Please solve the following problems:

Qu.4 and Qu.6;

hand in your solutions on Tuesday the 5th of May by 16.00. Tutorial is on Thursday the 30th of April at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova

MAS8220 Topology and Functional Analysis (2015)

Examples Sheet 8

- Qu. 1. Let I be an ideal in an algebra A. Show that there is a bijective correspondence between the set of ideals in A/I and the set of ideals of A that contain I.
- Qu. 2. Construct an example to show that maximal ideals in a commutative Banach algebra need not be closed.

Hint: Consider a zero multiplication algebra. You may assume that on any infinitedimensional Banach space there is a linear functional with non-closed kernel.

Qu. 3. Let *I* be the ideal $\{f : f(t) = 0 \text{ for } 0 \le t \le \frac{1}{2}\}$ in C[0, 1].

Show that

(i) I is a closed ideal,

- (ii) C[0,1]/I is isometrically isomorphic to $C[0,\frac{1}{2}]$.
- Qu. 4. Let A be a commutative Banach algebra, not necessarily having an identity, and let \mathcal{M}_A be the maximal ideal space of A. If I is an ideal of A we say that an element x is an idempotent mod I if $x^2 - x \in I$. If φ is a character of A and x is an idempotent mod ker φ then what is $\varphi(x)$?

Show that the mapping

$$\hat{A} \to \mathcal{M}_A : \varphi \mapsto \ker \varphi$$

is injective.

- Qu. 5. Show that there is a character of ℓ[∞] that is not a co-ordinate evaluation functional (Recall Ex. 6, Qu. 1).
- Qu. 6. Show that $\ell^1(\mathbb{Z})$ is semisimple.
- Qu. 7. Let A be the subset of $M_n(\mathbb{C})$ consisting of all matrices of the form

$$T = \begin{bmatrix} t_0 & t_1 & \dots & t_{n-1} \\ 0 & t_0 & \dots & t_{n-2} \\ \ddots & \ddots & \ddots \\ 0 & 0 & \dots & t_0 \end{bmatrix}$$

50 marks

50 marks

where t_0, \ldots, t_{n-1} are complex numbers (upper triangluar matrices constant on diagonals). Check that A is a commutative Banach algebra with identity.

Show that A has a unique character φ given by $\varphi(T) = t_0$.

What is the Jacobson radical of A?