need that result here.

Lemma 3.5. Let K = K1 × · · · ×Kn be a normal subgroup of finite index in a group
G, and suppose that the set of subgroups {K1, . . . ,Kn} is a union of conjugacy classes
of subgroups in G.

(i) If the subgroups Ki form a single conjugacy class, then G is isomorphic to a
subgroup of finite index in J o P , where J ∼= NG(K1)/(K2 × · · · ×Kn) contains
a subgroup of finite index isomorphic to K1, and P ≤ Sn is the image of the
permutation action on {K1, ...,Kn} induced by conjugation in G.

(ii) Suppose that K1, . . .Kk are representatives of the conjugacy classes of K1 . . . ,Kn

within G. Then G embeds as a subgroup of finite index in a direct product W1 ×
W2 × · · · ×Wk of wreath products Wj = Jj o Pj, where Jj is a group containing
Kj as a subgroup of finite index and Pj is a finite permutation group.

Proof. Part (i) is a rewording of [14, Theorem 4.1 (1)].

For (ii), for 1 ≤ i ≤ k, let Ni be the product of those Kj that are not conjugate to Ki

in G. Then Ni E G, and we define Qi := G/Ni and let µi : G → Qi be the natural
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map. Then the images under µi of those Kj that are conjugate in G to Ki form a single
conjugacy class of subgroups of Qi, and their product has finite index in Qi. So by (i)
Qi embeds via a map ηi as a subgroup of finite index in a group Wi = Ji o Pi, where Ji
contains µi(Ki) ∼= Ki as a subgroup of finite index, and Pi is a finite permutation group.

Now the map µ : G → W1 × · · · ×Wk defined by µ(g) = (η1µ1(g), . . . , ηkµk(g)) is an
embedding of G into W1 × · · · ×Wk. Since, for i = 1, . . . , k, µ(Ki) is a subgroup of the
direct factor Wi isomorphic to Ki, and µ(KG

i ) has finite index in Wi, we see that µ(K)
(and hence also µ(G)) has finite index in W1 × · · · ×Wk.

Lemma 3.6. Suppose that systems of equations and inequations with recognisable con-
straints are decidable over the group J . Then they are also decidable over the permutation
wreath product W = J o P of J with a finite subgroup P of Sn.

Proof. Decomposing W as the split extension of n copies of J by P ⊂ Sn, we repre-
sent each of its elements by an (n + 1)-tuple (j1, . . . , jn, π), with ji ∈ J , π ∈ P , with
multiplication defined by

(j1, . . . , jn, π)(k1, . . . , kn, ρ) = (j1kπ−1(1), . . . , jnkπ−1(n), πρ).

For a given system of equations and inequations over W , we project this system onto the
finite group P and find all of the finitely many solutions in P . For each such solution in
P , we can use the displayed equation to reduce the problem of deciding whether there
are solutions in W that project onto that particular solution in P to one of deciding a
system of equations and inequations over the direct product Jn of n copies of J . We
can do that by Lemma 3.4.

If the system over W has rational constraints, then this technique reduces the problem
to one of deciding systems of equations with rational constraints over Jn, which we can
again do by Lemma 3.4.

Proof of Theorem 3.3. Suppose that the groups K1, . . . ,Kn fall into k conjugacy classes
under the conjugation action of G, of which K1, . . . ,Kk are representatives, and of the
n original subgroups, nj of them are conjugate to Kj , for each 1 ≤ j ≤ k. Then, by
Lemma 3.5, G embeds as a subgroup of finite index in a direct product W1×W2×· · ·×Wk

of permutation wreath products Wj = Jj o Pj , where Jj is a group containing Kj as a
subgroup of finite index and Pj is a subgroup of Snj . Our hypotheses ensure that,
for each j = 1, . . . , k, equations with recognisable constraints are decidable in Jj , and
Lemma 3.6 ensures that the same is true in Wj .

By Lemma 3.4 systems of equations with recognisable constraints are decidable if that
holds for the direct factors in the direct product W1 ×W2 · · · ×Wk. Then since finite
index subgroups are recognisable, it follows that the same is true within the finite index
subgroup G of W1 × · · · ×Wk. �

4 Direct products of finite index

Recall that virtually cyclic groups (including finite groups) are hyperbolic, and are known
as elementary hyperbolic. The following lemma lists the known properties of hyperbolic
groups that we shall need.
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Lemma 4.1. Let H be a hyperbolic group. Then the centralizer of any element of
H is hyperbolic, and is elementary if the element is non-torsion. Any subgroup of H
consisting of torsion elements is finite, and there is a bound on the order of the finite
subgroups of H. Furthermore, if H is non-elementary, then Z(H) is finite and H/Z(H)
is non-elementary hyperbolic.

Proof. The first two assertions are proved in [12, Proposition 4.3 and Proposition 5.1].
The finiteness of torsion subgroups is proved in [13, Corollaire 36, Chapitre 8] and the
bound on the order of finite subgroups is proved in [2, Theorem III Γ.3.2]. It follows
that Z(H) is a torsion subgroup when H is non-elementary, so Z(H) is finite, and the
proof that H/Z(H) is hyperbolic and non-elementary is straightforward.

