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Abstract

We investigate closure results for C-approximable groups, for certain
classes C of groups with invariant length functions. In particular we
prove, each time for certain (but not necessarily the same) classes C that:
(i) the direct product of two C-approximable groups is C-approximable;
(ii) the restricted standard wreath product G ≀H is C-approximable when
G is C-approximable and H is residually finite; and (iii) a group G with
normal subgroup N is C-approximable when N is C-approximable and
G/N is amenable. Our direct product result is valid for LEF, weakly
sofic and hyperlinear groups, as well as for all groups that are approx-
imable by finite groups equipped with commutator-contractive invariant
length functions (considered in [18]). Our wreath product result is valid
for weakly sofic groups, and we prove it separately for sofic groups. We
note that this last result has recently been generalised by Hayes and Sale,
who prove in [11] that the restricted standard wreath product of any two
sofic groups is sofic. Our result on extensions by amenable groups is valid
for weakly sofic groups, and was proved in [8, Theorem 1 (3)] for sofic
groups N .
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1 Introduction

Our interest in C-approximable groups stems from the fact that, by making
an appropriate choice of the class C, the definition of a C-approximable group
equates to that of one of a variety of classes of groups currently of interest, in-
cluding sofic groups, hyperlinear groups, weakly sofic groups, linear sofic groups,
and LEF groups. Hence techniques that apply to one such class can often be
applied to another. In this article we develop some general techniques to es-
tablish some closure properties for many of these classes, specifically for direct
products, for wreath products with residually finite groups, and for extensions
by amenable groups. We shall refer to closure results in the literature, mostly
for specific classes of C-approximable groups; in some cases our proofs have been
inspired by the proofs of those. We are grateful to the anonymous referee of the
paper for a careful reading and several helpful comments and corrections.
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Our definition of a C-approximable group is taken from [18, Definition 1.6]
and specialises to the definitions of sofic and hyperlinear groups in [4]; we shall
discuss some of the alternative definitions later on in this section. Our definition
requires the concept of an invariant length function on a groupK; that is, a map
ℓ : K → [0, 1] such that, for all x, y ∈ K:

ℓ(x) = 0 ⇐⇒ x = 1, ℓ(x−1) = ℓ(x),

ℓ(xy) ≤ ℓ(x) + ℓ(y), ℓ(xyx−1) = ℓ(y).

Every group admits the trivial length function ℓ0 defined by ℓ0(x) = 1 if x 6= 1,
ℓ0(1) = 0, and may admit many others. The Hamming norm, which computes
the proportion of points moved by a permutation of a finite set, gives an invariant
length function for finite symmetric groups.

In the following definition C is understood to be a set of pairs, each pair con-
sisting of a group K together with an invariant length function ℓK on K; so the
same group may occur in C with more than one length function. For a group
K, the statement K ∈ C means that K is the group in at least one such pair.

Definition 1.1. 1. For a group G, a map δ : G→ R (for which we write δg
rather than δ(g)) is a weight function for G if δ1 = 0 and δg > 0 for all
1 6= g ∈ G.

2. Let G be a group with weight function δ, let K be a group with invariant
length function ℓK, let ǫ > 0, and let F be a finite subset of G. Then the
map φ : G→ K is a (F, ǫ, δ, ℓK) quasi-homomorphism if:

φ(1) = 1;

∀g, h ∈ F , ℓK(φ(gh)φ(h)−1φ(g)−1) ≤ ǫ; and

∀g ∈ F \ {1}, ℓK(φ(g)) ≥ δg.

3. Let C be a class of groups with associated invariant length functions. Then
a group G is C-approximable if it has a weight function δ, such that, for
each ǫ > 0 and for each finite subset F of G, there exists an (F, ǫ, δ, ℓK)-
quasi-homomorphism φ : G→ K for some (K, ℓK) ∈ C.

Since these conditions cannot possibly be satisfied if δg > 1 for some g ∈ G, we
shall always assume that δg ≤ 1.

In particular, sofic groups are precisely those groups that are C-approximable
with respect to the class C of finite symmetric groups with length function
defined by the Hamming norms, and with weight functions of the form δg = c
for all 1 6= g ∈ G, for some fixed constant c > 0; see [14, Theorem 5.2].

The (normalised) Hilbert-Schmidt norm on the set of n × n complex matrices
A = (aij) is defined by

||(aij)||HSn
:=

√

1

n

∑

i,j

|aij |2 =

√

1

n
Tr(A∗A).

The hyperlinear groups are precisely those groups that are C-approximable with
respect to the class C of finite dimensional unitary groups with length function
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defined by ℓ(g) = 1
2 ||g− In||HSn

, and with the same weight functions as for sofic
groups; see [14, Theorem 4.2]. Furthermore, weakly sofic groups, linear sofic
groups and LEF groups can all be defined as C-approximable groups, where
the classes C are (respectively) the class F of all finite groups equipped with
all associated invariant length functions, the groups GLn(C) equipped with the
norm ℓ(g) = 1

n rk(In − g) [2], and the finite groups equipped with the trivial
length function. We refer the reader to [1, 5, 8, 9, 13, 17] for a number of
closure results involving various of these classes of groups.

