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Abstract

We prove that many Artin groups of large type satisfy the rapid de-
cay property, including all those of extra-large type. For many of these,
including all 3-generator groups of extra-large type, a result of Lafforgue
applies to show that the groups satisfy the Baum-Connes conjecture with-
out coefficients.

Our proof of rapid decay combines elementary analysis with combi-
natorial techniques, and relies on properties of geodesic words in Artin
groups of large type that were observed in [17] by two of the authors of
this current article.
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1 Introduction

An Artin group G is defined to be a finitely generated group with presentation

〈x1, . . . , xn | mij
(xi, xj) = mij

(xj , xi) for each i 6= j with mij <∞〉,

where the integers mij are the entries in a Coxeter matrix (a symmetric n× n
matrix over N ∪ {∞}, with mii = 1, and mij ≥ 2 for all i 6= j), and, for
generators x, y and m ∈ N, the word m(x, y) is defined to be the product of
m alternating x’s and y’s that starts with x. The associated Coxeter group is
defined by adding the relations x2i = 1 for all i.

A Coxeter matrix can be specified using an undirected labelled graph Γ with
n vertices and an edge labelled mij between distinct vertices i and j whenever
mij < ∞, but no edge between i and j if mij is infinite. (We note that an
alternative and widely used convention deletes instead edges labelled 2 and
leaves those with infinite labels.) We denote the Artin group defined in this
way by G(Γ).

The Artin group G is said to be of large type if mij ≥ 3 for all i 6= j, and
of extra-large type if mij ≥ 4 for all i 6= j. The concepts of large and extra-
large type for Artin groups were introduced by Appel and Schupp [2, 1], who
used small cancellation arguments to prove solubility of the word and conjugacy
problems, the embedding of parabolic subgroups, the freeness of the subgroups
〈x2i | 1 ≤ i ≤ n〉, and more, for these groups. An Artin group is said to be of
dihedral type if 2-generated, of spherical type if the associated Coxeter group is
finite, or of right-angled type if mij ∈ {2,∞} for all i, j.

The purpose of this paper is to prove the following two results.
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Theorem 1.1. Let G = G(Γ) be an Artin group of large type for which Γ has
no triangles with edge labels 3, 3,m with 3 ≤ m <∞. Then G satisfies the rapid
decay property. In particular, all Artin groups of extra-large type satisfy this
property.

Corollary 1.2. Let G = G(Γ) be an Artin group satisfying the hypotheses of
Theorem 1.1. Then G satisfies the Baum-Connes conjecture without coefficients
whenever one of the following holds.

1. G is 3-generated.

2. Γ is triangle-free.

3. The edges of Γ can be oriented in such a way that the oriented graph
contains no subgraph of either of the two types shown.

② ✲✡
✡
✡
✡
✡
✡
✡✡

✣

②❏
❏

❏
❏

❏
❏

❏❏

❫

②

② ✛

❄

②

✻

② ✲ ②

In particular, any large type Artin group G(Γ) for which Γ is triangle-free
satisfies the Baum-Connes conjecture without coefficients.

Following Jolissaint [18], we say that a finitely generated group G has the
rapid decay property (RD) if the operator norm ||.||∗ for the group algebra CG
is bounded by a constant multiple of the Sobolev norm ||.||s,r,ℓ, a norm that is
a variant of the l2 norm weighted by a length function for the group.

More precisely, rapid decay holds for G if there are constants C, r and a
length function ℓ on G such that for any φ, ψ ∈ CG,

||φ||∗ := sup
ψ∈CG

||φ ∗ ψ||2
||ψ||2

≤ C||φ||2,r,ℓ.

Here, φ ∗ ψ denotes the convolution of φ and ψ, ||.||2 is the standard l2 norm,
and ||.||2,r,ℓ the Sobolev norm of order r, with respect to the length function ℓ,
that is

φ ∗ ψ(g) =
∑

h∈G

φ(h)ψ(h−1g),

||ψ||2 =

√

∑

g∈G

|ψ(g)|2

||φ||2,r,ℓ =

√

∑

g∈G

|φ(g)|2(1 + ℓ(g))2r.

We call a function ℓ : G→ R a length function for G if it satisfies

ℓ(1G) = 0, ℓ(g−1) = ℓ(g), ℓ(gh) ≤ ℓ(g) + ℓ(h), ∀g, h ∈ G.
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An account of the rapid decay property is given in [8].
The main interest in the rapid decay property for a group G stems from

Lafforgue’s result [19] that the combination of rapid decay with an appropriate
action of G implies that the Baum-Connes conjecture without coefficients holds
for G. That conjecture relates the K-theory of the reduced C∗-algebra C∗

r (G)
to the KG-homology of the classifying space EG for proper G-actions, claiming
that the assembly maps

µGi : RKG
i (EG) → Ki(C

∗
r (G)), i = 0, 1,

are isomorphisms. This in turn implies the Novikov conjecture and (when G is
torsion-free) the Kaplansky-Kadison idempotent conjecture; see [24].

The conjecture as stated above is commonly referred to as the Baum-Connes
conjecture ‘without coefficients’ in order to distinguish it from a more general
conjecture, with coefficients from a C∗-algebra admitting an action of G, to
which counter-examples were claimed in [16].

Braid groups (Artin groups of type An) are shown to satisfy rapid decay
in [5], where the result is proved for mapping class groups; braid groups are
proved to satisfy Baum-Connes in [23, Corollary 14]. We note that since Artin
groups of type Bn and Dn are split extensions of free groups by braid groups
[11], it follows immediately from [23, Corollary 14] that those spherical type
Artin groups also satisfy Baum-Connes (but we do not know if the result holds
for the remaining spherical type groups). Right-angled Artin groups are proved
to satisfy both rapid decay and Baum-Connes through their action on CAT(0)
cube complexes [8]; alternative proofs of their rapid decay follow from their
small cancellation properties [22], or the fact that they are graph products of
infinite cyclic groups [10]. Dihedral Artin groups are easily proved to satisfy
rapid decay since they are virtually direct products of free and cyclic groups.
For the same reason they satisfy the Haagerup property (see [9]), which implies
Baum-Connes [15]. We are not aware of any other classes of Artin groups known
to satisfy either rapid decay or Baum-Connes prior to our results.

We shall call the hypothesis in Theorem 1.1 that there no triangles in Γ with
edge labels 3, 3,m the (3, 3,m)-hypothesis. We shall prove rapid decay for Artin
groups of large type that satisfy this hypothesis, using as our length function the
word length metric over the standard generating set; that is, for each element
g we shall define ℓ(g) to be the length of the shortest word over the standard
generators that represents g.

Our proof makes critical use of the results and techniques developed in the
earlier paper [17] by the second and third authors, in which the sets of geodesics
and shortlex minimal geodesics of Artin groups of large type in their standard
presentations are studied. It is proved there that those sets of geodesics are reg-
ular, and that the groups are shortlex automatic. Furthermore, a method was
developed for rewriting arbitary words in the group generators to their shortlex
normal forms. In Sections 6 and 7 of this paper, we shall recall some of these
results and techniques, and develop them further, proving that certain condi-
tions hold for factorisations of geodesics. In particular, our proof of Theorem
1.1 depends essentially on Proposition 7.5, which turns out to be false in all
Artin groups of large type that do not satisfy the (3, 3,m)-hypothesis, so we are
currently unable to dispense with this hypothesis.

We shall prove that certain conditions hold for the factorisation of geodesics,
and derive rapid decay in groups for which these conditions hold. For many of
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those groups we can build on work of [6] to construct an action of the group
that allows the application of Lafforgue’s result to deduce Baum-Connes.

Our strategy to prove rapid decay by examining the factorisation of geodesics
was also used by Jolissaint [18] and de la Harpe [14] to prove rapid decay for
word hyperbolic groups, extending Haagerup’s proof for free groups [13]; Drutu
and Sapir used similar techniques to prove rapid decay for a group hyperbolic
relative to a family of subgroups with the property [12]. Other authors have
used more geometric techniques [7, 8].

In Section 2 we explain how Corollary 1.2 can be deduced from Theorem 1.1.
Then Section 3 shows how rapid decay can be deduced from a pair of combi-
natorial conditions D1 and D2 relating to the factorisation of geodesics in the
group. Section 5 introduces the notation we need for the remainder of the ar-
ticle. Section 6 examines dihedral Artin groups, first recalling from [17] some
technical results on the structure of geodesics, and then using these to deduce
the conditions D1 and D2 for these groups. Section 7 extends the results of
Section 6 to deduce the same conditions for the large type groups considered in
Theorem 1.1.

2 Deducing Baum-Connes from rapid decay

Any discrete group that acts continuously, isometrically, properly and co-compactly
on a CAT(0) metric space is in the class C′ defined by Lafforgue in [19]; hence
by [19, Corollary 0.4], for such a group the Baum-Connes conjecture is a conse-
quence of rapid decay.

We shall deduce Corollary 1.2 from Theorem 1.1 using results of [6] to con-
struct an appropriate CAT(0) action for a large class of Artin groups of large
type.

A CAT(0) space is defined to be a metric space in which distances across
a triangle with geodesic sides of lengths p, q, r are always bounded above by
distances between equivalent points in a Euclidean triangle with the same side
lengths. A space is locally-CAT(0) or equivalently non-positively curved if any
point has a neighbourhood that is CAT(0). By the Cartan-Hadamard theorem
of [4], a simply connected locally-CAT(0) space is actually CAT(0).

Brady and McCammond define non-positively curved presentation com-
plexes for non-standard presentations of 3-generator Artin groups of large type
(and some others) in [6]. We shall see that the actions of the groups on the
universal covers of these complexes satisfy the conditions we need.

Theorems 4, 6 and 7 of that paper consider the three cases of our theorem.
In each of the three cases we define a complex KΓ, the presentation complex for
a presentation IΓ of the Artin group G(Γ) in which all relators have length 3,
formed from the standard presentation by the addition of some generators. The
presentation complex KΓ has a single 0-cell v0, a 1-cell for each generator of IΓ,
and a triangular 2-cell for each relator of IΓ. We define LΓ to be the link of v0;
this is the intersection with the surrounding complex of a small sphere centred
on v0, and can be viewed as a graph to which each edge of K contributes two
vertices, and each corner of a 2-cell contributes an edge. K̃Γ is the universal
cover of KΓ; this is simply connected, and also has LΓ as the link of each 0-cell.

In each of the three cases of our theorem, it is proved in [6] that some
specification of edge lengths of the triangles which are the 2-cells of KΓ extends
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to a piecewise Euclidean metric onKΓ; in the first and third cases of the theorem
all triangles are made equilateral with side length 1, and in the second case all
triangles are made isosceles and right-angled with their shorter sides of length
1. The piecewise Euclidean metric induces a metric on the link LΓ of v0, where
the length of each edge is equal to the angle at the corner through v0 of the
corresponding 2-cell. The metric can also be lifted to the cover K̃Γ.

