
Please solve the following problems:

Qu.4 and Qu.6;

hand in your solutions on Tuesday the 5th of May by 16.00. Tutorial is on Thursday the 30th

of April at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova
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Qu. 1. Let I be an ideal in an algebra A. Show that there is a bijective correspondence between the

set of ideals in A/I and the set of ideals of A that contain I.

Qu. 2. Construct an example to show that maximal ideals in a commutative Banach algebra need

not be closed.

Hint: Consider a zero multiplication algebra. You may assume that on any infinite-

dimensional Banach space there is a linear functional with non-closed kernel.

Qu. 3. Let I be the ideal {f : f(t) = 0 for 0 ≤ t ≤ 1
2
} in C[0, 1].

Show that

(i) I is a closed ideal,

(ii) C[0, 1]/I is isometrically isomorphic to C[0, 1
2
].

Qu. 4. Let A be a commutative Banach algebra, not necessarily having an identity, and let MA be

the maximal ideal space of A. If I is an ideal of A we say that an element x is an idempotent

mod I if x2 − x ∈ I. If ϕ is a character of A and x is an idempotent mod kerϕ then what is

ϕ(x)?

Show that the mapping

Â→MA : ϕ 7→ ker ϕ

is injective. 50 marks

Qu. 5. Show that there is a character of `∞ that is not a co-ordinate evaluation functional (Recall

Ex. 6, Qu. 1).

Qu. 6. Show that `1(Z) is semisimple. 50 marks

Qu. 7. Let A be the subset of Mn(C) consisting of all matrices of the form

T =


t0 t1 . . . tn−1

0 t0 . . . tn−2

· · . . . ·
0 0 . . . t0


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where t0, . . . , tn−1 are complex numbers (upper triangluar matrices constant on diagonals).

Check that A is a commutative Banach algebra with identity.

Show that A has a unique character ϕ given by ϕ(T ) = t0.

What is the Jacobson radical of A?
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