Please solve the following problems:

Qu.1, Qu.3 and Qu.5;

hand in your solutions on Tuesday the 21st of April by 16.00. Tutorial is on Thursday the 12th of March at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova

MAS8220 Topology and Functional Analysis (2015)

Examples Sheet 7

Qu. 1. $C^{1}[0, 1]$ denotes the Banach algebra of continuously differentiable \mathbb{C} -valued functions on [0, 1] with pointwise operations and norm

$$||f||_{C^1} = \sup_{0 \le t \le 1} |f(t)| + \sup_{0 \le t \le 1} |f'(t)|.$$

Check that this norm is submultiplicative.

Show that the character space of $C^{1}[0, 1]$ can be naturally identified with [0, 1] (adapt the proof of Theorem 9.2). **20 marks**

- Qu. 2. Show that the Gelfand topology on the character space of $C^{1}[0,1]$ agrees (under the identification obtained in Qu. 1) with the usual topology of [0,1].
- Qu. 3. Let K be a compact Hausdorff space.

Show that K is connected if and only if C(K) contains no idempotents other than 0 and the identity. [An *idempotent* in an algebra is an element x such that $x^2 = x$]. **15 marks**

Qu. 4. Let A, B be commutative unital Banach algebras and let $\Phi : A \to B$ be a continuous unital homomorphism.

Show that Φ determines a map $f : \hat{B} \to \hat{A}$.

Show further that f is continuous with respect to the Gelfand topologies on \hat{A} and \hat{B} .

Qu. 5. Let e_n denote the "*n*th standard basis vector" in the convolution algebra $\ell^1(\mathbb{Z})$ (Example 6.2); thus e_n has 1 in the *n*th place (for $n \in \mathbb{Z}$) and zero elsewhere. Show that, for any character φ of $\ell^1(\mathbb{Z})$, $\varphi(e_n) = \varphi(e_1)^n$ for $n \in \mathbb{Z}$, and deduce that $|\varphi(e_1)| = 1$.

Show that the character space of $\ell^1(\mathbb{Z})$ is homeomorphic to the unit circle \mathbb{T} of the complex plane.

Describe the Gelfand representation $\Gamma : \ell^1(\mathbb{Z}) \to C(\mathbb{T}).$ 15 marks

Qu. 6. Give an example of an ideal in C[0,1] that is not closed in C[0,1].