An action of G by isometries on K̃Γ is inherited from the left regular action of
G on its Cayley graph (the 1-skeleton of K̃Γ), in which the vertex h is mapped
by g to the vertex gh. The action is free, so clearly it is both proper and
continuous. The quotient, KΓ, of K̃Γ by G is certainly compact. In order to
apply Lafforgue’s result, we need simply to verify that K̃Γ equipped with this
metric is CAT(0).

That KΓ is non-positively curved (locally-CAT(0)) is proved in [6]. In each
of the three cases the length of a closed path in the link of a vertex is seen to
be at least 2π; hence [3, Theorem 15] applies to show that KΓ is non-positively
curved. Exactly the same argument can be applied to the link of a vertex in K̃Γ

to deduce that the simply connected cover K̃Γ is also non-positively curved, and
hence by the Cartan-Hadamard theorem of [4], K̃Γ is CAT(0). Baum-Connes
in each of these cases now follows by [19, Corollary 0.4].

3 Reformulation of the rapid decay condition

Let ℓ be a length function on a group G. Given k ∈ N, we define Ck to be the
set of elements of G with ℓ(g) = k. We write χk for the characteristic function
on Ck, and for φ ∈ CG, we write φk for the pointwise product φ.χk. (Generally,
in this article we use a subscript k to indicate that a function has support on
Ck.)

It is proved by Jolissaint [18, Proposition 1.2.6] that rapid decay for G is
equivalent to the following condition (∗):

∀φ, ψ ∈ CG, k, l,m ∈ N,

|k − l| ≤ m ≤ k + l, ⇒ ||(φk ∗ ψl)m||2 ≤ ||φk||2,r,ℓ||ψl||2,

otherwise ||(φk ∗ ψl)m||2 = 0

We observe that it follows from the properties of a length function that the
norm ||(φk ∗ ψl)m||2 is zero for m outside the range [|k − l|, k + l]. Hence we
shall verify rapid decay by verifying the following condition (∗∗):

there exists a polynomial P (x) such that:

∀φ, ψ ∈ CG, k, l,m ∈ N,

|k − l| ≤ m ≤ k + l, ⇒ ||(φk ∗ ψl)m||2 ≤ P (k)||φk||2||ψl||2.

We can clearly assume that the coefficients of such a polynomial P are non-
negative, and hence that P is an increasing function of x, and we shall assume
throughout this paper that all polynomials that arise have this property.

4 Geodesic factorisation

For g ∈ G we call a decomposition of g as a product g1 · · · gk a geodesic factori-
sation of g if

∑

ℓ(gi) = ℓ(g), and call the elements gi divisors of g. In particular
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g1 is called a left divisor and gk is called a right divisor. Given g ∈ Ck+l we
define

Factk,l(g) := {(g1, g2) : g1 ∈ Ck, g2 ∈ Cl : g1g2 =G g}

Fk,l := sup
g∈Ck+l

|Factk,l(g)|

Let P be a subset of G2 and, for g ∈ G, let P(g) = {(g1, g2) ∈ P : g1g2 = g}.
We shall refer to the factorisations of g in P(g) as the permissible factorisations
of g. We define

FactP,k,l(g) := {(g1, g2) : g1 ∈ Ck, g2 ∈ Cl, (g1, g2) ∈ P(g)}

FP,k,l := sup
g∈Ck+l

|FactP,k,l(g)|

We shall verify the condition (∗∗) above for Artin groups satisfying the hypothe-
ses of Theorem 1.1, and hence verify rapid decay, by finding a suitable set P of
permissible factorisations for which the size of both FactP,k,l(g) and a related
set are polynomially bounded.

We define two conditions D1, D2 that we shall require to hold on a suitable
subset P of G2.

D1 FP,k,l is bounded above by P1(min(k, l)) for some polynomial P1(x).

D2 For each g ∈ G, each k, l ≥ 0, there is a subset S(g, k, l) of G3 as follows.

For each decomposition of g as a product g1g2 with g1 ∈ Ck, g2 ∈ Cl,
S(g, k, l) contains a triple (f1, ĝ, f2), for which g = f1ĝf2, and ĝ = h1h2,
where (f1, h1) ∈ FactP,k−p1,p1(g1) and (h2, f2) ∈ FactP,p2,l−p2(g2), for
some p1, p2 ≤ Kmin(k, l), for some global constant K.

Furthermore, there are polynomials P2(x), P3(x) such that

(a) for all g, k, l, |S(g, k, l)| ≤ P2(min(k, l)),

(b) |T (k, l)| ≤ P3(min(k, l)), where T (k, l) := {ĝ : ∃g, (f1, ĝ, f2) ∈ S(g, k, l)}.

Figure 1 illustrates the condition D2.

Theorem 4.1. Let G be a group and P a subset of G2 for which the conditions
D1 and D2 hold. Then G satisfies rapid decay with respect to the word length
metric.

Before launching into the proof of Theorem 4.1 we prove a few technical
results. Suppose first that φk is a function with support on Ck. Then for any

p ≥ 0, we can define functions φ
(p)
P,k−p and (p)φP,k−p with support on Ck−p by

φ
(p)
P,k−p(g) =

√

∑

h∈Cp,(g,h)∈P

|φk(gh)|2, if g ∈ Ck−p

= 0 otherwise

(p)φP,k−p(g) =

√

∑

h∈Cp,(h,g)∈P

|φk(hg)|2, if g ∈ Ck−p

= 0 otherwise.
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✉

✉

✉

g

g1 g2

✉ ✉
f1 f2ĝ

h1 h2

Figure 1: Condition D2

Lemma 4.2.

||φ
(p)
P,k−p||

2
2 ≤ FP,k−p,p||φk||

2
2

||(p)φP,k−p||
2
2 ≤ FP,p,k−p||φk||

2
2

Proof.

||φ
(p)
P,k−p||

2
2 =

∑

g∈Ck−p

∑

h∈Cp,(g,h)∈P

|φk(gh)|
2

≤ FP,k−p,p

∑

g1∈Ck

|φk(g1)|
2

= FP,k−p,p||φk||
2
2

The second inequality follows similarly.

We shall make frequent use of the following, which is an easy application of
the Cauchy-Schwarz inequality.

Lemma 4.3. For ai ∈ C, n ∈ N,

|

n
∑

i=1

ai|
2 ≤ n

n
∑

i=1

|ai|
2

We are now ready to prove the theorem.
Proof of Theorem 4.1: Suppose that D1 and D2 hold, and letK,P1(x), P2(x), P3(x)
and the sets P , S(g, k, l) and T (k, l) be as specified by those conditions.

Choose k, l,m such that |k − l| ≤ m ≤ k + l, and define k̂ := min(k, l). Let
g ∈ G with ℓ(g) = m. Then

|(φk ∗ ψl)(g)| = |
∑

g1 ∈ Ck, g2 ∈ Cl

g = g1g2

φk(g1)ψl(g2)| ≤
∑

g1 ∈ Ck, g2 ∈ Cl

g = g1g2

|φk(g1)ψl(g2)|
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Now the condition D2 defines an injection from Factk,l(g) to G
5×N2 that maps

(g1, g2) to (f1, ĝ, f2, h1, h2, p1, p2), where h1 ∈ Cp1 , h2 ∈ Cp2 , (f1, h1), (h2, f2) ∈
P and h1h2 = ĝ. We define

H(f1, ĝ, f2, p1, p2) := {h1 ∈ Cp1 : h2 := h−1
1 ĝ ∈ Cp2 , (f1, h1), (h2, f2) ∈ P}.

So the right hand side of the above inequality is bounded above by:

Kk̂
∑

p1,p2=0

∑

(f1,ĝ,f2)∈S(g,k,l)

∑

h1 ∈ H(f1, ĝ, f2, p1, p2)

h2 := h
−1

1
ĝ

|φk(f1h1)ψl(h2f2)|

Note that this summation is over a set that is possibly larger than the image of
that injection, and hence we have an upper bound rather than equality.

Now by the Cauchy-Schwartz inequality, this sum is at most

Kk̂
∑

p1,p2=0

∑

(f1,ĝ,f2)∈S(g,k,l)

√

√

√

√

√

∑

h1 ∈ Cp1

(f1, h1) ∈ P

|φk(f1h1)|2
√

√

√

√

√

∑

h2 ∈ Cp2

(h2, f2) ∈ P

|ψl(h2f2)|2

=

Kk̂
∑

p1,p2=0

∑

(f1,ĝ,f2)∈S(g,k,l)

φ
(p1)
P,k−p1

(f1)
(p2)ψP,l−p2(f2)

where φ
(p)
P,k−p and (p)ψP,l−p are as defined above.

So now, we have

||(φk ∗ ψl)m||22 =
∑

g∈Cm

|φk ∗ ψl(g)|
2

≤
∑

g∈Cm

|

Kk̂
∑

p1,p2=0

∑

(f1,ĝ,f2)∈S(g,k,l)

φ
(p1)
P,k−p1

(f1)
(p2)ψP,l−p2(f2)|

2

Using Lemma 4.3 twice we see that

∑

g∈Cm

|

Kk̂
∑

p1,p2=0

∑

(f1,ĝ,f2)∈S(g,k,l)

φ
(p1)
P,k−p1

(f1)
(p2)ψP,l−p2(f2)|

2

≤ (Kk̂ + 1)2
∑

g∈Cm

Kk̂
∑

p1,p2=0

|
∑

(f1,ĝ,f2)∈S(g,k,l)

φ
(p1)
P,k−p1

(f1)
(p2)ψP,l−p2(f2)|

2

≤ (Kk̂ + 1)2
Kk̂
∑

p1,p2=0

∑

g∈Cm

|S(g, k, l)|
∑

(f1,ĝ,f2)∈S(g,k,l)

|φ
(p1)
P,k−p1

(f1)
(p2)ψP,l−p2(f2)|

2

≤ (Kk̂ + 1)2P2(k̂)

Kk̂
∑

p1,p2=0

∑

g∈Cm

∑

(f1,ĝ,f2)∈S(g,k,l)

|φ
(p1)
P,k−p1

(f1)
(p2)ψP,l−p2(f2)|

2

The last sum is bounded above by

(Kk̂+1)2P2(k̂)

Kk̂
∑

p1,p2=0

∑

ĝ∈T (k,l)





∑

f1∈Ck−p1

|φ
(p1)
P,k−p1

(f1)|
2

∑

f2∈Cl−p2

|(p2)ψP,l−p2(f2)|
2




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which is a sum of the same terms but over a possibly larger set. We bound the
last sum above by

(Kk̂ + 1)2P2(k̂)P3(k̂)
Kk̂
∑

p1,p2=0

|φ
(p1)
P,k−p1

||22||
(p2)ψP,l−p2 ||

2
2

≤ (Kk̂ + 1)2P2(k̂)P3(k̂)

Kk̂
∑

p1,p2=0

FP,k−p1,p1FP,p2,l−p2 ||φk||
2
2||ψl||

2
2

≤ (Kk̂ + 1)2P2(k̂)P3(k̂)

Kk̂
∑

p1,p2=0

P1(min(k − p1, p1))P1(min(p2, l − p2))||φk||
2
2||ψl||

2
2,

using Lemma 4.2 to relate the l2-norms. Since min(k−p1, p1) and min(p2, l−p2)

above are bounded by Kk̂, condition (∗∗) now follows easily. �

5 Notation for Artin groups

Our Artin groups will be defined in their standard presentations

〈x1, . . . , xn | mij
(xi, xj) = mij

(xj , xi) for each i 6= j〉.