Following [18] we say that an invariant length function ℓ : K → [0, 1] is
commutator-contractive if it satisfies the condition

ℓ([x, y]) ≤ 4ℓ(x)ℓ(y), ∀x, y ∈ K.

Note that the trivial length function is commutator-contractive. Let FC be
the class of all finite groups, each equipped with all commutator-contractive
length functions. The main result of [18] is that Higman’s group [12] is not
FC -approximable. This group is widely seen as a candidate for a first example
of a non-sofic group.

There are many variations in the literature of the definition of a C-approximable
group, not all of which are believed to be equivalent in general to our basic
definition, although the paucity of known examples of groups that are not C-
approximable makes it difficult to prove their inequivalence.

Some definitions, such as [10, Definitions 1,2] and [17, Section 2] allow invariant
length functions to take values in [0,∞) rather than in [0, 1]. This does not
affect the classes of sofic, hyperlinear, linear sofic and LEF groups, since the
length functions used in these classes all have range [0, 1]. It is also easily seen
that the class of weakly sofic groups is not changed by this variant since, if a
group is weakly sofic using length functions with range [0,∞), and ℓK is such a
length function on a finite group K, then simply by replacing ℓK(g) by the new
length function max(ℓK(g), 1), we can show that G is weakly sofic using length
functions with range [0, 1]. So this variation in the range of permissible length
functions does not appear to us to be significant.

The more substantial variants involve the condition

∀g ∈ F, ℓK(φ(g)) ≥ δg

in the definition of C-approximability. These are discussed in [17, Section 2].
The group G is said to have the discrete C-approximation property if the weight
function for G can be chosen to be constant on all non-identity elements. It is
said to have the strong discrete C-approximation property if the condition above
is replaced by

∀g ∈ F, ℓK(φ(g)) ≥ diam(K)− ǫ

where diam(K) is defined to be sup{ℓK(x) : x ∈ K}, and ǫ is as in Defi-
nition 1.1(3). By choosing the weight function δg = diam(G)/2 for all g ∈
G \ {1}, we see immediately that the strong discrete C-approximation property
implies the discrete C-approximation property, which clearly implies that G is C-
approximable using our definition. But the converse implications are not clear,
and may not hold in general.
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The definition given for sofic groups in [8] enforces the strong discrete approxi-
mation property. But it is shown in [4, Exercise II.1.8] that, for this class, any
C-approximable group has the strong discrete C-approximation property.

It is proved in [2, Proposition 5.13] that linearly sofic groups have the discrete
C-approximation property, but it appears to be unknown whether they have the
strong discrete C-approximation property.

Hyperlinear groups do not have the strong C-approximation property, and we
are grateful to the referee for pointing this out to us. The diameter of the unitary
group U(n) with length function defined as above by ℓ(g) = 1

2 ||g − In||HSn
is 1.

By using the identity

||g − h||2HSn
+ ||g + h||2HSn

= 4

for g, h ∈ U(n) and putting h = In, we see that, if 1 − ℓ(g) is small, then g is
close to −In with respect to the Hilbert-Schmidt metric. So if 1 − ℓ(g1) and
1 − ℓ(g2) are both small, then g1g2 is close to In and hence ℓ(g1g2) is close to
0. It follows that a hyperlinear group with the strong discrete C-approximation
property must be finite with order at most 2.

What is true for hyperlinear groups is that, for any finite F ⊆ G and ǫ > 0,
there exists an approximately multiplicative map φ : G → U(n) for which
|Tr(φ(g))/n| < ǫ for all g ∈ F \ {1}. This was first proved by Elek and Szabo in
[7] using ideas introduced by Rădulescu in [16].

It is not difficult to show that the classes of F -approximable (i.e. weakly sofic)
and FC-approximable groups both have the strong discrete C-approximation
property. For a finite subset F of a group G in one of these two classes, and
ǫ > 0, let c = min{δg : g ∈ F}, and let φ : G → K be a (F, cǫ, δ, ℓK)-
quasi-homomorphism. Then, by replacing ℓK by the length function ℓ′K(x) :=
min(ℓK(x)/c, 1), which is commutator-contractive if ℓK is, we see that φ is a
(F, ǫ, δ, ℓ′K) quasi-homomorphism for which ℓ′K(φ(g)) = 1 for all g ∈ F , so G
has the strong discrete C-approximation property.

We prove our closure results for direct products, wreath products, and exten-
sions by amenable groups in Sections 2, 3 and 4, and 5, respectively. To prove
the last of these, on extensions of C-approximable groupsN by amenable groups,
we need to assume that the group N has the discrete C-approximation prop-
erty. For each of our closure results, it is straightforward to show that, if the
groups that are assumed to be C-approximable have the discrete or the strong
discrete C-approximation property, then so does the group G that is proved to
be C-approximable.