Lemma 4.2. Let A be virtually abelian, and H1, . . . ,Hn non-elementary hyperbolic
groups. Let H = A × H1 × · · · × Hn, let L ≤ H with |H : L| finite, and let g ∈ L.
Suppose that the projection of g onto Hi is a non-torsion element of Hi for exactly k
values of i ∈ {1, 2, . . . , n}. Then the centraliser of g in L is a subgroup of finite index
in a group B ×K1 × · · · ×Kj, where B is virtually abelian, each Ki is non-elementary
hyperbolic, and j ≤ n− k.

Proof. This follows from the previous lemma.

Lemma 4.3. Let A and B be virtually abelian, and H1, . . . ,Hm,K1, . . . ,Kn non-elementary
hyperbolic groups. Let H = A ×H1 × · · · ×Hm and K = B ×K1 × · · · ×Kn. Suppose
that a group L is isomorphic to finite index subgroups of both H and K. Then m = n.

Proof. Suppose that m ≤ n and use induction on m. If m = 0, then H is virtually
abelian, and hence K must be virtually abelian, and so n = 0. So suppose that m > 0.

It is convenient to identify L with the subgroups of H and K with which it is isomorphic.
By replacing H, K and L by finite index subgroups, we can assume that A and B
are both abelian, and that L projects onto all of the direct factors Hi and Ki. Then
Z(L) = L ∩ Z(H) = L ∩ Z(K) and, since L ∩ A ≤ Z(L) and L ∩ B ≤ Z(L), it follows
from Lemma 4.1 that L := L/Z(L) can be identified with finite index subgroups of
H1 × · · · ×Hm and of K1 × · · · ×Kn, where Hi := Hi/Z(Hi) and Ki := Ki/Z(Ki) are
non-elementary hyperbolic groups.

Since L ∩K1 has finite index in K1 it contains a non-torsion element g, and CL(g) has
finite index in a direct product of a virtually abelian group and n − 1 non-elementary
hyperbolic groups. But, by considering g as an element of H1 × · · · ×Hm, we see from
Lemma 4.2 that CL(g) has finite index in the direct product of a virtually abelian group
and m − t non-elementary hyperbolic groups for some t ≥ 1. So, by the inductive
hypothesis, we have m− t = n−1, and since m ≤ n, we must have t = 1 and m = n.

Proposition 4.4. Let A be virtually abelian, and H1, . . . ,Hn non-elementary hyperbolic
groups. Suppose that a group G has a subgroup H of finite index with H ∼= A × H1 ×
· · ·Hn. Then there is a normal subgroup K of finite index in G with K ≤ H, such that
K ∼= B × K1 × · · ·Kn, where B ≤ A of finite index in A, each Ki is isomorphic to
a finite index subgroup of Hi, and the set {B,K1, . . . ,Kn} is a union of orbits under
conjugation by G.

Proof. By replacing H by a subgroup of finite index, we may assume that A is free
abelian. Let N be the core of H in G; then N EG has finite index and N ≤ H.
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Let C := N ∩ A; then |A : C| ≤ |G : N | < ∞. Also, C ≤ Z(N), and C is torsion
free. The projection of Z(N) onto each of the subgroups Hi is central in a subgroup of
finite index in Hi and hence finite, so |Z(N) : C| < ∞. Let k := |Z(N) : C| and define
B := Z(N)k. Then B ≤ C and B is characteristic and of finite index in Z(N). So B
has finite index in C, and hence in A, and since Z(N) is normal in G, so is B.

The rest of this proof is devoted to the construction of the subgroups K1, . . . ,Kn of
G. We find these as subgroups of finite index in subgroups L1, . . . , Ln of G, which we
identify by considering a quotient G/T of G, and considering its action by conjugation
on its free abelian normal subgroup N/T .

We note that [N,N ] ≤ H1×· · ·Hn, so B∩ [N,N ] = 1. Now choose T with [N,N ] ≤ T ≤
N so that T/[N,N ] is the torsion subgroup of the abelian group N/[N,N ]; then N/T
is free abelian. Since T/[N,N ] is characteristic in N/[N,N ], and N/[N,N ] is normal in
G/N , certainly T EG. Since B is torsion-free with B ∩ [N,N ] = 1, while T/[N,N ] has
torsion, we have T ∩ B = 1, and so BT/T ∼= B. Furthermore, since B is normal in G,
the image BT/T ∼= B of B in G/T is normal in G/T .