We prove rapid decay for Artin groups satisfying the hypotheses of Theo-
rem 1.1 with respect to the word length metric, by verifying the conditions D1
and D2 above. In order to do that we need to examine the structure of geodesics
in these groups; we build on the results of [17].

Given an Artin group G as before we let X be the set of generators in the
standard presentation and let A be the set X ∪ X−1; we call the elements of
A letters. We shall generally use symbols like x, y, z, t for generators in X and
a, b for letters in A. A letter is positive if it is a generator, negative otherwise.
For each x ∈ X , we define x to be the name of the two letters x and x−1.
We say that a word w ∈ A∗ involves the generator x if w contains a letter
with name x, and we call w a 2-generator word if it involves exactly two of the
generators. Words in A∗ will be denoted by u, v, w (possibly with subscripts)
or α, β, γ, η, ξ. (Roughly speaking, the difference is that u, v, w will be used for
interesting subwords of a specified word, and the Greek letters for subwords in
which we are not interested.) A positive word is one in X∗ and a negative word
one in (X−1)∗; otherwise it is unsigned. For u, v ∈ A∗, u = v denotes equality
as words, whereas u =G v denotes equality within the Artin group. The length
of the word w is denoted by |w|, while as above |w|G denotes the length of a
geodesic representative and, for g ∈ G, |g| denotes the length of a geodesic word
representing g. A syllable in a word is a subword that is a power of a single
generator, and is not a subword of a higher power.

For any distinct letters a and b and a positive integer r, we define alternating
products r(a, b) and (b, a)r. The product r(a, b), is defined, as it was earlier (over
generators), to be the word of length r of alternating a’s and b’s starting with
a, while (b, a)r is defined to be the word of length r of alternating a’s and b’s
ending with a. For example, 6(a, b) = ababab = (a, b)6, 5(a, b) = ababa = (b, a)5.
We define both 0(a, b) and (b, a)0 to be the empty word. For any nonempty
word w, we define f[w] and l[w] to be respectively the first and last letter of
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w, and pre[w] and suf[w] to be the maximal proper prefix and suffix of w. So
w = pre[w]l[w] = f[w]suf[w].

6 Dihedral Artin groups

In this section, we prove that dihedral Artin groups of large type satisfy RD
by verifying the properties D1 and D2 in these groups. As mentioned in the
introduction, the fact that these groups satisfy RD can be deduced immediately
from results already in the literature, but the techniques that we develop here
are needed in the proof of Theorem 1.1 in Section 7.

6.1 The structure of geodesics in dihedral Artin groups

We need some results on the structure of geodesics from [21, 17]. We summarise
what we need, and refer to those articles for details.

Let
DA(m) = 〈x1, x2 | m(x1, x2) = m(x2, x1)〉

be a 2-generator (dihedral) Artin group with 2 ≤ m < ∞. Conjugation by the
Garside element

∆ := m(x1, x2) =DA(m) m(x2, x1)

induces a permutation δ of order 2 or 1 (depending on the parity of m) on the
letters in A, and hence an automorphism δ of order 2 or 1 of the free monoid
A∗.

Let w be a freely reduced word over A = {x1, x2, x
−1
1 , x−1

2 }. Then we define
p(w) to be the minimum of m and the length of the longest subword of w of
alternating x1’s and x2’s (that is the length of the longest subword of w of the
form r(x1, x2) or r(x2, x1)). Similarly, we define n(w) to be the minimum of m
and the length of the longest subword of w of alternating x−1

1 ’s and x−1
2 ’s. It is

proved in [21, Proposition 4.3] that w is geodesic in DA(m) if and only if p(w)+
n(w) ≤ m; if p(w) + n(w) < m, then w is the unique geodesic representative
of the group element it defines, but if p(w) + n(w) = m then there are other
representatives. Note that a non-geodesic word is always unsigned.

For example, suppose that m = 3, so DA(m) = 〈x1, x2 | x1x2x1 = x2x1x2〉.
Then w := x1x2x1 and w′ := x2x1x2 are two geodesic representatives of the
same element with p(w) = p(w′) = 3, n(w) = n(w′) = 0, and w = x1x

2
2x

−1
1

and w′ = x−1
2 x21x2 are two geodesic representatives of the same element with

p(w) = p(w′) = 2, n(w) = n(w′) = 1. In fact all four words are examples of
critical words, as defined in [17].

As in [17], we define a freely reduced word w with p(w) + n(w) = m to
be critical if one of the following holds, where ξ is a subword with the obvious
restrictions.

(i) w is unsigned of one of the two forms p(x, y)ξ(z
−1, t−1)n or n(x

−1, y−1)ξ(z, t)p,
with {x, y} = {z, t} = {x1, x2},

(ii) w is positive of one of the two forms m(x, y)ξ or ξ(x, y)m, and only the one
positive alternating subword of length m,

(iii) w is negative of one of the two forms m(x−1, y−1)ξ or ξ(x−1, y−1)m, and
only the one negative alternating subword of length m.
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An involution τ on the set of critical words swaps critical words that repre-
sent the same element. We define τ by

p(x, y) ξ (z
−1, t−1)n ↔τ

n(y
−1, x−1) δ(ξ) (t, z)p,

m(x, y) ↔τ
m(y, x),

m(x−1, y−1) ↔τ
m(y−1, x−1)

m(x, y) ξ ↔τ δ(ξ) (z, t)m, where z = l[ξ], {x, y} = {z, t},

m(x−1, y−1) ξ ↔τ δ(ξ) (z−1, t−1)m, where z = l[ξ]−1, {x, y} = {z, t}.

Where a critical word w′ occurs as a subword of a word w, we call the
substitution of the subword w′ by τ(w′) a τ -move on w.

The following lemma is proved in [17, Lemma 2.3].

Lemma 6.1. Suppose that w ∈ A∗ is geodesic and a ∈ A. If wa is non-geodesic,
then either l[w] = a−1 or w has a critical suffix v such that l[τ(v)] = a−1.
Similarly, if aw is non-geodesic, then either f[w] = a−1 or w has a critical prefix
v such that f[τ(v)] = a−1.

It is proved in [17] that, whenever w is a freely reduced word that is not
minimal under the shortlex ordering, w has a factorisation as w1w2w3, where
w2 is critical and either w1τ(w2)w3 <lex w or w1τ(w2)w3 is not freely reduced.
In that case, we call the τ -move on w that replaces w2 by τ(w2) together with
any subsequent free reduction within w1τ(w2)w3 a critical reduction of w. It
follows from [17, Theorem 2.4] that a succession of critical reductions reduces
any word to its shortlex minimal representative. Further, any two geodesic
representatives are related by a sequence of τ -moves. In particular this implies
that two representatives of the same group element must either both be signed
or both unsigned.

In order to deal with the reduction of non-geodesic words, we extend the
concept of τ -moves.

A freely reduced subword u of a word w is said to be over-critical if it is has
either of the forms

p(x, y)ξ(z
−1, t−1)n or n(x

−1, y−1)ξ(z, t)p,

with p, n ≤ m, p + n > m and {x, y} = {z, t} = {x1, x2}, and the extra
condition that, if p < m, then p(x, y) or (z, t)p is a maximal positive alternating
subword of w and if n < m then (z−1, t−1)n or n(x

−1, y−1) is a maximal negative
alternating subword of w.

Note that we do not require that p = p(w) or n = n(w). But since the
conditions on p, n force p(w) + n(w) > m, over-critical words are necessarily
non-geodesic.

We define τ on over-critical words by

τ(p(x, y) ξ (z
−1, t−1)n) := m−p(y

−1, x−1) δ(ξ) (t, z)m−n,

τ(n(x
−1, y−1) ξ (z, t)p) := m−n(y, x) δ(ξ) (t

−1, z−1)m−p.

We refer to these as length reducing τ -moves. Note that any such move can
also be achieved by an ordinary τ -move followed by free reduction. So it follows
from Lemma 6.1 that any word can be reduced to a geodesic by a sequence of
length reducing τ -moves and free reduction. We call the move positive if p = m,
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negative if n = m and unsigned otherwise. (So if p = n = m it is both positive
and negative, but we won’t need to use that case.)

Lemma 6.2. Let w be freely reduced with 0 < p(w), n(w) < m. Then w can
be reduced to a geodesic using a sequence of unsigned length reducing τ-moves
alone (i.e. with no free reduction).

Proof. This follows from lemma 6.1 together with the fact that applying an
unsigned length reducing τ -move to w results in a freely reduced word, and
does not increase p(w) or n(w).

We shall also need the following lemma when we come to verify D2 for Artin
groups of extra large type.

Lemma 6.3. Let g, h ∈ DA(m). If gh ∈ 〈xi〉, then g and h have geodesic
factorisations xsiw and w−1xti, for some element w and integers s, t.

Proof. The result is trivial if either g or h (and hence both) is in 〈xi〉, so we
suppose not.

Suppose that g = akh−1 with a = x±1
i and k ≥ 0. Suppose first that

|ah−1| = 1 + |h|. Then |g| = k + |h| and the result is clear. Otherwise, by
Lemma 6.1, a−1 is a left divisor of h−1. Let l be maximal such that a−l is a left
divisor of h−1, and let h−1 = a−lw. Then ak−lw is a geodesic factorisation of
g, and the result follows.

6.2 Verifying D1 and D2 for dihedral Artin groups

Our aim in this section is to verify that the properties D1 and D2 hold in
any dihedral Artin group G. In fact, it can be shown that the kernel of the
natural homomorphism of DA(m) onto the dihedral group of order 2m in which
the images of x1 and x2 have order 2 is a direct product of an infinite cyclic
group and a free group of rank m − 1. The fact that DA(m) has rapid decay
then follows from [18, Propositions 2.1.5, 2.1.9], so we do not need to verify D1
and D2 in order to prove rapid decay in these groups. However we need the
properties here in order to prove that corresponding properties hold for Artin
groups satisfying the hypotheses of Theorem 1.1.

We shall assume throughout this section that m ≥ 3. We assume also
that k ≤ l, and deduce D1 and D2 in that case; the case k ≥ l then follows
immediately by symmetry.

We first need to define our set P of permissible geodesic factorisations of
elements g ∈ G. For unsigned elements g, we define P(g) to be the set all
geodesic factorisations of g; that is,

P(g) := {(g1, g2) ∈ G2 : g1g2 = g, |g1|+ |g2| = |g|}.

If m is infinite (that is, the 2-generator group is free) then for any element g
we define P(g) to be its set of geodesic factorisations. From now on we shall
assume that m <∞.