Concerning free products, we note that it is proved in [8, Theorem 1], [17,
Theorem 5.6] and [15, 19], respectively, that the classes of sofic, linear sofic
and hyperlinear groups are closed under free products; further it is proved in [3]
that free products of hyperlinear groups amalgamated over amenable subgroups
are hyperlinear. We thank the referee for bringing to our attention the results
for hyperlinear groups. We are unaware of any corresponding results for weakly
sofic groups, and our efforts to prove such a result have so far been unsuccessful.
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2 The direct product result

In order to state and prove our closure result for direct products of C-approximable
groups, we need to construct an appropriate invariant length function for the
direct product of two groups in C. Suppose that (J, ℓJ), (K, ℓK) ∈ C. Then, for
p ∈ N ∪ {∞}, we define the functions LpℓJ ,ℓK : J ×K → [0, 1] by

LpℓJ ,ℓK (x, y) :=
p

√

ℓJ(x)p + ℓK(y)p

2
, p ∈ N

and L∞
ℓJ ,ℓK

(x, y) := max(ℓJ(x), ℓK(y)). We write just Lp(x, y) when there is no
ambiguity.

Note that Lp(x, y) ≤ L∞(x, y) ≤ 1 for all p ≥ 1.

It follows immediately from Minkowski’s inequality (basically the triangle in-
equality for the Lp norm) that Lp satisfies the rule

Lp(x1x2, y1y2) ≤ Lp(x1, y1) + Lp(x2, y2),

and hence is an invariant length function on J × K. As we shall see below,
we can use Lp (for some choice of p) to deduce the closure of C-approximable
groups under direct products provided that (J ×K,Lp) ∈ C.

Theorem 2.1. Let C be a class of groups with associated invariant length func-
tions and suppose that, for some fixed p ∈ N∪{∞}, and for any groups J,K ∈ C,

(J, ℓJ), (K, ℓK) ∈ C ⇒ (J ×K,Lp) ∈ C.

Then the direct product G × H of two C-approximable groups G and H is C-
approximable.

Proof. Suppose that C, p satisfy the conditions of the theorem.

Let G and H be C-approximable with associated weight functions δG and δH .
We define the weight function δG×H by

δG×H((g, h)) :=
p

√

δG(g)p + δH(h)p

2
.

Now suppose that ǫ > 0 is given, and let F be a finite subset of G ×H . Then
we can find finite subsets FG ⊆ G, FH ⊆ H such that F ⊆ FG × FH , pairs
(J, ℓJ), (K, ℓK) ∈ C, an (FG, ǫ, δ

G, ℓJ)-quasi-homomorphism φG : G → J , and
an (FH , ǫ, δ

H , ℓK)-quasi-homomorphism φH : H → K.

We define φ : G × H → M := J × K by φ((g, h)) := (φG(g), φH(h)) and
ℓM ((x, y)) := Lp((x, y)).

We verify easily that, for (g1, h1), (g2, h2) ∈ F , and hence g1, g2 ∈ FG, g2, h2 ∈
FH ,

ℓM (φ((g1g2, h1h2)φ(g2, h2)
−1φ(g1, h1)

−1)

= Lp((φG(g1g2)φG(g2)
−1φG(g1)

−1, φH(h1h2)φH(h2)
−1φH(h1)

−1)) ≤ ǫ,

and the other conditions are similarly verified.
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We can apply the result to deduce closure under direct products for the classes
of weakly sofic groups, LEF groups, hyperlinear groups, linear sofic groups and
Thom’s class of FC -approximable groups [18].

For weakly sofic groups, the condition holds for any p, and for LEF groups it
holds for p = ∞.

When ℓJ , ℓK are Hilbert-Schmidt norms in the same dimension n, the function
L2 matches the Hilbert-Schmidt norm in dimension 2n; observing that whenever
Gmaps by a quasi-homomorphism to a linear group in dimensionm it also maps
to a linear group in dimension rm, for any r, via a quasi-homomorphism with
the same parameters (the composite of the original quasi-homomorphism and a
diagonal map), we see that in essence the theorem applies with p = 2 to prove
closure under direct products for the class of hyperlinear groups. Similarly it
applies when p = 1 to prove closure under direct products for the class of linear
sofic groups.

But for Hamming norms ℓJ , ℓK , the function LpℓJ ,ℓK is not a Hamming norm,
and hence we cannot deduce the closure of the class of sofic groups under direct
products from this result.

Of course all of these specific closure results are already known, and the corre-
sponding result for sofic groups is proved in [8].

The following lemma together with Theorem 2.1 shows that the class of FC -
approximable groups is closed under direct products.

Lemma 2.2. Suppose that groups J,K have commutator-contractive length
functions ℓJ : J → [0, 1], ℓK : K → [0, 1]. Then L∞, as defined above, is a
commutator-contractive length function for their direct product.

Proof. Let (g1, h1), (g2, h2) ∈ G×H . Then

L∞([(g1, h1), (g2, h2)]) = L∞(([g1, g2], [h1, h2]))

= max(lJ ([g1, g2]), lK([h1, h2])) ≤ max(4lJ(g1)lJ (g2), 4lK(h1)lK(h2))

≤ 4max(lJ(g1), lK(h1))max(lJ(g2), lK(h2)) = 4L∞((g1, h1))L
∞((g2, h2)).

This result does not hold in general for Lp with p ∈ [1,∞).