Let g 7→ ḡ denote the natural map from G to G/T . Then the conjugation action of
G on the free abelian group N makes N into a torsion-free ZG-module in which BT
is a submodule. So by Lemma 4.5 below, there is a subgroup L of N with L E G,
|N : LBT | <∞, and L∩BT = {1}. Then, where LEG is the preimage of L, we deduce
that |N : BL| < ∞ (and so also |H : AL| < ∞) and L ∩ BT = T . Since T ∩ B = 1,
we have L ∩ B = 1, and also L ∩ A = 1 (since if g ∈ L ∩ A, we have gk ∈ L ∩ B = {1},
so g = 1, since A is torsion-free). Now the natural map from H to H/A, whose image
is isomorphic to H1 × · · ·Hn, maps AL to a group of finite index in H/A, which is
isomorphic to L; the image lifts to a subgroup M of finite index in H1 × · · · × Hn, to
which we associate an isomorphism φ : L→M . For each i, we define Li := φ−1(M∩Hi).
Then Li is isomorphic to a subgroup of finite index in Hi, L1× · · · ×Ln has finite index
in L, and B × L1 × · · · × Ln has finite index in G.

Let h be a non-torsion element of Li for some i. Then CL(h) ∼= CM (φ(h)) has finite index
in the direct product of a virtually cyclic group and n − 1 non-elementary hyperbolic
groups. Now, for any g ∈ G, the same applies to hg = g−1hg and so, by Lemmas 4.2
and 4.3 applied to φ(hg), we see that the projection of φ(hg) onto Hj is a non-torsion
element for exactly one value of j.

Furthermore, if h′ is another non-torsion element of the same Li, then CL(〈h, h′〉) has
finite index in the direct product of a (possibly finite) virtually cyclic group and n − 1
non-elementary hyperbolic groups, and again the same applies to CL(〈hg, h′g〉). It follows
that the unique subgroup Hj onto which the projection of φ(hg) is a non-torsion element
is the same as that onto which the projection of φ(h′g) is a non-torsion element; hence
we may denote that subgroup by Hig . We notice too that we can find an integer r
for which the projections of φ((hg)r) = φ((hr)g) onto all subgroups Hj apart from Hig

are trivial. So we have hr ∈ Li, and (hr)g ∈ Lig . Of course, for all g′, we also have
φ(((hr)gg

′
)) = φ(((hr)g)g

′
). It follows that the unique subgroup Hr onto which the

projection of φ(hr)gg
′

is a non-torsion element is identified both as Higg′ and as H(ig)g′ ,

and so we see that, for all g, g′ we have igg
′

= (ig)g
′
.

Now, for any element h ∈ Li, whether or not it is a torsion element, and for any j 6= ig,
the projection of φ(hg) onto Hj is a torsion element. So the projection of φ(Lgi ) onto Hj

is a torsion group and hence, by Lemma 4.1 is finite. Now let Pi denote the intersection
of the kernels of all homomorphisms θ : Li → Hi for which |θ(Li)| <∞. If h ∈ Pi, then
φ(hg) ∈ Hig and hence hg ∈ Lig . Also, since by Lemma 4.1 there is a bound on the
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orders of finite subgroups of Hi, |Li : Pi| is finite.

Finally, let Ki = {h ∈ Li | hg ∈ Lig ∀g ∈ G}. Then it is straightforward to check that
Ki is a subgroup of G and, since Pi ≤ Ki, we see that |Li : Ki| is finite; hence Ki is
isomorphic to a subgroup of finite index in Hi. It follows from the statement igg

′
= (ig)g

′

that Kg
i ≤ Kig for all i and g and then, since (Kig)g

−1 ≤ Ki, we must have Kg
i = Kig .

So we have proved that {K1, . . . ,Kn} is a union of orbits under the conjugation action
of G.

This completes the proof.

Lemma 4.5. Let G be a finite group, let V be a finite dimensional torsion-free ZG-
module, and W a submodule. Then there exists a ZG-submodule U of V with U∩W = {0}
such that V/(U ⊕W ) is finite.

Proof. Let V̂ = V ⊗Q and Ŵ = W⊗Q be the corresponding QG-modules. By Maschke’s
therem, there exists a QG-submodule Û of V̂ with V̂ = Û⊕Ŵ . Let e1, . . . , en be a Z-basis
of V , which we may consider also as a Q-basis of V̂ . We can choose a basis u1, . . . , uk
of Û such that the matrices representing the action of G have integer entries. Define
λij ∈ Q by ui =

∑n
j=1 λijej . Let m be a common multiple of the denominators of all

the λij , and define U ⊆ V to be the Z-module generated by the elements µi, . . . , µk of

Û . Then U ⊕W has rank n, and so must have finite index in V .

Proof of Theorem 3.1. Let G be as in the hypothesis of the theorem. Then, by Propo-
sition 4.4, G has a normal subgroup K of finite index, such that K ∼= B ×K1 × · · ·Kn,
where B ≤ A with |A : B| finite, each Ki is isomorphic to a finite index subgroup of Hi,
and the set {B,K1, . . . ,Kn} is a union of orbits under conjugation by G. Now all groups
in FIN(B) are virtually abelian, and all groups in FIN(Ki) are hyperbolic for each i, so
systems of equations and inequations with recognisable constraints are decidable in all
groups in either FIN(B) or FIN(Ki) (any i). The result now follows by Theorem 3.3. �
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