Unfortunately, form <∞, if we adopt the above definition of P(g) for signed
elements g, then D1 does not hold, so we are forced to use a more restrictive
definition, which significantly increases the technical complications in the proofs.

For a positive (respectively negative) element g, we define d(g) to be the
maximal k such that ∆k (respectively ∆−k) is a divisor of g. Then we call a
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geodesic factorisation g1g2 = g of g ∆-decreasing if d(g1) + d(g2) < d(g). We
define P(g) := P1(g) ∪ P2(g), where P1(g) is the set of factorisations g1g2 for
which at least one of g1, g2 is represented by geodesic words with at most two
syllables (i.e. either g1 or g2 equals asbt with a, b ∈ A, s, t ≥ 0), and P2(g) is
the set of geodesic factorisations of g that are not ∆-decreasing. That is,

P2(g) := {(g1, g2) ∈ G2 : g1g2 = g, |g1|+ |g2| = |g|, d(g1) + d(g2) = d(g)}.

(In fact we could omit the factorisations in P1 and still obtain D1 and D2
in the dihedral case, but we will need them in the next section in order to
prove the conditions when there are more than two generators; that proof is
easier if we include those factorisations already for the dihedral case.) We say
that a left (respectively right) divisor h of g lies in P il (g) (respectively P ir(g))
for i = 1 or 2 if (h, h−1g) ∈ P i(g) (respectively (gh−1, h) ∈ P i(g)), and let
Pl(g) := P1

l (g) ∪ P2
l (g) and Pr(g) := P1

r (g) ∪ P2
r (g).

Our first aim is to prove Property D1. In order to do that we need to examine
the set of geodesic words representing a given element. Let w be a geodesic word
with p(w) + n(w) = m; we write p := p(w), n := n(w). We have seen that w
can be reduced to its shortlex normal form by a sequence of lex-reducing critical
reductions. It follows that if w′ is another geodesic word with w =G w

′, then w
can be transformed to w′ by a sequence of τ -moves.

First suppose that p, n > 0. The word w has the form η0w1η1 · · ·wsηs,
where each wi has the form (x, y)p or (x−1, y−1)m with {x, y} = {x1, x2}, and
p(ηi) < p, m(ηi) < m for all i. A τ -move has the effect of changing the signs
of wi, wj for some i < j for which wi, wj have opposite signs, and replacing
the subword between them by its image under δ. Denote this τ -move by (i, j).
So w′ = η′0w

′
1η

′
1 · · ·w

′
sη

′
s, where each η′r = ηr or δ(ηr), and all of the subwords

wr, w
′
r are maximal alternating. But note that although |η′r| = |ηr|, it is not

necessarily true that |wr | = |w′
r |.

Lemma 6.4. Let w,w′ be geodesic words as above. If, for some r with 1 ≤ r ≤ s,
the number of positive wi with 1 ≤ i ≤ r is equal to the number of positive w′

i

with 1 ≤ r ≤ s, then η′0w
′
1η

′
1 · · ·w

′
r =G η0w1η1 · · ·wr and ηr = η′r.

Proof. This is by induction on r. Since none of the τ -moves changes η0, we have
η0 = η′0, and so the result is true for r = 0.

So suppose that r ≥ 1. Since w1 can only be changed by a transforma-
tion (1, i) with 1 < i, there are only two possible w′

1, one of which is w1 and
the other a word of opposite sign to w1. So if Sign(w1) = Sign(w′

1), then
w1 = w′

1 and the result follows by induction. Otherwise, we have {w1, w
′
1} =

{p(x, y), m(y−1, x−1)}. From the hypothesis, there must be both positive and
negative wi with i ≤ r, so there is a w′

i with 2 ≤ i ≤ r and Sign(w′
i) =

−Sign(w′
1). We can do the move (1, i) to w′ giving w′′. Such a move does not

change the group element η′0w
′
1η

′
1 · · ·w

′
r or η′r, but it does change w′

1 back to
w1, so the result follows by induction applied to w,w′′.

For a positive element g (the negative case is similar), let r = d(g). Then, for
a geodesic factorisation g = g1g2 in P2(g), we have d(g1) = s and d(g2) = r− s
for some 0 ≤ s ≤ r, and then g1 has ∆s as a left divisor and g2 has ∆r−s as a
right divisor.
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Lemma 6.5. Let w,w′ be positive geodesic words representing g ∈ G such that
w and w′ both have ∆s as a prefix and ∆r−s as suffix for some s, where r = d(g).
Then w = w′.

Proof. We have w = ∆sη∆r−s, w′ = ∆sη′∆r−s with η =G η′. Since d(g) = r,
we have d(η) = d(η′) = 0 so by [21, Proposition 4.3] ηG has a unique geodesic
representative, and hence η = η′ and w = w′.

Lemma 6.6. Let g ∈ G be a positive element and let l ≥ 0. Then, for a, b ∈ A
with {a, b} = {x1, x2}, the number of right divisors of g of the form asbt with
s+ t = l is at most d(g) + 1.

Proof. The proof is by induction on l, the case l = 0 being trivial. We may
suppose that al is a right divisor of g, since otherwise all right divisors of g of
the required form end in b, and the result follows from the case l− 1 applied to
gb−1. Similarly, we may assume that bl is a right divisor of g, since otherwise
the suffixes of the required form all begin with a, and the result follows from
the case l − 1 applied to g.

Let d = d(g). We may assume that d > 0, since otherwise g has a unique
geodesic representative. It is straightforward to prove by induction on t that,
for any t > 0, the group element ga,t := ∆ta−t is positive with d(ga,t) = 0 and
l[ga,t] = b (that is, the unique geodesic representative ends in b); in fact the
unique geodesic representative is a concatenation of positive alternating words
each of length m− 1. Similarly gb,t = ∆tb−t has d(gb,t) = 0 with l[gb,t] = a and,
since gb,t is obtained from ga,t by interchanging a and b, we have f[ga,t] 6= f[gb,t].
We write g = g′∆d with d(g′) = 0, and observe that the element g′ga,d = ga−d

is divisible by ∆ if and only if g′ ends in a positive letter other than f[ga,t],
and similarly for the element g′gb,d = gb−d; hence exactly one of the two group
elements g′ga,d and g′gb,d is not divisible by ∆. If g′ga,d = ga−d is not divisible
by ∆, then its unique geodesic representative ends in l[ga,d] = b; ga−d cannot
have a as a right divisor, and g cannot have ad+1 as a right divisor; Similarly we
see that if g′gb,d is not divisible by ∆, then g cannot have bd+1 as a right divisor.
Hence g cannot have both ad+1 and bd+1 as right divisors. It now follows from
the preceding paragraph that l ≤ d, and then the result follows immediately, by
counting the number of pairs (s, t) with s+ t = l.

We can now prove D1, which we can express as follows:

Corollary 6.7. There is a polynomial P (x) with the following property: for
any g ∈ G the number of left divisors of g of length k in Pl(g) is bounded above
by P (k).

Proof. Suppose that g ∈ G has length k + l. We need to bound the number of
group elements uG for which w = uv is a geodesic word representing g, with
|u| = k, |v| = l and (uG, vG) ∈ P .

First suppose that w = uv is unsigned, of the form η0w1η1 · · ·wsηs, as above.
If one of the subwords wi of w intersects both u and v, then let u1 be the prefix
of w that ends at the end of wi; otherwise let u1 = u.

Suppose that u1 contains rp positive subwords wi and rn negative sub-
words wi. The group element (u1)G is determined by those two parameters
by Lemma 6.4. Since each of rp, rn must be in the range [0, k], there are at most
k2 choices for (u1)G corresponding to unsigned geodesics w. Since u differs from
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u1 by an alternating subword of length less than m (and there are less than 4m
such words), there are at most 4mk2 choices for uG that correspond to unsigned
geodesic representatives w.

Now suppose that w = uv is signed. Suppose first that (u, v) ∈ P1, so that
either u or v has at most 2 syllables. There are at most 2(k+1) possible words
u with at most two syllables. By Lemma 6.6, there are at most 2(d(g) + 1)
possible words v with at most two syllables. If the signed element g has the
geodesic factorisation g = g′asbt then, by collecting powers of ∆ that divide g
to the left, we see that at least m − 2 of the letters in each occurrence of ∆
in g must come from g′, and hence |g′| ≥ (m − 2)d(g) ≥ d(g). So, if there are
factorisations in which v has two syllables, then k ≥ d(g). So there are at most
4(k + 1) such pairs (u, v).

Now assume that (u, v) ∈ P2. Then u =G ∆su′ and v =G v′∆d(g)−s for
some s, where u′v′ is not divisible by δ, and by Lemma 6.5 u′v′ is completely
determined by g, s. Further u′v′ is the unique geodesic representative of (u′v′)G.
Hence (given g, k), (uG) is completely determined by s ∈ [0, k]. The number of
such factorisations is therefore at most k + 1.

In order to verify the condition D2, we first describe a process that we
call merging, which we can use to define the set S(g, k, l) that appears in that
condition.

Given elements g1, g2 of length k, l whose product g has length less than
k + l, an application of the merging process results in a triple (f1,∆

r, f2) of
elements, such that for some h1, h2 with h1h2 =G ∆r, f1h1 and h2f2 are geodesic
factorisations of g1, g2, respectively, and furthermore (f1, h1), (h2, f2) ∈ P . We
call such a triple a merger of g1 and g2; we do not claim or need g1, g2 to have
a unique merger (although we suspect that it does). Then we define the set
S(g, k, l) to be the set of all triples (f1,∆

r, f2) that arise as mergers of pairs of
elements g1, g2 of lengths k, l and with g1g2 =G g.

We compute a merger of (g1, g2) as the last term of a sequence of triples

(g
(t)
1 ,∆rt , g

(t)
2 ), defined as follows. When one or both of g1, g2 is a signed word,

we have to be careful to ensure that the resulting geodesic factorisations of g1
and g2 lie in P . We set g

(1)
1 := g1, r1 := 0, g

(1)
2 := g2.

Now, the t-th step of the merging process computes g
(t+1)
1 , rt+1, g

(t+1)
2 as

follows. In each of the three situations below, we choose non-identity group

elements h, h′, and then define g
(t+1)
1 := g

(t)
1 h−1 and g

(t+1)
2 := h′−1g

(t)
2 such

that g
(t+1)
1 h and h′g

(t+1)
2 are geodesic factorisations of g

(t)
1 and g

(t)
2 respectively,

with g
(t+1)
1 ∈ Pl(g1) and g

(t+1)
2 ∈ Pr(g2).

(i) If we can choose h, h′ with hδrt(h′) = 1, then we do so with h, h′ as long
as possible, and put rt+1 := rt (we call this a cancellation move).

(ii) Otherwise, if g
(t)
1 and g

(t)
2 are both signed words, and we can choose

h = h′ = ∆ǫ with ǫ = ±1, then do so, and put rt+1 := rt + 2ǫ.

(iii) Otherwise, if we can choose h, h′ with hδrt(h′) = ∆ǫ with ǫ = ±1, then
do so and put rt+1 := rt + ǫ (we call this a ∆-extraction move).