3 The wreath product result

By definition the restricted standard wreath product W = G ≀H of two groups
G,H is a semi-direct product H ⋉ B. The base group B of W is the direct
product of copies of G, one for each h ∈ H , and is viewed as the set of all
functions b : H → G with finite support (that is, with b(h) trivial for all but
finitely many h ∈ H) Elements of B are multiplied component-wise; that is,
b1b2(h) = b1(h)b2(h) for b1, b2 ∈ B, h ∈ H . For b ∈ B, we denote by b−1
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the function in B defined by b−1(h) = b(h)−1. The (right) action of H on B
is defined by the rule bh(h′) = b(h′h−1); we often abbreviate (bh)−1 = (b−1)h

as b−h. So the elements of W have the form hb with h ∈ H , b ∈ B, and
(h1b1)(h2b2) = h1h2b

h2

1 b2, while (h, b)−1 = (h−1, b−h
−1

).

In order to state and prove our closure result for wreath products of C-approximable
groups, we need to construct an appropriate invariant length function for the
wreath product J ≀X of a group J ∈ C by a finite group X .

Where B′ is the base group of J ≀ X , we define ℓXJ : J ≀ X → [0, 1] as follows.
For b′ ∈ B′, we put

ℓXL (b′) = max
x∈X

ℓJ(b
′(x)),

and then, for x 6= 1, put
ℓXJ (xb′) = 1.

It is straightforward to verify that ℓXJ is an invariant length function.

Theorem 3.1. Let C be a class of groups with associated invariant length func-
tions and suppose that, for all (J, ℓJ) ∈ C and all finite groups X, the wreath
product (J ≀X, ℓXJ ) is in C. Suppose that the group G is C-approximable and the
group H is residually finite. Then the restricted standard wreath product G ≀H
is C-approximable.

Proof. Suppose that G is C-approximable with associated weight function δ, and
that H is residually finite, and let W = G ≀H be the restricted standard wreath
product. Let B be the base group.

We define the weight function β :W → R as follows:

βhb =

{

1 if h 6= 1
maxk∈H δb(k) otherwise.

Let ǫ > 0 be given, and let F = {hibi : 1 ≤ i ≤ r} be a finite subset of
W . Our aim is to find (K, ℓK) ∈ C and an (F, ǫ, βW , ℓK)-quasi-homomorphism
ψ :W → K.

Let E be a finite subset of H that contains

(i) hi for 1 ≤ i ≤ r;

(ii) all h ∈ H with bj(h) 6= 1 for some j with 1 ≤ j ≤ r; and

(iii) all h ∈ H with bj(hh
−1
i ) 6= 1 for some i, j with 1 ≤ i ≤ r, 1 ≤ j ≤ r.

Choose N EH with H/N finite such that the images in H/N of the elements
of E are all distinct and the images of E \ {1} are nontrivial.

Let D = {bj(h) : 1 ≤ j ≤ r, h ∈ H}. Then D is a finite subset of G so, by our
definition of C-approximability, for a given ǫ > 0, there exists (J, ℓJ) ∈ C, and a
(D, ǫ, δ, ℓJ)-quasi-homomorphism φ : G→ J .

We will approximate W by K := J ≀ (H/N), and let ℓK be the length function

ℓ
H/N
J defined above. Let B′ be the base group of K, that is, the group of finitely
supported functions from H/N to J .
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We define ψ : W → K as follows. Suppose that b ∈ B, and h, k ∈ H . Note
that our choice of N ensures that E ∩ kN is either empty or consists of a single
element k′ ∈ kN . We let ψ(hb) := h̄b̂, where we write h̄ for hN and b̂ : H/N → J
is defined by the rule

b̂(kN) =

{

1 when E ∩ kN = ∅
φ(b(k′)) when E ∩ kN = {k′}.

We claim that ψ has the appropriate properties. Certainly ψ(1) = 1.

We first verify the required lower bound on ℓK(ψ(hb)) for elements hb ∈ F . If
h 6= 1 then our choice of N ensures that h̄ 6= 1, and so ℓK(ψ(hb)) = 1 = βhb.

If h = 1, then (where the maximum of an empty set of numbers in [0, 1] is
defined to be 0),

ℓK(ψ(hb)) = ℓK(ψ(b)) = ℓK(b̂)

= max
kN∈H/N :{k′}:=kN∩E 6=∅

ℓJ(φ(b(k
′)))

= max
k′∈E

ℓJ(φ(b(k
′)))

≥ max
k′∈E

δb(k′) = max
k′∈H

δb(k′) = βb.

The equality of the two maxima in the final line follows from the definition of
E, which ensures that b(k) = 1 for any k ∈ H \ E and hence that, for such k,
δb(k) = 0.

It remains to show that, for hibi, hjbj ∈ F ,

lK(ψ(hibihjbj)(ψ(hibi)ψ(hjbj))
−1) ≤ ǫ.

We have

ψ(hibihjbj) = ψ(hihjb
hj

i bj) = hihj
̂
b
hj

i bj , and

ψ(hibi)ψ(hjbj) = (h̄ib̂i)(h̄j b̂j) = h̄ih̄j b̂
h̄j

i b̂j.

Since lK is invariant under conjugation, the length we need is that of the element

b′ :=
̂
b
hj

i bj b̂
−1
j (b̂

h̄j

i )−1

of B′. By definition, ℓK(b′) = maxkN∈H/N ℓJ(b
′(kN)). So choose a coset kN .

