
Please solve the following problems:

Qu.1, Qu.3 and Qu.5;

hand in your solutions on Tuesday the 21st of April by 16.00. Tutorial is on Thursday the

12th of March at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova
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Qu. 1. C1[0, 1] denotes the Banach algebra of continuously differentiable C-valued functions on [0,1]

with pointwise operations and norm

‖f‖C1 = sup
0≤t≤1

|f(t)| + sup
0≤t≤1

|f ′(t)|.

Check that this norm is submultiplicative.

Show that the character space of C1[0, 1] can be naturally identifined with [0, 1] (adapt the

proof of Theorem 9.2). 20 marks

Qu. 2. Show that the Gelfand topology on the character space of C1[0, 1] agrees (under the identifi-

cation obatined in Qu. 1) with the usual topology of [0, 1].

Qu. 3. Let K be a compact Hausdorff space.

Show that K is connected if and only if C(K) contains no idempotents other than 0 and the

identity. [An idempotent in an algebra is an element x such that x2 = x]. 15 marks

Qu. 4. Let A,B be commutative unital Banach algebras and let Φ : A → B be a continuous unital

homomorphism.

Show that Φ determines a map f : B̂ → Â.

Show further that f is continuous with respect to the Gelfand topologies on Â and B̂.

Qu. 5. Let en denote the ”nth standard basis vector” in the convolution algebra `1(Z) (Example

6.2); thus en has 1 in the nth place (for n ∈ Z) and zero elsewhere.

Show that, for any character ϕ of `1(Z), ϕ(en) = ϕ(e1)
n for n ∈ Z, and deduce that |ϕ(e1)| =

1.

Show that the character space of `1(Z) is homeomorphic to the unit circle T of the complex

plane.

Describe the Gelfand representation Γ : `1(Z) → C(T). 15 marks

Qu. 6. Give an example of an ideal in C[0,1] that is not closed in C[0,1].
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