If for some t, no pair of elements h, h′ satisfy any of these three conditions,

then merging is complete, and we output (f1,∆
r, f2) := (g

(t)
1 ,∆rt , g

(t)
2 ) as a

merger of (g1, g2). Note that we needed the conditions at each previous step
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that g
(t+1)
1 ∈ Pl(g1) and g

(t+1)
2 ∈ Pr(g2) to ensure that (f1,∆

r, f2) possesses all
the required properties of a merger of (g1, g2).

Lemma 6.8. Suppose that g1, g2 are elements of length k, l respectively, where
k ≤ l, and that (f1,∆

r, f2) is a merger of (g1, g2); Let h1 := f−1
1 g1 and h2 :=

g2f
−1
2 . Then r ≤ k and |h1|, |h2| ≤ (m− 1)k.

Proof. It is clear that the process above completes in at most k stages, giving
the required bound on r. At each stage of the merging process, the ratio of

the lengths of the elements h, h′, stripped from g
(t)
1 and g

(t)
2 to give g

(t+1)
1 and

g
(t+1)
2 , is in the interval [1/(m− 1),m− 1]. Hence the same is true for the total
lengths of elements stripped off, that is, 1/(m− 1) ≤ |h1|/|h2| ≤ m − 1. Since
|h1| ≤ |g1| = k and h2 ≤ |g2| = l, we get |h1|, |h2| ≤ (m− 1)k, as claimed.

The definition of the merging process ensures that, for a merger (f1,∆
r, f2)

of (g1, g2), we have (f1, h1), (h2, f2) ∈ P . So, in order to verify that D2 holds, we
just need to find polynomial bounds on S(g, k, l) and the associated set T (k, l)
of powers of ∆, and a value for the constant K.

The above lemma already bounds |T (k, l)| by 2k + 1 and K by m− 1, so it
remains to find a polynomial bound on S(g, k, l). In order to do this we need to
explore a reduction process, which we call compression, that starts with a triple
(f1,∆

r, f2) ∈ S(g, k, l) and produces a geodesic representative of g. Reversing
the compression process will then enable us to estimate the size of S(g, k, l).

So suppose that (f1,∆
r, f2) ∈ S(g, k, l). The fact that the merging process

has completed at (f1,∆
r, f2) ensures that f1, f2 cannot both have powers of

∆ as divisors and that, if one of the two elements has such a divisor ∆r0 and
r, r0 6= 0, then r, r0 cannot have opposite signs. Hence we see that f1, f2 have
geodesic representatives of the form u∆r0 , v or u,∆r0v for some r0 (possibly
zero), where u, v are not divisible by ∆±1. Then g1∆

rg2 is represented by
u∆r1v =G uδr1(v)∆r1 , where r1 = r + r0 has the same sign as r, and (since
the merging process terminated), uδr1(v) is freely reduced and also contains no
powers of ∆. Then, by Lemma 6.2, if non-geodesic, uδr1(v) can be reduced to
a geodesic word using only unsigned length reducing τ -moves.

We describe that reduction more precisely as follows. We define u1 to be
the shortest prefix of uδr1(v) that contains u and ends at the end of a maximal
alternating subword, and define v1 to be the remainder of the word. Then v1 is
geodesic, and we set v2 := v1. If u1 is also geodesic, then we set u2 := u1, but
otherwise we set u2 to be a geodesic word derived from u1 by a single length

reducing τ -move. We set u
(1)
2 := u2, v

(1)
2 := v2.

We can now reduce u
(1)
2 v

(1)
2 to geodesic form through a series of words u

(t)
2 v

(t)
2

using a sequence of length reducing τ -moves, the i-th of which involves one

alternating subword within u
(t)
2 and one within v

(t)
2 . Specifically, we derive

u
(t+1)
2 , v

(t+1)
2 from u

(t)
2 , v

(t)
2 by either replacing a suffix p(x, y) ξ1 in u

(t)
2 and

a prefix ξ2 (z
−1, t−1)n in v

(t)
2 by a suffix m−p(y

−1, x−1) δ(ξ1) in u
(t+1)
2 and a

prefix δ(ξ2) (t, z)m−n in v
(t+1)
2 or by replacing a suffix n(x

−1, y−1) ξ1 in u
(t)
2

and a prefix ξ2 (z, t)p in v
(t)
2 by a suffix m−n(y, x) δ(ξ1) in u

(t+1)
2 and a prefix

δ(ξ2) (t
−1, z−1)m−p in v

(t+1)
2 . Eventually this process produces a geodesic word

u3v3.
Next we need to consider the reduction to geodesic form of u3v3∆

r1 . We
do this in two stages. First we reduce v3∆

r1 to v4∆
r′ , using a sequence of
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length reducing τ -moves, each of which involves a single ∆±1 and an alternating
subword of the opposite sign within v3 (or the word derived from it); at the end
of this stage, either v4∆

r′ is signed or r′ = 0.
Now if r′ = 0 we set u4 := u3, but otherwise, we apply a further sequence

of length reducing τ -moves to u3∆
r′ , each move involving a single ∆±1 and an

alternating subword of the opposite sign in the word derived from u′3, and hence
reduce u3∆

r′ to u4∆
s. The fact that u4δ

r′−s(v4)∆
s is now a geodesic represen-

tative of u3v3∆
r1 follows from the two equations u3v4∆

r′ =G u3∆
r′δr

′

(v4) and
u4δ

r′−s(v4)∆
s =G u4∆

sδr
′

(v4). Our construction ensures that u4δ
r′−s(v4) has

no divisor of the form ∆±1. This is the end of compression; we use the name
κ(f1,∆

r, f2) for the group element (u4)G.
We now want to estimate both the number of group elements that can

arise as κ(f1,∆
r, f2) out of the compression of at least one element (f1,∆

r, f2)
of S(g, k, l), and also the number of triples (f1,∆

r, f2) ∈ S(g, k, l) for which
κ(f1,∆

r, f2) = g′ for a particular group element g′. The product of these two
values will give a bound on |S(g, k, l)|.

Lemma 6.9. The size of κ(S(g, k, l)) is bounded by a polynomial in k.

Proof. Suppose that compression of (f1,∆
r, f2) leads to u4δ

r′−s(v4)∆
s. We

first need to relate |u4| to k = |g1|. We recall that |u| ≤ |f1| ≤ k, |u1| ≤

|u| + m − 1, and |u2| ≤ |u1|. Then each move from u
(t)
2 to u

(t+1)
2 replaces

a distinct alternating subword by an alternating subword that is longer by a
factor of at most m− 1, and doesn’t alter the lengths of the subwords before or
after that alternating subword. Hence |u3| ≤ (m−1)|u2|. By the same argument
|u4| ≤ (m− 1)|u3|. So |u4| ≤ (m− 1)2(k +m− 1).

Then u4 is a prefix of length k′ ≤ (m− 1)2(k+m− 1) of w′ := u4δ
r′−s(v4),

for which w′∆s is a geodesic representing g and no power of ∆ divides w′; it
follows that u4 ∈ Pl(g). By Corollary 6.7 we know that, for some polynomial
P1(x), P1(k

′) bounds the number of elements of Pl(g) represented by a word
that is a prefix of length k′ of some such w. Hence, since k′ is bounded by a
polynomial in k, the number of group elements represented by any such u4 with
k′ in the appropriate range is bounded by a polynomial in k.

Lemma 6.10. The number of triples (f1,∆
r, f2) in S(g, k, l) for which κ(f1,∆

r, f2)
is a particular element g′ ∈ G is bounded by a polynomial in k.

Proof. We recall that for elements of S(g, k, l), f1, f2 are represented either by
words u∆r0 , v or by words u,∆r0v, where u, v have no divisors of the form ∆±1.
The triple (f1,∆

r, f2) is completely determined by the above binary choice
together with uG, r, and r0 in the first case. But r (and r0 in the first case) is
bounded above by k. Hence it is now sufficient to bound the number of choices
of uG. Hence the proof of this lemma is completed by application of the lemma
that follows.

Lemma 6.11. Given g′ ∈ G, a polynomial in k bounds the number of group
elements uG associated as above with triples (f1,∆

r, f2) in S(g, k, l) for which
κ(f1,∆

r, f2) =G g
′.

Proof. We reverse the steps of compression. Suppose that w = u4δ
r′−s(v4)∆

s

is a word resulting from compression of some element of S(g, k, l), and that
(u4)G = g′.
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We first examine the possible geodesics of the form u3v3∆
r′ from which w

might have been derived during compression by length reducing moves.
If v4∆

s is unsigned, then we must have u3 = u4, r
′ = s, and (u3)G = (u4)G

Otherwise, if δr
′
−s(v4)∆

s is positive, r′ − s might be any non-negative integer
bounded above by the number of maximal positive alternating subwords in u4,
and u3 could be any word derived from u4 by reversing r′ − s length reducing
rules using ∆, while if δr

′
−s(v4)∆

s is negative, s− r′ might be any non-negative
integer bounded above by the number of maximal negative alternating subwords
in u4, u3 could be a word derived from u4 by reversing s − r′ length reducing
rules using ∆−1. We can check that the value of (u3)G is determined by (u4)G
and r′ − s.

Hence there are at most (k+1) possibilities for (u3)G for which (u4)G =G g
′.

We saw above that if v3 is unsigned or if it has the opposite sign to r′, then
|r′| ≤ k, and so can take up to 2k+1 values. Otherwise, v3∆

r′ is a signed word,
and then r′ is uniquely determined by (v3∆

r′)G.
We next reverse the length reducing τ -moves that transformed u2v2 to

u3v3. Each reversed move involves replacing a subword p(x, y)ξ(z
−1, t−1)n or

n(x
−1, y−1)ξ(z, t)p with 0 < p, n < m and p+n < m by m−p(y

−1, x−1) δ(ξ) (t, z)m−n

or m−n(y, x) δ(ξ) (t
−1, z−1)m−p, where the left maximal alternating subword is

in some u
(t+1)
2 and the right one in v

(t+1)
2 . Call these transformations of type

(p,−n) or (−n, p). Then there are at most m2 such possible types. The element
(u2)G depends only on (u3)G and the total number of τ -moves of each type.

Since there are at most k such τ -moves in total, there are at most km
2

possible
elements (u2)G for a given (u3)G.

And u1 represents the same element as u2. A final reversal of a τ -move on
the final maximal alternating suffix of u2 recovers the word u1, which represents
the same group element as u2. And the deletion of an alternating suffix of length
at most m − 1 from u1 yields u; hence each choice of (u1)G yields at most m
choices of u.

The combination of Lemma 6.9 and Lemma 6.10 gives the required polyno-
mial bound on S(g, k, l). Hence the proof of D2 for dihedral Artin groups is
complete.

7 Artin groups of large type

Our aim in this section is to prove that Artin groups satisfying the hypotheses
of Theorem 1.1 satisfy D1 and D2, and hence have rapid decay. Much of what
we say is true for any large-type Artin group. But occasionally we shall need to
restrict the groups we consider to those satisfying the conditions of Theorem 1.1.
For those results where this is the case, we shall make it clear in the statement
of the result; the remaining results are proved for all Artin groups of large type.