We want to bound ℓJ(b
′(kN)) for each such choice. We have

b′(kN) =
̂
b
hj

i bj(kN)(b̂j(kN))−1(b̂
h̄j

i (kN))−1

=
̂
b
hj

i bj(kN)(b̂j(kN))−1(b̂i(kh
−1
j N))−1

=











(b̂i(kh
−1
j N))−1 if (1): kN ∩ E = ∅,

φ(bi(k
′h−1
j )bj(k

′))(φ(bj(k
′)))−1

×(b̂i(kh
−1
j N))−1 if (2): kN ∩ E = {k′},
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since in Case 1 we have
̂
b
hj

i bj(kN) = b̂j(kN) = 1, and in Case 2, we have
̂
b
hj

i bj(kN) = φ((b
hj

i bj)(k
′)) = φ(bi(k

′h−1
j )bj(k

′)), and b̂j(kN) = φ(bj(k
′)).

When E ∩ kh−1
j N = ∅, we have b̂i(kh

−1
j N) = 1. In that case, by the definition

of E, we also have bi(k
′h−1
j ) = 1 and so, in both Case 1 and Case 2, we deduce

that b′(kN) = 1 and ℓJ(b
′(kN)) = 0.

Otherwise E ∩ kh−1
j N is non-empty, and its single element is equal to k′′h−1

j ,
for some k′′ ∈ kN .

Suppose first that bi(k
′′h−1

j ) = 1, and hence again we have b̂i(kh
−1
j N) = 1. If

we are in Case 2 then we must also have bi(k
′h−1
j ) = 1, since if bi(k

′h−1
j ) 6= 1,

then Condition (ii) of the definition of E gives k′h−1
j ∈ E, and so k′ = k′′,

contradicting bi(k
′′h−1

j ) = 1. Then, just as above, we see that in both Cases 1
and 2 we again get b′(kN) = 1 and ℓJ(b

′(kN)) = 0.

Otherwise bi(k
′′h−1

j ) 6= 1 and Condition (iii) of the definition of E gives k′′ ∈ E
and hence we are in Case 2 with k′ = k′′. Then

b′(kN) = φ(bi(k
′h−1
j )bj(k

′))φ(bj(k
′)−1φ(bi(k

′h−1
j ))−1.

Since φ was assumed to be a (D, ǫ, δ, ℓJ)-quasi-homomorphism, we have
ℓJ(b

′(kN)) ≤ ǫ and, since this is true for all kN ∈ H/N , we get ℓK(b′) ≤ ǫ
as required.

The conditions of the theorem clearly hold for the class F , as well as for finite
groups equipped with the trivial length function, and hence the classes of weakly
sofic and LEF groups are both closed under restricted wreath products with
residually finite groups. The following lemma together with Theorem 2.1 shows
that the class of FC-approximable groups is also closed under restricted wreath
products with residually finite groups.

Lemma 3.2. Let J be a group equipped with an invariant function ℓJ . If ℓJ is
commutator-contractive, then so is ℓXJ , for any finite group X.

Proof. We consider the commutator of two elements x1b1 and x2b2 in J .

First suppose that x1 and x2 are both non-trivial. In this case ℓXJ (x1b1) =
ℓXJ (x2b2) = 1 and so the inequality holds trivially.

Now suppose that x1 = x2 = 1. Then

ℓXJ ([b1, b2]) = max
x∈X

ℓJ([b1, b2](x)) = max
x∈X

ℓJ([b1(x), b2(x)])

≤ 4max
x∈X

ℓJ(b1(x))ℓJ (b2(x))

≤ 4max
x∈X

ℓJ(b1(x))max
y∈X

ℓJ(b2(y)) = 4ℓXJ (b1)ℓ
X
J (b2)
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Finally suppose that x1 = 1, x2 6= 1 (the other case is very similar). Then

ℓXJ ([b1, x2b2]) = ℓXJ (b−1
1 b−1

2 x−1
2 b1x2b2) = ℓXJ (b−1

1 b−1
2 bx2

1 b2)

= max
x∈X

ℓJ(b1(x)
−1b2(x)

−1bx2

1 (x)b2(x))

= max
x∈X

ℓJ(b1(x)
−1b2(x)

−1b1(xx
−1
2 )b2(x))

≤ max
x∈X

(ℓJ(b1(x)
−1) + ℓJ(b2(x)

−1b1(xx
−1
2 )b2(x)))

= max
x∈X

(ℓJ(b1(x)
−1) + ℓJ(b1(xx

−1
2 )))

≤ max
x∈X

(ℓJ(b1(x)
−1)) + max

y∈X
(ℓJ(b1(y)))

≤ 2max
x∈X

(ℓJ(b1(x)
−1) = 2ℓXJ (b1)

4 The wreath product result for sofic groups

We prove now the corresponding result for sofic groups. For this, we are not
free to choose our own norm function on the wreath product, but we must use
the Hamming distance norm. The proof is nevertheless very similar in structure
to that of Theorem 3.1. We use the definition of sofic groups given in [8] where,
rather than having a weight function on the group G, we require that, for finite
F ⊆ G, the proportion of moved points of elements of F \ {1} in a (F, ǫ)-quasi-
action of G on a finite set is at least 1− ǫ.

We note that this result has recently been generalised by Hayes and Sale, who
prove in [11] that the restricted standard wreath product of any two sofic groups
is sofic.

Theorem 4.1. The restricted standard wreath product G ≀H of a sofic group G
and a residually finite group H is sofic.

Proof. Assume that G is sofic and H is residually finite, and let W = G ≀H be
the restricted standard wreath product. So, as in the proof of Theorem 3.1, W
is the semidirect product of its base group B by H .

Let F = {hibi : 1 ≤ i ≤ r} be a finite subset of W . Then, for a given ǫ > 0, we
need to find a (F, ǫ)-quasi-action of W on some finite set Y .

We define the finite subset E of H , the normal subgroup N of H , and the finite
subset D of G exactly as in the proof of Theorem 3.1. So, in particular, for any
k ∈ H , E ∩ kN is either empty or consists of a single element k′ ∈ kN . Let
m = |H/N |.

Then, by [8, Lemma 2.1], for a given ǫ > 0, there is a (D, ǫ/m)-quasi-action
φ : G→ Sym(X) of G on some finite set X , and we may assume that φ(1) = 1.
Since we can choose both m and X to be arbitrarily large for given D and ǫ,
we may assume that |X |−m/2 < ǫ.
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Let Y = XH/N be the set of functions δ : H/N → X . So |Y | = |X |m. We
define ψ : W → Sym(Y ) as follows. (The image of ψ is contained in the
primitive wreath product of Sym(X) and H/N , as defined in [6, Section 2.6].)

For b ∈ B, h, k ∈ H , δψ(hb)(kN) := δ(kh−1N)τ(b,k), where

τ(b, k) :=

{

1 when E ∩ kN = ∅
φ(b(k′)) when E ∩ kN = {k′}.

We claim that ψ is a (F, ǫ)-quasi-action ofW on Y . Observe first that ψ(1) = 1.

We check next that, for each hibi ∈ F \{1}, ψ(hibi) is (1−ǫ)-different from 1. If
hi 6= 1 then, by assumption, hi 6∈ N , so kh−1

i N 6= kN for all kN ∈ H/N . So, if
δ ∈ Y is a fixed point of ψ(hibi), then the value of δ(kN) is uniquely determined
by that of δ(kh−1

i N) for each kN ∈ H/N , so the proportion of fixed points is
at most |X |m/2/|X |m = |X |−m/2, which we assumed to be less than ǫ.

If, on the other hand, hi = 1 and bi 6= 1, then there exists h ∈ E with bi(h) 6= 1.
Now an element δ ∈ Y is fixed by ψ(hibi) = ψ(bi) if and only if δ(kN) is fixed
by τ(b, k) for all kN ∈ H/N . Hence, in particular, for a fixed point δ, we have
δ(hN) = δ(hN)τ(bi,h), and so δ(hN) is a fixed point of τ(bi, h) = φ(bi(h)). Since
the proportion of such points in X is, by assumption, at most ǫ, the same is
true for ψ(bi).

Finally we need to verify that ψ(hibi)ψ(hjbj) is ǫ-similar to ψ(hihjb
hj

i bj) for
each i, j with 1 ≤ i, j ≤ r; that is, that the two permutations agree on at least
a proportion 1− ǫ of the points.

Now

δψ(hibi)ψ(hjbj)(kN) = (δψ(hibi)(kh−1
j N))τ(bj ,k) = δ(kh−1

j h−1
i N)τ(bi,kh

−1

j
)τ(bj,k),

and

δψ(hihjb
hj

i
bj)(kN) = δ(kh−1

j h−1
i N)τ(b

hj

i
bj ,k),

so we need to compare τ(bi, kh
−1
j )τ(bj , k) with τ(b

hj

i bj , k).

The argument is very similar to that in the analogous part of the proof of
Theorem 3.1 We are in one of two cases. Either

(1) E ∩ kN = ∅, in which case τ(bj , k) = τ(b
hj

i bj , k) = 1, or

(2) E ∩ kN = {k′}, for some k′ ∈ K, and so τ(bj , k) = φ(bj(k
′)), and

τ(b
hj

i bj , k) = φ((b
hj

i bj)(k
′)) = φ(bi(k

′h−1
j )bj(k

′)).

When E ∩ kh−1
j N = ∅, then bi(k

′h−1
j ) = 1 and, in both Case 1 and Case 2,

τ(bi, kh
−1
j )τ(bj , k) = τ(b

hj

i bj , k).

Otherwise, E ∩ kh−1
j N = {k′′h−1

j } for some k′′ ∈ kN .

Suppose first that bi(k
′′h−1

j ) = 1. If we are in Case 2 then bi(k
′h−1
j ) = 1, since

otherwise, just as in the proof of Theorem 3.1, Condition (ii) of the definition
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of E gives k′h−1
j ∈ E, and so k′ = k′′, and we have a contradiction. Hence, in

both Case 1 and Case 2 we again have τ(bi, kh
−1
j )τ(bj , k) = τ(b

hj

i bj, k).

Otherwise bi(k
′′h−1

j ) 6= 1, and then, again just as in the proof of Theorem 3.1,
Condition (iii) of the definition of E gives k′′ ∈ E. Hence we are in Case 2 and
k′ = k′′. Then

τ(bi, gh
−1
j )τ(bj , g) = φ(bi(k

′h−1
j ))φ(bj(k

′))

and
τ(b

hj

i bj, g) = φ(bi(k
′h−1
j )bj(k

′)).