We assume throughout this section that G is an Artin group of large type,
with notation as defined in Section 5. We may assume that not all mij are
infinite, for otherwise the group is free, and rapid decay is known. For any
distinct pair of generators xi, xj , we let G(i, j) = G(j, i) be the subgroup of G
generated by xi and xj . We use ∆ij to denote (xi, xj)mij

, and δij to denote the

permutation of {xi, x
−1
i , xj , x

−1
j } induced by conjugation by ∆ij .
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The process of reducing words in G to shortlex minimal form is described in
[17, Proposition 3.3]. In [17, Section 3], a leftward or rightward critical sequence
is defined as a sequence of τ -moves applied to a word, in which successive moves
overlap in a single letter. For a geodesic word whose maximal proper prefix is
already shortlex minimal, but which is not itself lexicographically minimal, a
lexicographic reduction to a shortlex minimal word can be achieved by a single
leftward critical sequence, known as a leftward lex reducing sequence. Similarly,
for a non-geodesic word whose maximal proper prefix is shortlex minimal, a
length reduction to a shortlex minimal word can be achieved by a single right-
ward critical sequence followed by a single free cancellation; the combination is
known as a rightward length reducing sequence.

For example, with m12,m13,m23 = 3, 4, 5 and writing a, b, c for x1, x2, x3:

α(ab−2a−1)cb2c−1b−1aca2ca−1,

αb−1a−2(bcb2c−1b−1)aca2ca−1,

αb−1a−2c−1b−1c2b(caca2c)a−1,

αb−1a−2c−1b−1c2bac2ac(aa−1),

αb−1a−2c−1b−1c2bac2ac,

where α is an arbitrary word, is a rightward length reducing sequence in which
the critical words to which τ -moves are applied are bracketed and printed in
boldface, and the final move is the free reduction of aa−1.

7.1 The geodesics in Artin groups of large type

We shall need some results about geodesics in Artin groups of large type. The
first of these is proved in [17].

Proposition 7.1 ([17, Proposition 4.5]). Suppose that v, w are any two geodesic
words representing the same group element, and that l[v] 6= l[w]. Then:

(1) l[v] and l[w] have different names;

(2) The maximal 2-generator suffixes of v and w involve generators with
names equal to those of l[v] and l[w];

(3) Any geodesic word equal in G to v must end in l[v] or in l[w].

Corresponding results apply if f[v] 6= f[w].

Corollary 7.2. If wa is a geodesic word for some a ∈ A and k > 1, then wak

is a geodesic word for all k > 1.

Proof. Otherwise, choosing k minimal with wak non-geodesic, the group element
wak−1 has geodesic representatives ending both in a and in a−1, contradicting
Proposition 7.1 (1).

Proposition 7.3. Let g ∈ G and xi, xj ∈ X with i 6= j. Then g has a unique
left divisor LDij(g) ∈ G(i, j) of maximal length. Furthermore, if w is any
geodesic word representing g, and u is the maximal {xi, xj}-prefix of w, then
LDij(g) =G ua

r for some r 6= 0 with a ∈ {x±1
i , x±1

j } and |LDij(g)| = |u|+ r.
Similarly, g has a unique right divisor RDij(g) ∈ G(i, j) of maximal length,

to which the corresponding results apply.
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Proof. Order the monoid generators of G such that x±1
i , x±1

j (in some order)
come first, and let w′ be the shortlex least representative of g, using this order-
ing, with maximal {xi, xj}-prefix u

′.
Let w be an arbitrary geodesic representative of g and let u be the maximal

{xi, xj}-prefix of w. We consider the process of reducing w to its shortlex form
w′ by considering each letter of w in turn, and reducing the prefix ending in
that letter to shortlex form. Suppose that w0 = w, that w reduces through the
sequence of words w1, w2, . . . to wn = w′ and that u0 = u, u1, . . . , un = u′ is the
corresponding sequence of maximal {xi, xj}-prefixes.

By [17, Proposition 3.3], the prefix of length k in wk is either already shortlex
reduced, or can be reduced to shortlex form with a single leftward lex reducing
sequence. Such a reduction cannot change a letter of uk to a letter with name
not in {x±1

i , x±1
j }, since that would be shortlex increasing. So either uk+1 = uk

or uk+1 is the shortlex reduction of uka
s for some a ∈ {x±1

i , x±1
j } and s > 0.

By [17, Lemma 3.8(2)], after such a reduction, the names of the next two letters
in wk+1 after uk+1 are the name of a and a generator not in {xi, xj}. So if
subsequent reductions occur that increase the length of the maximal i, j-prefix,
then they all involve adjoining the same letter a. (We can’t adjoin a and then
a−1 or the word would not be geodesic!) So we have u′ =G uar with |u′| = |u|+r.
as claimed. Since the equation holds for any choice of w, we have proved that
(u′)G is the unique longest left divisor of g in G(i, j).

The proof for the maximal right divisor is similar.

Proposition 7.4. (1) Let v, w be two geodesic words representing the same
group element g, with l[v] 6= l[w]. Then a single rightward critical se-
quence can be applied to v to yield a word ending in l[w].

(2) Let v be a freely reduced non-geodesic word with v = wa with a ∈ A and
w geodesic. Then v admits a rightward length reducing sequence.

Proof. The proof of (1) is by induction on |v|, the result being vacuously true
when |v| = 1. Let xi and xj be the names of l[v] and l[w], and let v = v′u,
where u is the longest 2-generator suffix of v. If u has a geodesic representative
ending in l[w], then the result follows from [17, Corollary 2.6], so suppose not.
By Proposition 7.3, we have RDij(g) =G a

ru for some a ∈ {x±1
i , x±1

j }, and also
RDij(g) has a geodesic representative ending in l[w]. So, by [17, Lemma 2.8],
a single τ -move can be applied to au to give a word ending in l[w]. Now, by
inductive hypothesis, a single rightward critical sequence can be applied to v′

to yield a word ending in a, and following this by the above τ -move results in
the required critical sequence, which completes the proof of (1).

If v is as in (2), then w has a geodesic representative ending in a−1, and the
result follows from (1).

In fact the above proposition provides a slightly shorter proof that Artin
groups of large type have FFTP than the one in [17].

The next proposition implies that for the groups in Theorem 1.1, for a given
g, i and j, the letter a arising in Proposition 7.3 is unique.

Proposition 7.5. Assume that G satisfies the hypotheses of Theorem 1.1, and
let g ∈ G and xi, xj ∈ X with i 6= j. Then either

(1) every geodesic word representing g has a prefix that represents LDij(g);
or
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(2) there is a unique letter a ∈ {x±1
i , x±1

j }, and an element LD′
ij(g) ∈ G(i, j)

such that, for any geodesic representative w with maximal {xi, xj}-prefix
u, we have LDij(g) =G uar and u =G LD′

ij(g)a
s, for r, s ≥ 0.

In case (1), we define LD′
ij(g) = LDij(g), for future reference.

Proof. Let h := LDij(g) and h′ := h−1g, and suppose that case (1) does not
hold. Then g has at least one geodesic representative whose maximal {xi, xj}-
prefix u is a proper left divisor of LDij(g). Proposition 7.3 implies that h =G
uar with r > 0.

If a is not uniquely determined, then g has another geodesic representative
with maximal {xi, xj}-prefix v such that h =G vbs, with s > 0 and b 6= a. We
may assume that the names of a and b are xi, xj respectively. Note that, since h
has more than one geodesic representative, the vertices corresponding to xi, xj
in the graph Γ defining G must be joined by an edge (that is mij <∞).

Now arh′ = u−1g has a geodesic representative beginning with a and an-
other geodesic representative beginning with a letter with name xi′ for some
i′ 6= i, j. By Proposition 7.1, all geodesic representatives of arh′ have their
longest 2-generator prefix in G(i, i′), and hence all geodesic representatives of
h′ must begin with the same letter c, of which the name is xi′ . Furthermore,
any geodesic representative of LDii′ (a

rh′) must contain a critical subword, and
similarly LDji′ (b

sh′) contains a critical subword.
From the hypothesis of Theorem 1.1 and the fact that the vertices xi and xj

are joined by an edge in Γ, it follows that the edges joining vertices xi, xi′ and
vertices xj , xi′ cannot both have the label 3. So, for at least one of LDii′ (a

rh′)
and LDji′ (b

sh′), it is true that any geodesic representative has at least four
syllables. Assume without loss that this is true for LDii′(a

rh′). So h′ has
geodesic representatives u1, u2, where u1 has a prefix in G(i, i′) with at least
three syllables and u2 has a prefix in G(j, i′) with at least two syllables. But
then, if cs is the highest power of c that is a left divisor of h′, c−sh′ has a geodesic
representative beginning with xi with a 2-generator prefix in G(i, i′) and another
geodesic representative beginning with xj , which contradicts Proposition 7.1 (as
applied to prefixes of u1 and u2).

So a is indeed uniquely determined. We define LD′
ij(g) := LDij(g)a

−s, where
as is the maximal power of a that is a right divisor of LDij(g).

The following example shows that Proposition 7.5 fails without the (3, 3,m)-
hypothesis. Let m12,m13,m23 = 4, 3, 3 and write a, b, c for x1, x2, x3. Let g be
the group element represented by the geodesic word w := babacabab. Then,
since the only two geodesic representatives of the suffix cabab of w are cabab
and cbaba, neither of which starts with a±1 or b±1, we see that LD1,2(g) =
baba. But, by replacing aca by cac, we have g =G w1 with w1 = babcacbab,
and also g =G (baba)c(abab) =G aba(bcb)aba =G w2 with w2 = abacbcaba, so
LD1,2(g) =G v1a =G v2b, where v1 and v2 are the maximal {a, b}-prefixes of
w1 and w2, respectively. A corresponding example can be constructed with
m12 = m for any m with 3 ≤ m <∞.
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7.2 Verifying D1 and D2 for the Artin groups in Theo-

rem 1.1

We assume for the remainder of the paper that G satisfies the hypotheses of
Theorem 1.1: G is an Artin group of large type that satsifies the (3, 3,m)-
hypothesis.

We must first define our set P of permissible geodesic factorisations (g1, g2).
We use the notation Pij to denote the set of permissible geodesic factorisations
in the dihedral Artin group on G(i, j), as defined in Subsection 6.2. Recall that
LDij(g) and RDij(g) were defined in Proposition 7.3 as the longest left and right
divisors of g in G(i, j). Then we define P to be the set of geodesic factorisations
(g1, g2) in G such that for every pair of generators xi, xj , (RDij(g1),LDij(g2)) ∈
Pij .

Our proof of D1 will involve an inductive argument. To make this work
properly, we have to investigate in what circumstances we can have a geodesic
factorisation (ag1, g2) ∈ P for some a ∈ A, with (g1, g2) 6∈ P .