Since bi(k
′h−1
j ), bj(k

′) ∈ D, our assumption that φ is a (D, ǫ/m)-quasi-action
implies that the proportion of the points of X on which the permutations
φ(bi(k

′h−1
j )bj(k

′)) and φ(bi(k
′h−1
j ))φ(bj(k

′)) have the same image is at least
1− ǫ/m.

It follows that the proportion of elements δ ∈ Y with δψ(hibi)ψ(hjbj)(kN) =

δψ(hihjb
hj

i
bj)(kN) is at least 1 − ǫ/m. But δψ(hibi)ψ(hjbj) = δψ(hihjb

hj

i
bj) if and

only if they take the same values on all kN ∈ H/N , and the proportion of δ ∈ Y
for which this is true is at least 1− ǫ.

5 Extensions by amenable groups

In Section 3 we defined the restricted standard wreath product G ≀H of groups
G,H . In this section, we shall need wreath products by permutation groups.
For a group K and a finite set A, we define the permutation wreath product
W = K ≀ Sym(A) as W = Sym(A) ⋉ B where the base group is now the set of
all functions b : A → K. As before we define b1b2(a) := b1(a)b2(a) for b1, b2 ∈

B, a ∈ A, and we define the action of Sym(A) on B by the rule bα(a) = b(aα
−1

),
for α ∈ Sym(A), a ∈ A. Much as before, elements of the wreath product are
represented as pairs (α, b) with α ∈ Sym(A), b ∈ B, multiplied according to the

rule (α1, b1)(α2, b2) = (α1α2, b
α2

1 b2), and with (α, b)−1 = (α−1, b−α
−1

).

In general the length function for finite wreath products that we used in the
proof of Theorem 3.1 is not suitable for the proof of Theorem 5.1 below. So we
need to define a different one.

Given an invariant length function ℓK on K, we can define an invariant length
function ℓ̂AK on W by

ℓ̂AK((α, b)) =
1

|A|





∑

a∈A:aα=a

ℓK(b(a)) +
∑

a∈A:aα 6=a

1





Most of the conditions for ℓ̂AK to be an invariant length function are straightfor-
ward consequences of the conditions on ℓK . The verification of

ℓ̂AK((α1α2, b
α2

1 b2)) ≤ ℓ̂AK((α1, b1)) + ℓ̂AK((α2, b2))
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may require a little more thought. For this, we consider the terms correspond-
ing to the various a ∈ A in the three sums that make up ℓ̂AK((α1α2, b

α2

1 b2)),

ℓ̂AK((α1, b1)), and ℓ̂AK((α2, b2)). We see that, for each a ∈ A with aα1 6= a or

aα2 6= a, the term in ℓ̂AK((α1α2, b
α2

1 b2)) is at most 1/|A|, but at least one of the

two non-negative terms in ℓ̂AK((α1, b1)) and ℓ̂AK((α2, b2)) is equal to 1/|A|. On
the other hand, for a ∈ A with aα1 = a and aα2 = a, the term corresponding to
a in ℓ̂AK((α1α2, b

α2

1 b2)) is

1

|A|
ℓK(bα2

1 (a)b2(a)) =
1

|A|
ℓK(b1(a)b2(a)) ≤

1

|A|
(ℓK(b1(a)) + ℓK(b2(a)),

which is the corresponding term in ℓ̂AK((α1, b1)) + ℓ̂AK((α2, b2)).

Theorem 5.1. Let C be a class of groups with associated invariant length func-
tions and suppose that, for all (K, ℓK) ∈ C and all finite sets A, the wreath

product (K ≀ Sym(A), ℓ̂AK) is in C. Suppose that the group G has a normal sub-
group N with the discrete C-approximation property (as defined in Section 1)
such that G/N is amenable. Then G has the discrete C-approximation property.

This result is already proved for sofic groups [8, Theorem 1 (3)] and linear
sofic groups [17, Theorem 5.3]. However, in order to avoid confusion we should
comment that, while the above result considers extensions G of C-approximable
normal subgroups N with G/N amenable, by contrast, [1, Theorem 7] considers
extensionsG of finitely generated residually finite normal subgroupsN for which
G/N is in a selected class R of groups (including groups that are residually
amenable groups, LEF, LEA, sofic or surjunctive) .

Proof. The proof is based on the corresponding proof in [8, Theorem 1 (3)] for
sofic groups N .

By assumption, the normal subgroup N of G is C-approximable using a weight
function δ that takes a constant value c on all elements of N \ {1}. Since we
can reduce the value of c without affecting the C-approximability of N , we may
assume that c < 1. If N 6= {1} then we define the weight function β of G by
βg = c for all g 6= 1, and if N = {1}, then we define β by βg =

1
2 for all g 6= 1.

For g ∈ G, let ḡ be the homomorphic image of g in G/N and let σ : G/N → G
be a section (so σ(h) = h for all h ∈ G/N), where σ(1̄) = 1. We can lift σ to a
map from G to G for which the image of g ∈ G is σ(g); we shall abuse notation
and call that map σ as well.

To verify the C-approximability condition on G, let F be a finite subset of G
and let ǫ > 0. We may assume that ǫ < min(1/2, 1− c).

The amenability of G/N ensures the existence of a finite subset A of G/N
containing the identity element such that |Aḡ \A| ≤ ǫ|A| for all g ∈ F ∪ F−1 ∪
F 2 ∪ F−2. Let A = σ(A); note that all points of A are fixed by the map
σ : G→ G. We define a map φ : G→ Sym(A) as follows:

for g ∈ G, a ∈ A, aφ(g) :=

{

σ(ag), if ag ∈ A
any choice with φ(g) ∈ Sym(A), otherwise.
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Let E = N ∩ (A · F · A−1). The C-approximability of N ensures the existence
of an (E, ǫ, δ, ℓK)-quasi-homomorphism ψ : N → K with (K, ℓK) ∈ C.

Now we let W = K ≀ Sym(A) = Sym(A) ⋉ B and define Φ : G → W by
Φ(g) = (φ(g), b) where, for a ∈ A, b(a) = ψ(σ(ag−1)ga−1).

We show first that ℓ̂AK(Φ(g)) ≥ βg for g ∈ F . If g 6∈ N then, since φ(g) moves

all points a ∈ A for which ag ∈ A, we have ℓ̂AK(Φ(g)) ≥ 1 − ǫ > 1/2 = δg. If

g ∈ N \ {1} then ag−1 = a, so σ(ag−1) = a for all a ∈ A, and ℓ̂AK(Φ(g)) is the
average over a ∈ A of ℓK(ψ(aga−1)). But since each aga−1 ∈ E \ {1}, these all
exceed δg.

Now let g, h ∈ F . We aim to show that ℓ̂AK(Φ(gh)Φ(h)−1Φ(g)−1) ≤ 5ǫ.

For a ∈ A, we have

Φ(g) = (φ(g), b), where b(a) = ψ(σ(ag−1)ga−1)
Φ(h) = (φ(h), c), where c(a) = ψ(σ(ah−1)ha−1)
Φ(gh) = (φ(gh), d), where d(a) = ψ(σ(ah−1g−1)gha−1)

Φ(g)Φ(h) = (φ(g)φ(h), bφ(h)c),

where (bφ(h)c)(a) = bφ(h)(a)c(a) = b(aφ(h)
−1

)c(a)

= ψ(σ(aφ(h)
−1

g−1)ga−φ(h)
−1

) × ψ(σ(ah−1)ha−1),

(where, for a, k ∈ G, we write a−k as shorthand for (a−1)k = (ak)−1). Then

Φ(gh)(Φ(g)Φ(h))−1 = (φ(gh), d)(φ(g)φ(h), bφ(h)c)−1

= (φ(gh), d)((φ(g)φ(h))−1 , (bφ(h)c)−(φ(g)φ(h))−1

)

= (φ(gh)(φ(g)φ(h))−1 , (d(bφ(h)c)−1)(φ(g)φ(h))
−1

).

Now, for a proportion of at least 1 − 2ǫ of the points a ∈ A, we have both
ah−1 ∈ A and ah−1g−1 ∈ A. For those points a, we have aφ(h)

−1

= σ(ah−1)
and so the final expression for (bφ(h)c)(a) above becomes

ψ(σ(ah−1g−1)gσ(ah−1)−1)× ψ(σ(ah−1)ha−1),

and we see that the image of a under the second component of Φ(gh)(Φ(g)Φ(h))−1

is equal to a conjugate of

ψ(xy)ψ(y)−1ψ(x)−1,

where x = σ(ah−1g−1)gσ(ah−1)−1 and y = σ(ah−1)ha−1. The elements x, y are
both in the finite subset E of G, and hence, since ψ is a quasi-homomorphism,
ℓK(ψ(xy)ψ(y)−1ψ(x)−1) < ǫ, and we deduce that

ℓK((d(bφ(h)c)−1)(φ(g)φ(h))
−1

)(a)) < ǫ,

for at least a proportion 1− 2ǫ of the points of A.

Our choice of A ensures also that φ(gh)(φ(g)φ(h))−1(a) = a for at least a
proportion 1− 2ǫ of the points a of A.
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Now, for at least a proportion 1− 4ǫ of the points of A, the conditions of both
of the last two paragraphs hold, and so we can deduce

ℓ̂AK(Φ(gh)Φ(h)−1Φ(g)−1) < ǫ(1− 4ǫ) + 4ǫ < 5ǫ.

In particular, by taking C = F with each K ∈ F associated with all possible
length functions, we see that that the class of weakly sofic groups is closed under
extension by amenable groups.

In general, ℓK commutator-contractive does not imply that ℓ̂AK is commutator-
contractive. But if, instead, we define ℓAK as we did in Section 3 (that is, for
b ∈ B, ℓAK(b) = maxa∈A ℓK(b(a)), and ℓAK(αb) = 1 when 1 6= α ∈ Sym(A)) then,
as we proved in Lemma 3.2, ℓAK is commutator-contractive.

Our proof of Theorem 5.1 does not always work with this commutator-contractive
norm, but it does work if φ : G/N → A is a homomorphism. In particular, when
G/N ∼= (Z,+), we can choose A to be {x ∈ Z : −m ≤ x ≤ m} for some m and
define φ to be addition modulo 2m+1. So, by applying this repeatedly, we have

Proposition 5.2. The class of Fc-approximable groups is closed under exten-
sion by polycyclic groups.
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