Lemma 7.6. Suppose that g ∈ G, a ∈ A, |ag| = |g| + 1, (ag1, g2) ∈ P(ag) but
(g1, g2) 6∈ P(g).

(1) Then ag has a geodesic representative that begins with a letter b 6= a.

(2) If ag1 does not lie in any 2-generator subgroup of G, then all geodesic
representatives of LD′

ij(ag) (as defined in Proposition 7.5) begin with b,
where xi and xj are the names of a and b.

Proof. Suppose first that ag1 lies in a 2-generator subgroup G(i, j). Then
(ag1, g2) ∈ Pij and (g1, g2) 6∈ Pij implies that the factorisation (g1, g2) of g must
be ∆ij -decreasing (as defined in Section 6.2), while the factorisation (ag1, g2) of
ag is not. So ag1 is divisible by ∆ij , and conclusion (1) is immediate.

So now suppose that ag1 does not lie in a 2-generator subgroup of G.
Then there exist distinct i′, j′ such that (RDi′j′ (ag1),LDi′j′ (g2)) ∈ Pi′j′ and
(RDi′j′(g1),LDi′j′(g2)) 6∈ Pi′j′ . Let h := RDi′j′ (ag1). Since, by Proposition 7.3,
RDi′j′ (g1) is a right divisor of h, we have |h| > |RDi′j′(g1)|. We are assuming
that ag1 6∈ G(i′, j′), so |h| < |ag1|, and ag1h

−1 cannot have a geodesic represen-
tative beginning with a, as that would imply that h was a right divisor of g1.
Hence all geodesic representatives of ag1h

−1 begin with some letter b with b 6= a,
and hence ag has a geodesic representative beginning with b, which proves (1).

We observe also that (RDi′j′ (g1),LDi′j′ (g2)) must be a ∆i′j′ -decreasing fac-
torisation, whereas (h,LDi′j′ (g2)) is not, so h must be a signed element divisible
by ∆±1

i′j′ . Hence h has geodesic representatives beginning with letters with names
xi′ and xj′ ; these are suffices u′, v′ of geodesic representatives u, v of ag1. Now
if both u′ intersects the maximal {xi, xj}-prefix of u and v′ intersects the max-
imal {xi, xj}-prefix of v, we have {i, j} = {i′, j′} and hence ag1 ∈ G(i, j), a
contradiction. This implies that ag has a geodesic representative in which the
maximal {xi, xj}-prefix is a left divisor of ag1h

−1. Then, by Proposition 7.5,
LD′

ij(ag) is a left divisor of ag1h
−1; hence, as we showed in the proof of (1), all

of its geodesic representatives begin with b, and (2) is proved.

In Corollary 6.7, we proved D1 for 2-generator Artin groups. Let P ′ be a
polynomial such that D1 holds with P ′ for each of the 2-generator subgroups
G(i, j) of G.
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Lemma 7.7. Let g ∈ G with |g| = m and suppose that v, w are geodesic repre-
sentatives of g with f[v] 6= f[w]. Suppose that 0 ≤ k ≤ m. Let D be the set of left
divisors g1 of g in Pl(g) of length k for which all geodesic representatives begin

with f[v]. Then |D| ≤ Q(k) :=
∑k

j=1 P
′(j).

Proof. The proof is by induction onm, the result being vacuously true form = 1.
Let the names of f[v] and f[w] be xi, xj , let h := LDij(g), and let h′ := LD′

ij(g),
as defined in Proposition 7.5. Suppose that g1 ∈ D, with g = g1g2.

If g1 ∈ G(i, j), then g1 ∈ Pl(h). It follows immediately from Corollary 6.7
that there are at most P ′(k) such choices for g1.

So now suppose that g1 6∈ G(i, j). Since g1 has f[v] as unique left divisor of
length 1, whereas g and hence h, by Proposition 7.3, has more than one such
left divisor, h cannot be a left divisor of g1.

Since g1 6∈ G(i, j), Proposition 7.5 implies that h′ is a left divisor of g1, and
so a proper divisor of h, and that h = h′ar for some r > 0, a ∈ {x±1

i , x±1
j }. But

now, since LDij(g1) is certainly a left divisor of g, Proposition 7.5 also implies
that h = LDij(g1)a

s, for some s > 0. We deduce that LDij(g1) = h′at, with
t ≥ 0. By [17, Lemma 2.8], h′a has more than one left divisor of length 1, and
so cannot be a left divisor of g1, so t = 0. Hence LDij(g) = h′.

Now h′−1g has a geodesic representative with first letter a, whereas g′1 :=
h′−1g1 does not. So by Proposition 7.1, all geodesic representatives of g′1 have
the same first letter.

We claim that g′1 ∈ Pl(h
′−1g). If not then for some i′, j′, (g′1, g2) is ∆i′j′ -

decreasing whereas (g1, g2) is not, and hence RDi′j′(g1) is longer than RDi′j′ (g
′
1),

Now suppose that vw is a geodesic representative of g1, with w representing
RDi′j′ (g1). Then by Proposition 7.5 (2) some prefix u of vw represents h′. If
u is a prefix of v, then w is a suffix of a representative of g′1, and RDi′j′ (g1)
is a right divisor of g′1, yielding a contradiction. So u and w must intersect
non-trivially, and hence |{i, j} ∩ {i′, j′}| = 1. We may suppose that i = i′ and
j 6= j′. Then since (g1, g2) is not ∆i′j′ -decreasing, the element RDi′j′(g1) is
divisible by ∆i′j′ , and so has a representative that begins with x±1

j′ ; hence we
can find a geodesic representative of g1, and then one of g, in which the longest
{xi, xj}-prefix is shorter than |h′|, contradicting Proposition 7.5 (2).

Now by the inductive hypothesis applied to h′−1g, there are at most Q(k −
|h′|) ≤ Q(k−1) possible g′1 and hence at most Q(k−1) possible g1 of length k not
in G(i, j). This bounds the total number of g1 of length k by Q(k−1)+P ′(k) =
Q(k) for any k ≤ m, and so completes the inductive step.

Proposition 7.8. D1 holds with the polynomial P1 defined by P1(n) = 2
∑n

j=0Q(j),
where the set P and the polynomial Q are as defined above.

Proof. Let g be an element of length m and choose k with 0 ≤ k ≤ m. The
proof is by induction on m, the case m = 1 being clear.

If all geodesic representatives of g begin with the same letter, then the result
follows immediately from the inductive hypothesis and Lemma 7.6 (1). So
suppose that g has geodesic representatives v, w with f[v] 6= f[w], and let xi, xj
be the names of f[v], f[w]. Assume without loss that LD′

ij(g) has a geodesic
representative beginning with f[w].

Let D be the set of elements in Pl(g) of length k. Then D = D1 ∪ D2 ∪ D3,
where D1 consists of those elements of D that lie in G(i, j), D2 consists of those
elements of D\D1 with at least one geodesic representative beginning with f[w],
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and D3 consists of those elements of D\D1 all of whose geodesic representatives
begin with f[v]. Then |D1| ≤ Q(k) from the 2-generator case and |D3| ≤ Q(k)
by Lemma 7.7.

Suppose that g1 ∈ D2. If f[w]
−1g1 6∈ Pl(f[w]

−1g), then by Lemma 7.6 (2), all
geodesic representatives of LD′

ij(g) begin with f[v], contrary to assumption; so
f[w]−1g1 ∈ Pl(f[w]

−1g), and the inductive hypothesis applied to f[w]−1g1 gives
|D2| ≤ P1(k − 1). So |D| ≤ P1(k − 1) + 2Q(k) = P1(k) as required.

The following lemma is of the same type as Lemma 6.3. It holds for all Artin
groups of large type.

Lemma 7.9. For some i 6= j, suppose that no nontrivial element of G(i, j)
is either a left divisor of g1 or a right divisor of g2. If g1g2 ∈ G(i, j), then
g1g2 = 1.

Proof. Suppose g1g2 = h with 1 6= h ∈ G(i, j). Since g1 has no element of G(i, j)
as left divisor, hg−1

2 cannot be a geodesic factorisation. Let u, v be geodesic
words representing h, g−1

2 . Let u′ = au′′ with a ∈ {x±1
i , x±1

j } be the shortest
suffix of u such that u′v is non-geodesic. Then u′′v has a geodesic representative
beginning with a−1 whereas u′′ does not. So the maximal {xi, xj}-prefix of that
geodesic representative of u′′v cannot represent a left divisor of (u′′)G, and hence
by Lemma 7.3 (u′′)G 6= LDij((u

′′v)G). But then g2 must have a nontrivial right
divisor in G(i, j), contrary to assumption.

It remains to verify D2. We start by defining a merging process for elements
g1 ∈ Ck and g2 ∈ Cl which, as in the 2-generator case, will result in a merger
(f1,∆

r
ij , f2) for some i, j where, for h1 := f−1

1 g1, h2 := g2f
−1
2 , we have h1h2 =

∆r
ij , (f1, h1) ∈ P(g1) and (h2, f2) ∈ P(g2).
As in the 2-generator case, the merging process proceeds through a series

of steps, starting with g
(1)
1 := g1, r1 := 0, g

(1)
2 := g2, and in the t-th step

we compute g
(t+1)
1 , rt+1, g

(t+1)
2 , by choosing geodesic factorisations g

(t+1)
1 h and

h′g
(t+1)
2 of g

(t)
1 and g

(t)
2 such that g

(t+1)
1 ∈ Pl(g1) and g

(t+1)
2 ∈ Pr(g2). But there

is an additional complication in that the i, j in the term ∆rt
ij may change during

the process.
Recall from Subsection 6.2 that there are three types of merging steps, the

first being free cancellation, and the other two involving a specific ∆ij . In
general, they are defined in the same way as in the 2-generator case subject to
the condition that, if rt 6= 0, then we must choose h, h′ ∈ G(i, j). If rt = 0, then
there is no such restriction on free cancellation moves whereas, for the other two
types, we have h, h′ ∈ G(i, j) for the new values of i, j.

Again as in the 2-generator case, for g ∈ G, k, l ∈ N k + l = m := |g|
we define the set S(g, k, l) to be the set of all triples (f1,∆

r, f2) that arise as
mergers of pairs of elements g1, g2 of lengths k, l and with g1g2 = g. For each
such triple, we have ∆ = ∆ij for some i, j; if r = 0, then {i, j} is not necessarily
uniquely defined. There exist h1, h2 ∈ G with h1h2 = ∆r where g1 = f1h1 and
g2 = h2f2, and the restrictions on the merging steps described above ensure
that (f1, h1) ∈ P(g1) and (h2, f2) ∈ P(g2).

In order to verify D2, we have to show that |S(g, k, l)| is bounded by P (k)
for some polynomial P . We decompose S as a disjoint union S0 ∪ S1 ∪ S2, and
establish polynomial bounds for each of those subsets.
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We define S0 to be the subset of elements of S(g, k, l) for which r = 0 and
f1, f2 ∈ 〈xi〉 for some generator xi. Since |f1| ≤ k, f2 = f−1

1 g, and xi is
determined by g, we have |S0| ≤ 2k + 1.

The sets S1, S2 are defined with respect to the elements f ′′
1 , f̂ , f

′′
2 that are

defined in Proposition 7.10 below. We define S1 to be the set of triples in
S(g, k, l) \ S0 for which f ′′

1 f̂ f
′′
2 is a geodesic factorisation of g, and S2 to be the

others.

Proposition 7.10. Let (f1,∆
r, f2) ∈ S(g, k, l) \ S0. Then the following is true

for some i 6= j with 1 ≤ i, j ≤ n where, if r 6= 0, i, j are determined by ∆ = ∆ij .

There exist f ′′
1 , f

′
1, f

′′
2 , f

′
2, f̂ ∈ G such that

(1) f ′
1, f

′
2, f̂ ∈ G(i, j), but f ′′

1 has no right divisor in G(i, j) and f ′′
2 has no

left divisor in G(i, j),

(2) g = f ′′
1 f̂f

′′
2 , f1 = f ′′

1 f
′
1, f2 = f ′

2f
′′
2 , and

(3) (f ′
1,∆

r, f ′
2) ∈ S(f̂ , k′, l′) for some k′ ≤ k and l′ ≤ l.

Furthermore, f̂ does not lie in 〈xi〉 for any i.

Proof. Since (f1,∆
r, f2) ∈ S(g, k, l), it is the merger of elements g1 ∈ Ck and

g2 ∈ Cl, and so there exist h1, h2 ∈ G with g1 = f1h1, g2 = h2f2 and h1h2 = ∆r.
Suppose first that r 6= 0, and hence that i, j are uniquely specified, with

mij < ∞. Define f ′
1 := RDij(f1), h

′
1 := LDij(h1), f

′
2 := LDij(f2), h

′
2 :=

RDij(h2), k
′ = |f ′

1h
′
1|, l

′ = |h′2f
′
2| and f̂ = f ′

1h
′
1h

′
2f

′
2. Now Lemma 7.9 applied

to h′−1
1 h1 and h2h

′−1
2 tells us that h′1h

′
2 = h1h2 = ∆r. In other words, during

the merging the right divisor (h′1)
−1h1 of h1 has cancelled with the left divisor

h2(h
′
2)

−1 of h2. We see also that (f ′
1,∆

r, f ′
2) ∈ S(f̂ , k′, l′) is the result of the

merging of f ′
1h

′
1 and h

′
2f

′
2 in G(i, j). Suppose that f̂ ∈ 〈xi′ 〉 for i

′ = i or j. Then
the application of Lemma 6.3 to f ′

1h
′
1 and h′2f

′
2 shows that free cancellation of w

with w ∈ Pr(f
′
1h

′
1), w

−1 ∈ Pl(h
′
2f

′
2) can be used to merge f ′

1h
′
1 and h′2f

′
2 to give

just a power of xi′ , contradicting the fact that r 6= 0. (Here we are using the
factorisations in P1, to ensure that such a cancellation would be permissible.)

Suppose instead that r = 0. Then h1 = h−1
2 . Since we are assuming that

(f1,∆
r, f2) 6∈ S0, we can choose distinct i, j such that f ′

1 := RDij(f1) and
f ′
2 := LDij(f2) do not both lie in the same cyclic subgroup 〈xi′ 〉 for i′ = i
or j. If possible, we choose i, j such that the vertices corresponding to i, j
in the graph Γ defining G are joined by an edge (equivalently, mij < ∞).
Again we define h′1 := LDij(h1), h

′
2 := RDij(h2), k

′ = |f ′
1h

′
1|, l

′ = |h′2f
′
2|

and f̂ = f ′
1h

′
1h

′
2f

′
2. Since h1 = h−1

2 , we have h′1 = (h′2)
−1, so in this case

too (f ′
1,∆

r
ij , f

′
2) ∈ S(f̂ , k′, l′) is a merger of f ′

1h
′
1 and h′2f

′
2 in G(i, j) and, by

Lemma 6.3, f ′
1h

′
1h

′
2f

′
2 does not lie in a cyclic subgroup 〈xi′ 〉 for i

′ = i or j.

For triples in S1, we claim that f ′′
1 ∈ Pl(g). Since f ′′

1 has no right divisor

in G(i, j) the only way that the factorisation (f ′′
1 , f̂f

′′
2 ) could be ∆-decreasing

for some ∆ would be with ∆ = ∆ii′ , where xi′ is the name of both l[f ′′
1 ] and

f[f ′′
2 ] and f̂ = xsix

t
j for some s, t > 0. But then RDii′ (f̂ f

′′
2 ) would have at most

two syllables, and so the factorisation would still be permissible. So the claim
is true.

Hence, since |f ′′
1 | ≤ k, the number of choices of f ′′

1 is bounded by P1(k). For

given f ′′
1 and a pair i, j, we have f̂ = LDij(f

′′
1
−1
g) and f ′′

2 = f̂−1f ′′
1
−1
g. Now
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(f ′
1,∆

r
ij , f

′
2) ∈ S(f̂ , |f ′

1h
′
1|, |h

′
2f

′
2|), which we know from the dihedral case has

size bounded by P ij2 (min |f ′
1h

′
1|, |h

′
2f

′
2)) ≤ P ij2 (k). So |S1| ≤ P1(k)

∑

i,j P
ij
2 (k).

In order to bound |S2|, we need some further technical lemmas.

Lemma 7.11. Suppose that f ′′
1 f̂f

′′
2 is not a geodesic factorisation of g. Then

f̂ = asbt for some s, t > 0 where a, b ∈ {x±1
i , x±1

j } and a, b have different names.

Proof. Let u′′1 , û, u
′′
2 be geodesic words representing f ′′

1 , f̂ , f
′′
2 , respectively. Sup-

pose (for a contradiction) that û has at least three syllables. Since u′′1 ûu
′′
2 is

not geodesic, we can by Proposition 7.4 (2) apply a rightward length reducing
sequence to a prefix of it containing u′′1 .

If the left-hand end of the first critical subword in the sequence were to the
left of û, then some τ -move in the sequence would replace a letter in the first
syllable of û by a letter c with name not equal to xi or xj . But since c would
then be followed by at least two syllables with names xi and xj , c would not be
the leftmost letter in a critical subword, and so this would be the last τ -move
in the sequence, and would not provoke a free reduction. So the left hand end
of the first critical subword must be within û.

We may assume that the first τ -move of the sequence is not completely
within û, since otherwise we could just replace û by the result of this move. So
the first critical subword overlaps the right hand end of û and hence has its left
hand end in the final syllable, as say, of û. But then asu′′2 is not geodesic and
so, by Corollary 7.2, neither is au′′2 . But then f ′′

2 has a geodesic representative
beginning with a−1, contradicting f2 = f ′

2f
′′
2 with f ′

2 = LDij(f2).

Lemma 7.12. Suppose that f̂ = asbt for some s, t > 0, where a, b have distinct
names xi, xj , and that f ′′

1 f̂ f
′′
2 is not a geodesic factorisation of g. Then there

exists a letter c with name xi′ not equal to xi or xj, q > 0, and e1, e2 ∈ G, such
that f ′′

1 a
s = e1c

q and btf ′′
2 = c−qe2, where e1c

q, c−qe2 and e1e2 are all geodesic
factorisations. Furthermore, the vertices corresponding to xi, xj in the graph Γ
are joined by an edge; that is mij <∞.

Proof. Let u′′1 , u
′′
2 be geodesic representatives of f ′′

1 , f
′′
2 . Using similar reasoning

to that of the proof of the previous lemma, we see that a rightward length
reducing sequence applied to the word u′′1a

sbtu′′2 would consist of a sequence
of moves that replaced u′′1a

s by a word ending in a letter c with name xi′ not
equal to xi or xj , followed by a length reducing sequence applied to cbtu′′2 . But
then btu′′2 would have a geodesic representative starting with c−1. Let q be
maximal such that f ′′

1 a
s and btf ′′

2 have geodesic factorisations e1c
q and c−qe2

respectively.
If mij were infinite, then we would have r = 0 in Proposition 7.10, in which

case we could and would have chosen one of the pairs i, i′ or j, i′, depending on
which of mii′ and mji′ was finite rather than i, j in the proof of that proposi-
tion. So mij < ∞, which proves the final assertion in the lemma. Hence the
hypothesis of Theorem 1.1 implies that at least one of the mii′ and mji′ is at
least 4.

Let h1 and h2 be the group elements represented by e1c
q =G u′′1a

s and
c−qe2 =G btu′′2 , respectively. Applying Propositions 7.1 and 7.3 to these el-
ements, we see that RDii′ (h1) and LDji′ (h2) are represented by w1 and w2,
ending in cq and beginning with c−q, respectively. Since w1 and w2 are not the
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unique geodesic representatives of RDii′ (h) and LDji′ (h2), the above condition
on the edge labels implies that at least one of w1 and w2 has at least four syl-
lables. Hence either e1 has a geodesic representative v1 in which at least the
final three syllables are powers of a and c, or e2 has a geodesic representative
v2 in which at least the first three syllables are powers b and c. We see that no
rightward length reducing sequence can pass through this middle section, and
hence v1v2 is geodesic, which completes the proof.

By Lemma 7.11, each element (f1,∆
r
ij , f2) of S2 determines f ′′, f̂ , f ′′

2 for
which the hypotheses and conclusion of Lemma 7.12 hold. Since |g| ≥ l− k, we
must have q ≤ k, so there are at most 2nk possibilities for cq. So assume that
cq is fixed. Unfortunately we have no bound on |e1| as a polynomial in k. Let
e1 = e′′1e

′
1 with e′1 = RDii′ (e1). Then |e′′1 | < |f ′′

1 | < k and e′′1 ∈ Pl(e1), so there
are at most P1(k) possible e

′′
1 .

We claim that the triple (f1,∆
r
ij , f2) is uniquely determined by g, cq and e′′1 .

To see this note that LDii′ (e
′′
1
−1g) = e1c

−t for some t ≥ 0 and, since (e1, c
q)

is a geodesic factorisation, e1 does not have c−1 as right divisor. Hence, given
g, cq and e′′1 , e

′
1 is determined as LDii′(e

′′
1
−1
g)ct, where c−t is the longest right

divisor of LDii′(e
′′
1
−1
g) of that form. Then e1 and f ′′

1 are determined as e′′1e
′
1

and e1c
qa−s, where as is the highest power of a that is a right divisor of e1c

q.
Then, as in the previous case, we have f̂ = LDij(f

′′
1
−1
g) and f ′′

2 = f̂−1f ′′
1
−1
g,

which establishes the claim.
So the number of triples (f1,∆

r
ij , f2) ∈ S(g, k, l) that satisfy the conclusion

of Lemma 7.12, and hence also |S2|, is bounded by 2nkP1(k)
∑

i,j P
ij
2 (k).

This completes the proof that Artin groups satisfying the hypotheses of
Theorem 1.1 satisfy D1 and D2, and hence also the proof of Theorem 1.1.
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